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Abstract. COCORP profiling across the 
midcontinent geophysical anomaly in north- 
eastern Kansas reveals structural basins 

and other features of the Precambrian 

Keweenawan rift buried beneath the Phaner- 

ozoic cover. The 40-km-wide main basin is 

asymmetric, with a maximum depth of 3 km 
on the east and 8 km on the west. The 

basin fill is characterized by a lower 
layered sequence of strong continuous west 
dipping reflectors which may be correlated 
with Middle Keweenawan interbedded volcan- 

ic and clastic rocks exposed along the MGA 
in the Lake Superior region. Overlying 
this layered sequence is a zone of weak, 
discontinuous reflectors correlated here 

with the predominantly clastic rocks 
characteristic of the Upper Keweenawan 
sequence near Lake Superior. A second 
tilted but shallower basin lies to the 

east of the main basin and appears to be 
filled predominantly with clastic sedi- 
mentary rocks. The character of the seis- 
mic data, the seismic velocity distribu- 
tion, and gravity modeling suggest that 
mafic intrusions lie beneath the main rift 

basin. Normal faults associated with the 

rift dip at moderate angles to the east. 
Palinspastic reconstruction indicates that 
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the rift basin formed by the rotation of 
fault bounded blocks during crustal exten- 
sion. Although reactivation of preexist- 
ing structures appears to have occurred in 
many other rifts profiled by COCORP, the 
evidence is inconclusive on this point in 
the case of the Kansas data. The 

structures mapped by COCORP surveys in 
Kansas and elsewhere suggest that asym- 
metric sequences of layered reflectors are 
characteristic, and perhaps diagnostic, of 
rift basin deposits in general. 

INTRODUCTION 

In the fall of 1981, COCORP completed 
317 km of deep seismic reflection profil- 
ing in northeastern Kansas. The principal 
purpose of this survey was to investigate 
the buried structure of the Precambrian 

Keweenawan rift associated with the 

midcontinent geophysical anomaly (MGA), 
and that topic is the focus of this 
paper. The COCORP Kansas survey also 
provided information on other aspects of 
the cratonic basement, such as the struc- 
ture of the Nemaha ridge and the distribu- 
tion of major horizons within the deep 
crust. These subjects are mentioned here 
but are discussed more thoroughly in the 
works of Brown et al. [1983a] and T. 
Setzer [manuscript in preparation, 1984]. 

The Kansas data are generally of good 
quality and provide much information on 
the subsurface. Many seismic events were 
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Fig. 1. Bougue•r gravity anomaly map of the midcontintent [after Woollard and 
Joesting, 1964 J showing the location of the Midcontinent Geophysical Anomaly 
(stippled). COCORP profiles indicated by heavy lines. 

recorded at times corresponding to lower 
crustal depths, but these events were not 
traced to the surface in this survey, 
Thus there is some ambiguity in the inter- 
pretation of the deep events, and there 
probably will be until such tracing is 
accomplished. 

The Precambrian Keweenawan rift is 

prominent in the seismic data. The asym- 
metric nature of the rift is clearly 
demonstrated by the dip of strong deposi- 
tional layering within the basin. The 
rift structure and the gross stratigraphy 
of the basin deposits imaged in the COCORP 
data can be compared with Keweenawan rift 
features exposed near Lake Superior, 1200 
km north of the Kansas profile, and with 
seismic data from other rift systems to 

provide guidelines for the recognition and 
interpretation of continental rift fea- 
tures in seismic reflection profiles. 

Phanerozoic sedimentary rocks cover the 
rift system along most of its length but 
the rift can be traced in the subsurface 
along the trend of the MGA (Figure 1) from 
central Kansas to the southern tip of Lake 
Superior [e.g., King and Zietz, 1971]. 
Keweenawan igneous and sedimentary rocks 
crop out along the flanks of Lake Superior 
where they are correlated directly with 
the high gravity and aeromagqetic anoma- 
lies of the MGA [Thiel, 1956 ]. In the 
Kansas seismic profile, prominent west 
dipping layered reflectors, centered 
beneath the gravity high of the MGA, are 
interpreted as Keweenawan basalts and 
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Fig. 2. Structural contours (in thousands of feet) at top of the Precambrian 
basement in northeastern Kansas [after Cole, 1976 ] showing the location of COCORP 
profiles. Numbers refer to VP locations of the surface. Dark shading shows the 
inferred extent of the mafic Clay formation with dots representing the Arkosic rocks 
of the Rice formation [Bickford et al., 1979 ]. The Clay and Rice formations are 
interpreted as Precambrian rift deposits and indicate the trend of the MGA. Light 
shading marks the trend of the Big Springs magnetic anomaly [Yarger, 1981 ]. 

clastic rocks deposited during the forma- 
tion of the main rift basin. East dipping 
planar normal faults appear to truncate or 
offset basin deposits both in the main 
basin and in a second flanking basin. 

