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Abstract. A persistence theorem for attracting invariant tori for systems subjected to rapidly
oscillating perturbations is proved. The singular nature of these perturbations prevents the direct
application of the standard persistence results for normally hyperbolic invariant manifolds. However,
as is illustrated in this paper, the theory of normally hyperbolic invariant manifolds, when combined
with an appropriate continuation method, does apply.
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1. Introduction. We will prove a persistence theorem for attracting invariant
tori for systems subjected to rapidly oscillating perturbations. The singular nature of
these perturbations prevents the direct application of the standard persistence results
for normally hyperbolic invariant manifolds. However, as we will illustrate in this
paper, the theory of normally hyperbolic invariant manifolds, when combined with an
appropriate continuation method, does apply.

Systems with rapidly oscillating perturbations arise naturally when a priori stable
systems are periodically forced. In fact, partial averaging (perhaps to some high order)
at a resonant torus together with a rescaling to slow time produces a system with a
rapidly oscillating perturbation. For example, systems of this type are obtained in
the dissipative periodically forced oscillator models introduced in [2].

We will consider the existence of invariant tori for a smooth family of differential
equations of the form

ẋ = f(x, ε) + εg(x, t, ε),

where g is a periodic function of the independent variable. For systems of this type,
the behavior of the subsystem

ẋ = f(x, ε)

at ε = 0 is important. If this subsystem has a normally hyperbolic invariant manifold
at ε = 0, then the persistence of this manifold into the full system is a result of the
general persistence theorems of Fenichel [3] and Hirsch, Pugh, and Shub [7]. However,
in many applications, either there is an invariant manifold at ε = 0 that is not normally
hyperbolic or the system is singular at ε = 0. For example, the first situation will
arise when a periodically forced oscillator is averaged at a resonance. In these cases,
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CONTINUATION OF INVARIANT TORI 387

a change of coordinates and a rescaling of the independent variable often yields an
equivalent family, for ε 6= 0, of the form

y′ = F (y) + εG(y, τ/ε, ε)(1.1)

with new independent variable τ . While the subsystem

y′ = F (y)(1.2)

of the family (1.1) in these new coordinates no longer depends on the perturbation
parameter, and is therefore regular, the singular nature of the perturbation is reflected
in system (1.1) by rapid oscillations of the perturbation term in the slow time.

If the subsystem (1.2) has a normally hyperbolic invariant torus, then a small
C1 perturbation will also have a normally hyperbolic invariant torus by the general
persistence theorems mentioned above. However, in the full system (1.1), the pertur-
bation is not defined at ε = 0. Also, we note that the perturbation is not C1 small. In
fact, the partial derivative with respect to τ can be large relative to ε. Thus, the usual
persistence theory does not apply directly. To overcome this difficulty we will use the
idea introduced by Kopell [8] of embedding the system into an auxiliary family given
by

y′ = F (y) + δG(y, τ/ε, ε).(1.3)

If ε > 0 is fixed and δ > 0 is sufficiently small, then, by the usual persistence theory,
the system (1.3) has a normally hyperbolic invariant manifold. We will show that if
ε > 0 is sufficiently small, then this normally hyperbolic invariant manifold can be
continued in this family to δ = ε.

The plan of the paper is as follows. In section 2, a description of the origin of
the model system that we will study is given. In section 3 we discuss some previous
work by Kopell [8] on the continuation problem for system (1.3). A conceptual gap in
this work will be described. Also, we will present the general method for continuation
that is used in this paper. The statement of our main theorem on the existence of
invariant tori is in section 4, and the remaining sections of the paper are devoted to
its proof.

2. A periodically perturbed oscillator. In this section we will briefly de-
scribe the origin of the explicit perturbation problem that we will study; see [2] for
more details.

Consider a periodically perturbed planar oscillator given by

u̇ = f(u) + εg(u, t),(2.1)

where, for each u ∈ R2, the function t 7→ g(u, t) is 2π/Ω periodic and ε is a small
parameter. Let us assume that the unperturbed system

u̇ = f(u)(2.2)

is Hamiltonian and it has a regular period annulus A, that is, an annulus consisting
entirely of periodic orbits such that the associated period function is regular. Also, for
each point ζ in the domain of definition of the system (2.1), let t 7→ u(t, ζ, ε) denote
the solution of (2.1) with the initial condition u(0, ζ, ε) = ζ.
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388 CARMEN CHICONE AND WEISHI LIU

A periodic orbit Γ in A with period T is called resonant if there are relatively
prime positive integers m and n such that

m
2π

Ω
= nT.(2.3)

If Γ is a resonant periodic orbit and p ∈ Γ, then the associated (subharmonic) Melnikov
function is given by

Mm:n(φ) :=

∫ m2π/Ω

0

f(u(t, p, 0)) ∧ g(u(t, p, 0), t− φ) dt.(2.4)

From a geometric point of view, the sign of the Melnikov function on a resonant
orbit determines the “drift direction” for perturbed orbits. If, for example, the Mel-
nikov function has a fixed sign, then perturbed orbits drift away from the vicinity
of the resonant orbit in a direction determined by this sign; while if the Melnikov
function has a simple zero, then there is a nearby perturbed periodic orbit; see [5],
[9], [11].

If the Melnikov function vanishes identically on a resonant orbit, then a reason-
able expectation is that the corresponding unperturbed torus in the phase cylinder,
corresponding to the unperturbed resonant orbit, persists under the perturbation. If
the perturbation is dissipative, then the perturbed invariant torus is an attractor. The
presence of this attractor is often one of the dominant features of the global dynam-
ics: perturbed orbits are entrained to this torus. Thus, the existence of invariant tori
is an important consideration in the analysis of the global dynamics of the system.
However, as we will see, the proof of the existence of an attracting invariant torus in
this context requires additional hypotheses as well as a delicate perturbation analysis.

To study the dynamics of differential (2.1) near a resonant periodic orbit, it is
convenient to consider the system in action angle coordinates. In fact, there is a
smooth change of coordinates in a neighborhood of the resonant orbit such that the
differential (2.1), in the new coordinates (I, ϑ), has the form

İ = εF (I, ϑ, t), ϑ̇ = ω(I) + εG(I, ϑ, t),(2.5)

where both F and G are 2π periodic in ϑ and 2πm/Ω periodic in t. In these coordi-
nates, the resonant orbit is given by {(I, ϑ) : I = I0}, where

m
2π

Ω
= n

2π

ω(I0)
.(2.6)

A “normal form” for system (2.5) with ε > 0 at the resonant orbit is obtained by
using the coordinate transformation

I = I0 +
√
ε `, ϑ = ω(I0)t+ σ,

followed by the Taylor expansion of the resulting vector field to third order in powers
of
√
ε. The transformed system

˙̀ =
√
ε F (I0, ω(I0)t+ σ, t) + εFI(I0, ω(I0)t+ σ, t)`

+ ε3/2FII(I0, ω(I0)t+ σ, t)`2 +O(ε2),

σ̇ =
√
ε ω′(I0)`+ ε

(
G(I0, ω(I0)t+ σ, t) +

1

2
ω′′(I0)`2

)
+ ε3/2

(
GI(I0, ω(I0)t+ σ, t)`+

1

6
ω′′′(I0)`3

)
+O(ε2)(2.7)
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CONTINUATION OF INVARIANT TORI 389

is in the “time periodic standard form,” the correct form for averaging. Under the
assumption that the Melnikov function vanishes on the resonant orbit, that is, the
average of F in the new coordinates vanishes, there is an averaging transformation
(slightly more general than the transformation used in [2] where the average of G is
also assumed to vanish) such that the averaged system has the abstract form

˙̀ = µ2p(σ)`+ µ3
(
q(σ)`2 + r(σ)

)
+ µ4R̂(`, σ, t, µ),

σ̇ = µλ`+ µ2(ν`2 + g(σ)) + µ3Ŝ(`, σ, t, µ),(2.8)

where p, q, r, and g are 2π periodic functions, λ, µ, and ν are real numbers, and both
of the functions R̂ and Ŝ are 2π periodic in σ and 2π/Ω periodic in t. In fact, all of
the functions appearing in the system (2.8) are identifiable in terms of the original
vector field. Also, the new small parameter is defined by µ :=

√
ε.

Let us rewrite system (2.8) as the autonomous system

˙̀ = µ2p(σ)`+ µ3
(
q(σ)`2 + r(σ)

)
+ µ4R̂(`, σ, ϕ, µ),

σ̇ = µλ`+ µ2(ν`2 + g(σ)) + µ3Ŝ(`, σ, ϕ, µ),

ϕ̇ = 1,(2.9)

where ϕ is a new angular variable modulo 2πm/Ω. Also, let us assume that the family
is class C∞. We will seek an invariant torus for system (2.9) as the graph of a periodic
function (σ, ϕ) 7→ h(σ, ϕ); that is, h is 2π periodic in σ and 2πm/Ω periodic in ϕ.

The Lyapunov–Perron method is used in [2] to prove the following theorem.
Theorem 2.1. Consider the differential (2.9) and define

M := min
0≤σ≤2π

|p(σ)| > 0.

If g(σ) ≡ 0, λ 6= 0,

5M > Lip(p), M2 ≥ 6|λ|‖r‖0,1,(2.10)

and µ is sufficiently small, then there is a periodic function h ∈ C0,1 (supremum
+ Lipschitz norm) such that its graph {(`, σ, t) : ` = h(σ, t)} is an invariant torus
for (2.9).

Here, M is a measure of the minimum “normal contraction rate” and the in-
equality M2 ≥ 6|λ|‖r‖0,1 is a sufficient condition to preclude “roll up” of the invariant
manifold at a sink; see the example in [2, p. 63]. The inequality 5M > Lip(p) does not
seem to have a geometric interpretation; rather it arises from the technical estimates
in the proof.

We note that Robinson and Murdock in [10] prove the existence of invariant
tori for a differential equation similar to system (2.9). Their result concerns the
continuation of certain nonresonant unperturbed tori in analytic systems.

