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Understanding the observed variability in the number of homologs of a gene is a very important unsolved problem
that has broad implications for research into coevolution of structure and function, gene duplication, pseudogene
formation, and possibly for emerging diseases. Here, we attempt to define and elucidate some possible causes behind
the observed irregularity in sequence space. We present evidence that sequence variability and functional diversity of
a gene or fold family is influenced by quantifiable characteristics of the protein structure. These characteristics
reflect the structural potential for sequence plasticity, i.e., the ability to accept mutation without losing
thermodynamic stability. We identify a structural feature of a protein domain—contact density—that serves as a
determinant of entropy in sequence space, i.e., the ability of a protein to accept mutations without destroying the
fold (also known as fold designability). We show that (log) of average gene family size exhibits statistical correlation
(R2 > 0.9.) with contact density of its three-dimensional structure. We present evidence that the size of individual
gene families are influenced not only by the designability of the structure, but also by evolutionary history, e.g., the
amount of time the gene family was in existence. We further show that our observed statistical correlation between
gene family size and contact density of the structure is valid on many levels of evolutionary divergence, i.e., not
only for closely related sequence, but also for less-related fold and superfamily levels of homology.

Gene family and domain-fold family sizes are known to vary
widely (Finkelstein and Ptitsyn 1987; Finkelstein et al. 1995;
Orengo et al. 1999; Teichmann et al. 1999; Yanai et al. 2000;
Vitkup et al. 2001; Koonin et al. 2002)—from orphans (families
that have only a single member) to considerably populated sets
of far-diverged homologs. The observed variability in the number
and divergence of gene family members raises many questions,
e.g., which genetic mechanisms and evolutionary dynamics
could have led to the observed unevenness? Evolutionary biolo-
gists have proposed models designed to explain these size distri-
butions (which often follow power laws) (Yanai et al. 2000; Dok-
holyan et al. 2002; Koonin et al. 2002; Deeds et al. 2003), while
assuming no inherent physical differences between gene families
from the outset (Huynen and van Nimwegen 1998; Qian et al.
2001; Dokholyan et al. 2002; Koonin et al. 2002). However, many
of these models are overly abstract to adequately explain family
size distributions in a constructive manner that relate specific
features of gene families with their reported size. Neither do these
models provide explicit insights into the mechanistic details that
might explain observed differences. On the other hand, some
researchers have hypothesized that the heterogeneity in family
size is due to an underlying distribution of biological or physical
properties (Finkelstein et al. 1995; Govindarajan and Goldstein
1996; Li et al. 1996; Taverna and Goldstein 2000; Koehl and
Levitt 2002; Miller et al. 2002) of proteins encoded by gene se-
quences, but until now, such properties could only be hypotheti-
cally characterized for a limited class of simplified two-
dimensional and three-dimensional lattice models.

In particular, in a recent study, Taverna and Goldstein
(2000) analyzed the contribution from various factors, such as
evolutionary history and fold designability, to the development

of uneven protein family sizes in simplified two-dimensional lat-
tice models. These authors modeled several scenarios of evolu-
tion and demonstrated that more “designable” structures indeed
feature more populated (or overpopulated) sequence families. In-
terestingly, they find that the relationship between designability
of a structure (defined in their model as a number of sequences
that can have nondegenerate ground state in that structure) and
the size of the family exhibits a noticeable scatter indicative of
the influence of evolutionary history on the observable outcome
(Taverna and Goldstein 2000).

Recent successes in structural genomics and bioinformatics
provide a wealth of data for statistical analysis of the distribu-
tions of gene family sizes of real proteins with known structures.
On the other hand, recent research in our lab and others has
increased our understanding of the structural determinants of
protein designability (Wolynes 1996; Shakhnovich 1998; En-
gland and Shakhnovich 2003), and has made it possible to ana-
lyze the structural features of real protein domains that might be
responsible for the observed inequality of gene family sizes. Ob-
taining new insights into the relative roles of physical and bio-
logical factors that contribute to the genesis of modern gene
families may bring us closer to a greater understanding of the
natural history of protein domains.

