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This Letter develops an analytically tractable model for determining the equilibrium distribution of
mismatch repair deficient strains in unicellular populations. The approach is based on the single fitness
peak model, which has been used in Eigen’s quasispecies equations in order to understand various
aspects of evolutionary dynamics. As with the quasispecies model, our model for mutator-nonmutator
equilibrium undergoes a phase transition in the limit of infinite sequence length. This ‘‘repair catas-
trophe’’ occurs at a critical repair error probability of �r � Lvia=L, where Lvia denotes the length of the
genome controlling viability, while L denotes the overall length of the genome. The repair catastrophe
therefore occurs when the repair error probability exceeds the fraction of deleterious mutations. Our
model also gives a quantitative estimate for the equilibrium fraction of mutators in Escherichia coli.
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for the enzymatic machinery involved in mismatch re- only in the relative distribution of viable mutators and
In order to preserve the integrity of their genomes, liv-
ing systems have evolved sophisticated mechanisms for
correcting errors in their DNA sequences [1]. Otherwise,
genetic damage due to environmental factors such as
radiation, metabolic free radicals, and mutagens, com-
bined with replication errors, would lead to unviable
organisms due to the unrecoverable loss of genetic infor-
mation. This phenomenon, which was first characterized
by Eigen in [2], is known as the ‘‘error catastrophe.’’ It has
since been studied in a number of theoretical papers [3–5]
(and references therein) and has also been observed ex-
perimentally [6].

Some of the error-correcting ability in living systems
is already built into the DNA polymerases themselves.
In Escherichia coli, the proofreading ability of the DNA
replicase Pol III results in an error probability of
10�7–10�6 per base pair [1]. Additional enzymes continu-
ously scan the DNA molecule, repairing lesions and mis-
matches that occur due to environmental damage.

A key error-repair mechanism is known as mismatch
repair and occurs immediately following DNA replica-
tion. The mismatch repair system scans the DNA mole-
cule, identifies, and then corrects mismatched base pairs.
Mismatch repair in E. coli reduces the error probability in
DNA replication to 10�10–10�8 per base pair [1]. Cells
with inactivated mismatch repair consequently have mu-
tation rates which are 10 to 10 000 times higher than cells
whose mismatch repair system is functioning. Because of
their higher than wild-type mutation rates, these ‘‘muta-
tor’’ strains are believed to play an important role in the
emergence of antibiotic resistance, and cancer in multi-
cellular organisms [7–12].

To develop a model for the equilibrium distribution
of mutators versus nonmutators in a unicellular popula-
tion, we consider a genome of alphabet size S (‘‘bases’’
0; 1; . . . ; S� 1), consisting of two genes. The first gene
consists of Lvia bases and controls the viability of the
genome. The second gene consists of Lrep bases and codes
0031-9007=03=91(13)=138105(4)$20.00 
pair. If we let � denote an arbitrary gene sequence, then
we may write � � �via�rep.

We assume a single fitness peak (SFP) model for both
genes. Thus, there is a unique ‘‘fit’’ sequence �0��via;0 �
�rep;0. A cell with genome � has a first-order growth rate
constant k�1 if �via��via;0, and 1 otherwise. Mismatch
repair has an error probability of �r per mismatched base
pair and is functioning only when �rep � �rep;0.

While somewhat artificial, the SFP model has been
successfully applied in [13,14] toward understanding the
correlations between antibody and viral mutation rates.
Furthermore, because proteins generally have a key set of
conserved residues which more or less dictate their final
structure and function, the corresponding gene has a
subsequence of conserved bases required for its proper
function [1,15]. Thus, by summing over the unconserved
bases, it is possible to reduce the fitness landscape to an
SFP in the conserved subsequence. Therefore, there is
reason to believe that many of the phenomenological
aspects of our system can be captured by an SFP-based
approach and that such an approach can also be semi-
quantitative in a number of cases.

