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Abstract

Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and
interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with
exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade
ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by
focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of
mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known
observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body
mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to
clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes.
We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling
exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the
eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds
with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions
that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model
seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning
about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to
bring its predictions fully in line with available datasets.
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Introduction

Whole-organism metabolic rate, B, scales with body mass, M,

across species as [1]

B~B0Ma, ð1Þ

where B0 is a normalization constant and a is the allometric scaling

exponent, typically measured to be very close to 3/4 [2]. The

empirical regularity expressed in Equation 1 with a = 3/4 is known

as Kleiber’s Law [3,4].

Many other biological rates and times scale with simple

multiples of 1/4. For example, cellular or mass-specific metabolic

rates, heart and respiratory rates, and ontogenetic growth rates

scale as M21/4, whereas blood circulation time, development time,

and lifespan scale close to M1/4 [5–9]. Quarter-power scaling is

also observed in ecology (e.g., population growth rates) and

evolution (e.g., mutation rates) [2,10,11]. The occurrence of

quarter-power scaling at such diverse levels of biological

organization suggests that all these rates are closely linked.

Metabolic rate seems to be the most fundamental because it is

the rate at which energy and materials are taken up from the

environment, transformed in biochemical reactions, and allocated

to maintenance, growth, and reproduction.

In a series of papers starting in 1997, West, Brown, and Enquist

(WBE) published a model to account for the 3/4-power scaling of

metabolic rate with body mass across species [1,12–14]. The

broad theory of biological allometry developed by WBE and

collaborators attributes such quarter-power scaling to near-

optimal fractal-like designs of resource distribution networks and

exchange surfaces. There is some evidence that such designs are

realized at molecular, organelle, cellular, and organismal levels for

a wide variety of plants and animals [2,14].

Intensifying controversy has surrounded the WBE model since

its original publication, even extending to a debate about the

quality and analysis of the data [15–28]. One of the most

frequently raised objections is that the WBE model cannot predict

scaling exponents for metabolic rate that deviate from 3/4 [16,29],

even though the potential for such deviations was appreciated by

WBE themselves [1]. If this criticism were true, WBE could not in

principle explain data for taxa whose scaling exponents have been

reported to be above or below 3/4 [29–34], or deviations from 3/

4 that have been observed for small mammals [35]. Likewise, the

WBE model would be unable to account for the scaling of

maximal metabolic rate with body mass, which appears to have an

exponent of 0.88 [36]. It is important to note that the actual nature

of maximal metabolic rate scaling is, however, not without its own

controversy; see [37] for an argument that maximal metabolic rate

scales closer to 3/4 when body temperature is taken into

consideration.

Much of the work aimed at answering these criticisms has relied

on alteration of the WBE model itself. Enquist and collaborators
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account for different scaling exponents among taxonomic groups

by emphasizing differences in the normalization constant B0 of

Equation 1 and deviations from the WBE assumptions regarding

network geometry [26,38–40]. While these results are suggestive, it

remains unclear whether or not WBE can predict exponents

significantly different from 3/4 and measurable deviations from a

pure power law even in the absence of any variation in B0 and with

networks following exactly the geometry required by the theory.

Although WBE has been frequently tested and applied [40–53], it

is remarkable that no theoretical work has been published that

provides more detailed predictions from the original theory. Also,

work aimed at extending WBE by relaxing or modifying some of

its assumptions has hardly been complete; many variations in

network structure might have important and far-reaching

consequences once properly analyzed. This is what we set out to

do in the present contribution. We show that a misunderstanding

of the original model has led to the claim that WBE can only

predict a 3/4 exponent. This is because many of the predictions

and tests of the original model are derived from leading-order

approximations. In this paper we derive more precise predictions

and tests.

For the purpose of stating our conclusions succinctly, we refer to

the ‘‘WBE framework’’ as an approach to explaining allometric

scaling phenomena in terms of resource distribution networks

(such as the vascular system) and to the ‘‘WBE model’’ as an

instance of the WBE framework that employs particular

parameters specifying geometry and (hydro)dynamics of these

networks [1,14]. (We shall detail these assumptions and define

terminology more accurately in section ‘‘Assumptions of the WBE

model’’.)

Our main findings are: 1. The 3/4 exponent only holds exactly

in the limit of organisms of infinite size. 2. For finite-sized

organisms we show that the WBE model does not predict a pure

power-law but rather a curvilinear relationship between the

logarithm of metabolic rate and the logarithm of body mass. 3.

Although WBE recognized that finite size effects would produce

deviations from pure 3/4 power scaling for small mammals and

that the infinite size limit constitutes an idealization [1], the

magnitude and importance of finite-size effects were unclear. We

show that, when emulating current practice by calculating the

scaling exponent of a straight line regressed on this curvilinear

relationship over the entire range of body masses, the exponent

predicted by the WBE model can differ significantly from 3/4

without any modifications to its assumptions or framework. 4.

When realistic parameter values are employed to construct the

network, we find that the exponent resulting from finite-size

corrections comes in at 0.81, significantly higher than the 3/4

figure based on current data analysis. 5. Our data analysis indeed

detects a curvilinearity in the relationship between the logarithm of

metabolic rate and the logarithm of body mass. However, that

curvilinearity is opposite to what we observe in the WBE model.

This implies that the WBE model needs amendment and/or the

data analysis needs reassessment.

Beyond finite-size corrections we examine the original assump-

tions of WBE in two ways. First, we vary the predicted switch-over

point above which the vascular network architecture preserves the

total cross-sectional area of vessels at branchings and below which

it increases the total cross-sectional area at branchings. These two

regimes translate into different ratios of daughter to parent radii at

vessel branch points. Second, we allow network branching ratios

(i.e., the number of daughter vessels branching off a parent vessel)

to differ for large and small vessels. We analyze the sensitivity of

the scaling exponent with respect to each of these changes in the

context of networks of finite size. This approach is similar in spirit

to Price et al. [40], who relaxed network geometry and other

assumptions of WBE in the context of plants. In the supplementary

online material Text S1, we also argue that data analysis should

account for the log-normal distribution of body mass abundance,

thus correcting for the fact that there are more small mammals

than large ones. Despite differences in the structure and

hydrodynamics of the vascular systems of plants and animals

[1,13], detailed models of each yield a scaling exponent of 3/4 to

leading-order. In the present paper, we focus on the WBE model

of the cardiovascular system of mammals. All of our assumptions,

derivations, and calculations should be interpreted within that

context. Finite-size corrections and departures from the basic

WBE assumptions are important in the context of plants as well, as

shown in recent studies by Enquist and collaborators [26,38–40].

In final analysis, we are led to the seemingly incongruent

conclusions that (1) many of the critiques of the WBE framework

are misguided and (2) the exact (i.e., finite-size corrected)

predictions of the WBE model are not fully supported by empirical

data. The former means that the WBE framework remains, once

properly understood, a powerful perspective for elucidating

allometric scaling principles. The latter means that the WBE

model must become more respectful of biological detail whereup-

on it may yield predictions that more closely match empirical data.

Our work explores how such details can be added to the model

and what effects they can have.

The paper is organized as follows. For the sake of a self-

contained presentation, we start with a systematic overview of the

assumptions, both explicit and implicit, underlying the WBE

theory (section ‘‘Assumptions of the WBE model’’). In Text S1, we

provide a detailed exposition of the hydrodynamic derivations that

the model rests upon. These calculations are not original, but they

have not appeared to a full extent before in the literature. While

nothing in section ‘‘Assumptions of the WBE model’’ is novel,

there seems to be no single ‘‘go to’’ place in the WBE literature

that lays out all components of the WBE theory. Our paper then

proceeds with a brief derivation of the exact, rather than

approximate, relationship between metabolic rate and body mass

(section ‘‘Derivation of the 3/4 scaling exponent’’). We then

calculate the exact predictions for scaling exponents for networks

Author Summary

The rate at which an organism produces energy to live
increases with body mass to the 3/4 power. Ten years ago
West, Brown, and Enquist posited that this empirical
relationship arises from the structure and dynamics of
resource distribution networks such as the cardiovascular
system. Using assumptions that capture physical and
biological constraints, they defined a vascular network
model that predicts a 3/4 scaling exponent. In our paper
we clarify that this model generates the 3/4 exponent only
in the limit of infinitely large organisms. Our calculations
indicate that in the finite-size version of the model
metabolic rate and body mass are not related by a pure
power law, which we show is consistent with available
data. We also show that this causes the model to produce
scaling exponents significantly larger than the observed 3/
4. We investigate how changes in certain assumptions
about network structure affect the scaling exponent,
leading us to identify discrepancies between available
data and the predictions of the finite-size model. This
suggests that the model, the data, or both, need
reassessment. The challenge lies in pinpointing the
physiological and evolutionary factors that constrain the
shape of networks driving metabolic scaling.
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of finite size (section ‘‘Finite-size corrections to 3/4 allometric

scaling’’) and revisit certain assumptions of the theory (section

‘‘Making the WBE model more biologically realistic’’). In section

‘‘Comparison to empirical data’’ we compare our results to trends

detectable in empirical data. We put forward our conclusions in

the Discussion section.

Model

Assumptions of the WBE Model
The WBE model rests on eight assumptions. Some of these

assumptions posit the homogeneity of certain parameters through-

out the resource distribution network. Any actual instance of such

a network in a particular organism will presumably exhibit some

heterogeneity in these parameters. The object of the theory is a

network whose parameters are considered to be averages over the

variation that might occur in any given biological instance. For the

sake of brevity, we refer to such a network as an ‘‘averaged

network’’. The impact of parameter heterogenity on the scaling

exponent is very difficult to determine analytically. (Section

‘‘Changing branching ratio across levels’’ addresses a modest

version of this issue numerically.)