From a biological perspective, we may hypothesize that
gene family size is at least in part influenced by functional con-
straints related to the number of different, but perhaps related
functions needed by the cell (Lespinet et al. 2002). For example,
some functions such as kinase activity have varied specificities
within a relatively small number of sequence mutations (Man-
ning et al. 2002), while others such as globins have much less-
functional flexibility despite, in some cases, substantial sequence
divergence (Bashford et al. 1987). From a physical perspective,
the potential of a gene to obtain new function upon duplication
may depend on its ability to accept mutations without destroy-
ing the three-dimensional structure of a protein domain that it
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encodes. In this work, we will focus mostly on the effect of the
physical constraints imposed on the structure encoded by se-
quences of the gene family. We will show that variability in these
constraints represents difference in potential for sequence diver-
sity of gene families. This effect can be observed for real families
both on average and in the case of specific families, taking into
account their differential time of evolution.

Results

Building PDUG

In order to consider sequence, structure, and function informa-
tion in a unified, systematic way, we define both gene families
and fold families quantitatively using the Protein Domain Uni-
verse Graph (PDUG) (Dokholyan et al. 2002). The PDUG is a
graph where nodes are sets of closely related sequences folding
into structurally characterized domains (Dietmann et al. 2001;
Orengo et al. 2003) and edges are connections between the nodes
that are based on structure comparison. To separate the gene
families, we define the sequences of the domain structures inside
each node as having <25% identity to other representative se-
quences in PDUG. Thus, nodes in PDUG are a set of representa-
tive structures. For calculation of sequence family size, we incor-
porate both SWISS-PROT (Boeckmann et al. 2003) and NRDB90
(Holm and Sander 1998) databases. This enables us to calculate
the size of the gene family by using all available sequence data
and, at the same time, discounting database bias. We use NRDB
to calculate gene family size and SWISS-PROT in combination
with Inter-Pro (Apweiler et al. 2000) and GO (Ashburner et al.
2000) to calculate functional divergence for every domain (see
Methods). We obtain structures from the Dali Domain Dictio-
nary (Dietmann et al. 2001) and use BLAST (Altschul et al. 1997)
and DALI (Holm and Sander 1993) sequence and structure com-
parison tools (see Methods). Thus, the size of the gene family as
represented on PDUG is the number of nonredundant sequences
from NRDB that are highly homologous to the representative
structure of the domain. Consequently, the size of the structural
neighborhood is defined as the number of sequences homolo-
gous to a set of structures equivalent to a Fold. (Fig. 1).

Using this PDUG formalism, we can define a gene family
based on micro-evolutionary considerations; the PDUG repre-
sents the variability accessible to a given gene upon mutation,
whether that variability occurs in sequence, function, or struc-
ture space. Unlike other definitions of gene families (Sonnham-
mer et al. 1998; Orengo et al. 2003), we make our definition
entirely local, i.e., with respect to a particular gene. The gene
family of a gene is therefore all the immediate sequence neigh-
bors of that gene that fold into the same (broadly defined) struc-
ture (Baker and Sali 2001; Hegyi and Gerstein 2001). By our con-
struction of the PDUG, a gene family is represented by sequences
within a single PDUG node. Analogously, the fold family of a
structure is defined as all of the structural neighbors of that do-
main on PDUG (Fig. 1). By defining the cutoff value for sequence
or structure comparison (see Methods), we can control the vari-
ance of that attribute, thus implicitly controlling the time scale
of evolutionary divergence over which we calculate structure-
function determinants.