3. Normal hyperbolicity and continuation. In this section we recall the def-
inition of normal hyperbolicity and discuss the basic idea, introduced by Kopell [8],
that we will use to continue invariant manifolds. While our continuation method
applies to normally hyperbolic invariant manifolds with expanding and contracting
normal directions, in this paper we discuss only the case of normally hyperbolic in-
variant manifolds with no unstable normal directions. In particular, when we use the
phrase “normally hyperbolic” we will use it in this restricted sense.
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390 CARMEN CHICONE AND WEISHI LIU

Let us consider a smooth differential equation

ẋ = F (x), x ∈ Rn

with flow φt that has an overflowing invariant manifold M = M ∪ ∂M . Also, let TM
denote the tangent bundle of M , and, with respect to the usual inner product on Rn,
let N denote the bundle normal to TM over M . Then,

TMRn = TM ⊕N,

and there is a natural orthogonal projection Π : TMRn → N . Recall that in this
context (see [3]) there are operators

At(p) := Dφ−t(p)|TpM : TpM → Tφ−t(p)M,

Bt(p) := ΠpDφ
t(φ−t(p))|Nφ−t(p)

: Nφ−t(p) → Np,(3.1)

and Lyapunov-type numbers, introduced in [3], are assigned to each point p ∈ M as
follows:

ν(p) := lim sup
t→∞

‖Bt(p)‖1/t, σ(p) := lim sup
t→∞

ln ‖At(p)‖
− ln ‖Bt(p)‖ .(3.2)

The number ν(p) measures the “exponential of the normal contraction rate” while
σ(p) compares the normal and tangential contraction rates. Both of these numbers are
constant on orbits. Moreover, the Lyapunov-type numbers of an orbit are dominated
by the supremum of the Lyapunov-type numbers on its α-limit set. Thus, to prove
that M is normally hyperbolic, it suffices to compute the type numbers on the limit
sets of the flow that are contained in M . A basic persistence result of Fenichel [3]
states that if for all p ∈ M , we have ν(p) < 1 and σ(p) < 1/k for some positive
integer k, then the manifold M persists under small C1 perturbations by Ck vector
fields. Moreover, the perturbed manifold is Ck. Let us mention that M , with the
hypotheses of Fenichel’s theorem is called k-normally hyperbolic. We will also use
an equivalent formulation of k-normal hyperbolicity introduced by Hirsch, Pugh, and
Shub [7]. A specialization of their definition to our perturbation problem is given
below in display (8.11).

The persistence results just mentioned are widely applicable. However, in the per-
turbation problem (1.1) mentioned in the introduction, the existence of an invariant
manifold cannot be obtained by a direct application of these persistence results due
to the singular nature of the perturbation terms. Also, in the setting of the auxiliary
family (1.3), the persistence result does not guarantee the existence of an invariant
manifold up to δ = ε. On the other hand, in combination with an appropriate contin-
uation method, the full strength of the persistence theory can be exploited to study
perturbation problems of this type.

The idea of the continuation method is simple. To describe it, let us consider the
smooth family Eε of differential equations

ẋ = f(x, ε).(3.3)

Suppose that E0 has a k-normally hyperbolic invariant manifold M(0), and we wish
to know if there is a corresponding family M(ε) of k-normally hyperbolic invariant
manifolds that can be continued to some preassigned value of ε, say, ε = 1. In this
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CONTINUATION OF INVARIANT TORI 391

case, we can proceed in the following manner: Define A to be the set of all ε in the unit
interval such that, for all ε′ ∈ [0, ε], the corresponding system Eε

′
has a k-normally

hyperbolic invariant manifold M(ε′), and then prove that A is nonempty, open, and
closed. Because M(0) is a k-normally hyperbolic invariant manifold for E0, A is not
empty. The fact that A is open follows from the general persistence theory. Thus,
all that remains is to show that A is closed; that is, if ε∗ is the supremum of A, then
ε∗ ∈ A. This can be accomplished in two steps: Prove that the system Eε∗ has a C1

invariant manifold; then, prove that this invariant manifold is k-normally hyperbolic.
Since we have a family of k-normally hyperbolic invariant manifolds M(ε) defined for
ε′ ∈ [0, ε∗), the first step can be proved by showing that these manifolds are realized
as graphs of an equicontinuous family of C1 functions. The Ck smoothness of the
limit manifold is obtained as a consequence of the second step which can be proved
by checking the definition of k-normal hyperbolicity.

Let us consider a general family of the form

ẋ = f(x, ε) + εg(x, ε),

where, for some δ0 > 0, the system ẋ = f(x, δ) has a normally hyperbolic invariant
manifold for 0 < δ ≤ δ0. Kopell [8] studies a model equation that can be viewed as a
special case of this family. To apply the general continuation method just described,
she introduces an auxiliary family, which in our more general context would be

ẋ = f(x, δ) + εg(x, ε).

For this auxiliary system, if δ ∈ (0, δ0), then there is some ε(δ) > 0 such that, for
0 ≤ ε < ε(δ), the corresponding member of the auxiliary family has a normally
hyperbolic invariant manifold M(δ, ε). The idea is to fix some δ > 0 sufficiently
small so that continuation of normally hyperbolic invariant manifolds relative to the
parameter ε can be carried out all the way to ε = δ. If this continuation is possible,
then the member of the original family corresponding to ε = δ has an invariant
manifold.

In [8] (see also Wiggins [12, pp. 168–170]), a continuation theorem is stated for a
family of the type described above, but of a more special form. However, the strategy
of the proof of this theorem contains a gap. To describe the gap it is not necessary to
consider the precise form of the equations or the hypotheses of the theorem. Rather,
we will explain the problem in a general framework. Indeed, let us consider the
parameter space of a family of differential equations and the subspaceN corresponding
to family members with a normally hyperbolic invariant manifold. Suppose that a
path in N approaches the boundary of N . Also, consider the supremum of each
of the Lyapunov-type numbers ν and σ taken individually over the orbits of each
normally hyperbolic invariant manifold in a continuous family. It is perhaps natural
to suspect that the limit of at least one of these suprema converges to the number
1 as the path approaches the boundary. In other words, one might assume that the
normal hyperbolicity is lost at the boundary only in this manner. However, this is not
always the case. In fact, there may be paths for which the corresponding continuous
family of normally hyperbolic invariant manifolds has both Lyapunov-type numbers
uniformly bounded below one but the family of invariant manifolds does not converge
to a C1 manifold. Thus, in a continuation argument, it is required to prove that
smooth invariant manifolds exist over the entire continuation interval and that all
these manifolds are normally hyperbolic. The following example clearly shows why
both requirements must be satisfied.
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392 CARMEN CHICONE AND WEISHI LIU

Consider a planar system

ẋ = f(x)

with a homoclinic loop at a hyperbolic saddle p whose eigenvalues α and β are such
that α+β < 0. In particular, the loop will be stable from the inside and the divergence
of the vector field f at p is negative. Now add a one parameter family of perturbations
g(x, ε) so that for −1 < ε < 0 there is a limit cycle Γ(ε) that limits on the loop as ε
approaches zero from the left and such that there is no limit cycle for ε > 0. If we
view Γ(ε) as an invariant manifold, then the corresponding Lyapunov-type number
σ(ε) is identically zero. Also, the Lyapunov-type number ν(ε) of Γ(ε) is exactly its
Floquet multiplier; that is,

ν(ε) = e
1

T (ε)

∫ T (ε)

0
divf(γ(t,ε)) dt

,

where t 7→ γ(t, ε) is a periodic solution corresponding to the limit cycle and T (ε) is its
period. Since the periodic solution spends most of its time near the hyperbolic saddle
point, the Lyapunov-type number ν(ε) approaches eα+β as ε → 0−. In particular,
both Lyapunov-type numbers are bounded above by some number that is strictly less
than one. But, the limit of the hyperbolic limit cycles is the nonsmooth homoclinic
loop. Thus, in general, it is not enough to obtain uniform estimates on the Lyapunov-
type numbers to ensure that a family of normally hyperbolic invariant manifolds can
be continued.

4. Statement of main result. In this section we will state the continuation
theorem that will be proved in this paper.

To obtain an invariant manifold for system (2.9) using a perturbation argument,
it is useful to have an unperturbed system with an invariant manifold. As given,
system (2.9), even after rescaling time, is degenerate in the limit as µ approaches
zero. To remedy this problem, we will change coordinates and also rescale time so as
to obtain a suitable perturbation problem.

Let us suppose that µ 6= 0. Introduce new coordinates ` = µρ̂, τ = µ2ϕ, and a
slow time s = µ2t, and note that system (2.9) is equivalent to the system

ρ̂′ = p(σ)ρ̂+ r(σ) + µ2q(σ)ρ̂2 + µR̂(µρ̂, σ, τ/µ2, µ),

σ′ = λρ̂+ g(σ) + µ2νρ̂2 + µŜ(µρ̂, σ, τ/µ2, µ),

τ ′ = 1,(4.1)

where the symbol “ ′ ” denotes differentiation with respect to s. Let us also use the
new coordinate ρ := λρ̂+ g(σ) to express system (4.1) in the form

ρ′ = ∆(σ)ρ+ Λ(σ) + µR(ρ, σ, τ/µ2, µ),

σ′ = ρ+ µS(ρ, σ, τ/µ2, µ),

τ ′ = 1,(4.2)

where

Λ(σ) := λr(σ)− p(σ)g(σ), ∆(σ) := p(σ) + g′(σ),(4.3)

and the functions R and S are 2π periodic in σ and 2πmµ2/Ω periodic in τ .
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CONTINUATION OF INVARIANT TORI 393

Let us write σ ∈ S1 to indicate that σ is an angular variable in the interval
0 ≤ σ ≤ 2π with the end points identified. Also, we will use the following hypothesis.

Hypothesis 1. For each σ ∈ S1, Λ(σ) 6= 0 and ∆(σ) < 0.
Theorem 4.1. If k ≥ 2 is an integer, Hypothesis 1 holds, and |µ| > 0 is suffi-

ciently small, then system (4.2) has a k-normally hyperbolic invariant torus.
We note that the k-normal hyperbolicity of the invariant torus in the conclusion

of Theorem 4.1 implies that the invariant torus is Ck; see [7]. Also, as an immediate
corollary of Theorem 4.1—just reverse the direction of time—the same conclusion
holds under the assumption that, for each σ ∈ S1, Λ(σ) 6= 0 and ∆(σ) > 0. Also, if
we assume that g(σ) ≡ 0, as in Theorem 2.1 and if we assume that r has no zeros as
in Hypothesis 1, then Theorem 4.1 is a generalization of Theorem 2.1. Indeed, the
inequalities required in Theorem 2.1 are all replaced by the requirement that p has
no zeros.

Finally, we mention that Theorem 4.1 is not valid if Hypothesis 1 is modified to
allow the function Λ to have zeros. In fact, to obtain an analogue of Theorem 4.1
in case Λ has zeros, additional restrictions must be imposed. The formulation of the
“right” hypotheses needed to prove an analogue of Theorem 4.1 in this case remains
an interesting open problem.