Assumption 1. The distribution network determines the

scaling relationship. The relationship between metabolic rate

and body mass is dominated by the structure and dynamics of the

resource distribution network, which for most animals is the

cardiovascular system. This assumption constitutes the core of the

WBE framework. The vascular system is directly tied to metabolic

rate, because the flow dynamics through the network and the

number of terminal points (capillaries) constrain the rates at which

cells and tissues are supplied with oxygen and nutrients needed for

maintenance. At the same time, the vascular system is directly tied

to body volume (and thus body mass), because network extent and

structure must be such that its terminal points can service (and

thus cover) the entire body volume. It follows that the relationship

between metabolic rate and body mass must be constrained - and

WBE assume it is dominated - by the structural and flow

properties of the cardiovascular system. It should be noted that

Assumption 1 could be true even if other assumptions of WBE are

false. (For a recent example with plant architecture and data, see

Price et al. [40].) In other words, even if the cardiovascular system

does not drive the particular allometry between mass and

metabolic rate, the cardiovascular system must be consistent with

the observed scaling.

Assumption 2. The distribution network is

hierarchical. To say that the cardiovascular system is

hierarchical amounts to assuming that there is a consistent

scheme for labeling different levels of vasculature (Figure 1),

proceeding from the heart (level 0) to the capillaries (level N). This

assumption is not exactly true. For example, the number of levels

from the heart to the capillaries in the coronary artery is smaller

than the number of levels from the heart to the capillaries in the

foot [54]. Yet, the hierarchical structure is evident in images of

whole-body vasculature, and is posited to constitute a good

approximation for analyzing properties of an averaged network.

Assumption 3. Vessels within the same level of the

hierarchy are equivalent. All the vessels at the same level of

the network hierarchy have the same radius, length, and flow rate.

Again, this assumption is not strictly true but provides a tractable

way to study an averaged network.

Assumption 4. The branching ratio is constant. The

number of daughter vessels at a branching junction—the

branching ratio n—is assumed to be constant both within and

across levels. By definition of the branching ratio, the total number

of vessels within level k is Nk = nk. The total number of vessels in the

previous level is Nk21 = nk21, thus n = Nk/Nk21. The constancy of n

provides a good approximation for describing the properties of an

averaged network. We will show in section ‘‘Derivation of the 3/4

scaling exponent’’ that the value of n does not affect the leading-

order scaling (infinite-size limit) of the allometry. However, it does

slightly affect the corrections to 3/4 for organisms of finite size. In

the original WBE paper, a constant branching ratio n is listed as a

consequence of Assumption 6 (below), which uses a Lagrange

multiplier calculation to minimize the energy required for fluid

flow through the vascular hierarchy. That claim is incorrect

because there are not enough Lagrange constraints to determine

this additional ratio. Although the constancy of the branching ratio

plays a pivotal role in relating vessel radii and lengths at one level

to those at the subsequent level, deviations from Assumptions 3

and 4 were not believed to have much effect on the predicted

scaling exponent based on numerical work on side branchings by

Turcotte [55].

Assumption 5. The network is space filling. Resource

distribution networks are space-filling in the sense that they must

feed (though not necessarily touch) every cell in the body. This

assumption determines how vessel lengths at one level relate to

vessel lengths at the next level. Although this assumption seems

simple and intuitively appealing, it has a precise meaning that is

not easily conveyed by this terminology. A single capillary feeds a

group of cells, which constitute the service volume, vN (N denotes

the terminal branching level), of a capillary. Since all living tissue

must be fed, the sum over all these service volumes must equal the

total volume of living tissue, Vtot = VcapvN, where Ncap is the

number of capillaries, that is, the number of vessels at the terminal

level N, NN = Ncap. This argument can be repeated for vessels one

level above the capillaries (level N21), only now each of those

vessels must service a group of capillaries that comprises some

volume, vN21. Again, the sum over all these NN21 service volumes

must equal the total volume of living tissue, Vtot = NN21vN21,

because that is the volume the capillaries must maintain. Iterating

Figure 1. Schematic vessel architecture and branching. A vessel
at level k branches into two daughter vessels at level k+1. The
branching ratio is thus n = 2. The radii, rk+1, and lengths, lk+1, of the two
daughter vessels are identical by Assumption 3. The ratios of the radii
and lengths at level k+1 to those at level k are defined as c, b. and b,

in Equations 2 and 3. The choice of b. for the radial ratio corresponds
to area-preserving branching and of b, to area-increasing branching. In
the WBE model, the cardiovascular system is composed of successive
generations of these vascular branchings, from level 0 (the heart) to
level N (the capillaries).
doi:10.1371/journal.pcbi.1000171.g001
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this argument over all network levels yields

NNvN = NN21vN21 = … = N0v0. This is the meaning of space

filling. If a vessel at level k of the hierarchy has length lk (see

Figure 1), we can think of the service volumes as varying with l3
k

(e.g., a sphere with diameter lk or cube with length lk). Thus,

Vtot~Nkvk!Nkl3
k . Since Vtot, the total volume of living tissue, is

independent of k, we obtain the scale-free ratio,

c~lkz1=lk& Nk=Nkz1ð Þ1=3
~n{1=3: ð2Þ

WBE assume this relation to be valid throughout the network,

although it becomes less realistic for small values of k, i.e. near the

heart [1]. (The notation of the model is not optimal. For example,

N with a subscript denotes the number of vessels at the level

indicated by the subscript, but N without a subscript denotes the

level of the capillaries. We refrain, however, from redefining

established notation.)

Assumption 6. The energy loss of fluid flow through the

network is minimized. The work done to pump blood from

the heart to the capillaries has been minimized by natural

selection. This assumption relates the radius of vessels at one level

of the network to the radius of vessels at the next level. The trial-

and-error feedback implicit in evolutionary adaptation and

development has led to transport networks that, on average,

minimize the energy required for flow through the system. There

are two independent contributions to energy loss: energy

dissipated by viscous forces and energy loss due to pulse

reflection at branch points. Dissipation is the major cause of

energy loss in flow through smaller vessels, such as capillaries and

arterioles, because a high surface-to-volume ratio subjects a larger

fraction of the blood volume to friction from vessel walls. Energy

loss to wave reflections, on the other hand, has the potential to be

dominant in larger vessels, such as arteries, where flow is pulsatile.

Reflection can be entirely eliminated by equalizing the

opposition to fluid flow before and after the branching of a vessel

[54,56]. This opposition is called impedance, and the equalization

is referred to as impedance matching. Energy loss to dissipation,

however, can be minimized but never eliminated by network

architecture because friction always exists between blood and the

vessel walls. A detailed calculation of these energy losses involves

an analysis of fluid flow in elastic tubes using the Navier-Stokes

and the Navier equations, Lagrange multiplier methods, and other

techniques. We provide a roadmap for these calculations in Text

S1 (see also Figure S1, Figure S2, and Figure S3). The main result

of the analysis is twofold. First, minimizing dissipation leads to a

cube-law [57] for the radii, rk, at branch points,

b
w

~rkz1=rk~ Nk=Nkz1ð Þ1=3
~n{1=3, ð3Þ

which indicates that the total cross-sectional area will increase at

branch points and thus, by continuity, will result in a slowing of

the blood flow rate. Second, when vessels are large, minimizing

reflections leads to a square-law for radii,

b
v

~rkz1=rk~ Nk=Nkz1ð Þ1=2
~n{1=2, ð4Þ

which preserves the cross-sectional area at branch points and results

in a constant blood flow rate across the branching. When vessels

are small, however, minimizing reflections also leads to a cube-law

analogous to the relationship in (3). We refer to the two different

forms of radius scaling (b. and b,) as ‘‘area-increasing’’ and

‘‘area-preserving’’ branching, respectively.

The ratio of radii in a real system probably changes

continuously throughout the network. It seems, however, a

reasonable approximation to assume that the ratios (3) and (4)

dominate two regions, and that within each region the network is

self-similar, meaning that the branching ratio n is constant.

Empirical data provide some support for the existence of these two

regions [54], but it is quite difficult to determine the transition

between them, either empirically or theoretically. WBE argue that

the level at which the transition occurs, k̄ (as counted from the

heart, level 0), is always a fixed number of levels N̄ away from the

capillaries (level N): N̄ = N2k̄ = const. This means that the

transition depends only on the vessel radii, which partially dictate

the resistance to flow, and thus, that the transition always occurs at

a fixed radius. Notice, however, that a switch-over from area-

preserving to area-increasing branching does not necessarily

coincide with a switch-over from impedance matching (for

pulsatile flow) to minimization of dissipation (for viscous flow),

because impedance matching alone already implies a transition

from area-preserving to area-increasing branching (see Text S1).

Finally, and rather importantly, Assumption 6 is used to prove that

total blood volume, Vblood, is directly proportional to body mass M

as explained in Text S1.

Assumption 7. Capillary characteristics are the same

across species. Flow rate, length, radius, hematocrit, and all

other structural and physiological traits of capillaries are

independent of body size. It is this assumption that allows

comparisons among organisms. All previous assumptions specify

the structure of the vascular system within an organism, but

Assumption 7 sets the scale across organisms. WBE view capillaries

as fundamental building blocks of the system that remain constant

as organisms are scaled up in size. Indeed, a large amount of

empirical data for mammals shows no systematic trend of capillary

size or red blood cell size with body size [9,58].

Assumption 8. Capillaries are the only exchange surfaces

and thus directly relate blood flow rate to oxygen supply in

tissues. All transfer of resources happens through the terminal

exchange surfaces, i.e., at the level of capillaries and not at other

levels in the network. With regard to oxygen, this assumption is

well founded because capillary size and structure are likely to have

been under selection pressure to facilitate the release of oxygen by

red blood cells and hemoglobin [59–62]. This is presumably why

red blood cell diameter closely matches capillary diameter [9],

which facilitates conversion from oxygen supply into metabolic

rate [63,64]. Indeed, increased blood flow rate signals increased

oxygen supply and metabolic rate—a fact exploited in

neuroimaging techniques, such as Blood Oxygenation Level

Dependent (BOLD) fMRI [65,66].

As mentioned in the introduction, it is useful to clarify some

terminology that we will employ in this work. Throughout, we

refer to ‘‘the WBE model’’ as any version based on Assumptions

1–8 above. This includes the original infinite-size limit as well as

the finite-size version whose analysis we carry out in this paper.