The evolution of the rift basin in 

Kansas may be traced through a series of 
palinspastic reconstructions based on the 
basin stratigraphy imaged in the seismic 
data. Planar normal faults appear to have 
formed at relatively high angles (50 ø east 
dip) and to have rotated 15 ø toward the 
horizontal during crustal extension. This 
"domino style" of faulting has been 
observed through geological field studies 
in parts of the Rio Grande rift 

[Chamb. erlin, 1978] and the east African 
rift [Morton and Black, 1975]. 

Comparison of the Kansas data with 
COCORP data from other rifts suggests that 
asymmetry of basins and fault block rota- 
tions are typical. A dipping sequence of 
layered reflectors overlain by a zone of 
diffuse reflectors is common, and perhaps 
diagnostic, of rift basin deposits. The 
evidence is inconclusive in Kansas but 

seismic and other kinds of data suggest 
that reactivation of preexisting struc- 

tures occurs often in connection with 

continental rifting. 
In the following sections, we present a 

description of the seismic data and an 
interpretation of reflections seen in the 
profiles, particularly in the area of the 
MGA. This interpretation is used to 
construct a series of palinspastically 
restored cross sections which demonstrate 
a possible evolutionary sequence for the 
formation of the rift basin. The Kansas 
COCORP model is also compared to published 
models of the Keweenawan rift, as well as 
other continental rifts, to develop both a 
guide to the recognition of extensional 
basins in seismic data and a more compre- 
hensive picture of the process of conti- 
nental rifting. 

DATA ACQUISITION AND PROCESSING 

The COCORP Kansas survey (Figure 2) 
consists of 4 seismic profiles recorded 
during three field seasons between 1979 
and 1981. Line 1 was shot in three parts, 
joined at vibrator point (VP) 810 and VP 
1360, and provides 214 km of continuous 
east-west coverage beginning 18 km west of 
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TABLE 1. Data Acquisition Parameters 

Parameter 

Line 2 

Line 1 VP 1-810 
Lines 3 and 4 

Line 1 VP 810 to 2334 

Sampling rate, ms 
Signal frequency, Hz 
Sweep length, s 
Record length, s 
Sweeps per station 
Spacing of vibrator points 
Station spacing 
Spread configuraton 
Offset 

4 8 

8-40 8-32 
22 31 

42 51 
16 8 

every other station every station 
220 330 

split spread, 12-84 off end 
4 4 

the Missouri border and extending to the 
western edge of the MGA. Three cross 
lines (103 km total length) provide three- 
dimensional control at key points along 
the main traverse. Line 2 intersects line 

1 along the trend of the Big Springs mag- 
netic anomaly at VP 300, line 3 intersects 
at VP 850 near the Humboldt fault zone, 
and line 4 intersects at VP 1550 along the 
eastern margin of the MGA. Line 4 and the 
west end of line 1 lie within the MGA and 

comprise the most recently completed pro- 
files. 

Data acquisition in Kansas was perform- 
ed for COCORP by Petty Ray Geophysical 
Division, Geosource Inc. The resulting 
Vibroseis (TM Continental Oil) data were 
processed at Cornell University, using a 
MEGASEIS (TM Seiscom Delta) seismic pro- 
cessing system. After the completion of 
the first period of profiling (line 2 and 
VP's 1-810 of line 1), the survey para- 
meters were evaluated and modified. Both 

the original survey parameters and the 
modified parameters used for the remainder 
of the survey are listed in Table 1. The 
modifications include a change from an 
asymmetrical split-spread configuration to 
a standard off-end geometry, an increase 
in the sampling interval, a decrease in 
the highest input frequency, and an 
increase in station spacing. These 
changes were designed primarily to improve 
the efficiency of the data acquisition and 
processing without significant loss of 
seismic information. However, an effort 
was also made to redesign the survey para- 
meters to further enhance deep events 
which were apparent in the initial survey 
[Brown et al., 1983a]. New field equip- 
ment made possible the use of a sweep 
length longer than that used for the 
earlier surveying, thus more energy was 
put into the ground. Vibrating every 

station, rather than every other station 
as had been done in the initial part of 
the survey, increased the stacking fold 
from 2400% to 4800%. This increase in the 
stacking fold was to improve noise cancel- 
lation and to reduce spatial aliasing in 
the data. There does appear to be some 
improvement in the quality of the deep 
data associated with these modifications. 

Routine data processing [e.g., Schi!t 
et al., 1979] included demultiplexing and 
correlating the field records, sorting the 
resulting records into common midpoint 
gathers (CDPs), velocity analysis, muting, 
application of both elevation static and 
normal moveout corrections, and stacking 
to produce the seismic sections (Figure 
3). Autocorrelations were examined to 
identify systematic noise and, as a 
result, predictive deconvolution was 
applied to line 2. 