The main idea of our proof of Theorem 4.1 is to view system (4.2) as a perturbation
of the system

ρ′ = ∆(σ)ρ+ Λ(σ),

σ′ = ρ,

τ ′ = 1(4.4)

and to show that the unperturbed system (4.4) has a normally hyperbolic invariant
torus that continues to an invariant torus for system (4.2). We also note that the
invariant torus for system (4.4) is the suspension of a normally hyperbolic invariant
(simple closed) curve for the system

ρ′ = ∆(σ)ρ+ Λ(σ),

σ′ = ρ.(4.5)

5. Existence of an invariant curve. In this section we will prove that the
unperturbed system (4.5) has a normally hyperbolic invariant curve. More precisely,
we have the following theorem.

Theorem 5.1. If Hypothesis 1 holds, then the system (4.5) has a C∞ normally
hyperbolic invariant simple closed curve given as the graph of a C∞ function of the
angular variable.

There are several ways to prove Theorem 5.1. For example, a positively invariant
annulus can be constructed, and the existence of a limit cycle can be proved using the
Poincaré–Bendixson theorem. While the proof given below is more involved, it serves
to illustrate the continuation technique that will be used in our proof of the existence
of an invariant torus for system (4.1).

Our idea is to find a family of systems that includes system (4.5), to find a member
of the family that has a normally hyperbolic invariant manifold, and then to continue
this manifold through the family to the system (4.5).

Let us consider the family

ρ′ = ∆(σ)ρ+ εΛ(σ),

σ′ = ρ.(5.1)
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394 CARMEN CHICONE AND WEISHI LIU

We will use the next obvious lemma.
Lemma 5.2. If Hypothesis 1 holds and ε > 0, then system (5.1) has no rest

point.
Theorem 5.1 is an immediate consequence of the following lemma.
Lemma 5.3. If Hypothesis 1 holds for system (4.5), then system (5.1) has a C∞

normally hyperbolic invariant curve that is given as the graph of a C∞ function of the
angular variable for all ε ∈ [0, 1].

Proof. By Hypothesis 1, the function Λ does not vanish. Without loss of gener-
ality, we will assume that Λ(σ) > 0 for all σ. Also, by Hypothesis 1, the curve given
by {(ρ, σ) : ρ = 0} is a normally hyperbolic invariant manifold for the member of the
family (5.1) at ε = 0. Following the strategy discussed in section 3 let us consider the
set A of all ε in the closed unit interval such that for all ε′ ∈ [0, ε] the corresponding
member of the family (5.1) has a normally hyperbolic invariant closed curve γε given
as the graph of a C∞ function hε of the angular variable. We will show that A is
nonempty, open, and closed. This implies A = [0, 1].

Because the invariant curve given by {(ρ, σ) : ρ = 0} is normally hyperbolic for
the family member at ε = 0, we have that 0 ∈ A and therefore A is not empty.
The fact that A is open follows from the persistence results for normally hyperbolic
invariant manifolds. Let us define ε∗ = supA. To complete the proof we will show
that ε∗ ∈ A; that is, A is closed.

Consider the family of curves

Γ(κ) := {(ρ, σ) ∈ R2 : ρ− κΛ(σ) = 0},

where κ ∈ R. Note that the curve Γ(κ) is the graph of a periodic function of the
angular variable. Thus, it separates the phase cylinder given by (ρ, σ) ∈ R × S1.
Moreover, on Γ(κ), by a straightforward computation, it follows that the dot product
of the gradient of the function (ρ, σ) 7→ ρ− κΛ(σ) and the vector field corresponding
to the differential equation Eε is given by(−κ2Λ′(σ) + κ∆(σ) + ε

)
Λ(σ).(5.2)

For ε ∈ [ε∗/2, ε∗), there exists κ0 > 0 such that the coefficient of Λ(σ) in (5.2)
with κ = κ0 is positive for all σ. Hence, the vector field corresponding to Eε is
transverse to the curve Γ(κ0). Because the function Λ is positive, it follows that γε

lies above the curve Γ(κ0); that is, hε(σ) > κ0Λ(σ). Similarly, if ν ∈ R is sufficiently
large, then γε lies below the curve {(ρ, σ) : ρ = ν}. In particular, the set of functions
S := {hε : ε ∈ [ε∗/2, ε∗)} is uniformly bounded.

Using the invariance, the function hε satisfies the differential equation

hεσ(σ) = ∆(σ) + ε
Λ(σ)

hε(σ)
.(5.3)

Thus, we have that |hεσ| ≤ |∆(σ)| + ε∗/κ0 uniformly for ε ∈ [ε∗/2, ε∗), and, as a
result, the set S is equicontinuous in the C0 norm. By Arzela’s theorem, there is a
subsequence that converges to a continuous function hε∗ .

We claim that the graph of hε∗ is an invariant set for Eε∗ . To prove the claim,
let s 7→ (ρε(s, q), σε(s, q)) denote the solution of Eε such that σε(0, q) = q and
ρε(0, q) = hε(q), and let us suppose that hεn converges to hε∗ . If s ∈ R, then,
using the continuity of the flow with respect to parameters, we have that σεn(s, q)→
σε∗(s, q) and ρεn(s, q) → ρε∗(s, q). By passing to the limit as n → ∞ in the identity
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CONTINUATION OF INVARIANT TORI 395

ρεn(s, q) = hεn(σεn(s, q)), we have ρε∗(s, q) = hε∗(σε∗(s, q)). Thus, it follows that
the graph of hε∗ is an invariant set for Eε∗ . Because this invariant set is a single
orbit of the differential equation, it is C∞. Moreover, because the function ∆ is ev-
erywhere negative, this invariant set is normally hyperbolic—it is a hyperbolic limit
cycle.

6. An a priori estimate for perturbed manifolds. The following propo-
sition, which perhaps has independent interest, will play a key role in our proof of
Theorem 4.1. While the statement of this proposition is natural, we do not know if
it appears in the literature. Thus, we will give a complete proof in the appendix.

Proposition 6.1. Consider a smooth planar vector field

x′ = f(x)(6.1)

with a periodic solution t 7→ x(t, p) of period ω corresponding to the periodic orbit Γ.
If Γ is hyperbolic and asymptotically stable, that is,

b :=

∫ ω

0

trDf(x(t, p)) dt < 0,

then there exist a neighborhood N of Γ and a constant C > 0 such that for every
smooth function g : N → R2 for which the differential equation

x′ = f(x) + g(x)(6.2)

has an invariant set Γ̄ ⊂ N , we have the following a priori estimate:

sup{d(x,Γ) : x ∈ Γ̄} ≤ C‖g‖C0 ,

where ‖g‖C0 is the supremum norm over N and d denotes the usual distance between
sets.

Proposition 6.2. Consider a planar differential equation

x′ = f(x)

with a hyperbolic limit cycle Γ of period T > 0, and let τ be an angular variable
modulo T . If Γ is asymptotically stable, then there is a neighborhood N ⊂ R2 × R of
the corresponding invariant torus M for the system

x′ = f(x), τ ′ = 1

and a constant C > 0 such that for every smooth function g : N → R2, with g(x, τ +
T ) = g(x, τ) for each x ∈ R2 and all τ ∈ R, and for which the system

x′ = f(x) + g(x, τ), τ ′ = 1

has an invariant set M̄ ⊂ N , we have the a priori estimate

sup{d(x,M) : x ∈ M̄} ≤ C‖g‖C0 .D
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396 CARMEN CHICONE AND WEISHI LIU

7. Existence of invariant tori. In this section we will state our result on the
existence of an invariant torus for the systems (2.9) and (4.2) as well as the main
lemmas that we will use to prove it. In fact, we will prove the existence of invariant
tori for systems of the more general form

ρ′ = f(ρ, σ) + µR(ρ, σ, τ/µ2, µ),

σ′ = g(ρ, σ) + µS(ρ, σ, τ/µ2, µ),

τ ′ = 1,(7.1)

where |µ| > 0, where f , g, R, and S (redefined for this section) are all Cr functions
that are 2π-periodic functions of the angular variable σ, and where the functions
t 7→ R(ρ, σ, t, µ) and t 7→ S(ρ, σ, t, µ) are 2πm/Ω-periodic. For system (7.1), we view τ
as an angular variable modulo 2πmµ2/Ω and we let s denote the independent variable.
Note that the slow time system (4.1) equivalent to system (2.9) is a special case of the
differential (7.1). For a general discussion of integral manifolds for nonautonomous
systems, see [1], [6].

To state our main result for system (7.1), let us consider the corresponding un-
perturbed system

ρ′ = f(ρ, σ), σ′ = g(ρ, σ),(7.2)

and the following hypothesis.
Hypothesis 2. System (7.2) has an attracting hyperbolic limit cycle Γ that is

the graph of a function of the angular variable σ.
Theorem 7.1. If k is an integer such that 2 ≤ k ≤ r and the system (7.2)

satisfies Hypothesis 2, then, for sufficiently small |µ| > 0, system (7.1) has a k-
normally hyperbolic invariant manifold that is the graph of a function of the angular
variables σ and τ .

The proof of Theorem 7.1 is given in the remaining sections of this paper using
the lemmas that are stated below. Let us note at this point that it suffices to prove
Theorem 7.1 for the case µ > 0. The result for µ < 0 follows from the first case by
redefining the functions R and S in an obvious manner. Thus, we will consider only
the case µ > 0.

Let us consider the auxiliary family Eε,µ given by

ρ′ = f(ρ, σ) + εR(ρ, σ, τ/µ2, µ),

σ′ = g(ρ, σ) + εS(ρ, σ, τ/µ2, µ),

τ ′ = 1.(7.3)

Note that, by our assumption, the suspended system

ρ′ = f(ρ, σ),

σ′ = g(ρ, σ),

τ ′ = 1,(7.4)

where τ is viewed as a new angular variable modulo 2πmµ2/Ω, has a normally hyper-
bolic torus that is a graph over the two angular variables σ and τ . For our analysis we
will consider the torus as a submanifold of the phase cylinder C given by (ρ, σ, τ) ∈ R3,
where σ and τ are viewed as the angular variables defined above. Topologically, C is
the product of the real line with a two-dimensional torus.
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CONTINUATION OF INVARIANT TORI 397

For each µ > 0, let us denote by Aµ the maximal interval with left endpoint
at ε = 0 such that the system Eε,µ has a k-normally hyperbolic invariant manifold,
k ≥ 2, as defined in [7]; see also display (8.11), given as the graph of a Ck function
of the angular variables. Using the continuation strategy outlined in section 3, let us
note that, for each µ > 0, the set Aµ contains a nonempty relatively open interval with
left endpoint ε = 0. Moreover, if ε ∈ Aµ, then, by the general persistence results for
normally hyperbolic invariant manifolds, there is an open interval containing ε that
is contained in Aµ. Thus, Theorem 7.1 is an immediate consequence of the following
proposition.