The role of designability

Our first task is to determine what, if any, physical factors may be
responsible for the variability in gene family size. To this end, we

define an inherent structural characteristic related to the number
of sequences that a structure can accommodate without loss of
thermodynamic stability, i.e., we use a structural determinant of
designability (Li et al. 1996). This feature has been previously
hypothesized (Finkelstein et al. 1995; Li et al. 1996; Miller et al.
2002) to be one of the key influences responsible for overrepre-
sentation of some folds over others. Recent analysis (England and
Shakhnovich 2003) suggested that structures with greater values
of traces of powers of their contact matrices (CM) (i.e., Tr[CM]2,
Tr[CM]4, etc.) are predicted to be more designable (England and
Shakhnovich 2003; see Methods). Sequence-space Monte Carlo
(England and Shakhnovich 2003) calculations for simple lattice
models show that this characteristic of a structure does indeed
correlate strongly with its designability, which we define as loga-
rithm of the number of sequences that are stable in the structure.

The physical explanation for the correlation between traces
of powers of the CM (a structural feature) and sequence entropy
(i.e., designability) follows from the fact that these traces of pow-
ers of the CM reflect topological characteristics of the network of
contacts within the structure. For example, the trace of CM2 sim-
ply gives the total number of contacts (or equivalently the total
number of two-step, self-returning walks) and the trace of CM4

reflects the number of length-4 closed loops in the system, and so
on. One may also note that certain closed sets of contacts allow
for optimal placement of amino acids that interact very favor-
ably. For example, if four amino acids that strongly attract each
other are folded into an architecture where they all interact fa-
vorably (e.g., on four corners of a square, see Fig. 2), this forma-
tion represents a greater contribution to the stability of the over-
all structure than configurations in which the same four amino
acids are arranged linearly, or in cases where the last of the con-
tacts is out of the contact range (Fig. 2). Such optimal placement
of several strongly interacting amino acids allows more se-
quences to be folded into the structure by relaxing energy con-
straints for the rest of the sequence. Thus, structures that provide
certain features, such as availability of long closed loops of inter-
actions and higher density of contacts per residue, are expected
to be able to accommodate a wider variety of different sequences.
This qualitative argument is similar in spirit to derivation of
Boltzmann distribution in Statistical Mechanics (Landau et al.
1978) and similar to the justification for the “Boltzmann device”
used in the derivation of knowledge-based potentials (Finkelstein
et al. 1995; Grzybowski et al. 2002) for the study of protein fold-
ing and prediction of ligand-binding energies.

For this study, we use the trace of the second order of the
contact matrix normalized by chain length as a simplest approxi-
mation for designability. This quantity, known as the contact
density (CD), is proportional to the number of contacts per
amino acid residue (see Methods); it corresponds to the lowest
second-order term in the expansion of equation 1. A designabil-
ity criterion at this level of approximation has been considered
earlier by several authors (Wolynes 1996; Shakhnovich 1998),
and these studies predicted that the number of contacts, along
with other factors such as dispersion of interaction energies, as
well as the proportion of long- and short-range contacts in a
structure, may play an important role in determining the design-
ability of a structure.

Correlation between CD and sequence family size on average

First, we calculate the CD for every representative domain struc-
ture in PDUG as a measure of the designability of that node. We
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define a gene family as the set of sequences with >25% identity to
the sequence of the crystallized structure of the domain, exclud-
ing close sequence homologs using NRDB90 (Holm and Sander
1998). Clearly, this calculation is predicated on the assumption
that SWISS-PROT and NRDB represents a fair estimate of the vari-
ability inside each gene family. Remarkably, we observe that
there is a marked positive correlation between a domain’s de-
signability calculated via CD and the average gene family size
(Fig. 3A). However, we note that the observed correlation, while
very pronounced, is nonetheless statistical in nature; each point
in Figure 3 is a bin in (log) family size that contains 100–250 do-
mains with a distribution of CD values, and the distributions in
different bins overlap. Regardless of this caveat, we find that, on

average, gene families that encode more designable protein struc-
tures are statistically the ones that perform more varied functions
(Apweiler et al. 2000), encode more sequences, and therefore,
constitute larger families.