The minimum depth for imaging seismic 
events in the Kansas data is approximately 
200 m (0.2 s) because the refracted and 
surface waves recorded at the near receiv- 

er (400 m from the source) appear to have 
traveled at velocities equal to, or 
greater than, 2 km/s. When these nonre- 
flected arrivals are muted from the field 
files, the upper 0.2 s of data are left 
blank. This muting also reduces the 
stacking fold for about the upper 2 s of 
data on all the files. 

A detailed analysis of seismic veloci- 
ties was conducted on line 1 to assess the 
survey parameter changes (Table 1) and to 
provide guidelines for the optimum 
processing of deep crustal seismic data. 
The velocities resulting from this study 
are currently being reviewed in conjunc- 
tion with velocities from several other 

COCORP sites to determine whether they may 
provide additional information on the 

nature of crustal rocks [L. Serpa, manu- 
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Fig. 3. Line drawings of COCORP lines in northeastern Kansas. Gravity profile 
across line 1 from Woollard [1958] and seismic refraction models from northwestern 
Kansas [Steeples, 1976] and northwestern Missouri [Stewart, 1968]. 

script in preparation, 1984J. This study 
is not yet complete. However a prelimi- 
nary evaluation of the data suggests that 
it is possible to determine statistically 
consistent velocities from COCORP data to 

depths of at least 20 km when the 10 km 
far offset is used during the survey. For 
the data interpretation presented in the 
following sections, the stacking veloci- 
ties are correlated with changes in the 
character of reflections seen on the final 

processed sections in an effort to map 
mafic intrusions in the area of the rift. 

Interval velocities were calculated [DIM, 
1955] from the stacking velocities and 
these interval velocities were used to 

prepare migrated time sections (see, for 
example, Figure 6) and both migrated and 
unmigrated depth sections for use during 
data interpretation. 

DATA INTERPRETATION 

General Characteristics East of the Rift 

Figure 3 is a schematic drawing of all 
the COCORP seismic sections from the 

Kansas study (see also Brown et al. 
[1983a] and T. Setzer [manuscript in 
preparation, 1984 ]. One of the most prom- 
inent features on the seismic sections is 

a wedge of strong, layered reflections 
centered beneath the axis of the approxi- 
mately 70 mGal Bouguer gravity high of the 
MGA (VP 1760 on line 1). These strong 
reflectors appear to define the main basin 
of the Keweenawan rift, which is the focus 
of this paper. 

Other shallow features of interest 

along Kansas line 1 include the Nemaha 
ridge, the Humboldt fault zone, and the 
Big Springs magnetic anomaly. T. Setzer 
[manuscript in preparation, 1984) analyzed 
the seismic data in the area of the Nemaha 
ridge and the Humboldt fault zone and 
Brown et al. [1983a] described the general 
character of the seismic data east of VP 

1360. The following is primarily a sum- 
mary of those works. 

The flat-lying reflections between 0.2 
and 0.6 s in the seismic sections repre- 
sent the Phanerozoic sedimentary cover. 
Up to 2 km of Paleozoic shallow marine 
rocks have been mapped from well data and 
shallow seismic reflection profiles 
[Merriam, 1963; Steeples, 1981] in the 
area of the COCORP survey. On line 1 
reflections from these sedimentary layers 
are truncated at the Humboldt fault zone 

(VP 910) and are absent directly over the 
Nemaha Ridge between VP 910 and VP !300. 
As a result of the late Paleozoic uplift 
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of the basement ridge, the overlying sedi- 
mentary rocks are shallower than the mini- 
mum depth of imaging for this survey. The 
Paleozoic reflectors dip gently to the 
west without apparent offset on the 
western side of the Nemaha ridge. Off- 
sets, bifurcations, and lateral variations 
of reflections in this upper section of 
the data suggest the presence of minor 
faults and changes in stratigraphic thick- 
nesses of the order of a few tens of 

meters. However, the Humboldt fault zone 
is the only place where there is evidence 
for major structural disruption of the 
Phanerozoic sequence. 

Within the Precambrian basement, the 
COCORP profiles reveal regions of similar 
seismic character which appear to be near- 
ly continuous across all of the lines and 
which may correspond to major structural 
or lithological provinces within the cra- 
tonic crust. The seismic character of the 

data changes both horizontally and verti- 
cally within these regions, but the most 
striking changes appear to occur vertical- 
ly across the boundaries of the regions. 

The uppermost boundary within the Pre- 
cambrian basement occurs at approximately 
5 s (15 km) on the COCORP profiles and 
separates an overlying section containing 
relatively few continuous or strong seis- 
mic events from an underlying zone of 
numerous reflections and diffractions. 