Proposition 7.2. Suppose that µ > 0 and Aµ is the maximal interval with left
endpoint at ε = 0 such that the system Eε,µ has a k-normally hyperbolic invariant
manifold, k ≥ 2, that is the graph of a Ck function of the angular variables. If µ > 0
is sufficiently small and if ε∗ ≤ µ is the least upper bound of a relatively open interval
with left endpoint ε = 0 in Aµ, then ε∗ ∈ Aµ.

Proposition 7.2 is a consequence of the following three lemmas.

Lemma 7.3. With the hypotheses and notation of Proposition 7.2, the system
Eε∗,µ has an invariant manifold M(ε∗, µ) given as the graph of a C1 function of the
angular variables.

Lemma 7.4. If M(ε∗, µ) is the invariant manifold in Lemma 7.3, then it has an
invariant normal bundle.

Lemma 7.5. If M(ε∗, µ) is the invariant manifold in Lemma 7.3, then M(ε∗, µ)
is k-normally hyperbolic. In particular, M(ε∗, µ) is Ck and ε∗ ∈ Aµ.

8. Notation and preliminary results. Lemmas (7.3)–(7.5) will be proved in
the following sections. In this section we will define new notation and obtain some
preliminary results that will be used in all three proofs. For the remainder of this
section let us assume that µ > 0 and ε ≥ 0 are fixed, and that system (7.3) has
a normally hyperbolic invariant torus M := M(ε, µ) given as the graph of the C1

function hε of the angular variables.

8.1. Normal splitting and variational solutions. The general results for
normally hyperbolic invariant manifolds give the existence of an invariant splitting of
TMC, the tangent bundle of the phase cylinder C restricted to this normally hyperbolic
invariant torus, as a direct sum of the tangent bundle of the invariant torus M and
an invariant normal bundle.

For notational convenience, let us define new functions

F (ρ, σ, τ, µ, ε) := f(ρ, σ) + εR(ρ, σ, τ/µ2, µ),

G(ρ, σ, τ, µ, ε) := g(ρ, σ) + εS(ρ, σ, τ/µ2, µ),(8.1)

and let us suppose that the invariant torus M(ε, µ) is given as the graph of the function
(σ, τ) 7→ hε(σ, τ).

The vector field

X ε1 (σ, τ) :=

F (hε(σ, τ), σ, τ, µ, ε)
G(hε(σ, τ), σ, τ, µ, ε)

1

(8.2)

is clearly tangent to M(ε, µ). Also, as is easily seen by computing the tangents to
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398 CARMEN CHICONE AND WEISHI LIU

each curve on M(ε, µ) given by σ 7→ (hε(σ, τ), σ, τ) for some fixed τ , the vector field

X ε2 (σ, τ) :=

hεσ(σ, τ)
1
0

(8.3)

is tangent to M(ε, µ). Moreover, if ξ = (hε(σ, τ), σ, τ), then X ε1 (σ, τ) and X ε2 (σ, τ)
span the corresponding fiber TξM(ε, µ) of the tangent bundle of M(ε, µ).

To determine the contraction rates for the flow on the invariant torus M(ε, µ), we
must consider the solutions of the first variational equation for the system (7.3). If

s 7→ γε(s, q) := (hε(σε(s, q), τ(s)), σε(s, q), τ(s))(8.4)

is the solution of the system (7.3) with γε(0, q) = (hε(q, 0), q, 0), then the variational
equation along the solution s 7→ γε(s, q) is given byu′v′

w′

Fρ Fσ Fτ
Gρ Gσ Gτ
0 0 0

uv
w

 ,(8.5)

where the argument of each function in the system matrix is given by

(hε(σε(s, q), τ(s)), σε(s, q), τ(s), µ, ε).(8.6)

Proposition 8.1. The variational (8.5) along the solution (8.4) on the invariant
torus M(ε, µ) has two independent solutions given by

X1(s) := X ε1 (γε(s, q)), X2(s) := yε(s, q)X ε2 (γε(s, q)),(8.7)

where

yε(t, q) := exp

(∫ t

0

(Gρh
ε
σ +Gσ) ds

)
(8.8)

and the argument of F and G is given in display (8.6). Moreover, X1(s) and X2(s)
span the tangent space of the invariant torus at each point along the solution (8.4).

Proof. The solution X1(s) is just the evaluation of the vector field corresponding
to the base differential (7.3) along one of its integral curves. Thus, as is well known,
it is a solution of the variational equation.

To obtain the second solution, let us recall that the invariant torus is given as
a graph over the angular variables. In particular, the differential equation expressed
in the corresponding local coordinates—the projection (ρ, σ, τ) 7→ (σ, τ) restricted to
the graph is the coordinate map—is given by

σ′ = G(hε(σ, τ), σ, τ, µ, ε), τ ′ = 1.

The corresponding variational equation has the form

v′ = (Gρh
ε
σ +Gσ)v + (Gρh

ε
τ +Gτ )w, w′ = 0.

One of its solutions is given by

s 7→ (v(s), w(s)) = (yε(s, q), 0).
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CONTINUATION OF INVARIANT TORI 399

As ρ = hε(σ, τ) on the invariant torus, the corresponding solution of the variational
equation in the original coordinates is given by yε(s, q)X ε2 (γε(s, q))—substitute the
general base solution into the local coordinate representation and then differentiate
with respect to the initial condition.

In view of the fact that X ε1 and X ε2 are independent at each point of the manifold,
and by virtue of the fact that yε is a positive function, the two solutions X1(s) and
X2(s) are independent at each point along the solution γε.

Let Φε(s) denote the principal fundamental matrix solution of the variational
equation (8.5) at s = 0. By the general theory of normally hyperbolic invariant
manifolds, there is a normal bundle over the invariant torus M that is invariant under
Φε(s). Because, M has codimension one, the fiber dimension of the normal bundle is
one. Also, let us consider the family of cylinders given by

Ls := {(ρ, σ, τ) : τ = s},

and note that L := ∪{Ls : s ∈ R} is a foliation of the phase cylinder that is invariant
under the flow of system (7.3). Thus, it follows that L is also invariant for the varia-
tional equation, or equivalently, it is invariant under Φε(s). Because of the invariance
of this foliation and the normal hyperbolicity, the fiber of the invariant normal bundle
must be tangent to the leaf of this foliation that passes through the base point of
the fiber. Also, the normal bundle of the embedded torus is trivial. Thus, it has a
continuous nonzero section X ε0 . Let us define

X0(s) := X ε0 (γε(s, q)),(8.9)

where γε is the solution defined in display (8.4). We remark here that the invariant
normal bundle is required only to be continuous. In fact, in general it is not smooth.

To determine the growth rates required for the normal hyperbolicity, let us define

λ1(s) :=
|X1(s)|
|X1(0)| , λ2(s) :=

|X2(s)|
|X2(0)| , λ3(s) :=

|Φε(s)X0(0)|
|X0(0)| .(8.10)

If k is a positive integer, then the invariant torus M(ε, µ) is k-normally hyperbolic, as
defined in [7], provided that there are numbers β > 0 and c > 0 independent of the
choice of the solution on M(ε, µ) such that the following conditions are satisfied for
s ≥ 0:

λ3(s) ≤ ce−βs, λ3(s)

λk1(s)
≤ ce−βs, λ3(s)

λk2(s)
≤ ce−βs.(8.11)

8.2. A formula for λ3(s). The vector function s 7→ X2(s) defined in dis-
play (8.7) is a solution of the system (8.5). Define

X⊥2 (s) :=

0 −1 0
1 0 0
0 0 1

X2(s),

and note that there are smooth functions s 7→ a(s) and s 7→ b(s) such that

Φε(s)X⊥2 (0) = a(s)X2(s) + b(s)X⊥2 (s).
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400 CARMEN CHICONE AND WEISHI LIU

Moreover, it is not difficult to compute the following formulas:

b(s) =
|X2(0)|2
|X2(s)|2 exp

(∫ s

0

trB(t) dt

)
,

a′(s) =
b(s)

|X2(s)|2 (〈B(s)X2(s), X⊥2 (s)〉+ 〈B(s)X⊥2 (s), X2(s)〉),

a(0) = 0,(8.12)

where B(s) is the system matrix of the linear system (8.5).
By the above remarks, the vector X0(s) is in the span of the linearly independent

vectors X2(s) and X⊥2 (s). Thus, by an appropriate choice of the nonzero normal
bundle section X ε0 , there is a smooth function s 7→ α(s) such that

X0(s) = α(s)X2(s) +X⊥2 (s)(8.13)

and a smooth function s 7→ λ(s) such that

Φε(s)X0(0) = λ(s)X0(s).(8.14)

By substitution of the identity (8.13) into (8.14) and by using the independence of
X2 and X⊥2 , it follows that λ(s)α(s) = α(0) + a(s) and λ(s) = b(s). Hence, using the
definition given in display (8.10), and the formulas obtained in this section, we have
the following equalities:

λ3(s) = λ(s)
|X0(s)|
|X0(0)| =

( |X2(0)|2
|X2(s)|2 exp

(∫ s

0

trB(t) dt

))
(α2(s) + 1)1/2|X2(s)|
(α2(0) + 1)1/2|X2(0)|

=
|X2(0)|
|X2(s)|

(
α2(s) + 1

α2(0) + 1

)1/2

exp

(∫ s

0

trB(t) dt

)
.(8.15)

8.3. Derivative estimates. Under the assumptions that µ > 0 and the unper-
turbed system (7.2) have a normally hyperbolic invariant manifold given as a graph
of a function of the angular variables, we know that Eε,µ, for sufficiently small ε > 0,
has a normally hyperbolic invariant manifold given as the graph of a function hε of
the angular variables. In this section, we will determine some a priori estimates on
the size of the derivatives of hε. We will first state and prove two lemmas. The first
reduces the main estimate from the vector to the scalar case, while the second lemma
gives certain properties of an operator equation for one of the derivatives that must
be estimated.

8.3.1. A reduction lemma. The next lemma shows that it suffices to estimate
the partial derivative hσ on a Poincaré section.