Next, we want to assess the robustness of the average corre-
lation, as well as estimate the area of sequence space affected by
designability. Structural determinants may influence small areas
of sequence space, such as those evaluated in Figure 3A, or larger
ones, defined by fold-level structure comparison. In part, the area
influenced will depend on how CD changes with respect to di-
vergence in structure. Thus, we perform analysis on distantly
related gene families as defined through structural comparison
between nodes on PDUG. To this end, we take the structural

Figure 1. A schematic picture of the scaled organization and intrinsic properties of the protein domain universe graph. The PDUG is built hierarchi-
cally, so that each level of evolutionary divergence can be considered independently. The domain structures are compared with each other using DALI
(see Methods), and from this information, the structural graph is created (Dokholyan et al. 2002). All of the sequences from NRDB with >25% identity
to the original sequence of each domain on PDUG are collected into a gene family. All of the equilogs (sequences with the same function) (Apweiler
et al. 2000) matching the gene family are collected and used to create a probabilistic GO tree, from which the FFS is calculated using equation 2. As
an example of how to build a structural neighborhood, consider the domain inside the blue rectangle, then all of the domains with red rectangles are
its structural neighbors.

Sequence space topology

Genome Research 387
www.genome.org

 Cold Spring Harbor Laboratory Press on September 10, 2014 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


neighborhood of a given domain to be all nodes that are con-
nected by an edge on the PDUG (Dokholyan et al. 2002; Fig. 1)
(see Methods). We then look at the correlation between the num-
ber of sequences that fold into all structures belonging to the
same structural neighborhood and the average CD for those
structures. This approach evaluates a larger, fold-level area of
sequence space and correlates sequence variability with design-
ability.

Figure 3B shows that average CD, which serves as a proxy for
average designability of a structural neighborhood (Fold), itself
correlates with the (log) of the gene-sequence family size of that
neighborhood. Together, Figure 3, A and B, show that gene fam-
ily size and designability (as approximated by CD) correlate
across various scales of evolutionary distance. This could indicate
that designability affects large sequence and structure spaces
spanning not only close sequence homology, but extending into
sets of sequences with identifiable homology only through struc-
ture comparison. From an evolutionary standpoint, this may in-
dicate that domains with higher CD diverge to produce other
high-designability domain structures.

Since these observations of correlations between designabil-
ity and gene family size are statistical in nature, we want to com-
ment on the robustness of the reported results. There are two
issues to consider, the variability of contact density (CD) for
structures within gene families and the robustness in the cal-
culation of the mean number of sequences for all gene families
in each bin. To address these concerns, we first calculate the
intrafamily deviation in CD for each gene family on PDUG (see
Methods). While the points in Figure 3, A and B, show mean
values of the CD for the representative domains (nodes on
PDUG), we also include estimates of the deviation in CD, taking
into account sequences inside gene families with solved struc-
tures (i.e., domains that have sequence homology to the repre-
sentative domain). In order to calculate this deviation, we take all
solved structures for domains with sequence homology to the
representative domain and calculate the standard deviation of
CD inside each gene family. We then calculate the average stan-
dard deviation in every bin of Figure 3, A and B. The deviation is

shown as CD-axis (X) error bars in Fig-
ure 3, A and B. It is apparent from the
size of the error bars that the deviation
in CD within each gene family is rela-
tively small, on the order of 0.05 or less.
Indeed, as expected, the intrafamily dis-
persion deviation of CD gets smaller as
average contact density increases. The
CD deviation ranges from 0.01 at
CD = 4.8 to 0.06 at CD = 3.8 in Figure
3A. The deviation is much smaller when
considering domains inside fold-level
structural neighborhoods, i.e., the de-
viation falls to be on the order of 0.001.
This calculation is primarily meant to
show that the choice of the representa-
tive structure for each gene family size is
not expected to significantly affect the
results.