T. Setzer (manuscript in preparation, 
1984) analyzed the upper, nearly trans- 
parent region in detail and identified a 
series of weak reflectors, interpreted as 
faults, which appear to dip between 25 ø 
and 35 ø east in the areas of the Nemaha 

ridge, the Humboldt fault zone, and the 
Big Springs magnetic anomaly. A few other 
seismic events are recognized in this 
upper crustal section, but they have not 
been traced to identifiable geologic 
sequences for interpretation [Brown et 
al., 1983a]. 

Well samples and basement cores 
[Bickford et al., 1979, 1981; Cole and 
Ebanks, 1974; Steeples and Bickford, 1981] 
combined with geophysical data [Woollard, 
1943, 1958; Steeples, 1976; Steeples et 
al., 1979; Yarger, 1981] provide the only 
sources of information on the distribution 

of crystalline basement rocks in Kansas 
(Figure 2). The diffuse seismic character 
of this upper basement may be related to 
the 1.6-b.y.-old granite gneiss encounter- 
ed in over 80% of the basement wells out- 

side of the MGA (the northern terrane of 

Bickford et a1.[1981]). A relatively 

transparent seismic sequence is observed 
in parts of other COCORP profiles where 
they cross either highly deformed surface 
rocks, such as in the Adirondacks 
[K!em•erer et al., 1983; Brown et al., 
1983bj and the northern side of the 
Ouachitas [Lillie et al., 1983; Nelson et 
al., 1982], or large intrusive complexes, 
such as the Wichita Mountains [Brewer et 
al., 1983] and the Giant's range batholith 
[Gibbs et al., 1984 ]. The basement rocks 
of the Northern terrane [Bickford et al., 
1981] are both intrusive and highly 
deformed. Thus these observations from 

other COCORP sites are consistent with the 

suggestion by Brown et al. [1983a] that 
the transparent upper zone of the Kansas 
seismic data may be related to the shallow 
granite gneisses. 

The transparent zone is underlain by a 
region of complex reflections and diffrac- 
tions. Prominent events appear to come 
within 7 km (2.5 s) of the surface at the 
north end of line 3 and between VP's 1200 

and 1300 on line 1 but are still too deep 
for geologic identification. Possible 
interpretations for these deeper events, 
outlined by Brown et al. [1983a], include 
(1) gneissic banding, (2) interlayering of 
granite and restites related to anatexis, 
and (3) diffractions and layering related 
to mafic intrusions. Xenoliths found in 

Cretaceous kimberlites [Brookins and 
Meyer, 1974; Brookins and Wood, 1970] near 
the southern end of line 4 indicate that 

amphibolites and granulites derived from 
both igneous and sedimentary sources exist 
within the lower crust and the juxtaposi- 
tion of some of these different lithologic 
units may produce impedance contrasts suf- 
ficient to give the deep reflection 
patterns. 

There are few seismic events below 

about 15 s (45 km) on any of the profiles 
(Figures 3 and 4). This change from an 
overlying section containing many reflec- 
tions to a lower zone of virtually no 
reflections appears to occur at a time 
roughly correlative with the expected base 
of the crust (i.e 40 km; Steeples [1976] 
and Stewart [1968]i. This is a common 
observation on many COCORP profiles [e.g., 
Oliver et al., 1976; Schilt et al., 1979; 
Brown et al., 1980; Allmendinger et al., 
1982]. In Kansas there is evidence to 
indicate that this change in seismic 
character at the expected base of the 
crust is not due to energy attenuation 
with depth. Deeper seismic horizons 
indicate that measureable energy has, in 
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Fig. 4. An example of the change in reflection character at travel times 
corresponding to the expected base of the crust (12-15 s) from the western end of 
line 1. 

places, penetrated 55-60 km through, or 
within, the Kansas crust. A prominent 
event can be identified at 16.5 s on both 
lines 1 and 4 at their intersection. This 

event appears to represent energy reflect- 

ed vertically from an interface 55 km deep 
within the upper mantle. An apparent dif- 
fraction can be traced clearly to 20 s 
(the length of the data) beneath VP 1000 
[Brown et al., 1983a]. This diffraction 
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source cannot be constrained three-dimen- 

sionally by the seismic data but the cur- 
vature of the diffraction is consistent 

with seismic velocities of 6 km/s or 
greater along the travel path. Thus the 
energy appears to have traveled from the 
source a radial distance of at least 60 km 

through the Kansas crust. In Kansas, it 
appears that COCORP can normally record 
events from throughout the crust. The 
loss of reflections at approximately 15 s 

may therefore be related to changes in the 
physical character of the rocks at the 
transition from the crust to the mantle. 

