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Abstract
Small-molecules that inhibit interactions between specific pairs of proteins have long repre-

sented a promising avenue for therapeutic intervention in a variety of settings. Structural

studies have shown that in many cases, the inhibitor-bound protein adopts a conformation

that is distinct from its unbound and its protein-bound conformations. This plasticity of the

protein surface presents a major challenge in predicting which members of a protein family

will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins

to generate ensembles of low-energy conformations that contain surface pockets suitable

for small molecule binding. We find that the resulting conformational ensembles include sur-

face pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find

that the ensembles generated using different members of this protein family are overlapping

but distinct, and that the activity of a given compound against a particular family member (li-

gand selectivity) can be predicted from whether the corresponding ensemble samples a

complementary surface pocket. Finally, we find that each ensemble includes certain surface

pockets that are not shared by any other family member: while no inhibitors have yet been

identified to take advantage of these pockets, we expect that chemical scaffolds comple-

menting these “distinct” pockets will prove highly selective for their targets. The opportunity

to achieve target selectivity within a protein family by exploiting differences in surface fluctu-

ations represents a new paradigm that may facilitate design of family-selective small-mole-

cule inhibitors of protein-protein interactions.

Author Summary

Despite intense interest and considerable effort, there are few examples of small molecules
that directly inhibit protein-protein interactions. Crystal structures of early successes have
highlighted the plasticity of the protein surface, as some inhibitor-bound proteins are cap-
tured in conformations that are distinct from both their unbound and their protein-bound
conformations. The lack of a single well-defined structure presents a challenge for predict-
ing the members of a protein family to which a given compound will show activity (ligand
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selectivity). Here we generate ensembles of conformations from simulation, and show that
we can predict ligand selectivity based on which family members sample conformations
complementary to the ligand. This approach may present a new avenue for designing
highly-selective inhibitors of protein-protein interactions.

Introduction
Selectivity of a compound for its desired protein target—or targets—is an important property
optimized in the course of small-molecule drug discovery [1]. Some diseases, such as chronic
myeloid leukemia, can be traced to dysfunction of a single protein target (BCR-ABL); in such
cases, drugs such as imatinib are sought to act selectively against that target [2]. Conversely, a
number of drugs (such as sunitinib and chlorpromazine) have proven exceedingly successful
because they act on multiple targets [3,4]; this has led to increased interest in “polypharmacol-
ogy” to address complex disease states such as cancer and psychiatric conditions [5]. A clear
downside of compound promiscuity, however, is the potential for adverse effects (toxicity) due
to interactions with unrelated proteins, or even interactions with other proteins in the same
family as the target [6]. One recent cautionary example is ABT-263 (navitoclax), a Bcl-2 inhibi-
tor that exhibited a dose-limiting adverse effect (thrombocytopenia) stemming from its inhibi-
tion of Bcl-xL [7,8].

Tuning the selectivity of a lead compound can sometimes be carried out by exploiting differ-
ences in shape and electrostatics between target and off-target proteins, using insights from
structure-activity relationships (SAR) [9] or structural biology [10–12] to focus on features
that will prevent specific undesirable interactions. While determinants of selectivity have been
carefully mapped in a number of “traditional” drug targets, such as kinases, this has not yet
been the case for emerging classes of “non-traditional” drug targets, most notably small-mole-
cule inhibitors of protein-protein interactions.

Though extensive efforts to identify inhibitors of protein interactions have only recently
begun to bear fruit, structural analysis of available examples has revealed that often the inhibi-
tor-bound protein is captured in a conformation that is distinct from both the unbound and
protein-bound conformations [13]. In such cases, the unbound and protein-bound conforma-
tions could not have served to rationalize binding of the inhibitor its desired target, let alone ex-
plain selectivity against other members of the protein family.

We recently described an approach for biased exploration of protein fluctuations, in order
to better sample pocket-containing conformations at protein interaction sites [14]. We found
that when starting from an unbound protein structure, we observe low-energy conformations
that include deep surface pockets at druggable sites but not elsewhere on the protein surface.
These findings supported a “conformational selection”model [15], whereby inhibitors recog-
nize low-lying excited states of the protein that are naturally visited under
physiological conditions.

A natural implication of this conformational selection model is that the particular variety of
pocket shapes visited by the protein surface will dictate the regions of chemical space in which
complementary inhibitors can be found: this would have clear implications for designing new
inhibitors. Conversely, one may instead view this complementarity from the perspective of the
ligand: under this model, an inhibitor is expected to be active against a given protein if, and
only if, the protein surface includes a suitably complementary pocket among those that are
sampled under physiological conditions. Within a protein family, then, only the subset of fami-
ly members that sample the corresponding pocket will be inhibited by this compound.

Inhibitor Selectivity Can Be Encoded in Protein Fluctuations
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The Bcl-2 protein family in humans is comprised of about 25 members that together regu-
late apoptosis through a series of protein-protein interactions that induce either pro-death
(Bax, Bak, and others), pro-survival (Bcl-xL, Bcl-2, Mcl-1, Bcl-w, and others), or derepression/
sensitizing (Bid, Bim, and others) activity [16]. The critical step of disregulating apoptosis in
tumor maintenance and chemoresistance has made certain members of this family exception-
ally attractive targets for therapeutic intervention for many years, and in a variety of cancers
[17]. Despite the overall dearth of examples of small molecules that inhibit protein interactions,
a number of such compounds have been reported against assorted members of the Bcl-2 fami-
ly. Further, selectivity of these inhibitors against a panel of Bcl-2 family members have also
been reported in some cases. These data, together with the availability of multiple experimen-
tally-derived structures of inhibitor-bound complexes, position the Bcl-2 family as a rich
model system in which we can explore the determinants of selectivity for small-molecule inhib-
itors of protein-protein interactions.

Here, we use the Bcl-2 family to explore whether the ensemble of pocket shapes sampled on
protein surfaces can be used to explain ligand selectivity. We will use simulation to generate en-
sembles of pocket-containing conformations [14], then directly probe whether a complementa-
ry pocket for a given ligand is present in the ensemble. If successful, this approach may allow
us ultimately to predict, and by extension design, inhibitors with a desired selectivity profile;
such compounds could serve both as a starting point for development of new therapeutics, and
also as “tool compounds” to probe the underlying biological mechanism of disease.

Methods
Computational methods are implemented in the Rosetta software suite [18]; Rosetta is freely
available for academic use (www.rosettacommons.org), with the new features described here
included in the 3.6 release. Computational methods are summarized below, with further detail
(including Rosetta command-lines to access these tools) is available in the Supporting
Methods section.