Next, we calculate the possible er-
ror in the calculation of the mean in the
size of the gene family for each bin. This
quantity is proportional to the square
root of the number of observations in

the bin according to Central Limit Theorem. We include this as
the gene family size (Y) axis error bars in Figure 3. It is worth
noting that this measures the deviation of the mean over all gene
families belonging to a given bin only, and does not reflect the
scatter of the distribution inside the bin. That quantity is con-
sidered separately in detail, later. Clearly, the consideration
of both of these errors is small enough so that it does not affect
the conclusions drawn from Figure 3, A and B. It is also worth
noting that, as the size of the error bars suggests, changing the
binning does not appreciably affect these results. However, it is
important to point out that even considering all the possible
caveats mentioned above, the correlation between CD and aver-
age sequence variability on both the domain and fold levels is
striking, and the error bars show the surprising level of robust-
ness of these results.

For a more biological perspective, we determine how gene
family size is related to the diversity of functions which that
family performs. We define the functional determinant of a gene
family as entropy in function space. When we calculate this mea-
sure in the context of PDUG, we utilize Gene Ontology (GO)
(Ashburner et al. 2000) to define the functional variability (func-
tional flexibility score or FFS) of a set of genes (see Methods). FFS
is a measure of the total amount of information needed to de-
scribe all of the functionality of a gene family. Perhaps not sur-
prisingly, FFS statistically correlates with CD (Fig. 4). This is not
surprising because FFS statistically correlates with the total num-
ber of sequences in a gene family (data not shown). However, this
analysis serves two purposes. First, the correlation of FFS and CD
shows that designability directly affects the underlying biology
of the domain. Domains with low CD have a much lower chance
of performing many different functions. Secondly, this serves
as a corroboration of the previous result using a different data-
base, annotation method, and a completely different measure
of sequence variability. Finally, the correlation of FFS instead of
just simply calculations of gene family size ensures that we
measure entropy on sequences that are sufficiently diverged to
yield different functions, thus minimizing the effect of database
bias.

Figure 2. An illustration of physical reasons for differences in designability between two structures.
The balls schematically represent amino acids. Suppose that the interaction between the “red” amino
acid and the “blue” amino acid is favorable and gives E = �1. The configuration on the left yields lower
energy �4, compared with right structures, where contribution from interactions between these amino
acids is only �3. Thus, the 4-loop in the left structure contributes more to the stability of the structure
overall, allowing more freedom to select the remaining part of the sequence to obtain overall stabili-
zation of the structure. Similar considerations apply to 3-loops, 5-loops, etc.
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The role of evolution

While average statistical correlations of gene family size and FFS
with CD are highly significant, how predictive are they when it
comes to calculations of gene family size for a particular domain?
To answer this question, we present a scatter plot of gene family
size versus CD that shows all domains in the PDUG (Fig. 5A).
Though the scatter reveals significance, it is clear that CD is not
a reliable predictor of gene family size for every domain. This is
perhaps not surprising, given that other factors may have influ-

enced gene family sizes. A natural possibility that has also been
observed in lattice simulations (Taverna and Goldstein 2000) is
that evolutionary history may influence gene family size. Longer
evolutionary time of divergence means a higher chance of find-
ing a suitable sequence mutation, thus increasing the gene family
size.

Understanding the evolutionary history of all of the protein
domains on the PDUG requires construction of the most parsi-
monious scenario for protein structure evolution, a complex
proposition (Mirkin et al. 2003) that is beyond the scope of
this work. The simplest construction that still yields useful in-
formation is the delineation of the very old domains. Any do-
main shared by the three kingdoms of life can be placed in the
last universal common ancestor (LUCA) (Mirkin et al. 2003). If
any such domain were not placed in the LUCA, multiple in-
dependent discovery (or horizontal transfer) events would be
required to explain the occurrence of this domain in all king-
doms. The “extra” evolution involved in this case would result
in a less parsimonious scenario. Inclusion of other domains is
more probabilistic and depends on the exact form and method of
parsimony construction used (Mirkin et al. 2003).