Lemma 8.2. Suppose that µ > 0 and ε∗ > 0 and that Eε,µ has an invariant
manifold given as the graph of the function hε of the angular variables for 0 ≤ ε <
ε∗ ≤ µ. If there is a constant C1 > 0 such that, for all angles σ and τ , the following
estimates hold:

|hε(σ, τ)− h0(σ, τ)| < C1ε, |hεσ(σ, 0)− h0
σ(σ, 0)| < C1ε,

then for µ sufficiently small there is a constant C2 > 0 such that

|hεσ(σ, τ)− h0
σ(σ, τ)| < C2ε.
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CONTINUATION OF INVARIANT TORI 401

Proof. Let us suppose first that ẋ = F (x, ε) is a smooth family of differential
equations. If xε and x0 are solutions of the members of this family corresponding to
their superscripts, then by an application of Gronwall’s inequality there is a constant
K > 0 such that

|xε(t)− x0(t)| < KeK|t|(|xε(0)− x0(0)|+ ε|t|).(8.16)

Let s 7→ φ(s, (ρ, σ, τ), ε) be the solution of the system Eε,µ with the initial condi-
tion φ(0, (ρ, σ, τ), ε) = (ρ, σ, τ), and note that the solution γε defined in display (8.4)
is given by γε(s, q) = φ(s, (hε(q, 0), q, 0), ε). For each pair of angles p and τ with
0 ≤ τ < 2πmµ2/Ω, there is a unique angle qε defined by the equation

(hε(qε, 0), qε, 0) = φ(−τ, (hε(p, τ), p, τ), ε).(8.17)

By an application of the inequality (8.16) to the family of solutions (8.17), if µ is
sufficiently small, then there is a constant K1 > 0, that does not depend on the choice
of τ , such that

|hε(qε, 0)− h0(q0, 0)|+ |qε − q0| ≤ K1(|hε(p, τ)− h0(p, τ)|+ ε)

≤ K1(C1 + 1)ε.(8.18)

In particular, there is a constant K2 > 0 such that

|qε − q0| ≤ K2ε.(8.19)

By inverting the flow in (8.17), we have that γε(τ, qε) = (hε(p, τ), p, τ). Using an
obvious modification of the notation as well as the result of Proposition 8.1, let us
consider the first variational equation for Eε,µ along the solution s 7→ γε(s, qε) and
the solution of this variational equation that is given by

Xε
2(s, qε) = yε(s, qε)

hεσ(σε(s, qε), τ(s))
1
0

 .

Note that its initial condition and its value at s = τ are given by

Xε
2(0, qε) =

hεσ(qε, 0)
1
0

 , Xε
2(τ, qε) = yε(τ, qε)

hεσ(p, τ)
1
0

 .

By an application of the inequality (8.16) to this family of solutions of the variational
equation, if µ is sufficiently small, then there is a constant K2 > 0 such that

|yε(τ, qε)hεσ(p, τ)− y0(τ, q0)h0
σ(p, τ)|+ |yε(τ, qε)− y0(τ, q0)|

≤ K2(|hεσ(qε, 0)− h0
σ(q0, 0)|+ ε)

≤ K2(|hεσ(qε, 0)− h0
σ(qε, 0)|+ |h0

σ(qε, 0)− h0
σ(q0, 0)|+ ε).

Moreover, by the hypothesis of the lemma, by inequality (8.19), and by the fact that
h0
σ is Lipschitz, we have that there is a constant K3 > 0 such that

|yε(τ, qε)hεσ(p, τ)− y0(τ, q0)h0
σ(p, τ)|+ |yε(τ, qε)− y0(τ, q0)| ≤ K3ε.(8.20)
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402 CARMEN CHICONE AND WEISHI LIU

In particular, both summands on the left-hand side of the last inequality are bounded
above by K3ε.

By a reverse triangle law estimate starting with the fact that the quantity

|(yε(τ, qε)hεσ(p, τ)− yε(τ, qε)h0
σ(p, τ))− (y0(τ, q0)h0

σ(p, τ)− yε(τ, qε)h0
σ(p, τ))|

is bounded above by K3ε, by the inequality (8.20), and the fact that h0
σ is uniformly

bounded, we find that there is a constant K4 > 0 such that

|yε(τ, qε)||hεσ(p, τ)− h0
σ(p, τ)| ≤ K3ε+ |h0

σ(p, τ)||yε(τ, qε)− y0(τ, q0)| ≤ K4ε.(8.21)

By a second reverse triangle law estimate, we have that

|yε(τ, qε)| = |y0(τ, q0) + (yε(τ, qε)− y0(τ, q0))| ≥ |y0(τ, q0)| −K3µ.

Also, if we take µ > 0 sufficiently small, then there is a constant K5 > 0 such that
|yε(τ, qε)| > K5. The result follows from this fact and the inequality (8.21).

8.3.2. The estimates. Some of the most important estimates that are required
for the proof of our main result are given in the next lemma.

Lemma 8.3. Suppose Hypothesis 2 holds for the unperturbed system (7.2). There
is a number µ > 0 and a constant C > 0 such that if ε∗ is as in Proposition 7.2, then

|hε − h0|C0 < Cε, |hεσ − h0
σ|C0 ≤ Cε, |hετ |C0 ≤ Cε

for 0 ≤ ε < ε∗.
Proof. We will show that, if µ > 0 is sufficiently small, then there is a constant

C > 0 such that |hεσ−h0
σ|C0 ≤ Cε. By Lemma 8.2, it suffices to find a constant C > 0

such that, for all q ∈ S1,

|hεσ(q, 0)− h0
σ(q, 0)| ≤ Cε.

To prove this inequality, let us recall Proposition 8.1, and note that the function
given by s 7→ (hεσ(σε(s, q), τ(s))yε(s, q), yε(s, q)) is a solution of the “subsystem” of
system (8.5) given by

u′ = (fρ + εRρ)u+ (fσ + εRσ)v,

v′ = (gρ + εSρ)u+ (gσ + εSσ)v.(8.22)

If Ψε(s, q) := (ψεij(s, q))2×2 is the principal fundamental matrix solution of (8.22) at
s = 0, then (

hεσ(σε(s, q), τ(s))yε(s, q)
yε(s, q)

)
= Ψε(s, q)

(
hεσ(q, 0)

1

)
.

Therefore, we have

hεσ(σε(s, q), τ(s)) =
ψε11(s, q)hεσ(q, 0) + ψε12(s, q)

ψε21(s, q)hεσ(q, 0) + ψε22(s, q)
.(8.23)

Because the second angular argument τ will often be set to τ = 0, in the re-
mainder of the proof we will suppress the second argument in expressions involving
the functions hε and their partial derivatives whenever ε > 0 and the second angular
argument is set to τ = 0. In addition, the function h0 is constant with respect to τ ;
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CONTINUATION OF INVARIANT TORI 403

thus we will always suppress its second angular argument and write h0 as a function
of the first angular variable only.

If s 7→ (ρ(s), σ(s)) is a solution of the unperturbed system

ρ′ = f(ρ, σ), σ′ = g(ρ, σ),

then the vector function

s 7→ (f(h0(σ), σ), g(h0(σ), σ))

is a solution of the corresponding variational equation (8.22) with ε = 0. Using the
fact that ρ(s) = h0(σ(s)) on the invariant manifold, and differentiating with respect
to s, we find that

f(h0(σ(s)), σ(s)) = h0
σ(σ(s))g(h0(σ(s)), σ(s)).

Thus, the function s 7→ (h0
σ(σ(s))g(h0(σ(s)), σ(s)), g(h0(σ(s)), σ(s))) is a solution of

the variational equation. Using the fundamental matrix solution Ψε defined after
display (8.22), we find that

ψ0
21(s, q)h0

σ(q) + ψ0
22(s, q) =

g(h0(σ(s, q)), σ(s, q))

g(h0(q), σ(q))
.

In view of the hypothesis that σ′ does not vanish, there is a number M0 > 0 such
that |ψ0

21(s, q)h0
σ(q) + ψ0

22(s, q)| ≥M0 for every s ∈ R and q ∈ S1.
By hypothesis, the unperturbed normally hyperbolic invariant manifold for E0,µ

is the suspension of an attracting hyperbolic limit cycle. In particular, the charac-
teristic multiplier of the limit cycle is negative. Using the fact that the determinant
of the fundamental matrix solution of the variational equation is proportional to the
exponential of the integral of the divergence of the vector field evaluated along the
limit cycle, it follows that there is some T0 > 0 such that, for t ≥ T0, we have the
inequality det Ψ0(t, q) ≤ (1/4)M2

0 . If, in addition, 0 < µ2 < Ω/(2πm), then there is a
positive integer n such that T0 ≤ 2πmnµ2/Ω < T0 + 1. For definiteness, let n = n(µ)
denote the smallest such integer, and define

T := T (µ) = 2πmnµ2/Ω.(8.24)

While T will vary as µ > 0 is made sufficiently small so that new requirements are
satisfied, the final value of T is an integer multiple of the period of the perturbation
terms in the corresponding differential equation Eε,µ, the value of T is bounded above
and below, and T approaches T0 as µ decreases toward zero.

If we set s = T in (8.23), then

hεσ(p) =
ψε11(T, qε)hεσ(qε) + ψε12(T, qε)

ψε21(T, qε)hεσ(qε) + ψε22(T, qε)
,(8.25)

where qε is defined by the relation

p = σε(T, qε).(8.26)

Choose a bounded neighborhood N of the graph of h0 and the corresponding
constant C0 > 0 as in Proposition 6.2. Also, choose r0 > 0 so small that if |hε−h0|C0 <
r0, then the graph of hε is in N , and note that

K := sup

{
|R(ρ, σ, τ/µ2, µ)|+ |S(ρ, σ, τ/µ2, µ)| : (ρ, σ, τ) ∈ N, 0 < µ2 <

Ω

2πm
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404 CARMEN CHICONE AND WEISHI LIU

is finite—the functions R and S are the perturbation terms of the system Eε,µ in
display (7.3).

Choose r > 0 sufficiently small so that, for T0 ≤ T < T0 + 1,

|d21ξ + d22| > 2

3
M0, |detD − det Ψ0(T, q)| < 1

8
M2

0(8.27)

whenever ξ, a real number, D, a 2× 2 real matrix, and q ∈ S1 are such that

|ξ − h0
σ(q)| < r, |D −Ψ0(T, q)| < r.

The existence of r with the required properties follows from the continuity of the map
(u, v, w) 7→ |uv+w|, the continuity of the determinant function, and the compactness
of S1.