The basic equation governing the dynamics on the
genome space has the form of Eigen’s quasispecies equa-
tions [2],

dx�
dt

� ��� � 
���t��x�

	
X
�0��

��m��
0; ��x�0 � �m��;�

0�x��; (1)

where x� denotes the fraction of the population with
genome �, �� is the growth rate constant of �,
�m��;�

0� denotes the mutation rate constant from � to
�0, and 
���t� �

P
���x��t�.

We assume that replication errors are sufficiently small
so that we need worry only about point mutations, and
that since k � 1, any flow off of the viability peak is
unidirectional. Furthermore, since we are interested
2003 The American Physical Society 138105-1

https://core.ac.uk/display/213411027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P H Y S I C A L R E V I E W L E T T E R S week ending
26 SEPTEMBER 2003VOLUME 91, NUMBER 13
nonmutators, we focus only on the ‘‘repair’’ subspace of
sequences given by � � �via;0�rep. Note that we are as-
suming that the system is well below the error threshold.
The reasoning behind this assumption is that mutators,
despite their higher-than-wild-type mutation rates, are
still viable organisms and therefore live well below the
error catastrophe. This also allows us to treat the physics
of mutator/nonmutator equilibrium separately from the
physics of the classical error threshold. We leave the
incorporation of the error catastrophe into this model
for future work.

From now on, we simplify matters and redenote �rep

as �. The full genome is �via;0� by implication. On this
subspace, the effective growth rate constant becomes
k�1� Lvia���, due to leakage off of the fitness peak.
Here �� denotes the per base pair replication error proba-
bility and is equal to ��r if � � �0, and � otherwise.
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Finally, by the symmetry of our system, we may make the
further assumption that x� depends only on the Hamming
distance HD��;�0� from �0. Thus, defining �l��� �
f�0jHD��0; �� � lg, we may then also define xl � x�,
where � 2 �l��0�. Note that point mutations between
xl and some x� may occur only if x� 2 �l;l�1��0�.
However, we may negect intra-�l��0� couplings, due to
cancellation of mutational inflows and outflows.

A � 2 �l��0� may be connected via a point mutation
to a �0 2 �l�1��0� by changing any one of the l bases
distinct from the corresponding bases in �0 back to the
corresponding base in �0. Thus, there are l possible
connections. A � 2 �l��0� may be connected via a point
mutation to a �0 2 �l	1��0� by changing any one of the
Lrep � l bases equal to the corresponding bases in �0.
Since there are S� 1 possibilities per base, the result is
�Lrep � l��S� 1� connections. The net mutational flow
is then
X
�0��

��m��
0; ��x�0 � �m��;�

0�x�� �
kl

S� 1
��l�1xl�1 � �lxl� 	 k�Lrep � l���l	1xl	1 � �lxl�; (2)

where �0 � ��r, and �l � � for l � 1. We divide the �’s by S� 1 because a point mutation can occur to any one of the
S� 1 bases distinct from the changed base.

We also have ��t� � k�1� Lvia�� 	 kLvia��1� �r�x0. Now, define Cl � �
Lrep

l ��S� 1�l, the number of elements in
�l��0�, and set zl � Clxl. If we reexpress the dynamical equations in terms of zl, then at equilibrium we obtain the
system of equations

0 �
Lvia

Lrep
�1� �r�z0�1� z0� 	

z1
Lrep�S� 1�

� �rz0;

0 � �
Lvia

Lrep
�1� �r�z0z1 	 �rz0 �

�
1�

1

Lrep
	

1

Lrep�S� 1�

�
z1 	

2

Lrep�S� 1�
z2;

..

.

0 � �
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Lrep
�1� �r�z0zl 	

�
1	

1

Lrep
�

l
Lrep

�
zl�1 �

�
1�

l
Lrep

	
l

Lrep�S� 1�

�
zl 	

l	 1

Lrep�S� 1�
zl	1;

..

.