Identifying surface pockets
Pockets were identified using the “pocket” protocol in Rosetta [14]. This is a local pocket detec-
tion approach adapted from the Ligsite algorithm [19], and it uses geometric criteria to identify
concave regions on a protein surface suitable for small-molecule binding. The approach entails
building a small grid in the vicinity of one or two “target” residues, then mapping the van der
Waals surface for the whole protein onto the grid; the exposed grid points are marked as “sol-
vent.” Next, the grid is screened to identify linear segments of solvent points that are bounded
by protein points; the grid points along these segments are marked as “pocket” points. Pocket
grid points are clustered into “pockets,” and then any clustered pockets not in direct contact
with the target residue(s) are discarded. The “deep volume” of a pocket is defined as the volume
of the pocket that is well-sequestered from the solvent (more than 2.5 Å from any solvent grid
point).

Generation of a representative protein surface pocket is demonstrated in Fig. 1. A number
of related approaches have been described for identifying potential small molecule binding
sites on protein surfaces in this way [19–25]; the primary difference between these methods rel-
ative to the method described here is our use of “deep” pocket volume, which leads to improved
discrimination when distinguishing known ligand binding sites from other shallow concave re-
gions on the protein surface [14]. These “deep” pocket volumes are correlated to, but smaller
than, pocket volumes identified by other representative methods [14]; in the context of this
study, then, we expect that focusing our pocket description on regions in direct contact with
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the protein will allow the most critical features to be captured with minimal
extraneous information.

Target residue selection
The selection of the target residue pairs is important in determining the location of the grid,
and in turn may affect the resulting pocket shapes. To avoid biasing results towards any partic-
ular inhibitor—and to allow the method to be applied in cases for which no inhibitor has yet
been identified—we did not use the structure of the protein in complex with any small-mole-
cule ligand when defining the target residues.

Instead, we developed an algorithm to select suitable target residues starting from the struc-
ture of the protein-protein complex. First, the “Robetta” server [26,27] is used to estimate the
contribution to the binding free-energy of each interfacial sidechain (ΔΔGres) via computa-
tional alanine scanning. All pairs of interfacial residues are then exhaustively tested by building
a 24 Å candidate grid placed at the residue pair’s center of mass, and summing ΔΔGres for
each residue that falls on this grid. To ensure that the grid placement captures the key energetic
contributors to the protein-protein interaction, the residue pair that captures the largest cumu-
lative ΔΔGres is used in subsequent studies. In essence, this approach aims to align the pocket
grid such that it is optimally close to the energetically dominant residues of the protein-protein
interaction. This tool is implemented in the Rosetta software suite, and its use it demonstrated
in the Supporting Methods section [18].

The effect of the particular target residues used will be examined further in the
Results section.

Building ensembles of pocket-containing conformations
Ensembles of pocket containing conformations were generated using the “relax” protocol in
Rosetta, which incorporates both backbone and side chain degrees of freedom in a Monte
Carlo search. Starting from the standard Rosetta energy function, we added a term correspond-
ing to the “deep pocket” volume multiplied by a proportionality constant. This biasing poten-
tial favors pocket-containing conformations that have more deep pocket volume, and thus
drives sampling towards such conformations.

Fig 1. Building “exemplars” from surface pockets. (A) Bcl-xL (grey surface) is shown in complex with an inhibitor (spheres). (B) The protein surface
features a large pocket (small white spheres) that is complementary in shape to the inhibitor. (C) From this surface pocket, an “exemplar” is built: a map of the
“perfect” ligand to complement this protein surface, without considerations of atom connectivity. The exemplar is comprised of hydrogen bond donors
(yellow) and acceptors (magenta) that complement surface polar groups on the protein, and hydrophobic atoms that fill the remainder of the surface pocket
(cyan). In the studies we report here, we will use the shape and chemical features of the exemplar as a proxy for the shape and chemical features of the
protein surface pocket.

doi:10.1371/journal.pcbi.1004081.g001
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In our previous work, we found that applying a proportionality constant of -0.25 Rosetta en-
ergy units per Å3 allowed identification of pocket-containing conformations with similar ener-
gies to those observed in unbiased simulations [14]. In the present study, therefore, we reused
the same proportionality constant. A separate independent trajectory was used to generate
each of the 1000 output conformations used for each protein included in our studies. It took
about 5 minutes to generate each conformation on a modern CPU, though the independence
of trajectories made it trivially scalable to multiple processors.

Generating “exemplars” to represent pockets
To compare the shape and chemical similarity of surface pockets, we introduce the concept of
an exemplar: a map of the “perfect” ligand that could complement a surface pocket, without
the natural constraints of bond connectivity or chemistry. The lack of such physical require-
ments means that the exemplar does not correspond to any particular chemical entity, but in-
stead simply consists of a collection of atoms in space. This collection occupies volume, and
may include hydrogen bond donors and acceptors, but by construction does not imply any par-
ticular connectivity between the atoms.

Exemplars are built from the “deep volume” that defines a protein surface pocket. First, the
ideal location for a hydrogen bond partner of every donor/acceptor on the protein surface is
determined; if this location lies within the pocket, then this region of the pocket volume is re-
served for the polar group that will complement the protein surface. After placing these polar
groups in the pocket, the remaining unoccupied volume is filled with hydrophobic (carbon)
atoms using a greedy algorithm, such that the center of two atoms are no less than 1.7 Å apart.
Exemplar points are then clustered together based on a proximity threshold of 5 Å, so that
cases in which two small pockets flank the target residues are represented by a single exemplar.
Generation of an exemplar from a representative protein surface pocket is demonstrated in
Fig. 1; complete details of our implementation are included in S1 Text.

These exemplars are analogous in philosophy to the popular pharmacophore maps used in
medicinal chemistry to reflect consensus properties of known ligands [28,29]; while the latter
approaches rely on mimicry of the existing binding partners [30–33], however, exemplars are
instead built purely from features of the protein surface. Recently, the utility of protein-based
pharmacophores has been explored for pose prediction and virtual screening [34–36], but such
approaches have not been used for the comparison of pocket shapes as described below.

Comparing exemplars
Having represented the shape and chemical features of a protein surface pocket by its “perfectly
complementary ligand” (the exemplar), we are now positioned to quantitatively compare pock-
ets using standard tools developed for comparison of chemical entities in 3D, provided that
these tools do not require (or assume) knowledge of bond connectivity. A variety of ligand-
based shape comparison methods have been developed for aligning pairs of molecules on the
basis of volume overlap [37,38]; a convenient modern implementation of this approach is the
ROCS software (OpenEye Scientific Software, Santa Fe, NM) [39,40]. ROCS represents molec-
ular shape as the sum of Gaussians centered at each atomic position, and can rapidly calculate
the near-optimal alignment that maximizes volume overlap between two molecules. Chemical
groups are also included as separate Gaussians in the scoring/optimization step, to include
electrostatic effects.