Southern Keweenawan Rift 

Perhaps the most prominent feature in 
the seismic data is the 40-km-wide wedge 
of layered reflections centered about the 
axis of the MGA at VP 1760. The location, 
layered character, and fanlike geometry of 
these events strongly suggest that they 
represent strata deposited into the 
actively subsiding Keweenawan rift basin. 
These layered reflectors dip approximately 
25 ø west and extend to a depth of 3 km 
(1.2 s) on the eastern side of the basin 
and reach a maximum depth of about 8 km 
(3.0 s) on the western side to define a 
clearly asymmetric basin. 

There are two distinct seismic units 

within the basin, the layered reflections 
and an overlying zone of weak reflections 
(Figure 5). The seismic character of 
these two units suggests a correlation 
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Fig. 6. Migrated seismic data from line 1 in the area of the MGA. The upper section 
shows the interpretation and the lower section is unmarked. 
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with the Middle and Upper Keweenawan 
sequences, respectiyely, which have been 
described by Halls [1966] for rocks 
exposed near Lake Superior. The Middle 
Keweenawan consists of interbedded basalts 

and clastic rocks whose contacts might be 
expected to have high impedance contrasts, 
thus providing a reasonable explanation 
for the continuity and the high amplitudes 
characterizing the lower basin sequence in 
Kansas. The Upper Keweenawan consists 
primarily of massive sandstones and con- 
glomerates which are less likely to pro- 
duce strong reflections [Sangree and 
Widmier, 1977] and thus are correlated 
here with the weak reflectors in the upper 
part of the Kansas basin. Mafic igneous 
and clastic sedimentary rocks have been 
encountered in basement wells along the 
trend of the MGA in Kansas [Bickford et 
alo, 1979] and support the interpretation 
of the basin fill comprising a lower unit 
of interbedded basalts and clastic rocks 

which reach a maximum thickness of approx- 
imately 5 km and an upper unit of predom- 
inantly clastic rocks reaching a maximum 
thickness of 3 km (Figure 6). 

Two west dipping events (D on Figure 5) 
appear geometrically similar to the layer- 
ed events within the main basin and thus 

are interpreted as mafic rocks deposited 
in a basin located to the east of the main 

basin. This eastern rift basin appears to 
contain significantly fewer reflectors 
than the main basin, and thus the eastern 
basin fill is suggested to be a predom- 
inantly clastic sequence with some minor 
basalt flows. 

Distinct east dipping reflectors, 
interpreted as faults, truncate the main 
basalt sequence on both the eastern and 
western margins. On the west, fault 
reflection A (Figures 5 and 7) also trun- 
cates a high amplitude event B beneath the 
basin. On the east, fault reflection C 
truncates two events D to the east of the 

basin. A similar east dipping event E is 
observed in the shallow basement between 

VP 2030 and VP 2100, which may also repre- 
sent a fault but it does not appear to 
offset reflector Bo 

Migration (Figure 6) of the seismic 
data appears to steepen and enhance these 
inferred fault plane reflections; however 
their appearance does not change signifi- 
cantly. Directly beneath the basin is a 
prominent east dipping reflection F, which 
crosses event G and layered reflections 
below Go Migration does not resolve this 
crossing relationship which suggests that 

three-dimensional complexities and/or 
multiples may be involved. Because it 
trends subparallel to the other inferred 
faults (A, C, and E) and appears to trun- 
cate layering above G, event F is here 
interpreted as a fault. The west dipping 
layers begining at G and extending down to 
about 5 s in the seismic section appear to 
occur at twice the travel times of the 

shallow layered arrivals and to dip at 
twice the angle of the shallower events. 
Therefore event G is interpreted as the 
first direct multiple and the deeper 
layering is attributed to multiple reflec- 
tions from the shallow basalts. 

The faults dip approximately 30 ø east 
in the plane of the migrated section and, 
if they strike parallel to the MGA, they 
have a true dip of about 35 ø east south- 
east. The sense of displacement across C 
and F indicate that they are normal 
faults. The layered reflectors within the 
basin curve upward along A indicating 
possible drag folding associated with 
normal fault displacement on Ao The fault 
reflectors can be traced relatively con- 
tinuously to depths of 8 to 10 km and 
occasionally can be projected into discon- 
tinuous deeper events at middle or lower 
crustal leveIs. The only curvature which 
can be detected along the faults occurs on 
fault A (Figure 7) where it passes beneath 
the layered reflectors in the basin. This 
curvature of A does not exist on the depth 
sections and thus appears to be a velocity 
"pull-up" resulting from the change in 
material properties above the fault. 
Seismic energy traveling to the shallow 
part of the fault only passes through the 
low-velocity clastic rocks, while the 
deeper path includes the high-velocity 
basalt sequence. Such marked changes in 
velocity do not appear to occur above the 
remaining faults, and thus the faults can 
be traced to depths of approximately 10 km 
without significant curvature, suggesting 
a planar or domino style of faulting. 