We refer to the ‘‘canonical WBE model’’ when singling out the

predictions of the WBE model obtained with the original

parameter values, such as N̄ = 24 and n = 2. Finally, we distinguish

between the WBE model and the ‘‘WBE framework’’. The latter is

a stance that seeks to explain allometric scaling in terms of the

physical structure and dynamics of resource distribution networks

without necessarily conforming to Assumptions 2–8. It is

important to note that, while problems might exist with any given

model within this framework, those problems do not invalidate the

importance of considering resource distribution networks to

understand allometric scaling phenomena.

Sizing Up Allometric Scaling Theory
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Derivation of the 3/4 Scaling Exponent
Using the above assumptions, we can derive how metabolic

rate, B, varies with body mass, M, which is the fundamental result

of WBE. The key insight is that body mass is proportional to blood

volume (following from Assumption 6) and that blood volume is

the sum of the volumes of the vessels over all the levels of the

network. Using Assumptions 2–6, this sum can be expressed in

terms of properties of capillaries, providing a direct link to

metabolic rate (owing to Assumption 8). Upon expressing blood

volume in terms of capillary properties, we can separate terms of

the sum that are invariant (by Assumption 7) from others that vary

with the total number of capillaries. The total number of

capillaries is directly proportional to the whole-oganism metabolic

rate, because each capillary supplies resources at the same rate

regardless of organism size (Assumption 7). This ties body mass to

metabolic rate. We now provide the formal derivation.

Using Assumptions 2–4 the total blood volume or total network

volume (assuming the network is completely filled with blood and

ignoring the factor of 2 that may arise from blood in the venous

system, which returns blood to the heart) can be expressed as the

sum

Vblood~
XN

k~0

Nkpr2
klk~

XN

k~0

nkpr2
klk, ð5Þ

where the volume of a vessel is that of a cylinder. Next, we use the

scale-free ratios c, b,, and b., defined by Equations 2–4 resulting

from Assumptions 5 and 6, to connect level k to successively higher

levels and all the way to the capillary level N:

Vblood~NcapVcap
1

ncb2
>

� � �NN

X�kk

k~0

ncb2
<

� �{ �kk{kð Þ
0
@

z
XN

k~�kkz1

ncb2
>

� �{ N{kð Þ
!

, ð6Þ

where Vcap~VN~pr2
N lN is the volume of a capillary and

Ncap = NN = nN the number of capillaries. The first sum ranges

over the area-preserving regime and the second sum is over the

area-increasing regime. The first sum is a standard geometric

series. Observing that ncb2
v

~n{1=3 then yields

Xk

k~0

ncb2
<

� �{ k{kð Þ
~

n kz1ð Þ=3{1

n1=3{1
~

n N{Nð Þ=3n1=3{1

n1=3{1

~
N

1=3
cap n 1{Nð Þ=3{1

n1=3{1
,

ð7Þ

where N̄ is the fixed number of levels from the capillaries to the

level where the transition from area-increasing to area-preserving

branching occurs. Since ncb2
w

~1, we have 1

ncb2
wð ÞNN

~1, and the

second sum in Equation 6 is simply

XN

k~kz1

ncb2
w

� �{ N{kð Þ
~N{k~N: ð8Þ

Combining these results we have

Vblood~NcapVcap
N

1=3
cap n 1{Nð Þ=3{1

n1=3{1
zN

 !
: ð9Þ

This equation can be re-expressed as

Vblood~C0N4=3
cap zC1Ncap~C0N4=3

cap 1z
C1

C0
N{1=3

cap

� �
, ð10Þ

where

C0~
Vcapn 1{Nð Þ=3

n1=3{1
and C1~Vcap N{

1

n1=3{1

� �
ð11Þ

are both constant with respect to body mass. Equation 10 will play

a fundamental role in the following sections.

Given this simple relation between total blood volume (or

network volume) and the number of capillaries, it is straightfor-

ward to relate metabolic rate, B, to body mass, M. Using

Assumption 8, the whole-body metabolic rate is just the sum total

of the metabolic rates enabled by the resources delivered through

each capillary. Let the contribution to total metabolic rate enabled

by a capillary be Bcap. By Assumption 7 Bcap is constant across

organisms. Thus, B = NcapBcap, or simply B/Ncap. Inserting this

into Equation 10, invoking Assumption 7 that Vcap is independent

of body mass, and using Assumption 6 to recognize that M/Vblood

yields

M~C2Vblood~C00N4=3
cap 1z

C1

C0
N{1=3

cap

� �

~C000 B4=3 1z
C01
C0

B{1=3

� �
ð12Þ

with C2 a constant, C00~C2C0, C01~B
1=3
capC1, and C000 ~B

{4=3
cap C00

are new constants.

Letting the number of levels in the cardiovascular system, N,

tend to infinity—which necessarily means that body mass, M, and

metabolic rate, B/Ncap = nN, become infinitely large—we con-

clude that

M*C000 B4=3 or B!M3=4: ð13Þ

This is the celebrated result that has been empirically observed for

nearly a century. Equation 13 is approximately true as long as

1&C01B{1=3
�

C0: ð14Þ

It is essential to realize that the prediction of a 3/4 scaling

relationship only holds in the infinite M-limit. The approximation

becomes less accurate as organisms become smaller, correspond-

ing to smaller metabolic rate B. The exact relationship is

Equation 12, or 10, which does not predict a pure power law

but a curvilinear graph of ln B versus ln M. Forcing such a curve to

fit a straight line will therefore not produce an exact value of 3/4,

except when the magnitude of the correction term is small

compared with 1 (see Equation 14), the measurement error, or the

residual variation in the empirical data. Given that the importance

of these deviations will be larger for smaller organisms, it would in

principle be interesting to look more carefully at finite-size effects

for small fish or plants, because the smallest mammals are

considerably larger than the smallest fish or plants [25,26,29,33],

although we do not perform such an analysis here. Different taxa

often span different ranges of body size and exhibit a particular

relative proportion of small to large organisms. These character-

istics will likely lead to different measured scaling exponents.
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We conclude that the WBE model actually predicts variation in

scaling exponents due to finite-size terms whose magnitude

depends on the absolute range of body masses for a given

taxonomic group. These predictions can be tested against the

allometric exponents reported in the empirical literature.

Results

Finite-Size Corrections to 3/4 Allometric Scaling
To quantify finite-size corrections, we focus on Equation 10

because the blood volume, Vblood (/M), and the number of

capillaries, Ncap (/B), are really the fundamental parameters of the

theory. Proceeding in this way, we avoid the additional constants

C2 and Bcap. By inspecting Equation 10, we see that finite-size

effects can become manifest in two different ways. First, even in

the absence of network regions with area-increasing branching

(N̄ = 0), there are corrections to the 3/4 scaling exponent. Second,

the switch-over point N̄ from area-preserving branching to area-

increasing branching determines the relative contributions of these

two network regimes, and has the potential to considerably

influence the scaling exponent. To quantify these effects, we

consider three cases: (i) a network with only area-preserving

branching (section ‘‘Networks with only area-preserving branch-

ing’’), (ii) a network with only area-increasing branching (section

‘‘Networks with only area-increasing branching’’), and (iii) a

mixture of the two with a transition level (section ‘‘Networks with a

transition from area-preserving to area-increasing branching’’).

Networks with only area-preserving branching. A

network in which all levels are area-preserving corresponds to a

switch-over point at k̄ = N, so N̄ = 0. Equation (10) still holds, and

we have C0~
Vcapn1=3

n1=3{1
w0 and C1~{

Vcap

n1=3{1
v0, with the simple

ratio |C1|/|C0| = n21/3. To understand how this affects a log-log

plot of Vblood versus the number of capillaries Ncap (see Figure 2)

and thus the overall scaling exponent, we express Equation 10 in

the form

Ncap~
Vblood

C0j j

� �3=4
1

1{n{1=3N
{1=3
cap

 !3=4

: ð15Þ

In the limit NcapR‘ we obtain a scaling exponent of 3/4.

However, as Ncap decreases, the second factor in Equation 15

increases, resulting in values of Ncap on the left of (15) that are

larger than values in the case of a pure 3/4 power-law. A log-log

plot of this curve will asymptote to a straight line with a slope of 3/

4 for large Ncap and bend up and away from it as Ncap decreases.

Regressing a straight line on this curve will yield a scaling

exponent below 3/4, as shown schematically in Figure 2.

We can make this quantitative by implicit differentiation, which

yields the tangent to the curve defined by Equation 15 as

d ln Ncap

d ln Vblood
~

3

4

1

1z 1

4 nNcapð Þ1=3
{1

� �
0
B@

1
CA*

3

4

1

1z 1
4

nNcap

� �{1=3

 !

*
3

4
1{

1

4
nNcap

� �{1=3
� �

, ð16Þ

where the last expression is the leading-order correction for large

Ncap. Indeed, from Equation 16 we see that the tangent to the

curve becomes shallower as Ncap decreases.

In order to more directly compare these finite-size effects with

empirical data, we need to develop an approach that mirrors the

absolute size and size range of real taxonomic groups and

organisms. To do so, we imagine constructing a group of

organisms of differing sizes; the smallest organism in this group

corresponds to the smallest network and the largest organism

corresponds to the largest network. Each organism possesses a

network with a specific value of Ncap and Vblood determined by

Equation 10. The scaling exponent for such a group would

correspond to the slope obtained from a linear regression of ln Ncap

on ln Vblood for all of the data points obtained for all of the

organisms in that group. The influence of absolute size on the

scaling exponent can then be captured by fixing the size range

covered by a group (e.g., 8 orders of magnitude for mammals) and

measuring the change in the exponent that results from increasing

the size of the organisms in the group. Consequently, if a group

has a size range from the smallest to the largest organism that

spans 26 levels of the vascular system, then we would compare the

exponent obtained for a group covering N = 4 to N = 30 levels to

that obtained for a group covering N = 24 to N = 50 levels.