The results we present below are built upon quantitative comparisons of the similarity in
shape and hydrogen bonding patterns for pairs of protein surface pockets. In all cases we carry
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out this analysis by generating an exemplar for each of the two pockets, then using ROCS to
align and score the overlap between these exemplars.

We note that method to define pockets, and thus exemplars, makes use of a grid centered at
a pair of target residues. To quantitatively examine the effect of the grid orientation on the ex-
emplar similarity, we used four pocket-containing crystal structures and rotated each to 100
random orientations. Using one of these structures as a reference (ABT-737 bound to Bcl-xL),
we found that rotated variants of this structure produced similar exemplars, as did rotated vari-
ants of a related structure (Bcl-xL in complex with a related ligand). In contrast, rotated vari-
ants of Bcl-xL bound to unrelated ligands, or rotated variants of Mcl-1, produced highly
dissimilar exemplars (S1 Fig.). Collectively, these observations demonstrate that the orienta-
tion dependence of generating exemplars on a grid makes a negligible contribution to the ex-
emplar distances we report below.

Results
The principal goal of the studies we report here is to understand how conformational changes
at a protein interaction site can drive selectivity of the small-molecule inhibitors that bind at
these sites. We have developed an approach for building an “exemplar”—a map of an idealized
ligand—that describes a protein surface pocket and enables quantitative comparisons between
pockets (Fig. 1,Methods section). In each of the sections below, we use exemplar comparisons
to examine the similarity of pockets observed on the surface of proteins comprising the Bcl-
2 family.

Plasticity of the protein surface allows recognition of diverse chemical
scaffolds
There have been dozens of reported inhibitors of Bcl-2 family members [7,8,41–59], spanning
a broad range of chemotypes. Unfortunately, experimentally-derived structures are not avail-
able for the majority of these inhibitors in complex with their cognate protein partner(s); this
makes it difficult to gain insight into the detailed basis for molecular recognition in these cases.
Instead, we began by compiling a comprehensive collection of all structures in the Protein Data
Bank containing a Bcl-2 family member in complex with a non-fragment small-molecule in-
hibitor bound at the protein interaction site: these are listed in S1 Table. There are 28 such
complexes, covering 26 unique inhibitors, and 3 different proteins are represented: Bcl-xL (14
structures), Bcl-2 (9 structures), and Mcl-1 (5 structures).

The diversity of the inhibitors in this set is readily apparent from the Tanimoto similarity of
fingerprints describing each chemical structure (Fig. 2A). Unsurprisingly, groups of com-
pounds that are similar by this measure typically represent a chemical series designed by a sin-
gle research group (e.g. compounds 1–3 fromWEHI [60]). Given this collection of chemical
scaffolds, we sought to ask how such diverse compounds could be recognized on the surface of
a single protein family. There are two possibilities: either these compounds might adopt a
shared three-dimensional structure not evident from their chemical structure (i.e. a non-obvi-
ous example of “scaffold hopping” [61]), or else the protein surface must be sufficiently mallea-
ble to adopt different conformations when binding different ligands.

To test whether these distinct compounds present a common structure to complement the
protein surface, we carried out comparisons of the inhibitors’ shape and chemical features in
their active (bound) conformations (Fig. 2B). To examine the pattern of similarity between
chemical structure and three-dimensional structure we sorted the all-vs-all Tanimoto scores
for each set, and found a statistically significant non-zero Spearman correlation coefficient be-
tween these rankings (p< 10-35). This observation confirms that dissimilar chemical structures
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do not somehow adopt a shared three-dimensional structure. As expected, a given shape and
pattern of hydrogen bond donors/acceptors is conserved within a chemical series, but not
across different chemical scaffolds.

To directly evaluate similarity of the conformations adopted by the protein to bind each li-
gand, we next carried out an analogous comparison using the exemplar derived from each in-
hibitor-bound pocket (Fig. 2C). Here again we observe the same pattern of similarity,
mimicking both that of the chemical structures (p< 10-26) and their corresponding three-di-
mensional structures (p< 10-20). While each of the inhibitors within a given chemical class
bind to a very similar pocket on the surface of the cognate protein, different chemical classes
each take advantage of a dramatically different pocket on the protein surface. Moreover, the
surfaces of different proteins bound to similar ligands (e.g. Bcl-xL complex 7 vs Bcl-2 complex
19) resemble one another more closely than the surface of a single protein bound to chemically
distinct ligands (e.g. Bcl-xL complexes 3 vs 7).

These observations highlight the plasticity of this protein surface: multiple members of the
Bcl-2 family can adopt similar conformations to bind a given ligand, yet a given protein can
also form radically different surface pockets to accommodate different ligands. Together with
the fact that the unbound structures of these Bcl-2 family members lack suitably deep surface
pockets for inhibitor binding (S3 Fig.), the observations presented here underscore the fact
that molecular recognition in this protein family cannot be explained using a single conforma-
tion, but rather an explanation of ligand selectivity will instead require consideration of the
many available conformations that this surface can adopt.

Fig 2. Bcl-2 family members recognize different inhibitors using distinct surface pockets. In all cases color gradient indicates the similarity between
complexes, expressed as Z-scores (green are most similar, red are most dissimilar). (A) Chemical similarity of the inhibitors. (B) Three-dimensional similarity
of the inhibitors’ active conformation. (C) Similarity of protein surface pockets, measured using exemplar similarity. Numbering in all cases corresponds to
complexes in S1 Table. A representative subset of the complexes are included in this figure; a corresponding figure containing all available complexes is
available as S2 Fig.

doi:10.1371/journal.pcbi.1004081.g002
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Ensembles of low-energy pocket-containing conformations
To explore pocket-containing conformations of these proteins, we generated conformational
ensembles using simulations in the presence of a biasing potential [14]. In essence, energy asso-
ciated with the biasing potential in these simulations serves as a proxy for the binding energy
of some (unspecified) ligand, which in turn serves to stabilize alternate conformations of the
protein surface. The biasing potential takes account of the protein surface geometry (“deep
pocket volume”), but does not encode any information about the identity or features of any
particular ligand. Thus, this approach allows efficient sampling of the conformational space
available for protein reorganization in response to ligand binding. While other methods could
have been employed to sample alternative conformations (such as unbiased molecular dynam-
ics simulations with retrospective analysis to identify pocket-containing conformations [62]),
we chose this approach because it allowed us to rapidly generate a large ensemble of pocket
containing conformations.