We thus define the structural content of the LUCA to be all
domains that have homologs in at least one prokaryotic and at
least one eukarytic species. This yields approximately a third of
the structural content of PDUG. We present the LUCA domains
on a separate scatter plot in Figure 5B. Two observations are
immediately apparent. First, LUCA domains clearly feature
greater CD, suggesting that “first” domains were more designable
(difference of means 0.27, t-test P-value < 1e-8). Secondly, even
at equal CD (designability) with their younger counterparts,
LUCA domains feature greater family sizes, on average 37 more
members (Fig. 5B, scatter plot is markedly shifted toward higher
gene family sizes P-value < 1e-10). This observation provides
evidence that, as simulations on simple lattice models suggest
(Taverna and Goldstein 2000; Deeds et al. 2003), designability is
only the potential for larger family size that has to be coupled
with other mitigating factors for a full understanding of the evo-

Figure 4. The correlation between CD and functional flexibility score
(FFS) of the gene family calculated via equilogs using equation 1. This is
evidence that structural determinant of designability, CD, serves as a
direct influence on the number of functions that a gene family does, with
linear fit correlation R = 0.97. Each datapoint represents a bin in FFS, with
step 0.1 containing 50–200 families. The datapoints represent the aver-
age CD over all gene families represented in an FFS bin.

Figure 3. (A) The plot of the logarithm of average gene family size vs.
the structural contact density parameter calculated for the structures en-
coded by these sequences (as explained in Methods). Each point repre-
sents a bin in log (gene family size), with a step size of ∼0.35. Each bin
contains 100–250 families. Binning in (log) of gene family sizes provides
the advantage of having an approximately equal number of gene families
in each bin. The statistical correlation of the linear fit is R = 0.95 with
P < 0.001. The error bars on the CD axis represent the average deviation
of CD inside each gene family averaged for all families belonging to the
bin (see Methods). The error bars on the vertical axis correspond to the
deviation of the mean number of members for each gene family inside
the bin. (B) The correlation between the average CD of the structural
neighborhood as defined on the PDUG (Fig. 1) and the log of the family
sizes of all the sequences inside that neighborhood. Here, R = 0.95 with
P < 0.001. The error bars are calculated as described for A.
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lutionary history of that domain. For two domains with the same
CD, but differing times of divergence, the domain with the
longer divergence time will most likely have more sequence
members.

To avoid circularity in the calculation of gene family size
difference, we calculate the average number of genomes where
LUCA domains are present and compare that to the background
distribution of all domains. We find that LUCA domains are
not present in a significantly larger number of genomes (data
not shown); however, they do exhibit a statistically significant
increase in gene family size as outlined above. Furthermore,
we see the importance of designability even within LUCA do-
mains by noting that higher CD domains exhibit higher gene
family size within LUCA. To underline this observation further,
we calculate the linear fit for all domains (R = 0.30) and com-
pare that with the LUCA domains. We observe that the goodness
of fit (R) increases to 0.40. We tested the statistical significance of
this increase by modeling a random assignment of LUCA do-
mains. We randomly picked the same number of domains from
PDUG and calculated the linear fit (R value). We then repeated
the sampling 1000 times. Predictably, we find that the mean R
value from random simulation is 0.30, as the background dis-
tribution and standard deviation is 0.025. From this simple
experiment, we can conclude that LUCA domains represent a
biased sample, where the linear fit of the correlation between
CD and sequence family size is four standard deviations away
from random. The increase in the goodness of the linear fit
for the LUCA domains is consistent with our theory that given
the same amount of time for divergence, higher CD domains
will have larger sequence families. However, the result mainly
outlines the importance of evolutionary history in fulfilling
the potential for sequence family size defined by the struc-
tural designability of that family. The increase in the linear fit
(R) also underlines the independence of this result from
bias stemming from uneven genome distribution of LUCA do-
mains.