We now use this approach for both analytical approximations

and numerical calculations. First, we can estimate analytically the

exponent that would be measured for a group of organisms

spanning a range of levels and thus a range of body masses. If a

power-law represents a good fit for a group, we can approximate

its slope using only the network (blood) volume and capillary

number for the smallest and largest organisms. Hence, the slope of

the regression line could be estimated by calculating the total

change in ln Ncap across the group and dividing it by the total

change in ln Vblood across the group. Using Equation 15 along with

standard expansions and approximation methods, we find the

leading-order terms in the limit of large Ncap to be

Figure 2. Schematic scaling relation for finite-size corrections
in networks with only area-preserving branching. The dashed
line schematically depicts the 3/4 power law that relates the number of
capillaries, Ncap, to the blood volume Vblood. This scaling relationship is a
straight line in logarithmic space (ln Ncap versus ln Vblood) and
represents the leading-order behavior in the limit of infinite blood
volume and organism size. The solid line dramatizes the curvature for
the scaling relation for finite-size networks obtained when vessel radii
are determined solely by area-preserving branching. The dotted line
illustrates the consequences of a linear regression on the curve for
finite-size organisms (solid line). Since the solid line depicts the
predicted curvilinear relationship that deviates above and away from
the infinite-size asymptote, Equation 16, the WBE model predicts that
fits to data for organisms whose vascular networks are built only with
area-preserving branching will yield scaling exponents smaller than 3/4.
doi:10.1371/journal.pcbi.1000171.g002
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wherein we used the fact that Ncap,S%Ncap,L. The subscripts S and

L denote the smallest and largest organism in a group, respectively.

We can further simplify this expression by recalling that body sizes

of mammals range over eight orders of magnitude in going from a

shrew to a whale, hence ln(Vblood,L/Vblood,S)<8 ln 10. Note,

however, that the numerator in Equation 17 depends on Ncap,S,

thus capturing absolute size effects, not just the range under

consideration.

To test our derivations, we numerically computed and analyzed

data that were generated in accordance with WBE assumptions.

We start by constructing a group of different ‘‘model organisms’’,

each consisting of a distinct number of levels, thereby yielding a

particular Ncap and Vblood. One might think of such a group as

comprising organisms belonging to the same taxon. A group might

include, for example, a smallest organism with 8 levels and a

largest organism with 30 levels of vascular hierarchy. We ensured

constant capillary size across all model organisms (Assumption 7)

by building the networks backwards starting with the capillaries

and using the scaling relationships for vessel length (2) and radius

(4) conforming with Assumptions 5 and 6, respectively. Given a

group of organisms so constructed, we compute the group’s scaling

exponent with a linear regression of ln Ncap on ln Vblood. An

example of a regression for a particular group is shown in

Figure 3A, justifying the assumptions underlying our approxima-

tion of the scaling exponent, Equation 17. To simulate a variety of

taxa, we varied the size of the smallest organism in a group and

chose the number of levels in the largest organism in that group to

reflect a ratio Vblood,L/Vblood,S as close as possible to the empirical

value of 108. (As a guide, the number of levels in an organism

varies approximately logarithmically with body mass, such that the

number of levels between the largest and smallest organism is

approximately NL–NS<3 ln (ML/MS)/4 ln(n) [1].) We used n = 2 as

the most commonly observed branching ratio for the arterial

system of mammals [51–54]. Many groups of model organisms

were generated using this method, and in each case, a power-law

provided an extremely good fit (R2.0.99) to the data within a

group, yielding a group-specific scaling exponent. We then plotted

the dependency of these scaling exponents on the number of

capillaries in the smallest organism of each group. This protocol

accounts for effects that would be observed on the basis that the

smallest organism in a group (taxon) sets the ‘‘small-organism-

bias’’ contributed by this group to the overall statistic.

The results of these numerical calculations are shown in

Figure 3B. Consistent with our analytical calculations, the scaling

exponent drops below the asymptotic 3/4 limit with decreasing

size of the smallest organism. As its smallest network decreases in

size, a group contributes an increasing proportion of small

networks, making the departure from the 3/4 exponent visible.

It is clear from Figure 3B that Equation 17 is a good

approximation for the deviations from the 3/4 law. We note that,

despite a clear trend, the finite-size corrections to the scaling

exponent are rather small and the approach to 3/4 is quite rapid.

The corrections do not include 2/3 (the simple surface/volume

scaling) even for networks with very few capillaries.

Networks with only area-increasing branching. As

summarized in Assumption 6, area-increasing branching occurs

not only as a consequence of minimizing dissipation in the regime

of viscous flow but is also required for a portion of the network in

order to match impedances for small vessels. Moreover, blood

must slow down as it travels from the heart to the capillaries in

order to allow for the efficient release and transfer of oxygen. By

conservation of volume flow rate, the slowing of blood must be

accomplished by area-increasing branching. Therefore, area-

increasing branching has a significant influence even on the

scaling exponent of groups dominated by large organisms. This

influence only increases in groups biased towards smaller

organisms in which a large fraction of the network exhibits area-

increasing branching to minimize dissipation.

Here we analyze the limiting case of a network in which all

levels are area increasing. This corresponds to a transition at

k̄ = 21, since the first area-increasing branching is level k = 0, so

Figure 3. Finite-size corrections for networks with only area-
preserving branching. (A) The logarithm of the number of capillaries
is regressed with ordinary least squares (OLS) on the logarithm of blood
volume for a set of artificial networks, spanning 8 orders of magnitude,
built with only area-preserving branching. In this particular example the
scaling exponent is determined to be 0.743, very close to 3/4. Black
circles: numerical values. Red curve: power-law regression. (B) A scaling
exponent a is determined by OLS regression for each group of artificial
networks spanning roughly 8 orders of magnitude in body mass (blood
volume). Exponents so-determined are paired with the size of the
smallest network (as measured by the number of capillaries, Ncap,S) in
the corresponding group. Groups are built by systematically increasing
the size of the smallest network, while always maintaining a range of 8
orders of magnitude in body volume (mass), resulting in the depicted
graph. In all cases the branching ratio was n = 2. Black circles: numerical
values. Red curve: analytical approximation, Equation 17.
doi:10.1371/journal.pcbi.1000171.g003
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that N̄ = N+1. The treatment of Equation 10 changes because C0

and C1 are no longer constant with respect to N (and thus Vblood).

However, returning to Equation 6 we note that only the second

sum survives (k̄ = 0), and this sum is just N+1, see Equation 8,

rewarding us with a simplification of Equation 9

Vblood~ Nz1ð ÞNcapVcap: ð18Þ

The scaling relationship for this case is well approximated by a

linear function. However, recall that Ncap = nN. Thus, N = ln Ncap/

ln n injects a logarithmic correction that slowly decays as larger

mass (Vblood) ranges are considered. As is evident from the

expression for the tangent to the curve defined by Equation 18,

d ln Ncap

d ln Vblood
~

1

1z 1
ln nNcap

 !
*1{

1

ln nNcap
~1{

1

Nz1
, ð19Þ

the decay is slower than in the pure area-preserving case of the

previous section, Equation 16, because of the logarithmic

correction.

In complete analogy to section ‘‘Networks with only area-

preserving branching’’, we estimate the scaling exponent that

would be measured for groups of organisms spanning a range of

levels using only the difference in the logarithms of network

volume and capillary number between the smallest and largest

specimens. The leading-order expression is given by

a&
ln Ncap,L{ln Ncap,S

� �
ln Vblood,L{ln Vblood,Sð Þ

~1z
ln NSz1

NLz1

� �
ln

Vblood,L

Vblood,S

� �*1z
ln NS

NL

� �
ln

Vblood,L

Vblood,S

� � , ð20Þ

where NS and NL are the number of levels in the smallest (S) and

largest (L) organisms, respectively. Observe that ln(NS+1/NL+1) is

negative because NS,NL. Hence, the scaling exponent a is less

than 1 and approaches 1 from below in the limit of infinitely large

organisms.

As before, we constructed artificial datasets in accordance with

WBE assumptions, but using the area-increasing relationship for

vessel radii, Equation 3. The results of these numerical calculations

are shown in Figure 4 for a branching ratio of n = 2. Consistent

with the analytical calculation, the scaling exponent decreases as a

greater proportion of small organisms are included within a group.

The finite-size corrections are bigger than in the case of pure area-

preserving branching, section ‘‘Networks with only area-preserv-

ing branching’’. Likewise, the convergence to the infinite size limit,

with an exponent of 1, is much slower in the area-increasing case

than the convergence to the infinite size limit, with an exponent of

3/4, in the area-preserving case. The difference results from the

approach scaling like Ncap,S~nNS for area-preserving branching

and like ln(NS+1/NL+1) for area-increasing branching. The

abcissas in Figures 3 and 4 are chosen to reflect this difference.

As can be seen in Figure 4, the analytical approximation,

Equation 20, is remarkably accurate.

We conclude that finite-size effects on the scaling exponent are

much more important for networks entirely composed of area-

increasing branching than for networks operating entirely in the

regime of area-preserving branching, described in section

‘‘Networks with only area-preserving branching’’. The differential

impact of finite-size effects in the two extreme cases is crucial for

understanding finite-size effects in mixed networks with a

transition between the two branching regimes.

Networks with a transition from area-preserving to area-

increasing branching. The original WBE theory assumes that

the cardiovascular system is a combination of area-preserving and

area-increasing regimes. In large vessels, blood flow is

predominantly pulsatile and the pulse wave can lose energy

through reflections at vessel branch points. Minimizing this type of

energy loss leads to the requirement that the total cross-sectional

area of daughter vessels must preserve the area of the parent vessel

in the early part of the network and switch to area-increasing

branching farther downstream. In small vessels, on the other hand,

blood flow is viscous. When optimizing energy expenditure for the

viscous transport of blood, dissipation due to frictional drag from

vessel walls becomes important. Minimizing such dissipation

requires area-increasing branching, as summarized in Assumption

6, Equation 3. Optimizing these two flow regimes leads to a

transition from area-preserving to area-increasing branching.