Weak east dipping events are observed 
in the shallow basement across the Nemaha 

ridge and Humboldt fault zone which T. 
Setzer [manuscript in preparation, 1983] 
interprets as normal faults developed 
during Keweenawan rifting and reactivated 
during the Paleozoic uplift of the Nemaha 
ridge. Between VP's 1200 and 1400 a 
transparent seismic zone extends from 
beneath the eastern basin into the lower 

crust. This deep transparent zone lies 
between the projections of two interpreted 
faults on the east side of the rift basin 
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Fig. 8. Contours of stacking velocities 
across line 1 (contour interval 1 km/s). 
Dark shading indicates velocities greater 
than 7 km/s and light shading indicates 
the location of the layered basin 
reflections. Dots indicate the location 

of velocity determinations. 

in a manner which suggests that through- 
going crustal faults may be present. How- 
ever, this zone also coincides with an 
area of reduced stack fold and crooked 

line geometry, both of which may cause a 
deterioration in the quality of the seis- 
mic data. Thus the deep geometry of the 
normal faults in Kansas is not yet clear. 

The interpretation of event B to the 
west of the main basin (Figure 5) is 
problematic. The prominence and continu- 
ity of B suggest that it may have a source 
similar to the layered reflections to the 
east. However, to interpret B as a conti- 
nuation of the basalt sequence, offset by 
fault A, would require that A be a reverse 
fault. This interpretation is clearly 
inconsistent with the sense of drag fold- 
ing on the eastern side of A and the lack 
of reverse offset elsewhere in the basin 

area. If B represents a western continua- 
tion of the basin, then, to be consistent 
with the normal faulting across A, it must 
have formed prior to the deposition of the 
layered basalt sequence above it. This 
interpretation would suggest that the 
basalts were deposited into a preexisting 
basin which may have formed prior to or 
during the earliest stage of rifting. 
Alternatively, B may represent an intra- 
basement feature such as (1) a sill, simi- 
lar to the Duluth gabbro in Lake Superior 
[Weiblen and Morey, 1980 ], (2) a low angle 
detachment similar to those seen in the 

Basin and Range [Allmendinger et al., 
1983; McDonald, 1976 ], or (3) a coinci- 
dental structure which is not related to 

the rifting event. The proximity of B to 
the rift basin suggests that it is related 
to Keweenawan event. There is no evidence 

that inferred fault E (Figure 5) cuts B 
thus it seems likely that B did not form 
prior to the faulting. Although continued 
data analysis and/or further seismic pro- 

filing to the west of the MGA may provide 
a less ambiguous explanation, at this time 
the interpretation of event B as either an 
intrusion or a detachment is preferred. 

Beneath the rift basin there is an 

increase in the measured seismic veloci- 

ties which may be related to mafic intru- 
sions within the deeper crust. Figure 8 
shows the stacking velocities used to 
process Kansas line 1. There is a consid- 
erable amount of variation in the indivi- 

dual velocity picks, but distinctly higher 
velocities were found to the west of VP 

1500. Stacking velocities in excess of 7 
km/s are absent above 10 s to the east of 
VP 1500 and common to the west. The 

greatest increase in the shallow stacking 
velocities is observed directly beneath 
the gravity maxima where midcrustal 
reflections, which are common to the east 
of the MGA (Figure 3), appear to die out. 
This loss of the midcrustal reflections 

coupled with the apparent increase in 
stacking velocities beneath the basin 
suggests the presence of anomalous 
material within the deep crust. 

Analysis of P wave residuals recorded 
by the Kansas seismological network in the 
area of the MGA [D. W. Steeples and 
Miller, manuscript in preparation, 1984] 
provides additional evidence for high 
crustal velocities beneath the rift 

basin. Arrivals which travel through the 
crust (Pg) across the MGA from earthquakes 
occuring between 120 and 200 km from the 
network are consistently early relative to 
arrivals which do not cross the MGA. Pre- 

liminary estimates of these travel time 
variations indicate an increase in crustal 

velocity of up to 1 km/s is possible with- 
in the MGA. 

In the northern Keweenawan rift Ocola 

and Meyer [1973] have interpreted the 
presence of mafic intrusions beneath the 
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Fig, 9, Gravity model of rift basin 
showing the contribution of the 
interpreted basalts to the gravity high. 
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rift basin and suggested that these intru- 
sions, rather than the basalts within the 
basin, provide the main source for the 
gravity high along the MGA. A gravity 
model (Figure 9) of the interpreted basalt 
sequence was therefore prepared from the 
Kansas data to assess the relative contri- 

butions of the basalts and the inferred 

intrusions to the gravity high. A density 
of 2.90 g/cm 3 was assumed for the 
basalts in contrast with a surrounding 
crustal density of 2.67 g/cm 3. The 
overlying low-density sedimentary material 
was omitted in order to determine the 

maximum possible amplitude of the gravity 
anomaly which can be attributed to the 
basalts. The results indicate that the 

basalts within the basin cannot account 

for more than one third of the nearly 70 
mGal relief of the gravity high. If the 
source of the gravity high is within the 
basin, it would have to be entirely filled 
with basalts as has been suggested by King 
and Zietz [1971 ]. However, the presence 
of an entirely basalt filled basin in 
Kansas is inconsistent with the known 