Discussion

In this study, we presented evidence that across widely varying
evolutionary distances, there are significant statistical correla-
tions between structural designability, functional flexibility, and
gene family size. The statistical nature of these observations is
obvious from the scatter plot presented in Figure 5. We have
found that this scatter may be explained, at least in part, by
variations in the evolutionary history (Ponting and Russell 2002)
of protein domains. Because of this, neither CD nor any other
proxy calculation of designability can be used as a predictor of
gene family size. As shown by simulation (Taverna and Goldstein
2000) and our own analysis presented in this study, designability
represents only the “potential” for sequence entropy allowed by
a structure. The actual size depends not only on the potential,
but also on the amount of time that evolution had to explore the
sequence space around that structure. This, in part, reconciles the
very strong correlation of the means observed in Figure 3 and the
significant scatter of the specific observations in Figure 5A, while
decreasing in scatter observed in Figure 5B lends evidence to the
importance of evolutionary history in determining sequence
family size.

While we believe that these results are illuminating, we
must mention several caveats. Using CD as a proxy for entropy
in sequence space is an approximation that assumes, among
other things, that protein energetics may be correctly represented
in contact form and that the second-order approximation of
equation 2 is sufficient to capture the designability of a structure.
An additional and perhaps more interesting caveat to consider
is that the “designability principle” in its canonical form as-
sumes equilibrium in sequence space, in which all structures take
full advantage of their designability potential and that this fact
is reflected in the data. Consideration of phylogeny clearly
shows that this is not an entirely valid assumption. On the
other extreme, several dynamic divergent evolution models pre-
dict uneven fold populations without assuming any struc-
tural preferences due to designability (Dokholyan et al. 2002),
positing that gene family sizes may be due to pure chance in
the complex natural history of protein domains. Our obser-
vations are not inconsistent with divergent evolution. In fact,
we have done simulations that indicate that a combination
of divergent evolution models and designability yield a stun-
ning correspondence with observed phenomena (Tiana et al.
2004).

In this work, we clearly see that domains with low CD are
most likely to represent smaller size families, while more design-
able, higher CD domains may exhibit both large and small family
sizes. This is exactly what one would expect from the interplay of
historical and physical factors; while physical constraints impose
upper bounds on sizes of families of low-CD domains, more de-
signable domains may exhibit greater family sizes if they are
“old,” and smaller sizes if they are “young.” Higher designability
thus reflects the potential for higher family size, but does not
necessarily imply it.

Another interesting observation is that older domains seem
more designable. One may speculate that early protein evolution
could have imposed more stringent constraints on domain de-
signability, either due to more challenging conditions (e.g.,
higher temperature) (England et al. 2003) or due to insufficient
time to effectively search sequence space to make it possible to
select viable sequences for less-designable structures. We show in
further studies on lattice models that evolution progresses to-

Figure 5. (A) Scatter plot of gene family size vs. CD for all PDUG do-
mains. (B) The Scatter plot of only the domains that are shared between
eukaryotes and prokaryotes (1117 domains). Note that these domains
are statistically more designable (higher CD, difference of means 0.27,
P-value < 1e-8) and that at the same CD, their families are more popu-
lated, on average 37 more members in each family. (P-value < 1e-10).
Linear fit to all domains vs. gene family size returns R = 0.30 with
P < 0.001, while linear fit to only LUCA domains vs. gene family size
returns R = 0.40 with P < 1e-4. Random resampling of LUCA domains
yields mean R = 0.30 and standard deviation 0.025. The LUCA domains
are not statistically overrepresented in genomes, so the sampling bias is
not expected to account for the difference in family sizes.
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ward lower designability (Tiana et al. 2004) in accordance with
empirical results presented in this work.

The findings presented here may have broad implications
for our understanding of structural genomics as well as structure-
function relationships and coevolution. However, more quanti-
tative evolutionary models are required to fully rationalize our
findings. Further research along these lines may provide new
insights into the genetic mechanisms underlying both neofunc-
tionalization and the potential development of resistance to
emerging diseases. These results provide an example of how fun-
damental physical principles can be statistically predictive in the
biological Universe of protein folds and gene sequences.