WBE calculate the transition level to be N̄ = 24 when n = 2 and

N̄ = 15 when n = 3. This transition level was determined as the

level for which the impedance for reflections matches the

impedance for dissipation. (A proper calculation of the

transition, however, should equate the energy loss from

reflections to that for dissipation while accounting for the

attenuation of the wave.)

In the WBE model, these values for the transition level also set

the size of the smallest organism, a mammal in which a heart beat

cannot be sustained because the vessels are so small that the

pulsatile flow is immediately dissipated. This is suggested in WBE

by the assertion that ‘‘In a 3 g shrew, Poiseuille flow begins to

dominate shortly beyond the aorta’’ [1]. West et al. (2002) [14] go

further and actually calculate estimates for the size of the smallest

mammal to about 1 g based on equating the transition level with

the number of levels in the smallest organism. Consequently, the

number of levels in the smallest mammal, a shrew, is taken to be

NS = N̄+1 = 25 for a branching ratio of n = 2 and NS = N̄+1 = 16 for

a branching ratio of n = 3. This allows the heart to be pulsatile, and

the blood flow to become Poiseuille at the first level beyond the

aorta.

Figure 4. Finite-size corrections for networks with only area-
increasing branching. As in Figure 3, but networks are now
constructed with area-increasing branching only. The abscissa reflects
the absolute size range, NS+1/NL+1, within each group used to
determine the scaling exponent. NS and NL are the number of levels
in the smallest and largest networks, respectively. Note that NS+1/NL+1
is always smaller than 1 and the scaling exponent a has an
accumulation point at 1, the infinite size limit. Black circles: numerical
data. Red line: analytical approximation, Equation 20.
doi:10.1371/journal.pcbi.1000171.g004
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The full form of Equation 10 describes this case. Recognizing

that C1~Vcap N{ 1
n1=3{1

� �
w0 for our combinations of N̄ and n,

we can rewrite Equation 10 as

Ncap~
Vblood

C0j j

� �3=4
1

1z
C1j j
C0j jN

{1=3
cap

0
@

1
A

3=4

: ð21Þ

In comparison to Equation 15 the sign of C1 has changed, and

this reverses, with significant consequences, our previous argu-

ments. Specifically, as Ncap decreases, 1
.

1z
C1j j
C0j jN

{1=3
cap

� �
now

also decreases, resulting in smaller values of Ncap on the left of (21)

than the values predicted from a pure 3/4 power-law. A log-log

plot of this curve will asymptote to a straight line with a slope of 3/

4 for large Ncap and will curve down and away from this asymptote

as Ncap decreases. This effect derives from the fact that small

mammals exhibit scaling exponents .3/4, a point raised by WBE

in their original work [1]. Regressing a straight line on such a

curvilinear relation will yield a scaling exponent above 3/4, as

shown schematically in Figure 5. Indeed, the tangent to

Equation 21 becomes steeper as Ncap decreases:

d ln Ncap

d ln Vblood
~
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4
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where the last expression gives the leading-order correction for

large Ncap.

Using the same estimation procedure as in previous sections, we

find that the scaling exponent computed over a given range of N is

a&
ln Ncap,L{ln Ncap,S
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Again, the dependence on Ncap,S, which is tied to the number of

levels in the smallest organism, captures absolute size effects. It

makes the scaling exponent sensitive to the contributions from

small organisms when groups span a range above their smallest

member.

We generated artificial data as in the previous two sections,

including a transition between area-preserving and area-increasing

ratios of vessel radii, Equations 4 and 3, at N̄ = 24 following WBE.

The results of these numerical calculations for a branching ratio of

n = 2 are presented in Figure 6A. We find that the fitted exponent

decreases significantly as the size of the smallest organism included

in the set increases. The figure also shows our analytical

approximation, Equation 23, as well as a least-squares fit to the

form of the equation.

In Figure 6B we replot the scaling exponent of a group against

the number of levels of that group’s smallest network (organism).

Each group spanned eight orders of magnitude in body mass

above its smallest member. We also included the curve obtained

with branching ratio n = 3. We see that, once finite-size effects are

accounted for, the WBE theory actually predicts a slope near 0.81

for n = 2 and n = 3 with the transition placed at N̄ = 24 and N̄ = 15,

respectively.

As anticipated, the branching ratio has virtually no effect on the

scaling exponent predicted by the WBE model. This is both

because the leading-order term of 3/4 does not depend on n and

because the first-order correction in Equation 23 depends on

n N{1ð Þ=3N
{1=3
cap,S , which, for the WBE model, results in n(N̄21)/3

n2(N̄+1)/3 = n 22/3. Hence, the first-order correction becomes n22/3

N̄(n1/321)/ln(Vblood,L/Vbllod,S), evidencing a very weak dependence

on the branching ratio n. This explains the lack of a discernible

difference in the scaling exponents for n = 2 and n = 3 in Figure 6B.

However, different values for ln(Vblood,L/Vblood,S) or N̄ will affect

the predicted scaling exponent. Mammals are known to cover a

size range, from a shrew to a whale, of about eight orders of

magnitude. Within the WBE model, blood volume is directly

proportional to body mass, which sets ln(Vblood,L/

Vblood,S) = ln(108)<18.4 [1,9]. The logarithm considerably weakens

the dependence of the scaling exponent on blood volume, even for

taxonomic groups that cover different size ranges. The calculated

value for the transition level in the WBE model is

N~3 ln 8mlcap

.
rc0r2

cap

� �.
ln n, where m denotes the blood

viscosity, r the blood density, c0 the pulse wave velocity according

to the Korteweg-Moens equation, and rcap and lcap are the mean

radius and length of a capillary, respectively [1]. We study the

effect of N̄ on the scaling exponent in greater detail in section

‘‘Changing branching ratio across levels’’.

The results of this section suggest that a strict test of the

canonical WBE model should compare measured exponents to

0.81 rather than 3/4. Alternatively, one might argue that for the

WBE model to yield a 3/4 exponent, the cardiovascular system of

the smallest mammal must comprise many more than N = 25

levels, or the number of area-increasing levels must be much less

than N̄ = 25. It is unclear whether one of these options or some

other modification of the model is biologically more realistic.

Summary of section ‘‘Finite-size corrections to 3/4

allometric scaling’’. We find that finite-size effects change

Figure 5. Schematic scaling relation for finite-size corrections
in networks with both area-preserving and area-increasing
branching. The dashed line schematically depicts the 3/4 power law of
ln Ncap versus ln Vblood in the infinite network limit. The solid line
dramatizes the curvature for the scaling relation that is obtained when
the network has a transition point above which it has area-preserving
branching and below which it has area-increasing branching. The
dotted line illustrates the consequences of a linear regression on what is
a curvilinear relationship that deviates below and away from the
infinite-size limit, Equation 22. As a result, the WBE model predicts that
fits to data for organisms whose vascular networks are built in mixed
mode will yield scaling exponents that are larger than 3/4.
doi:10.1371/journal.pcbi.1000171.g005
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measured scaling exponents for networks with pure area

preserving, pure area increasing or a mixture of both.

Empirically determined scaling exponents for basal metabolic

rate are typically a little lower than a<3/4 [23]. Yet, the WBE

model with finite-size corrections predicts an exponent of a<0.81

(section ‘‘Networks with a transition from area-preserving to area-

increasing branching’’). Intriguingly, this is in closer agreement

with empirical data for maximal metabolic rate [36] (but see also

[37]). It is tempting to speculate whether the WBE model might

not be more appropriate for organisms at their maximal rather

than their basal metabolic state. However, if this were the case, we

would expect the network to maximize power output rather than

minimizing energy loss of transport, contradicting Assumption 6.

The exponent of a<0.81 that we derived in section ‘‘Networks

with a transition from area-preserving to area-increasing branch-

ing’’ for the finite-size corrected canonical WBE model is not

within the 95% confidence intervals for any exponents determined

from empirical data for metabolic rate in mammals [22,23]. We

are led to conclude that the WBE model is not fully supported by

empirical data, assuming the data have been properly analyzed.

One could hypothesize that adding more biological detail to WBE

might yield a figure closer to the canonical value of 3/4. In the

next section, we explore some of these issues.

Making the WBE Model More Biologically Realistic
The discrepancies between the WBE model and data might be

addressed in several ways: (i) by correcting for biases in the

empirical distributions of species masses; (ii) by adding more detail

to any of the WBE assumptions; (iii) by relaxing the assumptions.

In Text S1 (Figure S4), we exemplify case (i) by accounting for the

fact that most mammals, in particular those that have been

measured, are of small mass. The body-size distribution across

species is approximately log-normal. By sampling body sizes

according to such a distribution and using the same numerical

methods as in section ‘‘Finite-size corrections to 3/4 allometric

scaling’’ above, we determined that the overall effect on the scaling

exponent is essentially negligible (the exponent is slightly lowered).

In section ‘‘Modifying the transition level between area-preserving

and area-increasing regimes’’, we illustrate approach (ii) by

altering the level at which the transition from area-preserving to

area-increasing branching occurs, as well as the width of the

region over which it extends, as motivated by complexities in the

hydrodynamics of blood flow. These considerations affect the

scaling exponent, but the change is too small to restore the 3/4

figure. In section ‘‘Changing branching ratio across levels’’, we

illustrate approach (iii) by relaxing the assumption of a constant

branching ratio (Assumption 4). We show that systematic changes

in the branching ratio can significantly lower the measured scaling

exponent and lead to intriguing non-linear effects that depend on

where the transition from one branching ratio to another occurs.

Modifying the transition level between area-preserving

and area-increasing regimes. The WBE approach

determines the transition level from area-preserving to area-

increasing branching by equating the impedance in regions with

pulsatile flow with the impedance (resistance) in regions of smooth

(Poisueille) flow [1]. Such a calculation results in an exact value for

the vessel radius at which a match occurs. Because the capillary

radius is assumed to be fixed across organisms (Assumption 7), a

particular vessel radius translates into a particular level in the

network hierarchy and a constant number of dissipation-

minimizing levels in all organisms. WBE predict that this

constant number of levels is N̄ = 24 for a branching ratio of n = 2

[1]. WBE and West et al. [14] conclude that N̄+1 = 25 (one area-

preserving level for impedance matching the pulse from the heart)

is the number of levels in the smallest mammal, the shrew, and

that humans have N<34 levels, implying that most levels in

humans exhibit area-increasing branching to minimize dissipation

[1]. Indeed, most mammals are predicted to have significantly

more levels with area-increasing than area-preserving branching.