As noted earlier, our approach defines the relevant protein surface on the basis of the pro-
tein/peptide interaction site, and not based on any known small-molecule inhibitor (Methods
section). In light of the fact that particular “target” residues are needed to produce the ensem-
bles of pocket-containing conformations, we begin by examining the effect of the target resi-
dues on the resulting “pocket ensemble.”

Starting with the Bcl-2 family member Bcl-xL, we selected the two top-scoring pairs of target
residues resulting from analysis of its peptide-bound structure. We then used each pair of tar-
get residues to generate separate ensembles of 2000 pocket-containing conformations, with
each trajectory initiated from the unbound structure of Bcl-xL. To visually compare the confor-
mational “pocket space” sampled by these two ensembles we built an exemplar from each
pocket, and used multidimensional scaling analysis (MDS) to construct the two-dimensional
projection that best reflects the pairwise distance between every pair of exemplars. The result-
ing map demonstrates that these two ensembles are strongly overlapping, and points to the ro-
bustness of the conformational space sampled to the particular target residues used (Fig. 3A).
In light of the similarity between the ensembles, we used conformations generated using the
second-best scoring pair of target residues (rather than the top-scoring pair), for consistency
with our previous studies of Bcl-xL [14].

While application of the same approach for selecting target residues led to similar residues
for most members of the Bcl-2 family, the residue pair selected on Mcl-1 was notably different.
While this derived exclusively from different energetic contributions to the protein-protein in-
teraction from each protein surface, it is interesting to note that known inhibitors of Bcl-xL
and Mcl-1 bind at slightly different regions on the surface of these two proteins (S4 Fig.). To
ensure that the range of pockets across the Bcl-2 family would be fully captured in our studies,
we used both the pair of residues derived from Bcl-xL and those derived fromMcl-1 to generate
ensembles of pocket-containing conformations; in the analyses presented below, all such con-
formations are combined into a single ensemble regardless of the target residues used to
generate them.

To ensure that only physiologically relevant conformations were included in the subsequent
analysis, we compared their energies to those obtained in equivalent unbiased simulations of
the corresponding protein. Previously, we found that this method produced ensembles of pock-
et-containing conformations a slightly higher but overlapping distribution of energies than the
unbiased ensemble [14]. With the caveats that conformations generated in our “pocket open-
ing” protocol are not drawn from a Boltzmann distribution and the energy differences do not
necessarily capture real differences in free energy, we instead simply collect pocket-containing
conformations from the biased simulations that are within 15 Rosetta energy units of the
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unbiased ensemble. Thus, these represent conformations that are in principle available within
the unbiased ensemble, but are simply not observed due to limitations of sampling. The distri-
bution of energies observed in an unbiased simulation of each Bcl-2 family member is pre-
sented in Fig. 3B, along with the range of energies spanned by conformations from
biased simulations.

Ensembles of conformations sampled by Bcl-2 family members include
the inhibitor-bound pockets
We next sought to compare the surface pockets on conformations comprising these ensembles
to those pockets observed on experimentally-derived inhibitor-bound structures. We again
turned to MDS analysis, this time including exemplars built from the experimentally-derived
structures of the unbound, peptide-bound, and inhibitor-bound protein. For each of Bcl-xL,
Bcl-2, and Mcl-1 (all family members for which structures of inhibitor-bound complexes are
available), the resulting maps show that the pocket-containing conformational space sampled
via simulation includes thorough coverage of experimentally-derived inhibitor-bound

Fig 3. Ensembles of low-energy pocket-containing conformations. (A) To examine the effect of the
particular target residues used in generating the ensemble of pocket-containing conformations, we generated
separate ensembles from the top-scoring pair of target residues (Ala93 and Arg139, green) and the second-
best pair (Ala93 and Ala142, red). We use exemplars to compare the similarity of surface pockets on each
conformation, and we show each conformation on the two-dimensional projection that best reflects the
pairwise distances between them. The overlap between the two ensembles highlights the robustness of the
conformations to the particular target residues. (B) For each member of the Bcl-2 family, we generated an
ensemble of conformations from unbiased simulations; the distribution of these energies is shown (black).
The range of energies for pocket-containing conformations generated using a biasing potential target
residues derived from the Bcl-xL protein interaction site (magenta) or the Mcl-1 protein interaction site (red)
suggest that many of these conformations are energetically accessible to these proteins under physiological
conditions. All energies shown here were evaluated in the absence of the biasing potential, for fair
comparison. Each simulation is started from the structure of the unbound protein; a corresponding figure
starting from the peptide-bound structures containing all available complexes is available as S5 Fig.

doi:10.1371/journal.pcbi.1004081.g003
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structures (Fig. 4). Though each simulation was initiated from either the unbound or the pep-
tide-bound crystal structure, the resulting ensemble is notably distinct from these starting
states; instead, the biasing potential drove sampling towards pocket-containing conformations
that include examples very similar to the inhibitor-bound structures. In addition, each protein
also samples a collection of conformations (marked “D”) with exemplars that differ from those
observed in any available inhibitor-bound conformations: these will be discussed in more detail
in the following section.

In all three cases we find that these ensembles, generated without any prior information
about the inhibitors, span the space of known inhibitors. This indicates that each protein is pre-
disposed to adopt the particular pocket shapes observed in the corresponding inhibitor-bound
structures: these are not conformational changes that are “induced” by the inhibitor, but rather
these are among a suite of available conformations from which the inhibitor may select. Upon
binding, meanwhile, smaller changes to the protein surface may then occur in response to par-
ticular features of the ligand (such as reorientation of hydrogen bond donors and acceptors).

Different Bcl-2 family members sample different ensembles of surface
pockets
To explore differences between ensembles of pocket-containing conformations of Bcl-2 family
members, we carried out an analogous MDS analysis comparing exemplars from multiple fam-
ily members; an important aspect of exemplar generation and comparison is that the descrip-
tion of a surface pockets is not tied to the sequence of the protein, allowing one to compare
exemplars on the surfaces of different proteins. We compiled conformations generated from
simulations of each Bcl-2 family member (Bcl-xL, Bcl-2, Mcl-1, Bcl-w, Bax, Bid, and Ced-9),
and carried out MDS analysis using the complete set of exemplars (Fig. 5A). Unsurprisingly,
we observe that different family members sample different surface pockets; however, we do
not observe such differences between the (closely related) human and mouse Mcl-1 sequences
(S6 Fig.).