Methods

PDUG
In order to build the PDUG, we use sequences from NRDB90
(Holm and Sander 1998) and all structural domains from HSSP
(Dietmann et al. 2001). We use BLAST (Altschul et al. 1997) se-
quence homology to find all sequences in NRDB90 with >25%
sequence identity to each HSSP domain. We combine that set of
sequences into a single gene family. We then use cross-indexing
between SWISS-PROT (Boeckmann et al. 2003) and InterPro to
find the set of all equilogs (sequences with the same function)
(Apweiler et al. 2000) belonging to every gene family. We use
those equilogs to reconstruct the FFS using equation 2. (see Fig. 1)
We use DALI (Holm and Sander 1993) to make all pairwise struc-
tural comparisons, and we build structural neighborhoods as de-
scribed in the text and in Figure 1. For this study, we use Dali
Zc = 9 as the cutoff value at which we consider two domains to be
structural neighbors, although we believe that changing this
value will not drastically alter the results, as evidenced by the
correlation between domains and FFS (Fig. 3A). We choose Zc = 9
because this level of structural divergence corresponds roughly to
the superfold level of SCOP. Further justification of this thresh-
old selection is given in Dokholyan et. al. (2002).

An important issue in this study is one of sequence weight-
ing. The use of NRDB to exclude close sequence homologs en-
sures that we calculate sequence entropy by including far di-
verged sequences. The calculations of FFS provide another corrobo-
ration with the same result, but a different weighting of sequences.
Inclusion of all sequences from SWISS-PROT will introduce noise
due to oversequencing of some genes versus others, and will not
yield a sufficient approximation of entropy in sequence space.

Designability
England and Shakhnovich (2003) showed recently that for a
large class of amino acid interaction potentials B, the free energy
per monomer f in sequence space for a protein structure defined
by its contact matrix, (CM) C is given by

f = −
1
N�

n=2

�

�Tr Cn�an (1)

where the weights ai are all positive functions that depend on the
interaction energies B. The contact matrix C is defined as Cij = 1
if amino acids i and j are in contact, and 0 otherwise. Definitions
of contact may vary, but in this study, we use the standard cutoff
of 7.5 angstroms between C� atoms (C� for Gly).

Calculation of variability in CD of intrafamily members
To calculate the variability of designability in Figure 3 (error bars
on the x-axis), we considered all solved structures where the se-

quences are homologous to a representative domain on PDUG.
We calculated the CD for all domains inside each sequence fam-
ily where the number of homologous domains with resolved
structures was larger than two. For this calculation, we used the
domain boundaries that were delineated for the whole PDB
(Westbrook et al. 2003) by Dietmann and Holm (Dietmann et al.
2001). This resulted in consideration of over 34,000 domains in
∼3400 nonredundant representative homologous gene families.
For each homologous sequence family, we calculated the stan-
dard deviation of CD for the structures belonging to that family.
We then averaged all calculated standard deviations for gene
families falling inside the gene family bin in Figure 3, and rep-
resented that quantity as the error bars on the CD axis.

FFS
In order to calculate functional entropy, we begin by combining
all sequences into a set. We then match these sequences to In-
terPro (Apweiler et al. 2000) equilogs. We reconstruct the whole
GO tree from the annotations of equilogs and calculate the num-
ber of equilogs of the family that are assigned a particular func-
tional annotation, normalized by total number of annotations at
each level (see Fig. 1). We may thus calculate the average amount
of information per annotation level needed to fully describe the
function of each gene family using the following equation:

FFS = −
1

Max�L��l
�

i∈�nodes on Level l�

piLog�pi�. (2)

Here, Max(L) is the maximal number of levels of annotation, the
summation is taken over all levels l and over all nodes i filled by
the gene family on the GO tree, and pi is the percentage of the
family that is annotated with function i (see Fig. 1).
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