0 � �
Lvia

Lrep
�1� �r�z0zLrep

	
zLrep�1

Lrep
�

zLrep

S� 1
: (3)
There are several features to note about these equa-
tions. First, the term, �Lvia=Lrep��1� �r�z0�1� z0� and
the corresponding terms in the other equations arise
from the 
���t� term in the original quasispecies equations
[Eq. (1)] of our model. Second, except for the last equa-
tion, the �l	 1�st equation has a mutational contribution
from zl	1 which scales as 1=Lrep. This means that the
contribution to zl due to backmutation from zl	1 becomes
negligible for large sequence lengths. This makes sense,
since for finite l, the ratio Cl0=Cl ! 1 as Lrep ! 1 for
l0 > l, so the probability of mutating to lower values of l
vanishes in the limit of infinite sequence length.

We wish to solve these equations for a fixed value of
� � Lvia=Lrep in the limit of infinite sequence length L.
Let us focus first on the behavior of z0 in this limit. In
the first equilibrium equation, the z1 term drops out as
Lrep ! 1, giving

0 � z0���1� �r��1� z0� � �r�; (4)

which has the solutions z0 � 0; 1� �r=���1� �r��. The
first solution is inconsistent with the requirement that
z0 � 1 when �r � 0. However, the second solution holds
only as long as z0 2 �0; 1�. Clearly, z0 � 18�r. The other
requirement that z0 � 0 gives

�r �
�

1	 �
�

Lvia

L
: (5)

Defining �r;crit �
�

1	� , we see that in the limit of infi-
nite genome length, our system has two ‘‘phases.’’ For
138105-2
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FIG. 1. Plots of z0 versus �r for � � 1=9, 1, and 9.
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�r < �r;crit the system is in a ‘‘nonmutator,’’ or, equiva-
lently, ‘‘repairer’’ phase, in which the fraction of non-
mutators is a quantity which depends only on � and �r.
At �r � �r;crit the system undergoes a ‘‘phase’’ transi-
tion, which we term the ‘‘repair catastrophe,’’ after
which the system is in a mutator (‘‘nonrepairer’’) phase.
In this phase, there is essentially no preference for
being a nonmutator, and the fraction of nonmutators
becomes inversely proportional to the total number of
gene sequences.

A key parameter to study in the phase behavior of our
model is the localization length, given by

hli �
XLrep

l�1

lzl: (6)

This quantity measures the mean Hamming distance of
the population from the nonmutator sequence. To compute
hli below the phase transition in the limit of Lrep ! 1,
we may note that for finite l our equilibrium equations
become

0 � ��1� �r�z0�1� z0� � �rz0;

0 � ���1� �r�z0z1 	 �rz0 � z1;

..

.

0 � ���1� �r�z0zl 	 zl�1 � zl;

..

.
: (7)

We have already solved the first equation. The next two
equations can be solved together to give, for l � 1,

zl � �r�1	 ��1� �r�z0�
�lz0: (8)

It should be noted that, while each zl converges to the cor-
responding formula given above as Lrep ! 1, the con-
vergence is not uniform, since the larger the l, the larger
Lrep must be made to get zl within some specified cutoff of
its Lrep � 1 value.

Define zl;1 � limLrep!1zl. It may be readily checked
that

P
1
l�0 zl;1 � 1, so total population is conserved in this

limiting process. The localization length is given by

hli �
X1
l�1

lzl;1 �
1� �r;crit
�r;crit

�r
�r;crit � �r

: (9)

Note that, as expected, the localization length is finite for
�r < �r;crit but diverges at the phase transition.

It is also useful to solve the equilibrium distribution
exactly for the case � � 0. This corresponds to Lrep � L;
that is, the entire genome consists of the repair gene. Note
that �r;crit � 0, so that the system is always in the mutator
phase. In this case, it may be shown that the equilibrium
solution is given by zl � �

Lrep

l ��S� 1�l�rz0 for l > 0,
and so the requirement that

PLrep

l�0 zl � 1 gives z0 � 1=
�1	 �r�S

Lrep � 1��. It is readily shown that for large
Lrep, the localization length hli ! �1� 1=S�Lrep. This
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result is equivalent to the case of a uniform distribution,
which makes sense since for � � 0 there is no preference
for being a nonmutator in the limit of large Lrep.