In these projections we again note that the ensemble generated for a given protein spans the
majority of known inhibitors of that protein. Unsurprisingly, given the similarity we observed
between inhibitor-bound Bcl-2 pockets and inhibitor-bound Bcl-xL pockets (Fig. 2C), we find
that most pockets observed in the inhibitor-bound structures occupy a similar region on this

Fig 4. Maps of “pocket space” sampled by individual Bcl-2 family members. The ensemble of pockets observed from simulation: individual
conformations are represented as points on a two-dimensional projection that reflects the pairwise distances between their exemplars. The relative position
of exemplars from experimentally-derived Bcl-xL unbound (“U”) and peptide-bound (“P”) structures are indicated, as are the positions of exemplars from
Bcl-xL structures solved in complex with various inhibitors (numbers correspond to complexes listed in S1 Table). Exemplars marked “D” correspond to the
same “distinct” conformations described in Fig. 5.

doi:10.1371/journal.pcbi.1004081.g004
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Fig 5. Comparison of “pocket space” sampled by each Bcl-2 family member. (A) A projection built using ensembles collected from simulations of
several Bcl-2 family members: Bcl-xL (magenta), Bcl-2 (green), Mcl-1 (red), Bcl-w (orange), and Bax (cyan). Bid and Ced-9 were used in generating the
projection, but for clarity are not included on this map. Target residues derived from the Bcl-xL protein interaction site were used in generating exemplars
shown on the Bcl-xL and Bcl-2 MDS plots, whereas target residues derived from the Mcl-1 protein interaction site were used in generating exemplars shown
on the Mcl-1 MDS plots. For each of Bcl-xL, Bcl-2, and Mcl-1 we observe a distinct region of conformational space (“D”) that is not sampled by any other Bcl-2
family member. (B) Comparison of an exemplar from each “distinct” region to the corresponding unbound (“U”) or peptide-bound (“P”) protein structure from
which the simulation was initiated. (C) Comparison of the conformation harboring the “distinct” pocket to the corresponding unbound/peptide-bound protein
structure from which the simulation was initiated.

doi:10.1371/journal.pcbi.1004081.g005
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projection (all except 1, 5, 6, and 23). Notably, many known inhibitors fall in a region of “pock-
et space” that is sampled by more than one protein. In the case of Bcl-xL, for example, many
known inhibitors bind to pockets that are not only observed in simulations of Bcl-xL, but also
in simulations of Bcl-2. On this projection, these inhibitors (all except 1, 5, and 6) reside in a re-
gion sampled by both Bcl-xL and Bcl-2. Similarly, most of the Bcl-2 inhibitors (all except 23)
are in the same region sampled by both Bcl-xL and Bcl-2; in contrast, this other Bcl-2 inhibitor
(23) overlaps with a regions sampled by Mcl-1 but not Bcl-xL.

In addition to regions shared by more than one family member, each map contains a “dis-
tinct” region that is sampled exclusively by a single protein (Fig. 5A, “D”). As expected, exem-
plars corresponding to these conformations are very different from those of the (unbound or
peptide-bound) conformations from which the corresponding simulations were initiated
(Fig. 5B). Further comparison of the conformations themselves show that these alternate con-
formations are accessed primarily through concerted reorganization of the sidechains that
comprise the surface pocket, though corresponding changes to the protein backbone—espe-
cially in the case of Mcl-1—are also required to enable this reorganization (Fig. 5C). In sum-
mary, relatively modest structural changes to the protein conformation can produce radically
different exemplars, and none of the inhibitors described to date bind to these particular pro-
tein conformations. To facilitate further study of these alternate protein conformations, we
have made several such representatives publicly available on Proteopedia [63,64] (http://
proteopedia.org/wiki/index.php/User:John_Karanicolas/Selectivity_by_small-molecule_
inhibitors_of_protein_interactions_can_be_driven_by_protein_surface_fluctuations, with the
first model for each protein corresponding to the conformation we highlight here).

The regions that we have described as “distinct” on these maps correspond to pockets that
are only sampled by a single member of the Bcl-2 family. In other words, these “distinct” pock-
ets are far from each of the pockets sampled by other family members. So far, we have identi-
fied these regions visually on the basis of a two-dimensional projection of “pocket space”; to
avoid the loss of information associated with reduction of dimensionality, however, we can in-
stead identify “distinct” pockets using exemplar distances directly.

For each conformation comprising the ensembles used above, we found the exemplar dis-
tance of the closest pocket sampled by a different family member. To avoid describing rarely-
sampled (outlying) conformations as distinct, we subtracted from this the exemplar distance of
the closest pocket from one’s own ensemble. This measure, that we will call “distinctness,” is
largest for conformations taken from regions of pocket space that are well-sampled within a
given ensemble, but not visited in the ensembles of the other family members.

We evaluated the “distinctness” of each conformation in the ensembles presented above,
and compiled the results for each family member into a histogram (Fig. 6). As expected, these
results are consistent with our observations from the MDS analysis presented above: all of the
pockets sampled by Bcl-w strongly resemble pockets from other family members and are there-
fore not “distinct,” whereas Bcl-xL and Mcl-1 each sample certain highly distinct regions. Par-
ticularly striking from this analysis is the “distinctness” of experimentally-derived inhibitor-
bound structures of Bcl-2 family members: none of these inhibitors take advantage of the
“highly distinct” pockets available on the surfaces of Bcl-xL or Mcl-1. Rather, each of these
compounds targets a pocket that is sampled not only by the cognate binding partner, but also
by at least one other member of the Bcl-2 family.

Pocket shape similarity as a predictor of ligand selectivity
As noted in the MDS analysis, the majority of known Bcl-xL inhibitors fall in a region of “pock-
et space” that is sampled by both Bcl-xL and Bcl-2 (Fig. 5A). Given that Bcl-2 is found to form
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pockets that are similar to these inhibitor-bound Bcl-xL pockets, one might expect that these
compounds would inhibit Bcl-2 in addition to Bcl-xL. Conversely, in light of the conformation-
al selection model presented earlier, one would expect that the lack of similar pockets in the en-
sembles generated for other Bcl-2 family members might suggest that these proteins would not
be inhibited by these compounds.

To explore this idea, we measured the exemplar distance between each known inhibitor
bound pocket and each pocket observed in a given ensemble (starting from an unbound or
peptide-bound structure). We then compared the most similar exemplar distances for each
protein/inhibitor pair to experimentally-derived binding data, to evaluate whether the pockets
sampled in these ensembles dictate the Bcl-2 family members that will be inhibited by a
given compound.