If we choose µ > 0 so small that 0 < µ2 < Ω/2πm and C0Kµ < r0, then, by
Proposition 6.2,

|hε − h0|C0 < C0Kε(8.28)

as long as |hε − h0|C0 < r0. Thus, we have that the inequality (8.28) holds for
0 ≤ ε < ε∗. Also, by an application of the Gronwall estimate (8.16) applied to the
solutions γε(−s, p) and γ0(−s, p) defined in display (8.4), we find that there is a
constant C1 > 0 such that

|hε(qε)− h0(q0)|+ |qε − q0| ≤ C1(|hε(p)− h0(p)|+ ε).

In view of the estimate in display (8.28), we conclude that there is a constant C2 > 0
such that |qε − q0| ≤ C2ε. By an application of the estimate (8.16) to the solutions
s 7→ Ψε(s, qε) and s 7→ Ψ0(s, q0) of the variational equation, we have, for some C3 > 0,
the inequality

|Ψε(T, qε)−Ψ0(T, q0)| ≤ C3(|qε − q|+ ε).

To obtain the estimates in the statement of the lemma, we will first prove the
following claim.

Claim. There exists a constant C > 0 such that, for 0 ≤ ε < ε∗, if |hεσ−h0
σ|C0 ≤ r,

then |hεσ − h0
σ|C0 ≤ Cε.

Proof of claim. Fix p ∈ S1, and let qε be as in (8.26). Using this notation and
the identity (8.25), we have

|hεσ(p)− h0
σ(p)| ≤

∣∣∣∣ψε11(T, qε)hεσ(qε) + ψε12(T, qε)

ψε21(T, qε)hεσ(qε) + ψε22(T, qε)
− ψε11(T, qε)h0

σ(qε) + ψε12(T, qε)

ψε21(T, qε)h0
σ(qε) + ψε22(T, qε)

∣∣∣∣
+

∣∣∣∣ψε11(T, qε)h0
σ(qε) + ψε12(T, qε)

ψε21(T, qε)h0
σ(qε) + ψε22(T, qε)

− ψ0
11(T, q0)h0

σ(q0) + ψ0
12(T, q0)

ψ0
21(T, q0)h0

σ(q0) + ψ0
22(T, q0)

∣∣∣∣
:= I + II.

To estimate the quantities I and II, let us consider, for real numbers ξ and 2× 2
matrices D = (dij), the function u : R× R4 → R defined by

u(ξ,D) =
d11ξ + d12

d21ξ + d22
.
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CONTINUATION OF INVARIANT TORI 405

Using this function, we have

I = |u(y,Ψε(T, qε))− u(x,Ψε(T, qε))|,
II = |u(x,Ψε(T, qε))− u(z,Ψ0(T, q0))|,

where x := h0
σ(qε), y := hεσ(qε), and z := h0

σ(q).
To estimate I, apply the mean value theorem to the function ξ 7→ u(ξ,D) and

use the fact that

uξ(ξ,D) =
detD

d21ξ + d22

to obtain the inequality

I ≤
∣∣∣∣ det Ψε(T, qε)

ψε21(T, qε)ξ + ψε22(T, qε)

∣∣∣∣ |hεσ(qε)− h0
σ(qε)|

for some ξ between hεσ(qε) and h0
σ(qε). Let us note that |ξ − h0

σ(qε)| < r. Also, if
µ > 0 is sufficiently small, then |Ψε(T, qε) − Ψ0(T, q0)|C0 < r. Thus, if we use the
inequalities (8.27) together with a triangle law estimate for the term containing the
determinant, then we find that I ≤ λ|hεσ − h0

σ|C0 for λ = 27/32 < 1.
To estimate II, let us note that the function u is Lipschitz on the set

{(ξ,D) : ξ = h0
σ(q), D = Ψε(T, q), q ∈ S1, 0 ≤ ε < ε∗}.

In particular, there is a constant L1 > 0 such that

II ≤ L1(|h0
σ(qε)− h0

σ(q0)|+ |Ψε(T, qε)−Ψ0(T, q0)|).
Using the fact that h0 is Lipschitz on S1, we conclude that there exist constants L > 0
and C4 > 0 such that

II ≤ L(|qε − q0|+ |Ψε(T, qε)−Ψ0(T, q0)|) ≤ C4ε.

Thus,

|hεσ(p)− h0
σ(p)| ≤ C4ε+ λ|hεσ(q)− h0

σ(q)| ≤ C4ε+ λ|hεσ − h0
σ|C0 ,

and, as a result,

|hεσ − h0
σ|C0 ≤ C4

1− λε.

This completes the proof of the claim.
In addition to the restrictions on the size of µ already made, let us also require

that µ < r/C, where C is the constant appearing in the claim. Define

ε0 = sup{ε′ : 0 ≤ ε′ < ε∗, |hεσ − h0
σ|C0 ≤ r for ε ∈ [0, ε′]}.

We will show that ε0 = ε∗. Suppose not, then ε0 < ε∗. For ε < ε0, |hεσ − h0
σ|C0 ≤ r

and, hence, |hεσ − h0
σ|C0 ≤ Cε by the claim. Since ε0 < ε∗, the graph of hε0 is

normally hyperbolic by the definition of ε∗. Passing to the limit as ε → ε0, we have
|hε0σ − h0

σ|C0 ≤ Cε0 < r. This contradicts the fact that ε0 is the supremum; hence
ε0 = ε∗. Now, by the claim, we conclude that |hεσ − h0

σ|C0 ≤ Cε for 0 ≤ ε < ε∗.
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406 CARMEN CHICONE AND WEISHI LIU

Let us now estimate hετ . Note first that the invariance of the graph of the function
hε is equivalent to the identities

hεσσ
′ + hετ = f(hε, σ) + εR(hε, σ, τ/µ2, µ),

σ′ = g(hε, σ) + εS(hε, σ, τ/µ2, µ).(8.29)

If we suppose that hε(σ, τ) = h0(σ) + εH(σ, τ, ε) and substitute this expression into
the relation (8.29), then we obtain the equation

(g(h0 + εH, σ) + εS(h0 + εH, σ, τ/µ2, µ))Hσ +Hτ

=
1

ε
(f(h0 + εH, σ)− h0

σg(h0 + εH, σ))− h0
σS +R.

Finally, using the estimate

|Hσ|C0 =
1

ε
|hεσ − h0

σ|C0 ≤ C1

and the relation f(h0, σ) = h0
σg(h0, σ), we conclude that there is a constant C > 0,

that is independent of ε, such that |Hτ |C0 ≤ C; that is, |hετ |C0 ≤ Cε.
Let us note that we will eventually have to verify estimates as in display (8.11). As

a step in this direction, let us first consider λ3 and note, from the formula (8.15), that
the growth estimate requires an asymptotic estimate of the norm of X2(s). By the
definition of X2(s), it is clear that this norm estimate is determined by the behavior
of the function s 7→ yε(s, q) defined in display (8.8). To determine this behavior, we
must estimate the integral ∫ s

0

(Gρh
ε
σ +Gσ) dt.(8.30)

The precise integral estimate that we will require is the content of the next lemma.

Lemma 8.4. If, for all s ≥ 0, the function s 7→ G(hε(σ(s), τ(s)), σ(s), τ(s), ε) has
no zeros, and if µ > 0 is sufficiently small, then there is a constant C > 0 such that

yε(s, q) = exp

(∫ s

0

(Gρh
ε
σ +Gσ) dt

)
≥ e−Ce−Cεs.

Proof. Note that

d

ds
ln |G(hε(σ(s), τ(s)), σ(s), τ(s), ε)| = 1

G
(Gρh

ε
σσ
′ +Gρh

ε
τ +Gσσ

′ +Gτ )

= Gρh
ε
σ +Gσ +

Gρh
ε
τ

G
+
Gτ
G
.

After integration over the interval [0, s] and a rearrangement, we obtain the identity∫ s

0

(Gρh
ε
σ +Gσ) dt = ln

∣∣∣G(hε(σ(s), τ(s)), σ(s), τ(s), ε)

G(hε(σ(0), τ(0)), σ(0), τ(0), ε)

∣∣∣
−
∫ s

0

Gρh
ε
τ

G
dt−

∫ s

0

Gτ
G

dt.(8.31)
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CONTINUATION OF INVARIANT TORI 407

Recall the definition (8.1) of G, and note that

d

ds

(S
G

)
=
Sρh

ε
σσ
′ + Sρh

ε
τ + Sσσ

′ + 1
µ2Sτ

G

−
S(Gρh

ε
σσ
′ +Gρh

ε
τ +Gσσ

′ + ε
µ2Sτ )

G2
.

Using this identity and an easy computation, we find that∫ s

0

Gτ
G

dt =
ε

µ2

∫ s

0

Sτ
G
dt

= ε

(
S(hε(σ(s), τ(s)), σ(s), τ(s), ε)

G(hε(σ(s), τ(s)), σ(s), τ(s), ε)
− S(hε(σ(0), τ(0)), σ(0), τ(0), ε)

G(hε(σ(0), τ(0)), σ(0), τ(0), ε)

)
− ε
∫ s

0

Sρh
ε
σG+ Sρh

ε
τ + SσG

G
dt

+ ε

∫ s

0

SGρh
ε
σG+ SGρh

ε
τ + SGσG

G2
dt+

ε2

µ2

∫ s

0

SSτ
G2

dτ.(8.32)

Note that, because their integrands are bounded, all terms except the last one on
the right-hand side of the final equality of display (8.32) are O(ε). To estimate the
last term, let us differentiate the function S2/G2 with respect to s, and rearrange the
resulting identity, to obtain the following expression:

SSτ
G2

=
µ2

2

d

ds

(S2

G2

)
− µ2S

Sρh
ε
σG+ Sρh

ε
τ + SσG

G2

+ µ2S2Gρh
ε
σG+Gρh

ε
τ +GσG

G3
+ εS2 Sτ

G3
.

If we integrate both sides of the last identity over the interval [0, s], then all the
integrands are bounded. In view of this fact and the inequality ε ≤ µ, it follows that

ε2

µ2

∫ s

0

SSτ
G2

dt = sO(ε).

To estimate the term ∫ s

0

Gρh
ε
τ

G
dt

that appears in the expression (8.31) for the integral∫ s

0

(Gρh
ε
σ +Gσ) dt,

use the inequality |hετ |C0 ≤ Cε obtained in Lemma 8.3.

In summary, we have | ∫ s
0

(Gρh
ε
σ +Gσ) dt| ≤ C1 +C2εs for some constants C1 > 0

and C2 > 0 both independent of ε.