Although the contribution of the area-increasing regime is

negligible in the limit of infinite mass, it has a significant effect

on the predicted exponent for finite-sized mammals, as we showed

in section ‘‘Networks with only area-increasing branching’’,

Figure 4.

Figure 6. Finite-size corrections for networks with both area-
preserving and area-increasing branching. (A) As in Figure 3B, we
numerically determine the scaling exponent a by OLS regression within
a group of artificial networks spanning roughly 8 orders of magnitude
in body mass (blood volume). The exponent obtained from a group is
plotted against the size of the smallest network in that group (as
measured by the number of capillaries, Ncap,S). Many groups are built by
systematically increasing the size of the smallest network, resulting in
the depicted graph. In all cases the branching ratio was n = 2. Black
circles: numerical values. Red curve: analytical approximation,
Equation 23. Green curve: Best fit to the shape of Equation 23,

a~ 3
.

4 1z12:25N
{1=3
cap,S

� �
. (B) As in (A), except that each exponent is

plotted against the number of levels NS of the smallest network in the
group from which it was determined. We display results obtained for a
branching ratio n = 2 (black circles) and n = 3 (green circles). The red
circles mark the predictions of the WBE model, since NS = 25 for the
smallest network (a shrew, meaning N̄ = 24 plus 1 level for pulsatile
flow) in the case of n = 2, and NS = 16 for n = 3.
doi:10.1371/journal.pcbi.1000171.g006
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There are reasons to doubt the assumptions behind WBE’s

calculation of the number of levels with area-increasing branching,

N̄. First, it is unlikely that in the shrew pulsatile flow is immediately

attenuated to smooth flow as soon as blood is pumped from the

aorta. Second, the WBE calculation does not account for

attenutation of the blood pulse as it travels across levels in the

cardiovascular system. WBE assume a constant wave number and

angular frequency, but these values likely change as blood flows

across the system. Attenuation occurs because perfect impedance

matching is difficult to achieve. In addition, attenuation certainly

occurs in the transition region from impedance matching to

dissipation minimization. Third, the transition should actually

occur when the differential energy loss due to reflections is

equivalent to the differential energy loss due to dissipation. This

will yield a different prediction than merely equating the

impedances, since the energy loss depends on constant pre-factors

related to the blood viscosity, wave number, and other properties

that differ in the two regimes. Fourth, the calculation of the

transition level depends on radius and length of a capillary in a

very sensitive manner. Reported values for both radius and length

differ by as much as a factor of two, which introduces uncertainty

into the WBE numbers. Fifth, the transition from impedance

matching to dissipation minimizing is not a step function.

Consequently, the transition between area-preserving and area-

increasing branching is not a step function either. (Recall that

impedance matching already requires a transition from area-

preserving to area-increasing branching.) Although the transition

may be rapid, it will likely take a few levels to occur.

Addressing these problems will eventually require detailed

hydrodynamical calculations and extensive knowledge of the

cardiovascular system. We can, however, illustrate the effect of a

change in N̄ on the predicted scaling exponent. The finite-size

corrections of section ‘‘Networks with a transition from area-

preserving to area-increasing branching’’ crucially depend on the

level at which the transition from area-preserving to area-

increasing branching occurs. We used the same protocol of

section ‘‘Finite-size corrections to 3/4 allometric scaling’’ to

determine the dependency of the scaling exponent on N̄. To do

this, we fix the size of the smallest organism under consideration;

in this case we choose to set NS = 25 levels for consistency with the

results from the canonical WBE model. We then construct a group

of model organisms for each value of N̄. When N̄ = 0 we have the

case of pure area-preserving branching (section ‘‘Networks with

only area-preserving branching’’) and when N̄ = 24 we have the

result of the canonical WBE model for n = 2. When N̄.25 some of

the organisms in the set will have networks consisting entirely of

area-increasing branching (corresponding to networks of the type

considered in section ‘‘Networks with only area-increasing

branching’’). In every case the size of the largest organism was

chosen such that it exhibited a Vblood that is 8 orders of magnitude

larger than that of the smallest organism. These results are

summarized in Figure 7. Consistent with the analytical calculation,

the scaling exponent increases as more organisms with area-

increasing branching are included in the analysis. Again, the

scaling exponents obtained within the canonical WBE model are

significantly larger than the 3/4 figure (and sometimes lower

figures) determined from empirical data.

We also examined the consequences of a transition region,

rather than a single transition level, from area-preserving to area-

increasing branching. We spread the transition out over k9 levels

centered at the transition in the WBE model. The ratio of the radii

at levels within the transition region is determined by linear

extrapolation between Equations 4 and 3, see inset of Figure 8.

The scaling exponent as a function of network size is shown in

Figure 7. Influence of the location of the transition between
area-preserving and area-increasing branching. The scaling
exponent a is plotted against the number of levels N̄ with area-
increasing branching in the network. For each N̄ the exponent was
determined from a group of artificial networks that start from a smallest
organism of fixed size and span eight orders of magnitude in blood
volume to the largest organism, as described in section ‘‘Finite-size
corrections to 3/4 allometric scaling’’. N̄ is varied from 0 (pure area-
preserving branching) to the entire network (pure area-increasing).
Black circles: Networks with branching ratio n = 2 and a smallest
organism size of N = 25 levels. Green circles: Networks with branching
ratio n = 3 and a smallest organism size of N = 16 levels. These graphs
capture both finite-size effects and the effects of varying the extent of
the network that is built with area-increasing branching. The exponent
a changes from 3/4 to 1 as N̄ grows, which is suggested by considering
a composite of Figures 3B and 4. The red circles mark the prediction of
the finite-size corrected WBE model (N̄ = 24 for n = 2 and N̄ = 15 for
n = 3).
doi:10.1371/journal.pcbi.1000171.g007

Figure 8. Influence of an extended transition region. The three
curves are analogous to those in Figure 6B. (In fact, the black curves are
identical.) The figure shows how a transition over 12 (red circles) and 24
levels (green circles) shifts the curve relative to the WBE assumption of a
transition over a single level (black circles). The more extended the
transition region, the fewer the levels built with area-preserving
branching. The scaling exponent increases as a consequence. Inset:
The linear interpolation of rk+1/rk as a function of network level used in
generating the red curve. The transition occurs from b = 221/2 = 0.707 to
b = 221/3 = 0.794 over 12 levels centered at the WBE transition level
N̄ = 24.
doi:10.1371/journal.pcbi.1000171.g008
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Figure 8 for various transition depths k9. Remarkably, this more

gradual transition has little effect on the predicted exponent.

Changing branching ratio across levels. All calculations

thus far assume that the branching ratio n is constant. It is quite

likely, however, that a vessel does not always branch into the same

number of daughter vessels regardless of whether the branching

occurs at levels close to the heart or close to the capillaries. For

example, according to Zamir [51,54], cardiovascular systems have

a branching ratio of n = 2 near the aorta, but earlier research by

Horsfield [67] suggests a branching ratio closer to n = 3 or even

slightly greater for smaller vessels, including those near the

capillaries. To investigate the consequences of a changing

branching ratio, we construct networks for which n = 2 up to

some level at which a transition occurs to a greater value, such as

n = 3, 4, 5. We define N̄b in analogy to N̄ for the transition from

area-preserving branching to area-increasing branching discussed

above. In this case, N̄b defines the constant number of levels

between the capillaries and the branching ratio transition. That is,

if N̄b is equal to 10, then all the networks employ 3-, 4- or 5-

branching for the 10 levels closest to and including the capillaries

and 2-branching from that point to level 0 (the heart). In these

computations we include a transition from area-preserving to area-

increasing that we assume to occur in one step (as in the WBE

model). Given that the branching ratio changes somewhere in the

network, however, we can no longer assume that this transition

will occur at a constant number of levels from the capillaries. That

is, it will occur 24 levels from the capillaries in the case of pure 2-

branching, but it will occur 15 levels from the capillaries if all of

those levels are 3-branching and it will occur at some other level

for a mixture. To overcome the inherent dependence of the radial

scaling transition on N̄b, we calculated the transition level using the

WBE formula [1]: N~3ln 8mlcap

.
rc0r2

cap

� �.
ln n, where m

denotes the blood viscosity, r the blood density, and c0 the pulse

wave velocity according to the Korteweg-Moens equation (for

definitions see, for example, [68]). The vessel radius at the

transition is then given by rtrans~nN=3~8mlcap

.
rc0r2

cap. We

obtain rtrans<1 mm, using the same numbers as WBE, that is,

m = 0.004 Ns/m2, lcap = 0.08 mm, r = 1050 kg/m3, c0 = 600 cm/

s, rcap = 4 mm. As argued above, there are reasons to doubt this

calculation for the radial scaling transition. We employ the same

formula, however, since that allows us to make a direct

comparison with the canonical WBE model and lets us consider

just the effects of changing the branching ratio.

As before, networks for the changing-n model were built

backwards from the capillaries using area-increasing branching.

After N̄b levels, the branching ratio was changed from its

downstream value (n = 3, 4, 5) to 2. Whenever the radius of a

vessel exceeded the cutoff radius for rtrans, branching changed from

area-increasing to area-preserving. We held constant the number

of levels, N, in the smallest organism for all the values of N̄b. For

these calculations we set this number to be 25 and varied the size

of the largest organism so that each point represented a dataset

that spans 8 orders of magnitude in Vblood.

As shown in Figure 9, a change in the branching ratio within the

same network yields exponents that are always smaller than for

networks with a constant branching ratio. The exact value

depends non-monotonically on the level at which the branching

transition occurs. We conclude that finite-size effects for networks

with varying branching ratio lowers the exponents in the direction

toward the empirical value of about 3/4. Still, our numerical

calculations never equal or drop below 3/4. Measurements of

actual branching ratios should become increasingly feasible using

plasticene casts and advanced imaging techniques. Such data

would enable a better parameterization of this particular extension

of the WBE model.