The results from this analysis are presented in Fig. 7A. Using pockets observed in inhibitor-
bound crystal structures of Bcl-xL (1–14), we find in many cases that highly similar pockets are
sampled in ensembles generated from simulation of Bcl-xL and Bcl-2 (green), but not in the
corresponding ensembles from Mcl-1 or Bcl-w (yellow/red): this represents a quantitative reca-
pitulation of our observation that these ligands occupy surface pockets accessible only to Bcl-
xL and Bcl-2 (Fig. 5A). In light of this finding such compounds would be expected to bind Bcl-
xL and Bcl-2, but not Mcl-1 or Bcl-w; available experimental binding data confirm that indeed
this is generally the case.

We observe a similar pattern for most inhibitor-bound crystal structures of Bcl-2 (15–21),
which is again unsurprising given the similarity of these inhibitor-bound pockets to those of
Bcl-xL (Fig. 2C). The sole exceptions to this pattern are complexes 22 and 23, for which corre-
sponding pockets are observed in either the Bcl-2 or Bcl-xL ensembles but not both. The for-
mer (22) is indeed a dual inhibitor, but binds in a shallow pocket that is not well-described by
any Bcl-2 exemplar in our ensemble. The latter (23) is indeed selective for Bcl-2 over Bcl-xL, as

Fig 6. Ensembles of available pocket shapes contain distinct pocket shapes.We define the “distinctness” of a pocket as the difference in exemplar
distances of the closest conformation from a different family member, and the closest conformation from one’s own ensemble. Histograms are shown over
conformations that comprise the ensembles used above. By this measure, all known inhibitors of all Bcl-2 family members bind to pockets that are not unique
to their cognate target protein (i.e. low “distinctness”). Data are shown for three representative Bcl-2 family members, the complete set are included as S7
Fig.

doi:10.1371/journal.pcbi.1004081.g006
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Fig 7. Ensembles of available pocket shapes explain ligand selectivity across the Bcl-2 family. (A) For each inhibitor-bound pocket, the exemplar
distance to the most similar pocket is indicated by color gradient, with all distances expressed as Z-scores (green are most similar, red are most dissimilar;
the range of colors for each row is normalized across that row). Markings inside the cells denote experimental reports [11,51,60,67–76] for a given protein-
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anticipated from the lack of overlap with the Bcl-xL ensemble from simulation, and therefore
represents successful recapitulation of the binding data.

While we noted earlier that Mcl-1 can adopt conformations with highly distinct surface
pockets, we also noted that inhibitor-bound crystal structures do not make use of these pockets
(Fig. 6). Rather, we find that these compounds (24–26) instead bind to pockets that are very
similar to those included in the Bcl-2 ensemble (Fig. 7A), and indeed experimental observa-
tions confirm that these compounds also inhibit Bcl-2, but not Bcl-xL.

Among the most notable incorrect predictions are those involving Bcl-w: a number of these
compounds inhibit Bcl-w (11, 12, 13, 16, 17), but corresponding pocket shapes were not in-
cluded in our sampling. In retrospect, this may have arisen due to structural features of the
starting conformation from which this conformational ensemble was generated: when evaluat-
ed by Molprobity [65], this member of the NMR ensemble contained only 72% of residues in
favorable regions of Ramachandran space. These unfavorable structural features may in turn
have led to a lack of convergence of our simulations.

Overall, however, there is a striking relationship between the pockets visited by a given en-
semble and the experimentally-derived ligand selectivity. To quantitatively examine the ability
of the pockets sampled in these ensembles to recapitulate the selectivity profile of a given li-
gand, we asked how well this approach could be used to distinguish the most tightly binding
protein-ligand pairs (those marked with✔✔✔) from those pairs that bind too weakly to be de-
tected/quantified (those marked with ✗). For each inhibitor-bound crystal structure, we nor-
malized the exemplar distances to the variation across the corresponding row; this essentially
expressed ligand selectivity as a Z-score indicating how closely a given ensemble approached
the inhibitor-bound pocket. Using these Z-scores to rank the likelihood of interaction for a
given protein-ligand pair, we used a receiver operating characteristic (ROC) plot to show per-
formance at this binary prediction problem (Fig. 7B); we find that the predictions from this
method far outperform those of a random classifier (p< 4x10-7).

The absence of experimental binding data for many protein-ligand pairs is a natural short-
coming associated with culling this information from available reports in the literature. The
complete maps of ligand selectivity for each compound, as inferred from ensembles generated
by simulation, thus stand as completely new predictions in many cases (S8 Fig.).

Because the pockets should match the shape of the ligand, a reasonable assumption would
be that similar results would be found by comparing the shape of the inhibitor to the ensemble
of pocket shapes. To explore this idea we measured the exemplar distance between each native
inhibitor conformer and the most similar pocket observed in a given ensemble of Bcl-2 family
members, and then compared these exemplar distances to experimentally-derived binding
data. As expected, the predictions (S9 Fig.) are very similar when comparing to the ligand di-
rectly, as opposed to comparing against the ligand-bound pocket.

Beyond the Bcl-2 family
The abundance of reported inhibitors of Bcl-2 family members, including their selectivity
across the Bcl-2 family, enabled the detailed comparison presented above. Due to the chal-
lenges encountered to date in identifying small-molecule inhibitors of protein interactions,

ligand pair (Kd or Ki where available, otherwise IC50):✔✔✔ indicates< 0.1 μM,✔✔ indicates 0.1–1 μM,✔ indicates binding weaker than 1 μM, and ✗
indicates that binding was not detectable/quantifiable. Cells that do not include any markings correspond to protein-ligand pairs for which binding data has
not been reported. Numbering corresponds to complexes as in S1 Table. A representative subset of the complexes are included in this figure; a
corresponding figure containing all complexes is available as S8 Fig. The underlying raw data are included in S5 Table (exemplar distances) and S7 Table
(citations to binding data). (B) A receiver operating characteristic (ROC) plot demonstrating the performance of exemplar distances for predicting whether a
given compound is active against a particular member of the Bcl-2 protein family.

doi:10.1371/journal.pcbi.1004081.g007
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however, there do not yet exist any further examples that we know of in which multiple com-
pounds target different members of a protein family. Nonetheless, we were able to identify a
separate example of a small-molecule inhibitor of a protein interaction that has been shown to
inhibit select members of a protein family (for which at least one ligand-bound crystal structure
is available): this is (+)-JQ1, a compound shown to selectively inhibit a subset of human bro-
modomains [10]. While only one compound, binding data are available against many family
members. Here, we have generated ensembles of pocket-containing conformations for 16 bro-
modomains, and measured the extent to which each family member samples a pocket similar
to that observed in the crystal structure of (+)-JQ1 bound to the first bromodomain of BRD4.
In this single additional example, here again we find that the presence of complementary sur-
face pockets in the ensemble generated by simulation can accurately predict the ligand selectiv-
ity across a protein family (Fig. 8), whereas we do not observe complementary pockets for
family members that do not tightly bind (+)-JQ1.