Lemma 8.5. With the hypotheses of Lemma 8.3, if µ > 0 is sufficiently small,
then there is a constant C > 0 such that |hεσσ|C0 ≤ C.

Proof. The proof of the lemma is similar to the proof of Lemma 8.3.
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408 CARMEN CHICONE AND WEISHI LIU

Recall that hεσ satisfies the “fixed point equation” in display (8.23), and choose
µ > 0 sufficiently small so that T (µ) is as in the proof of Lemma 8.3. If we set
p = σ(T, qε) and s = T , then we have the identity

hεσ(p) =
ψε11(T, qε)hεσ(qε) + ψε12(T, qε)

ψε21(T, qε)hεσ(qε) + ψε22(T, qε)
.(8.33)

By a direct computation of the derivative of both sides of (8.33) with respect to p,
we obtain

hεσσ(p) =

dqε

dp

(ψε21h
ε
σ(qε) + ψε22)2

((
ψε21

d

dq
ψε11 − ψε11

d

dq
ψε21

)
(hεσ(qε))2

+

(
ψε22

d

dq
ψε11 − ψε12

d

dq
ψε21 + ψε21

d

dq
ψε12 − ψε11

d

dq
ψε22

)
hεσ(qε)

+ (ψε11ψ
ε
22 − ψε12ψ

ε
21)hεσσ(qε) + ψε22

d

dq
ψε12 − ψε12

d

dq
ψε22

)
,(8.34)

where the functions ψεij , i, j = 1, 2, on the right-hand side of the equality are evaluated
at (T, qε).

Using the identity p = σε(T, qε) and differentiating with respect to p, we have
that dqε/dp = 1/σεq(T, q

ε). Moreover, using the solution (8.4) and Proposition 8.1, it
is not difficult to see that σεq(T, q) = yε(T, q), where, yε is defined in Proposition 8.1.
If µ > 0 is sufficiently small so that hεσ is sufficiently close to h0

σ, the matrix Ψε(T, ·)
is sufficiently close to Ψ0(T0, ·), and the partial derivative Ψε

q is uniformly bounded,
then, for all q and all T = T (µ), we have

|det Ψε(T, q)| < 1

4
M2

0 , |(ψε21(T, q)hεσ(q) + ψε22(T, q))2| > 1

3
M0,

where M0 > 0 is the constant appearing in Lemma 8.3. Thus, using Lemma 8.4, the
absolute value of the coefficient

dqε

dp

(ψε21h
ε
σ(qε) + ψε22)2

(ψε11ψ
ε
22 − ψε12ψ

ε
21)(8.35)

will be uniformly bounded less than one.
To estimate the supremum of hσσ, we proceed in the following order: We take

the absolute value of each side of (8.34), apply the triangle law to the right-hand side,
take the supremum of the right-hand side over qε, take the supremum of the left-hand
side over p, move the term containing the norm of hσσ on the right-hand side to the
left-hand side, collect terms, and then divide both sides by the coefficient of the norm
of hσσ. This coefficient is not zero because of the uniform bound on the absolute value
of the quantity in display (8.35). Thus, we obtain a uniform bound on the norm of
hσσ.

9. Proof of Lemma 7.3. If µ > 0 is chosen as in Lemma 8.3 and ε∗ > 0 is
such that, for 0 ≤ ε < ε∗, the system Eε,µ has a k-normally hyperbolic invariant
manifold, k ≥ 2, that is the graph of a Ck function hε of the angular variables,
then, by Lemmas 8.3 and 8.5, the subset S := {hε : 0 ≤ ε < ε∗} in the space of
C2 functions of the angular variables is uniformly bounded. As a result, the set S is
equicontinuous in the C1 norm. By Arzela’s theorem, if we choose a sequence of real
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CONTINUATION OF INVARIANT TORI 409

numbers increasing to the limit ε∗, then we can extract a subsequence {εk} such that
the corresponding sequence {hεk} converges to a C1 function hε∗ . An easy argument,
as in Lemma 5.3, shows that the graph of hε∗ is invariant under the flow of Eε∗,µ, as
required.

10. Proof of Lemma 7.4. If µ > 0 is chosen as in Lemma 8.3, the number
ε∗ > 0 is such that, for 0 ≤ ε < ε∗, the system Eε,µ has a k-normally hyperbolic
invariant manifold that is the graph of a Ck function hε of the angular variables, and
if Eε∗,µ has a C1 invariant manifold M(ε∗, µ) given as the graph of the function hε∗

of the angular variables, then we must show that M(ε∗, µ) has a continuous invariant
normal bundle.

It suffices to construct a normal bundle over the curve

q 7→ (hε∗(q, 0), q, 0)(10.1)

that is invariant with respect to some iterate of the stroboscopic linearized Poincaré
map; that is, the map given by moving a point on the slice {(ρ, σ, τ) : τ = 0} for-
ward by the flow to time 2πmµ2/Ω. To prove this reduction, note that the linearized
Poincaré map is two-dimensional at each point and that the tangent line to the invari-
ant torus is invariant under the map. Also, for a two-dimensional linear map with an
invariant line, if an iterate of the map has two distinct invariant lines, then so does the
map. Finally, if there is a normal bundle over the curve, then a normal bundle over
the torus is constructed by moving the vectors in the given normal bundle forward by
the linearized flow.

We will construct a normal bundle over the curve (10.1). For this, let us consider
the function space

Γ := {α : S1 → R : α ∈ C0}.
Also, for α ∈ Γ, let us define a vector at the point (hε∗(q, 0), q, 0) as follows:

X0(q) := α(q)X2(q) +X2(q)⊥,

where X2(q) := X2(hε∗(q, 0), q, 0). We will show that there is some choice for α ∈ Γ
so that X0 generates an invariant normal bundle over the curve (10.1).

If n is an integer, T := 2πmnµ2/Ω, and p = σε∗(T, q), then X0 generates an
invariant bundle if and only if

λε∗(T, q)X0(p) = (α(q) + aε∗(T, q))X2(p) + bε∗(T, q)X2(p)⊥,(10.2)

where λε∗ , aε∗ , and bε∗ are defined in subsection 8.2 for the system corresponding to
ε∗. Using these definitions, we find that (10.2) holds if and only if

α(p) =
α(q) + aε∗(T, q)

bε∗(T, q)
.

Define T < 0 analogous to the definition in display (8.24) with the property that,
for 0 ≤ ε < ε∗, there is some η such that

bε(T ) := sup{bε(T, q) : q ∈ S1} > η > 1.

Passing to the limit as ε approaches ε∗ from below and using the fact that hε converges
to hε∗ , we find that

bε∗(T ) := sup{bε∗(T, q) : q ∈ S1} ≥ η > 1.
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410 CARMEN CHICONE AND WEISHI LIU

Also, let us define Λ : Γ→ Γ by

(Λα)(p) =
α(q) + aε∗(T, q)

bε∗(T, q)
.

A fixed point of Λ corresponds to the desired invariant normal bundle. But, by a
simple computation, we have the inequality

|(Λα2)(p)− (Λα1)(p)| ≤ 1

η
|α2(q)− α1(q)|.

Thus, Λ is a contraction on the complete metric space Γ and Λ has a unique fixed
point, as required.

11. Proof of Lemma 7.5. We will show that the C1 invariant manifold given as
the graph of the function hε∗ is k-normally hyperbolic under the assumption that this
manifold has an invariant normal splitting. For this, we must verify the inequalities
given in display (8.11).

Consider λ3(s), and recall formula (8.15). Let us suppose that a bounded neigh-
borhood N as in Proposition 6.2 is chosen, the invariant tori are given by the graphs
of the functions hε of the angular variables, and µ > 0 is sufficiently small so that the
invariant manifold given by hε∗ is in N . Then, by Lemma 8.3, the functions hε satisfy
the inequality

|hε − h0| < Cε(11.1)

for 0 ≤ ε ≤ ε∗.
Let s → γε∗(s, q, τ) = (hε∗(σε∗(s, q, τ), s + τ), σε∗(s, q, τ), s + τ) be the solution

of (7.3) corresponding to ε∗ with the initial condition (hε∗(q, τ), q, τ), let B be the
system matrix of the linearization of system (7.3) along the solution γε, and note that

trB(γε∗(t, q, τ)) = fρ + gσ + ε(Rρ + Sσ).

Let ω be the minimal period of the periodic solution of the unperturbed sys-
tem (7.2), let (q̄, τ̄) be an arbitrary choice of the angular variables, and define

b :=

∫ ω

0

trB(γ0(s, q̄, τ̄)) ds.

The quantity b is a Floquet exponent of the periodic orbit that is independent of the
choice of the angular variables. By an application of Gronwall’s inequality (8.16),
there is a constant C1 > 0 such that, for 0 ≤ s ≤ ω,

|γε∗(s, q̄, τ̄)− γ0(s, q̄, τ̄)| ≤ C1ε∗.

Hence, there is a constant C2 > 0 such that

| trB(γε∗(s, q̄, τ̄))− trB(γ0(s, q̄, τ̄))| ≤ C2ε∗

and ∫ ω

0

trB(γε∗(s, q̄, τ̄)) ds ≤
∫ ω

0

trB(γ0(s, q̄, τ̄)) ds+ C2ε∗ω = b+ C2ε∗ω.
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CONTINUATION OF INVARIANT TORI 411

An arbitrary s ≥ 0 can be expressed in the form s = `ω+ r with 0 ≤ r < ω. Also,
for k = 1, 2, . . . , `, let us define

qk := σε∗(kω, q, τ), τk := kω + τ.

There are constants C3 > 0 and C4 > 0 such that∫ s

0

trB(γε∗(t, q, τ)) dt =
`−1∑
k=0

∫ (k+1)ω

kω

trB(γε∗(t, q, τ)) dt

+

∫ `ω+r

`ω

trB(γε∗(t, q, τ)) dt

=
`−1∑
k=0

∫ ω

0

trB(γε∗(t, qk, τk)) dt

+

∫ r

0

trB(γε∗(t, q`, τ`)) dt

≤`(b+ C2ε∗ω) + C3 ≤
(
b

ω
+ C2ε∗

)
s+ C4.

By Proposition 8.1 and Lemma 8.4, there are constants C5 > 0 and C6 > 0 such
that

|X2(s)| ≥ C6e
−µC5s.(11.2)

Also, by Lemma 7.4, the function α corresponding to the normal splitting at ε∗ is
bounded as a periodic function over the invariant manifold.