Keweenawan stratigraphy [Halls, 1966 ], the 
prevalence of Precambrian arkoses in the 
Kansas well data [Bickford et al., 1979], 

and the seismic character of the basin 

fill seen in the COCORP data. The major 
contribution to the gravity high appears 
to come from deeper intrusive material 
beneath the basin. The shape of the 
gravity anomaly does not appear to reflect 
either the configuration of the rift basin 
or the thickness of the basin deposits. 

DISCUSSION 

The major features of the crust in 
northeastern Kansas as defined by the 
COCORP data (Figure 10) appear to be 
related primarily to either the Pre- 
cambrian Keweenawan rift or to the older 
craton surrounding the rift. The only 
significant Phanerozoic structure 
identified in the seismic data is the 

Nemaha Ridge whose formation appears to 
have reactivated preexisting Keweenawan 
faults [T. Setzer, manuscript in prepara- 
tion, 1984]. Within the area of the rift 
the seismic data are dominated by rela- 
tively continuous, moderately dipping 
events. In contrast, the seismic data 
from outside the rift are highly complex, 
containing numerous arcuate diffractions 
and both dipping and flat-lying reflec- 
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Fig. 10. General interpretation of major crustal structures observed in COCORP line 
1. Shading indicates areas of similar seismic character as discussed in the text. 
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Fig. 11. Geologic model for the present 
rift structure (bottom) and the 
interpreted evolutionary history during 
the opening of the rift basin determined 
by palinspastic reconstruction. 

tions [Brown et al., 1983a]. East of the 
MGA the seismic character of the crustal 

rocks appears to change dramatically at 
about 5 s (15 km). Another major change 
in the seismic character occurs near the 

base of the crust at about 15 s (45 km) 
and appears to mark the transition into 
upper mantle rocks. 

The most striking feature in the seis- 
mic data is the sequence of layered 
reflectors from within the Keweenawan rift 

basin. This layering appears to define 
both the shape of the main basin and the 
attitude of gross stratigraphic units 
within the basin. Moderately east dipping 
normal faults which truncate or offset the 

basin deposits can be traced without 
apparent curvature to depths of approxi- 
mately 10 km. The uniform dip direction 
of the planar faults suggests that crustal 
extension was accommodated by fault block 
rotations. To evaluate this hypothesis, a 
series of palinspastically restored cross 
sections were prepared across the basin 
(Figure 11). Each cross section shows a 
succeedingly deeper layer within the basin 
rotated back to the horizontal surface 

where it is believed to have been 

deposited during the formation of the 
rift. This reconstruction suggests that 
the basin faults initially formed with 
approximately 50 ø east dip and subsequent- 
ly rotated 15 ø during crustal extension to 
their present position. The estimated 58% 
extension across the basin appears to have 
been accommodated by planar normal fault- 
ing accompanying the deposition of 
volcanic and sedimentary rocks into the 
rift basin. 

The results of this COCORP study 
provide a basis for reanalysis of proposed 
rift models along the entire Keweenawan 
system. The seismic reflection data 
provide a reasonable interpretation for 
the shallow rift structure, the relative 
thicknesses of the major depositional 
units, and the nature of crust beneath the 
basin. Figure 12 compares the Keweenawan 
basin in Kansas with models proposed for 
the northern part of the rift. The model 
of Ocola and Meyer [1973] attributes the 
main source of the gravity anomaly to high 
density material intruding the crust. In 
contrast, King and Zietz [1971] model the 
source of the gravity high as mafic mater- 
ial (density of 3.0 g/cm j) completely 
filling a shallow basin. The change of 
reflection character within the Kansas 
basin and the prevalence of arkosic sand- 
stones in the Kansas wells [Bickford et 
al., 1979; Cole and Ebanks, 1974] does not 
support the interpretation of an entirely 
basalt filled basin in Kansas. Gravity 
modeling of the interpreted basalt 
sequence in Kansas indicates a deep source 
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Fig. 12. Comparison of Kansas rift basin 
(bottom) with models of the northern 
Keweenawan rift. 
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RIO GRANDE R!FT 

KANSAS BASIN 

LAKE SUPERIOR 

F.ig. 13. Comparison of Kansas rift model 
(center) with proposed rift structure 
across Lake Superior [Weiblen and Morey, 
1980] and mapped structures in the Rio 
Grande Rift [Chamberlain, 1978; Chapin et 
al., 1978]. 

for much of the gravity high similar to 
that interpreted by Ocola and Meyer. 