Discussion
Identification of small-molecule inhibitors of protein interactions immediately raised the ques-
tion of how these compounds might interact with proteins that appeared to lack complementa-
ry surface pockets; the answer came through structural studies of an interleukin-2 complex
that showed the ligand can occupy a hydrophobic groove not present on the unbound protein
surface [13]. These structural studies, together with analysis of binding thermodynamics, first
pointed to the “adaptivity” of this protein surface: the protein can adopt multiple conforma-
tions, one of which presents a surface complementary to the ligand. Our analysis of Bcl-2 fami-
ly complexes supports this view, and extends it further: we find that the plasticity of the protein
surface allows multiple distinct surface pockets to be presented, and these different pockets can
be recognized by inhibitors with dramatically different chemotypes.

Upon generating ensembles of pocket-containing conformations by simulation, we find that
these ensembles span all the pockets used by known inhibitors—even though no information

Fig 8. Pocket shapes explain (+)-JQ1 selectivity across bromodomains. For each bromodomain, the exemplar distance of (+)-JQ1 to the most similar
pocket is indicated by color gradient, with all distances expressed as Z-scores (green are most similar, red are most dissimilar; the range of colors for each
row is normalized across that row). Markings inside the cells denote experimental binding measurements [10] for each protein-ligand pair:✔✔✔ indicates
ΔTm> 7°C,✔✔ indicates ΔTm = 3–5°C,✔ indicates ΔTm = 0–1°C, and ✗ indicates no detectable binding. The underlying raw data are included in S8 Table.

doi:10.1371/journal.pcbi.1004081.g008
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about any inhibitor was used to influence the simulations in any way. This observation pro-
vides strong and direct evidence for an underlying model of conformational selection [15]: the
protein surface is predisposed to adopt certain pocket shapes, and these shapes in turn restrict
the range of complementary ligands. Upon binding, the protein may then undergo further
smaller changes in response to particular features of the ligand.

By comparing the regions of “pocket space” explored by several Bcl-2 family members, we
find that certain shapes are available to all family members: we expect that compounds comple-
menting such pockets will show very broad specificity across this family. We further find that
most inhibitors reported in the literature bind to pockets that are shared by more than one
family member, and accordingly most are found to be active against more than one
family member.

Conversely, we also find that many Bcl-2 family members sample pockets that are not acces-
sible to any other family member: here lies a tremendous opportunity, since we expect that a
compound built to complement such a pocket will prove highly selective for its target. Develop-
ment of compounds that target these highly “distinct” pockets represents a tantalizing new
strategy for drug discovery: by building target selectivity into the broad features of the chemical
scaffold itself, selectivity may be more robustly preserved in the course of optimization of the
compound for other orthogonal desirable properties (bioavailability, pharmacokinetics and
pharmacology). Despite the existence of these pockets on the surface of Bcl-2 family members
and extensive interest in identifying selective inhibitors, however, not a single crystal structure
reported to date includes a compound that targets any of these highly “distinct” pockets.

How then can we identify compounds that achieve target selectivity by explicitly targeting
these “distinct” pockets? We anticipate the solution may lie with the exemplars themselves. As
noted earlier, the exemplar is essentially a map of the “perfect” ligand to complement a given
pocket, albeit a ligand that is not physically realizable. Accordingly, we expect that the exem-
plar will serve as an ideal template for ligand-based screening of (virtual) compound libraries;
tools such as ROCS [39,40] that evaluate volume and chemical overlap may be used to find
compounds that closely mimic the shape and chemical features of the exemplar. Indeed, the
ability to assess the selectivity profile by comparing the native ligand conformer to the exem-
plars derived from the ensembles implies that ROCS is capable of identifying compounds with
the desired shape and chemical features needed to strongly interact with a member of a pro-
tein’s ensemble. Together, this set of tools may provide both a means to identify pockets that
“encode” a desired selectivity profile within a protein family, and also a means to connect the
resulting pockets to specific compounds that exhibit this selectivity profile.

The overall paucity of examples of small-molecule inhibitors of protein interactions necessi-
tated our focus for this study be largely restricted to the Bcl-2 family. As selective inhibitors of
other protein families involved in protein interactions are reported, it will be exciting to refine
the insights presented here. In light of the fact that many of the other small-molecule inhibitors
of protein interactions described to date also bind to similarly “adaptable” binding sites [66],
meanwhile, we are optimistic that the perspectives presented here will prove extensible to these
therapeutic targets as well.

Supporting Information
S1 Fig. Effect of orientation on exemplar comparison. Bcl-xL bound to ABT-737 (PDB ID
2yxj), a compound similar to ABT-737 (PDB ID 3qkd), an unrelated Bcl-xL inhibitor (PDB ID
3zln), and Mcl-1 bound to an Mcl-1 inhibitor (PDB ID 4hw2) were rotated for 100 random ori-
entations, and an all-vs-all comparison of the ensemble of ABT-737 bound exemplars to those
generated for each orientation was performed. Histograms of the 3D Tanimoto scores of the
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ABT-737 exemplars compared to themselves (black), a closely-related compound (green), an
unrelated compound (orange), and an Mcl-1 pocket (red) demonstrate overlap between similar
and dissimilar pockets.
(EPS)

S2 Fig. Bcl-2 family members recognize different inhibitors using distinct surface pockets.
In all cases color gradient indicates similarity between experimentally-derived structures, ex-
pressed as Z-scores (green are most similar, red are most dissimilar). Numbering in all cases
corresponds to complexes in S1 Table. (A) Chemical similarity of the inhibitors. (B) Three-di-
mensional similarity of the inhibitors’ active conformation. (C) Similarity of protein surface
pockets, quantified through exemplar similarity. There is a statistically significant correlation
between each pair of panels, as described in the text. The underlying raw data used to generate
these plots are included in S2, S3, and S4 Tables.
(EPS)

S3 Fig. Steric clashes with ground state conformations demonstrate the need to explore en-
sembles of pocket-containing conformations to understand ligand binding. Unbound
structures of (A) Bcl-xL, (B) Bcl-2, and (C) Mcl-1 are represented in spheres with overlaid in-
hibitors shown in sticks.
(EPS)

S4 Fig. Location of target residues. A superposition of representative inhibitor-bound struc-
tures of Bcl-xL (light green cartoon, inhibitor in dark green sticks) and Mcl-1 (cyan cartoon, in-
hibitor in dark blue sticks) is shown. The target residues for pocket opening generated from the
corresponding peptide-bound structures differed for Bcl-xL (Ala93 and Arg143) and for Mcl-1
(Arg263 and Phe270) (sidechains shown using spacefill), reflecting different energetic contribu-
tions to the protein-protein interaction from each protein surface.
(EPS)