Comparison to Empirical Data
Savage et al. [23] published an extensive compilation of

empirical data for basal metabolic rate and body mass of 626

mammals. In this section we compare the dependency of scaling

exponents on body mass as obtained from this dataset to our

predictions for scaling exponents with finite-size corrections. We

sorted organisms according to body mass and grouped them,

starting with the smallest exemplar, into disjoint bins spanning one

order of magnitude each. We then analyzed this data compilation

in three ways. First, we determined the scaling exponents for

successive cumulations of bins. At each addition of a bin, we

computed a linear regression on the entire cumulated data,

plotting the resultant scaling exponent against the range of sizes. In

other words, the first scaling exponent is determined for the first

order of magnitude in body mass, the second exponent is

determined for the first two orders of magnitude, and so on. This

is similar in spirit to the procedure used for analyzing and

presenting the numerical data in section ‘‘Finite-size corrections to

3/4 allometric scaling’’. The result is shown in Figure 10A. In a

second approach we proceeded similarly, but starting with the

largest order of magnitude in body mass, then successively adding

bins of smaller orders (Figure 10B). Lastly, we computed the

scaling exponent for each bin separately (Figure 10C).

The panels of Figure 10 show the results with error bars based

on the 95% confidence intervals obtained from ordinary least

squares (OLS). In panels 10A and 10B, the exponents exhibit an

increasing trend with body mass. Panel 10C shows a similar trend

for bins that correspond to intermediate mass ranges. These are

the bins that contain most of the data points. There is too much

Figure 9. Influence of the branching ratio. The scaling exponent a
as a function of the number of levels N̄b at which the branching ratio
switches from n = 2 to the indicated value of 3 (black circles), 4 (red
circles) or 5 (green circles). N̄b varied from 0 (a branching ratio of n = 2 at
all levels) to the depth of the entire network (a branching ratio of n = 3,
4, or 5 at all levels). As in Figure 8, each exponent was calculated from
networks that spanned eight orders of magnitude in blood volume. In
these calculations, network levels with vessel radii #1 mm were built
according to area-increasing branching, while vessels with radii larger
than 1 mm followed area-preserving branching. These curves corre-
spond to a cardiovascular system in which the branching ratio n is
smaller near the heart and larger toward the capillaries. In all cases, a
change in branching ratio within the network decreases the predicted
scaling exponent, bringing it closer to the empirical value of 3/4
without ever touching it.
doi:10.1371/journal.pcbi.1000171.g009

Sizing Up Allometric Scaling Theory

PLoS Computational Biology | www.ploscompbiol.org 12 September 2008 | Volume 4 | Issue 9 | e1000171



scatter at either end of the body mass distribution to make a

statement about the entire range for panel 10C. We find that for

those ranges and aggregations with smallest scatter (as determined

from error bars), the scaling exponent approaches the 3/4 figure

from below. Although these data are suggestive, it would be

incautious at this point to assert that the data flatten out at 3/4 for

some maximum mammalian size. Given the current dataset,

however, an ‘‘asymptotic’’ 3/4 scaling seems a reasonable guide.

The concave increase of the scaling exponent with body mass is

most consistent with a finite-size WBE model based on pure area-

preserving branching throughout the network, see section

‘‘Networks with only area-preserving branching’’. (The concave

increase of the scaling exponent, Figure 3B, corresponds to a

convex relationship between metabolic rate and body mass, see the

schematic in Figure 2.) Recall that in our numerical studies of

section ‘‘Networks with only area-preserving branching’’ the

scaling exponent approached 3/4 in a concave fashion from

below, while networks built entirely with area-increasing branch-

ing (section ‘‘Networks with only area-increasing branching’’) have

scaling exponents that always lie above 3/4, converging to an

accumulation point at 1. Networks built with a mixture of these

branchings (section ‘‘Networks with a transition from area-

preserving to area-increasing branching’’), approach 3/4 scaling

in a convex fashion from above, opposite to the trends seen in

Figure 10. (The convex decrease of the scaling exponent,

Figure 6A, corresponds to a concave relationship between

metabolic rate and body mass, see the schematic in Figure 5.)

A similar analysis of a more limited dataset for heart rate (26

data points) and respiratory rate (22 data points) [23] also shows a

trend that is not easily reconciled with our finite-size corrections

for networks with a mixture of area-preserving and area-increasing

branching. In WBE, heart rate v and respiratory rate R are both

predicted to scale as v/R/M2a/3 (see Table S1 and related text

in section ‘‘Impact of finite-size corrections on additional WBE

predictions’’ of Text S1). Since our calculations in section

‘‘Networks with a transition from area-preserving to area-

increasing branching’’ yield scaling exponents, a, that approach

3/4 from above as body mass increases, we expect the scaling of

heart and respiratory rates to both have exponents that are

bounded by the maximum value of 21/4. The WBE model with

Figure 10. Dependency of the scaling exponent on body mass range as determined by ordinary least squares regression on
empirical data. The data are binned in orders of magnitude for body mass as described in the text. (A) Cumulative binning starting with smallest
mammals. (B) Cumulative binning starting from largest mammals. (C) Exponents from individual order-of-magnitude bins. The exponents computed
from these aggregations of empirical data vary both above and below 3/4. Note, however, that in all cases the allometric exponents tend to increase
with increasing body mass. The error bars represent the 95% confidence intervals. When data is scarce, the confidence intervals become so large that
the exponents cannot be trusted. (The full range of some error bars is cut off by the scale of the plots.)
doi:10.1371/journal.pcbi.1000171.g010
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finite-size corrections predicts a<0.81. Hence, heart and respira-

tory rates should scale as M20.27 and asymptote to 21/4 with

increasing mass. That is, there should be very little change in the

scaling exponent when analyzing data for either small or large

mammals. This does not match empirical heart rate data well.

Regressing on the first three, four, and six orders of magnitude in

body mass yields exponents of 20.33, 20.27, and 20.25,

respectively. The match is worse for respiratory rate data.

Regressing on the first two, three, five, and seven orders of

magnitude in body mass gives exponents of 20.64, 20.44, 20.34,

and 20.26, respectively. We observe a convergence to 21/4, but

over a much larger range of scaling exponents than expected.

While the WBE model has been predominantly interpreted in

the context of interspecific scaling [9,23], metabolic rate also varies

with body mass during development. Such intraspecific data

[29,69] sometimes exhibits a concave curvature across growth

stages ranging from young to adult mammals. Indeed, our finite-

size corrections for the canonical WBE model predict a concave

curvature of ln B versus ln M. However, they also predict an

asymptotic approach to a slope of 3/4 for large mammals, and

thus a fitted OLS slope for the entire body mass range that is

greater than 3/4, as schematically shown in Figure 5. In his Table

5, Glazier [29] reports slopes from 29 intraspecific regressions for

14 species of mammals. From these, we compute an average slope

a = 0.70; in this dataset, 20 of the slopes are smaller than 3/4 and

only 9 of the slopes are larger than 3/4. This is inconsistent with

our predictions. Moreover, the average body mass range of

mammals, for which Glazier reports intraspecific regressions,

spans only half an order of magnitude. Yet, our calculations show

that several orders of magnitude in body mass are required to

detect curvilinearity from finite-size effects, as seen in Figure 6A.

We thus conclude that the curvature revealed by these intraspecific

datasets is either unrelated to finite-size effects or fails to support

the finite-size corrected canonical WBE model.

It is important to note that empirical data for the inter- and

intraspecific case (especially for restricted size classes) are rather

limited. We therefore do not wish to overstate the strength of our

conclusions. We merely report discrepancies between the

predictions of the canonical WBE model and limited sets of data.

We anticipate that further data acquisition, statistical analysis, and

model refinement will bring theory and data into agreement.

Discussion

Over the past decade, the WBE model has initiated a paradigm

shift in allometric scaling that has led to new applications (e.g.,

[2,70,71]), new measurements and the refinement of data analysis

(e.g., [41–53]), and the recognition of connections between several

variables that describe organismic physiology [1,23]. However,

WBE has also drawn intense criticism and sparked a heated debate

[15–28].

In section ‘‘Assumptions of the WBE model’’, we provide a

detailed presentation of the complete set of assumptions and

calculations defining the WBE model. While none of these

originated with us, the literature lacked, surprisingly, an exhaustive

exposition. (In particular, the consequences of Assumption 6 are a

distillation of hydrodynamical calculations that we summarize in

Text S1.) In section ‘‘Derivation of the 3/4 scaling exponent’’, we

connect each step in the derivation of the main WBE result to the

assumptions it invokes. In this way, we provide a self-contained

platform for motivating, deriving, and interpreting our results.

One of our main objectives is to clarify that the WBE model

predicts (and thus ‘‘explains’’) the 3/4 exponent of the scaling law

relating whole-organism metabolic rate to body mass only as the

limit of infinite network size, body mass, and metabolic rate is

approached. Although this fact was appreciated by WBE in their

original work [1] the nature of this approximation has been

broadly misunderstood in the subsequent literature, e.g., [16,29].

In this work, we conduct a systematic exploration of finite-size

effects in the WBE framework and find that these effects yield

measurable deviations from the canonical 3/4 scaling exponent,

shifting the actual prediction to a value closer to 0.81 when

published parameters are employed [1,14]. This finding has major

implications and immediately clarifies some contentious issues. On

the one hand, the common criticism that the WBE model can only

predict a scaling exponent of 3/4 is incorrect. As we show in

section ‘‘Finite-size corrections to 3/4 allometric scaling’’, a

continuum of exponents can be obtained as a function of body-

mass. On the other hand, the 0.81 figure (obtained for N̄ = 24 and

n = 2) shifts the predicted exponent for mammals away from the

canonical figure of 3/4 that reflects current data analysis. In

section ‘‘Impact of finite-size corrections on additional WBE

predictions’’ of Text S1 we report the finite-size corrections for

several variables related to vascular physiology that were

documented in the original WBE paper [1].