The phase behavior which emerges from this model
may be understood as follows: For highly efficient repair,
the selective advantage for being a nonmutator is suffi-
ciently large to cause the population to equilibrate in a
localized cluster about the nonmutator sequence. When
repair is inefficient, the accumulation of deleterious mu-
tations in both mutators and nonmutators is comparable,
and hence the mutators, which are entropically strongly
favored, dominate the population. The selective advan-
tage for being a nonmutator is dictated by �, since for low
� there is relatively little leakage off of the fitness peak,
while for high � there is a large amount of leakage off of
the fitness peak. Thus, for low �, repair has to be highly
efficient to give the nonmutators a sufficient selective
advantage to be in the nonmutator phase, while for high
�, nonmutators have a significant advantage even for
relatively inefficient repair.

One of the main features to note regarding the mutator-
nonmutator equilibrium is that it is independent of the
background error probability �. This feature is interesting
because as � ! 0, the difference in viability between the
mutators and the nonmutators disappears. Thus, one
might naively expect �r;crit to be a function of �, but in
the limit of small � (so that only point mutations are
important), this is not the case.

Figure 1 shows a plot of z0 versus �r for � � 1=9, 1,
and 9. We used S � 2 and took a value of Lrep � 1000 in
order to sufficiently converge the calculations. The equi-
librium equations were solved by using fixed-point itera-
tion at every �r. Note that the phase transition does indeed
occur at the predicted values of �r;crit. The analytical
Lrep � 1 curves lie essentially on top of our numerical
results and were therefore not plotted here.

Figure 2 shows the corresponding plots of hli versus �r.
Note that the localization lengths settle at the value of
138105-3
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FIG. 2. Plots of hli versus �r for � � 1=9, 1, and 9.
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Lrep=2 at the transition, which is the expected finite Lrep

behavior for the mutator phase.
Finally, we may use our model to estimate the equilib-

rium fraction of mismatch repair deficient strains in
E. coli. The E. coli genome has 4� 106 base pairs, com-
prising 4403 genes [16]. Based on calculations for
Saccharomyces cerivisiae, or Baker’s yeast, we esimate
that between 18%–30% of these genes are ‘‘viability’’
genes, i.e., required for E. coli survival [17,18] (unfortu-
nately, similarly detailed data are not currently available
for E. coli, so we had to make an estimate based on
available information). Thus, we assume approximately
1000 viability genes, which we gather into the viability
peak of our model. The mismatch repair system is con-
trolled by the MutH, MutL, MutS, and UvrD (or MutU)
proteins, giving four repair genes. If we simply use the
average gene length and assume that the same fraction of
base pairs must be conserved in both the viability genes
and in the mismatch repair genes, then in our model we
obtain � � 1000=4 � 250. Since mismatch repair has a
failure probability of 10�4–10�1 per mismatched base
pair, we estimate an equilibrium fraction of mutators
in the range of 4� 10�7–4� 10�4. For E. coli, the ob-
served equilibrium fraction of mutators is on the order
of 10�5–10�3 [8]. While encouraging, our result is
nevertheless based on a number of simplifying assump-
tions. The strongest evidence in support of our model
would be the experimental observation of the repair ca-
tastrophe itself. While it is not clear how to selectively
control the efficiency of the mismatch repair system,
138105-4
if possible this would allow a direct experimental test
of our model.

As a concluding remark, we should note that our pre-
diction of a repair catastrophe in mutator-nonmutator
equilibrium suggests that phase transitions may underlie
the behavior of a variety of biological systems. A classi-
fication of the phase behaviors inherent in various bio-
logical networks will greatly increase our understanding
of the underlying dynamics governing such systems.
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