Taking the above estimates into account and using formula (8.15), there is a

constant c > 0 such that λ3(s) ≤ ce( bω+cµ)s. If, in addition, µ > 0 is sufficiently small,
then −β := b

ω + cµ < 0, and we have the desired estimate:

λ3(s) ≤ ce−βs(11.3)

for all s ≥ 0.
The function |X1(s)| is uniformly bounded below, in fact |X1(s)| ≥ 1. Thus, if k

is a positive integer, then using the estimate (11.3), there is some c1 > 0 such that

λ3(s)

λk1(s)
≤ c1e−βs.

Using the estimates (11.2) and (11.3), we have that

λ3(s)

λk1(s)
≤ c1
Ck6

e−s(β−µkc1).

Thus, if µ > 0 is sufficiently small, there are constants c2 > 0 and β1 > 0 such that

λ3(s)

λk2(s)
≤ c2e−β1s.

Finally, using the general smoothness result in [7], it follows that the C1 manifold
given as the graph of hε∗ with invariant splitting and with the hyperbolic estimates
just proved is in fact a Ck manifold, as required.
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412 CARMEN CHICONE AND WEISHI LIU

12. Appendix. In this appendix we will prove Propositions 6.1 and 6.2.

Proof of Proposition 6.1. We will construct a family of C1 curves S+
r and S−r ,

r ∈ (0, 1] for system (6.1) such that the following properties are satisfied:

(i) The curves S+
r and S−r lie in the exterior and interior domains separated by

Γ, respectively, and S+
r (resp., S−r ) together with Γ encloses an annulus.

(ii) The curves S+
r and S−r are transverse to the vector field f .

(iii) There is a constant C0 > 0 that is independent of r such that sup{d(x,Γ) :
x ∈ S±r } ≤ C0r.

(iv) If C±f (r) := minx∈S±r {〈f(x), n(x)〉}, where n(x) is the inward (resp., outward)

unit normal vector to S+
r (resp., S−r ) at x ∈ S±r and the angle brackets denote the

usual inner product, then C±f (r) ≥ C1r for some constant C1 > 0 independent of r.

Let us assume for the moment that the above construction is possible and use it
to complete the proof of the proposition.

For this, let N ⊂ R2 be the annulus such that ∂N = S+
1 ∪ S−1 . If ‖g‖C0 is small

enough, then there exists an r0 ∈ (0, 1] such that ‖g‖C0 = C1r0. Using this fact, we
have, for r > r0 and x ∈ S±r , that

〈f(x) + g(x), n(x)〉 ≥ C±f (r)− ‖g‖C0 ≥ C1r − C1r0 > 0.

Thus, for r > r0, the set S+
r ∪ S−r encloses a positively invariant annulus for the

system (6.2) in R2. It follows that Γ̄ is contained in this domain, and, by the estimates
given in (iii) and (iv), that d(x,Γ) ≤ C0r0 = C0

C1
‖g‖C0 for every x ∈ Γ̄, as required.

The proof will be completed by constructing a family of curves that satisfies
properties (i)–(iv).

The constructions and the verifications of properties (i)–(iv) for the families S+
r

and S−r are similar. We will give the proof for S+
r only. Also, in the arguments to

follow we will suppress the superscript “+.”

Step 1. Construction of Sr.

Since the periodic solution Γ is asymptotically stable, there exists a neighborhood
of Γ, contained in the stable manifold of Γ, with an invariant foliation with respect
to the system (6.1) whose leaves are curves. Let Ms(p) denote the leaf through the
point p ∈ Γ. Also, let t 7→ x(t, ξ) denote the solution of the differential equation (6.1)
with x(0, ξ) = ξ, and let Φ(t, ξ) denote the principal fundamental matrix solution at
t = 0 of the linearized system along this solution.

Fix a point q1 ∈ Ms(p) that lies in the exterior domain separated by Γ, and
let q0 := x(ω, q1) be the point where the solution through q1 first returns to Ms(p).
Choose a smooth function q : [0, 1] → Ms(p) ⊂ R2 such that the derivative of q,
including the left-hand and right-hand derivatives at the end points of its domain,
does not vanish, and with the additional properties that q(0) = q0, q(1) = q1, and

q̇(0+) = Φ(ω, q1)q̇(1−).(12.1)

The last requirement can be met because, by the invariance of the foliation,

Φ(ω, q1)Tq1M
s(p) = Tq0M

s(p).

Let t : [0, 1]→ [0, ω] be the linear transformation given by t(λ) = λω, and consider
the curve S defined parametrically by λ 7→ x(t(λ), q(λ)). Let us note that S is closed.
Indeed, since t(0) = 0 and t(1) = ω, we have that x(t(0), q(0)) = x(t(1), q(1)) = q0.
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CONTINUATION OF INVARIANT TORI 413

For each λ ∈ (0, 1), define T (λ) to be the tangent vector to S at the point
x(t(λ), q(λ)) given by

T (λ) =
d

ds
x(t(s), q(s))

∣∣
s=λ

= ωẋ(t(λ), q(λ)) + xξ(t(λ), q(λ))q̇(λ)

= ωf(x(t(λ), q(λ))) + Φ(t(λ), q(λ))q̇(λ).(12.2)

To check that S is a C1 curve, it suffices to show that T (0+) = T (1−). But, this
equality follows from the identities (12.1) and (12.2).

Let φs denote the flow associated with the system (6.1). The family of curves Sr,
for r ∈ (0, 1], is defined as follows: Sr := φs(S), where s = (ω/b) ln r.

Step 2. Verification of properties (i)–(iv) for Sr.

Property (i) is obvious from the construction.

To check property (ii), we will show first that the curve S is transverse to the
vector field given by f . Because the vector q̇(λ) is tangent to Ms(p) at q(λ), this
vector is not parallel to the vector f(q(λ)). Using the fact that

Φ(t(λ), q(λ))f(q(λ)) = f(x(t(λ), q(λ))),

it follows that the vectors Φ(t(λ), q(λ))q̇(λ) and f(x(t(λ), q(λ))) are independent at
x(t(λ), q(λ)). In view of this fact and the formula (12.2) for the vector T (λ) tangent
to S, it is clear that f is everywhere transverse to S.

Next, for each point Q ∈ Sr, there exists a point P ∈ S such that φs(P ) = Q.
Therefore, TQSr = Dφs(P )TPS and f(Q) = Dφs(P )f(P ). Since TPS is transverse
to f(P ), we have that TQSr is transverse to f(Q). This proves property (ii).

For the proof of property (iii), let us note that, due to the hyperbolicity of the orbit
Γ, there exists some C0 > 0 such that, for each point x0 ∈ N , we have d(φs(x0),Γ) ≤
C0e

bs/ω. Hence, for each Q ∈ Sr, if we take the point P ∈ S such that φs(P ) = Q,
then

d(Q,Γ) = d(φs(P ),Γ) ≤ C0e
bs
ω = C0r,

and the constant C0 depends only on the “size” of the neighborhood N .

Finally, let us prove property (iv). To this end, note that for each point Q ∈ Sr,
there is a corresponding point P ∈ S such that Q = φs(P ) and some λ such that
P = x(t(λ), q(λ)). Also, with an abuse of notation, let T (Q) denote the vector in
TQSr given by T (Q) = Dφs(P )T (λ), and define n(Q) to be the inward unit normal
vector to Sr at Q.

Using the easily verified identity 〈f(Q), n(Q)〉|T (Q)| = |f(Q)×T (Q)|, let us note
that if r ∈ (0, 1], then

C+
f (r) = min

Q∈Sr

{ |f(Q)× T (Q)|
|T (Q)|

}
.

Also, recall formula (12.2), and note that

T (Q) = Dφs(P )T (λ) = ωΦ(s, P )f(P ) + Φ(s, P )Φ(t(λ), q(λ))q̇(λ)

= ωf(Q) + Φ(s+ t(λ), q(λ))q̇(λ).

Moreover, we have that |f(Q)× T (Q)| = |f(Q)× Φ(s+ t(λ), q(λ))q̇(λ)|.
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414 CARMEN CHICONE AND WEISHI LIU

By an initial choice of the point q1 sufficiently close to p ∈ Ms(p), there is a
number K ≥ 1 such that

1

K
exp

(∫ s+t(λ)

0

trA(τ) dτ

)
≤|Φ(s+ t(λ), q(λ))q̇(λ)|≤K exp

(∫ s+t(λ)

0

trA(τ) dτ

)
,

where A(t) = Df(x(t, p)).

Let v(Q) denote the unit tangent vector at Q to the stable fiber through Q.
Because Φ(s+ t(λ), q(λ))q̇(λ) is tangent to the stable fiber through Q, we have that

|f(Q)× T (Q)| = |f(Q)× Φ(s+ t(λ), q(λ))q̇(λ)|

≥ 1

K
|f(Q)× v(Q)| exp

(∫ s+t(λ)

0

trA(τ) dτ

)
,

and there is a constant C2 > 0 such that

|T (Q)| ≤ ω|f(Q)|+ |Φ(s+ t(λ), q(λ))q̇(λ)|

≤ ω|f(Q)|+K exp

(∫ s+t(λ)

0

trA(τ) dτ

)
≤ ω|f(Q)|+ C2.

Therefore, using the above estimates and the fact that the quantities |f | and |f(Q)×
v(Q)| are bounded below over N , there is a constant C3 > 0 such that

|f(Q)× T (Q)|
|T (Q)| ≥ |f(Q)× v(Q)|

K(ω|f(Q)|+ C2)
exp

(∫ s+t(λ)

0

trA(τ) dτ

)
≥ C3 exp

(∫ s

0

trA(τ) dτ

)
.

If m is a nonnegative integer and 0 ≤ λ < ω is such that s = mω + λ, then there
are constants C1 > 0 and C4 > 0 such that

C3 exp

(∫ s

0

trA(τ) dτ

)
= C3 exp

(∫ mω+λ

0

trA(τ) dτ

)
≥ C4 exp

(∫ mω

0

trA(τ) dτ

)
= C4e

bm = C4e
bs−bλ
ω ≥ C1r.

Thus, we have proved that Cf (r) ≥ C1r.

Proof of Proposition 6.2. If the families of curves S+
r and S−r are “suspended” to

tori in the space R2×R, then the corresponding tori can be shown to satisfy conditions
analogous to the conditions (i)–(iv) that are defined in the proof of Proposition 6.1.
The verification of each condition is essentially identical to the corresponding proof
in Proposition 6.1; we omit the details.

Acknowledgments. Finally, we thank the referees for carefully reading the orig-
inal version of this paper. Their comments led to many improvements.
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