A major consequence of the curvilinear relationship between ln

B and ln M predicted by the model is the fact that the scaling

exponent, as measured by a simple power law regression, will show

a dependence on the absolute masses of the organisms in question.

Notably, our numerical calculations for area-increasing branching

in Figure 4 are consistent with the linear scaling of metabolic rate

versus body mass that has been observed for small fish [32].

Indeed, with minor modifications, our Equations 19 and 20 could

be used to test the form of isometric scaling observed in young and

small fish. It should be noted, however, that the magnitude of these

finite-size corrections depends strongly on certain network

properties, such as N̄.

Furthermore, we find evidence for size-dependent relationships

in the available empirical data for mammals (section ‘‘Comparison

to empirical data’’). Specifically, we find that the measured scaling

exponent tends to increase with body mass, indicating that the

empirical data (of log metabolic rate versus log body mass, or,

equivalently, ln Ncap versus ln Vblood) exhibits convex curvature

(i.e., the type of relationship dramatized in Figure 2). However,

networks constructed with a mixture of area-increasing and area-

preserving branching can never produce scaling relationships with

exponents less than 3/4 and, although 3/4 scaling is approached

in the limit of networks of infinite size, the exponents always

approach 3/4 from above (unlike in Figure 10). Mixed networks of

this type display inherently concave curvature of the log metabolic

rate versus log body mass relationship (i.e., the type of relationship

dramatized in Figure 5). That is, a group of organisms of larger

sizes will yield smaller fitted exponents than a group of organisms

of smaller sizes. Yet, empirical data are best fit by a power law with

an exponent less than 3/4 and demonstrate convex curvature in

several datasets of log metabolic rate versus log body mass. Thus,

assuming that this represents the actual curvature in nature, either (i) a

transition between radial scaling regimes does not occur,

potentially contradicting Assumption 6 of the WBE model, or (ii)

at least one assumption of the WBE model must be modified.

The case for pure area-increasing branching (hypothesis (i)

above) within the WBE model is somewhat problematic. The only

way for such a network to be consistent with Assumption 6 would

be to posit that the transition from area-preserving to area-

increasing regimes occurs at a vessel radius smaller than a capillary;

in this case, this transition would in principle exist but would

simply never actually be observed in nature. A number of facts

contradict this explanation. For one, estimates place the transition
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at vessel radii of about 1 mm. Despite the fact that predictions of

where the transition might occur are problematic (see section

‘‘Modifying the transition level between area-preserving and area-

increasing regimes’’), the estimate is unlikely to be 3 orders of

magnitude larger than the actual value (since capillary radii are on

the order of 1 mm in radius). A further complication is that a pure

area-preserving network would theoretically not be able to ‘‘slow

down’’ blood flow due to the conservation of volume flow rate for

an incompressible fluid. The fact that blood flows much more

quickly in the aorta than it does in the capillaries would tend to

argue that area-increasing branching must occur somewhere in the

network. Finally, there is the simple fact of Murray’s Law;

empirical findings squarely place b for small vessels in the

neighborhood of n21/3, strongly implying that area-increasing

branching is in fact dominant when vessel radii are small [54,57].

In our hands, empirical data seem most consistent with

networks built with purely area-preserving branching, although

the lack of very high-quality data for both metabolic rate and body

mass makes it difficult to be absolutely certain of this trend. The

reasoning outlined above makes hypothesis (i) appear somewhat

unlikely. This leaves us with a riddle: cardiovascular networks with

architectures that support the scaling trends observed for real

organisms would seem to violate Assumption 6 of the WBE model.

We are thus led to believe that some modification of assumptions

2–8 is necessary to explain the concavity in the data and an

empirical scaling exponent less than 3/4. While a model that

aligns with the empirical evidence might differ from the canonical

WBE model (assumptions 2–8 plus specific values for the

parameters N̄ and n), we believe such a model will squarely

remain within the WBE framework (assumption 1, that is, the

exploration of allometric scaling in the context of resource

distribution networks).

Resolving this paradox will likely require intensive further data

analysis and extension of the canonical WBE model. It is clear that

work in this area would benefit from a more detailed empirical

understanding of cardiovascular networks themselves. Although

data for the coronary artery in humans, rats, and pigs exist [51–

54,72,73], along with measurements for the vascular system in the

lungs of armadillos [74], stringent tests of the core WBE

assumptions require measurements throughout the body, in a

larger variety of species, and for vessels farther away from the

heart. Measurements are needed especially for the number of

levels from the heart to the capillaries for different species, the

scaling ratios of vessel radii (b = rk+1/rk) and vessel lengths (c = lk+1/

lk), vessel blood flow rates, and branching ratios (n = Nk+1/Nk). Such

data will help to assess the extent to which mammalian vascular

systems are space filling (Assumption 5), the scope of area-

preserving and area-increasing branching (Assumption 6), the

value(s) of the branching ratio throughout the network (Assump-

tion 4), and the degree of symmetry or asymmetry in branchings

and scaling ratios (Assumption 3). Analyzing intraspecific variation

in network geometry may also enable a quantification of selection

pressures for optimality with respect to energy loss, as implied by

Assumption 6 (see Figures S1 and S2 in Text S1). Advances in

fluorescent microspheres [74], plasticene casting, imaging, and

image analysis all hold promise for a careful gauging of the

vascular system.

In this paper we have begun the process of relaxing some

assumptions of the canonical model. Although these modifications

produce interesting results, they do not fully address the riddles

discussed above. Addition of further biological realism, such as

asymmetric branching or the flow characteristics of the slurry of

blood cells at small vessel sizes, may generalize the WBE model

from an asymptotic predictor of metabolic scaling into a universal

theory that provides an understanding of which properties of

resource distribution networks are most relevant for metabolic

scaling in any given biological context. This will enable testing the

very soundness of the WBE framework (Assumption 1) and the

extent to which the cardiovascular system shapes one of the most

wide ranging regularities across animal diversity.

Supporting Information

Figure S1 Minimizing energy loss to dissipation. Plot for an

arbitrary level of the cardiovascular network (l/(nkr4)+l,nkr2l) taken

from the first two terms of the objective function P in Equation 4

versus the the radius of the vessel, r. For simplicity, we chose the

parameters l = 1, r = 1, and k = 5. Using these parameters, the

predicted value for the Lagrange multiplier is l, = 2/n2kr6 = 1/

512<0.00195. We plot the first two terms of the objective function

versus r for the choices of the Lagrange multiplier l, at 1/

512<0.00195 (red curve) and show that the minimum does indeed

occur at the chosen value of r = 1. We also show results for the

same choice of parameters as before but with l, chosen to be

0.0015 (black curve) and 0.0025 (green curve) respectively. These

other values for l, do not exhibit a minimum at r = 1,indicating

that either they are not evolutionarily optimized or that the

objective function constructed by WBE is incorrect.

Found at: doi:10.1371/journal.pcbi.1000171.s001 (0.46 MB EPS)

Figure S2 Minimizing energy loss to reflection. Plot of the

reflection coefficient squared (|R|2 = |(12nZk/Zk+1)/(1+nZk/

Zk+1)|2) versus the ratio of vessel radii b = rk+1/rk at a branching

junction. The impedances are defined as in Equations 34 and 35

in the supplementary material. The kinematic viscosity, the ratio

of blood viscosity to blood density, is 2.5761026 s/m2. We choose

a bifurcating branching ratio n = 2, and the wave frequency and

the radius of the parent vessel are taken to be 1 Hz and 1.5 cm,

respectively, to approximate the values for the human aorta. As

long as the radius of the parent vessel is large as defined by

Equation 33, different choices for the wave frequency and radius

of the parent vessel will change the exact values in the plot but not

the shape of the curve. The plot reveals that the reflection

coefficient is zero at b = 0.707<221/2, which exactly corresponds

to area-preserving branching and impedance matching.

Found at: doi:10.1371/journal.pcbi.1000171.s002 (0.41 MB EPS)

Figure S3 Minimizing total power loss. The graph depicts the

bk;rk+1/rk that minimizes the total power lost in going from one

branching level to the next as a function of the vessel radius, rk, in

units of meters. We have chosen n = 2, the minimum radius to be

the average value for a capillary, rcap = 8 mm, and the physical

values for kinematic viscosity of m/r = 2.5761026 s/m2 and for

wave frequency of v0 = 1.17 s21. For smaller values of rk, the

minimum occurs around bk = 0.794, and for larger values of rk, the

minimum occurs around bk = 0.710. These values match the

predicted values from WBE of bk = n21/3 = 221/3 = 0.794 and

bk = n21/2 = 221/2 = 0.707 extremely well. Also, note that the

transition from area-preserving to area-increasing branching

begins at rk<1 cm and is completed by rk<1 mm.

Found at: doi:10.1371/journal.pcbi.1000171.s003 (0.41 MB EPS)

Figure S4 Log-normal sampling bias for small networks. A

single realization of 1000 numerically generated data points for

networks with a branching ratio of n = 2 built with area-preserving

branching for large vessels and area-increasing branching for small

vessels. The transition between these regimes is always N̄ = 24. The

networks are generated by sampling the number of levels from a

log-normal distribution. (See text for details.) Based on empirical

data [16], the underlying distribution ranges from a minimum of
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27 levels to a maximum of 44 levels with an average of 32 and a

standard deviation of 4. The scatter is generated by multiplying

the blood volume and number of capillaries by two random

numbers drawn from a uniform distribution on the interval

[0.3,1.7]. This procedure generates one order of magnitude scatter

in metabolic rate for a given mass, mimicking the variation

observed in empirical data for mammals. Red line: Fit to artificial

data without scatter-exponent is 0.83. Green line: Fit to artificial

data with added scatter-exponent is 0.8.

Found at: doi:10.1371/journal.pcbi.1000171.s004 (0.78 MB EPS)

Text S1 Sizing Up Allometric Scaling Theory

Found at: doi:10.1371/journal.pcbi.1000171.s005 (0.39 MB PDF)
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