Fault geometry is not constrained by 
the potential field and seismic refraction 
data used for the models of King and Zietz 
[1971] and Ocola and Meyer [1973]. The 
model (Figure 13) by Weiblen and Morey 
[1980], however, %S based on petrological 
and structural aqa%ysis in the area of the 
Duluth gabbro, wh•re they also find 
evidence for normal fault block rota- 
tions. They infer that the normal faults 
are listric. Itn •he Kansas seismic data 

the faults do not appear to have any pro- 
nounced curvature a.nd are interpreted as 
planar faults which have rotated (Figure 
11) to produce surface structures similar 
to those observed by Weiblen and Morey 
[1980] to the north, 

Many classica. 1 rift models have empha- 

sized graben subsidence along steeply dip- 
ping normal faults [e.g., Illies, 1970; 
Bott, 1976; Stewart, 1971]. However, the 
structure of the rift seen in the Kansas 

data may be more typical of continental 
rifts. Although the faults in Kansas 
appear to have formed at a relatively high 
angle, subsequent rotation of the fault 
blocks produced moderately dipping faults 
which .can be traced to a depth of at least 
10 km without measurable curvature. In 

the Rio Grande rift Chamberlain [1978] 
mapped planar tilted fault blocks (Figure 
13) very similar to those interpreted in 
Kansas. In the Basin and Range province 
of the western United States, extension 
commonly appears to be accommodated by 
block rotations along low-angle normal 
faults [e.g., McDonald, 1976; Proffett, 
1977; Wernicke, 1981; Allmen•inger et al., 
1983]. Rotational fault geometries have 
been observed in the Bay of Biscay [de 
Charpal et al., 1978] and in the Triassic 
basins of the eastern United States 

[Petersen, 1983]. The diversity of 
observed extensional fault geometries 
indicates that models [e.g., Bott, 1976] 
which predict high-angle normal faults and 
symmetrical grabens are inadequate and, in 
fact, such simple grabens may be rare. 
Moderate and low-angle normal faults, as 
well as rotated blocks, are common in 
rifts. The reactivation of older struc- 

tures [e.g., McDonald, 1976; Allmendinger 
et al., 1983; Petersen, 1983] suggest that 
normal faults can mimic the complex geom- 
etries (i.e., ramps and splays) commonly 
associated with thrust faulting. 

Comparison of the Kansas profile with 
COCORP data from other rifts indicates 
that the seismic character of the basin 

deposits--i.e., a zone of relatively 
strong and continuous reflections overlain 

N 

0 

(4 
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Fig. 14. Line drawing of COCORP profile across the Michigan basin 
[Brown et al., 1982]. 
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by a region of weak, discontinuous reflec- 
tions--and asymmetric basins formed by 
fault block rotations are common. A tilt- 

ed basin sequence similar to that observed 
in Kansas was previously observed in 
COCORP profiles across a branch of the 
Keweenawan rift in Michigan (Figures 1 and 
14) and similarly interpreted as a clastic 
unit overlying a basaltic unit [Brown et 
al., 1982]. A deep well into the upper 
zone of weak reflectors beneath Paleozoic 

sedimentary rocks of the Michigan Basin 
encountered a clastic red bed sequence 

containing minor volcanic material [Slee• 
and Sloss, 1978; Fowler and Kuenzi, 1978] 
similar to the interpreted upper sequence 
in Kansas. 

A striking similarity is also 
observed between the Kansas basin and 

COCORP results from the Rio Grande rift 

[Brown et al., 1980 ]. An asymmetric, 
strongly layered sequence on the east side 
of the Albuquerque basin is overlain by 
less reflective Tertiary clastics (Figure 
15). Although smaller in scale, the geom- 
etry of this wedge and its reflection 
character strongly mimic the Kansas 
sequence. The New Mexico wedge has also 
been interpreted as rotated sedimentary 
deposits with a substantial amount of vol- 
canic material [Brown et al., 1980; Cape 
et al., 1983]. Mutter et al. [1982] have 
pointed to similar layered events along 
rifted margins of the Atlantic, and R. 
Lillie [manuscript in preparation, 1984] 
has interpreted similar reflections buried 
in complexly deformed orogenic belts as 
possible evidence for an earlier history 
of rifting. 

We suggest that asymmetric basins, 
fault block rotations, and fanning of lay- 
ering within the basins as seen in the 
Kansas data may be characteristics of con- 
tinental rifting which can be recognized 
in seismic data and which, the Keweenawan 
profiles demonstrate, can be recognizably 
preserved for over one billion years 
buried within the crust. Indeed the seis- 

mic character of the reflection sequences 
seen in the Keweenawan basin in Kansas and 

Michigan, as well as in seismic data from 
other rift basins, may be a key to recog- 
nizing buried rifts in seismic sections 
from a variety of tectonic environments. 
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