S5 Fig. Energetic analysis of conformations generated starting from a peptide bound struc-
ture. For each peptide-bound complex used in this analysis, the histograms of energies of con-
formations generated without the use of a biasing potential (black line) overlap with the range
of energies of the conformations used in all subsequent analyses generated by using a biasing
potential at the Bcl-xL protein interaction site (magenta line) and the Mcl-1 protein interaction
site (red line); this suggests that many of these conformations are energetically accessible to
these proteins under physiological conditions. All energies shown here were evaluated in the
absence of the biasing potential, for fair comparison.
(PNG)

S6 Fig. Comparison of pocket space for human and mouse Mcl-1. Constructs of Mcl-1 were
made from peptide-bound (2nl9 and 3mk8) and unbound (1wsx) structures of Mcl-1 with
human (red) and mouse (green) sequences. Individual conformations are represented as points
on a two-dimensional projection that best reflects the pairwise distances between
their exemplars.
(EPS)

S7 Fig. “Distinctness” of pockets in ensembles generated by simulation of Bcl-2 family
members. The “distinctness” of a pocket is defined as the exemplar distance of the difference
in exemplar distances of the closest conformation from a different family member, and the
closest conformation from the ensemble of this family member.
(EPS)
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S8 Fig. Pocket shape similarity explains ligand selectivity across the Bcl-2 family. For each
inhibitor-bound pocket, the exemplar distance to the most similar pocket is indicated by color
gradient expressed as Z-scores (green are most similar, red are most dissimilar; the range of col-
ors for each row is normalized across that row). Markings inside the cells denote experimental
measurements of binding for this protein-ligand pair (Kd or Ki where available, otherwise
IC50):✔✔✔ indicates< 0.1 μM,✔✔ indicates 0.1–1 μM,✔ indicates binding weaker than 1
μM, and ✗ indicates that binding was not detectable/quantifiable. Cells that do not include
markings correspond to protein-ligand pairs for which binding data has not been reported.
Numbering corresponds to complexes as in S1 Table. The underlying raw data are included in
S5 Table (exemplar distances) and S7 Table (citations to binding data).
(EPS)

S9 Fig. Pocket shape versus ligand shape similarity explains ligand selectivity across the
Bcl-2 family. As opposed to S8 Fig. , in which we compared conformations from simulation
to exemplars from inhibitor-bound pockets, here we compare conformations from simulation
directly to the structures of the inhibitors. As previously, the exemplar distance to the most
similar pocket is indicated by color gradient expressed as Z-scores (green are most similar, red
are most dissimilar; the range of colors for each row is normalized across that row). Markings
inside the cells denote experimental measurements of binding for this protein-ligand pair (Kd
or Ki where available, otherwise IC50):✔✔✔ indicates< 0.1 μM,✔✔ indicates 0.1–1 μM,✔
indicates binding weaker than 1 μM, and ✗ indicates that binding was not detectable/quantifi-
able. Cells that do not include markings correspond to protein-ligand pairs for which binding
data has not been reported. Numbering corresponds to complexes as in S1 Table. The underly-
ing raw data are included in S6 Table (exemplar distances) and S7 Table (citations to binding
data).
(EPS)

S1 Table. Structures of complexes used in this study. At this time of writing, this table repre-
sents a comprehensive collection of all structures in the PDB containing a Bcl-2 family member
in complex with a small-molecule inhibitor bound at the protein interaction site. Fragments
(compounds with molecular weight less than 250 Da), molecules whose structure contains in-
teractions with multiple chains that are not part of a biological unit, and molecules with multi-
ple occupancies were excluded from this list. Numbering of compounds in this list corresponds
to the order of rows in Fig. 2 and Fig. 7, and the numbering of compounds in Fig. 4 and
Fig. 5A. Superscripted letters in the leftmost column denote cases in which the same compound
has been solved in complex with different protein partners.
(DOCX)

S2 Table. 2D Tanimoto similarity of Bcl-2 family inhibitors. This table shows the raw data
from which the heatmap in Fig. 2A was created.
(DOCX)

S3 Table. 3D Tanimoto (shape) similarity of Bcl-2 family inhibitors. This table shows the
raw data from which the heatmap in Fig. 2B was created.
(DOCX)

S4 Table. Exemplar similarity of Bcl-2 family inhibitor bound structures. This table shows
the raw data from which the heatmap in Fig. 2C was created.
(DOCX)
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S5 Table. Exemplar similarity of top (closest) pocket optimized structures to inhibitor-
bound structures. This table shows the raw data from which Fig. 7 and S8 Fig. were created.
(DOCX)

S6 Table. Exemplar similarity of top (closest) pocket optimized structures to native inhibi-
tor conformer. This table shows the raw data from which S9 Fig. was created.
(DOCX)

S7 Table. Citations for experimental data for ligand selectivity. This table points to the
sources of experimental data from which Figs. 7, S8, and S9 were created. Citations are as fol-
lows: A: Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, et al. (2013) Structure-guided
design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9: 390–397. B: Schroeder GM, Wei D,
Banfi P, Cai ZW, Lippy J, et al. (2012) Pyrazole and pyrimidine phenylacylsulfonamides as
dual Bcl-2/Bcl-xL antagonists. Bioorg Med Chem Lett 22: 3951–3956. C: Brady RM, Vom A,
Roy MJ, Toovey N, Smith BJ, et al. (2014) De-novo designed library of benzoylureas as inhibi-
tors of BCL-XL: synthesis, structural and biochemical characterization. J Med Chem 57: 1323–
1343. D: Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. (2005) An
inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677–681. E:
Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, et al. (2009) Conformational changes in
Bcl-2 pro-survival proteins determine their capacity to bind ligands. J Biol Chem 284: 30508–
30517. F: Sleebs BE, Czabotar PE, Fairbrother WJ, Fairlie WD, Flygare JA, et al. (2011) Quina-
zoline sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma
extra long with potent proapoptotic cell-based activity. J Med Chem 54: 1914–1926. G: Zhou
H, Aguilar A, Chen J, Bai L, Liu L, et al. (2012) Structure-based design of potent Bcl-2/Bcl-xL
inhibitors with strong in vivo antitumor activity. J Med Chem 55: 6149–6161. H: Touré BB,
Miller-Moslin K, Yusuff N, Perez L, Doré M, et al. (2013) The Role of the Acidity of N-Hetero-
aryl Sulfonamides as Inhibitors of Bcl-2 Family Protein–Protein Interactions. ACS Med Chem
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