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GEOMETRIC SINGULAR PERTURBATION APPROACH
TO STEADY-STATE POISSON–NERNST–PLANCK SYSTEMS∗

WEISHI LIU†

Abstract. Boundary value problems of a one-dimensional steady-state Poisson–Nernst–Planck
(PNP) system for ion flow through a narrow membrane channel are studied. By assuming the ratio of
the Debye length to a characteristic length to be small, the PNP system can be viewed as a singularly
perturbed problem with multiple time scales and is analyzed using the newly developed geometric
singular perturbation theory. Within the framework of dynamical systems, the global behavior is
first studied in terms of limiting fast and slow systems. It is rather surprising that a complete set of
integrals is discovered for the (nonlinear) limiting fast system. This allows a detailed description of
the boundary layers for the problem. The slow system itself turns out to be a singularly perturbed
one, too, which indicates that the singularly perturbed PNP system has three different time scales. A
singular orbit (zeroth order approximation) of the boundary value problem is identified based on the
dynamics of limiting fast and slow systems. An application of the geometric singular perturbation
theory gives rise to the existence and (local) uniqueness of the boundary value problem.
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1. Introduction. Poisson–Nernst–Planck (PNP) systems serve as basic elec-
trodiffusion equations modeling, for example, ion flow through membrane channels,
and transport of holes and electrons in semiconductors (see [1, 2, 11, 14] and references
therein). In the context of ion flow through a membrane channel, the flow of ions is
driven by their concentration gradients and by the electric field modeled together by
the Nernst–Planck equations, and the electric field is in turn governed by the ion
concentrations through the Poisson equation. To motivate the one-dimensional PNP
system to be studied, we give a brief account of the modeling. We will be inter-
ested in flow of two types of ions through a narrow membrane channel. For practical
purposes, the narrow membrane channel through which ions flow is tubelike with a
small aspect ratio and, in this regard, it is natural to approximate the channel as a
one-dimensional object (see, e.g., [1, 2]). Now consider flow of two types of ions, S1

and S2, with valences α > 0 and −β < 0, passing through an ion channel viewed as
a line segment. Let x be the coordinate along the channel normalized from x = 0 to
x = 1. Denote the concentrations of S1 and S2 at location x and at time t by c1(t, x)
and c2(t, x). Then the electric potential φ(t, x) in the channel at time t is determined
by the Poisson equation

∂2φ

∂x2
= − 1

ε2
(αc1 − βc2),

where the parameter ε2 is related to the ratio of the Debye length to a characteristic
length scale. The flux densities, J̄1 and J̄2, of the two ions contributed from the
concentration gradients of the two ions and the electric field satisfy the Nernst–Planck
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SINGULARLY PERTURBED PNP SYSTEMS 755

equations

D1

(
∂c1
∂x

+ αc1
∂φ

∂x

)
= −J̄1, D1

(
∂c2
∂x

− βc2
∂φ

∂x

)
= −J̄2,

where D1 and D2 are the diffusion constants of ions S1 and S2 relative to the mem-
brane channel, together with the conservation of mass

∂c1
∂t

+
∂J̄1

∂x
= 0,

∂c2
∂t

+
∂J̄2

∂x
= 0.

Combining the above equations, we obtain the one-dimensional PNP system as a
simplified model for flow of two ions through a narrow membrane channel:

ε2
∂2φ

∂x2
= −(αc1 − βc2),

∂c1
∂t

+
∂J̄1

∂x
= 0,

∂c2
∂t

+
∂J̄2

∂x
= 0,

D1

(
∂c1
∂x

+ αc1
∂φ

∂x

)
= − J̄1, D1

(
∂c2
∂x

− βc2
∂φ

∂x

)
= −J̄2.

(1)

To understand the asymptotic behavior that is most relevant from a physical point
of view, the first step is to study the steady-state problem. On one hand, steady-state
solutions are among those that are responsible for the global structure of the full
system and, on the other hand, they often represent asymptotic states of solutions
of general initial conditions. In this work, we study boundary value problems of the
one-dimensional steady-state PNP system. The corresponding system is

ε2
d2φ

dx2
= −(αc1 − βc2),

dJ1

dx
= 0,

dJ2

dx
= 0,

dc1
dx

+ αc1
dφ

dx
= −J1,

dc2
dx

− βc2
dφ

dx
= −J2,

(2)

where J1 = J̄1/D1 and J2 = J̄2/D2, and the boundary conditions are

φ(0) = v0, c1(0) = L1, c2(0) = L2,

φ(1) = 0, c1(1) = R1, c2(1) = R2.
(3)

Many mathematical works have been done on the existence, uniqueness, and
qualitative properties of boundary value problems even for high dimensional systems,
and algorithms have been developed toward numerical approximations (see, e.g., [5, 6,
13, 7]). Under the assumption that ε � 1, the problem can be viewed as a singularly
perturbed system. Typical solutions of singularly perturbed systems exhibit different
time scales; for example, boundary and internal layers (inner solutions) evolve at
fast pace and regular layers (outer solutions) vary slowly. For the boundary value
problems (2) and (3), there are two boundary layers, one at each end. Physically,
near boundaries x = 0 and x = 1, the potential function φ(x) and the concentration
functions c1(x) and c2(x) exhibit a large gradient or a sharp change. In [2], for α = β =
1, the boundary value problem was studied using the method of matched asymptotic
expansions as well as numerical simulations, which provide a good quantitative and
qualitative understanding of the problem.

We also treat the problem as a singularly perturbed one by assuming ε � 1
but for general α and β. Our approach uses the newly developed geometric singular
perturbation theory (see, e.g., [4, 8, 10, 12]). The basic ideas behind this theory for
boundary value problems are
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756 WEISHI LIU

(i) to derive, based on different time scales of the system, various limiting systems
for ε = 0 and examine their dynamical structures;

(ii) to construct a singular orbit (zeroth order approximation) consisting of or-
bits of limiting systems, which include boundary layers, regular layers, and,
sometimes, internal layers;

(iii) to show that there are true solutions near the singular orbit for ε > 0.

Since limiting systems essentially have lower order than the full system, it is often
easier to study which make (i) useful. Understanding the dynamics of limiting subsys-
tems allows one to carry out (ii). The most difficult part is the task (iii). It requires
us to investigate the interaction between the fast and slow dynamics. A successful
type of results is called the exchange lemma (see, e.g., [8, 10, 15, 12]). Its objective is
to track the smooth configuration of an invariant manifold as it passes regions over-
lapping different time scales. For boundary value problems, two invariant manifolds,
say, ML and MR, will be tracked: ML will be the trace of one boundary under the
flow, and MR will be the trace of the other boundary. The existence of a solution for
ε > 0 is then reduced to the nontrivial intersection of ML and MR. This is where the
exchange lemma comes in to play the crucial role. This approach provides not only a
construction of a limiting solution but also a direct verification of the validity of the
limiting solution.

The rest of the paper is organized as follows. Section 2 contains three subsections.
In section 2.1, the PNP system (2) is rewritten as a singularly perturbed system of first
order equations, and the boundary value problem is converted to a connecting problem.
Two systems, slow and fast systems, with different scales are first identified according
to different time scales, and some general aspects of dynamical system theory are laid
out for the boundary value problem. The boundary layer behavior governed by the
limiting fast system is studied in section 2.2. It is rather surprising that a complete set
of integrals is discovered for the nonlinear limiting fast system which allows a detailed
study of the boundary layer behavior. (The physical meanings of the integrals remain
unclear.) The regular layers governed by the slow flow are analyzed in section 2.3. It
turns out that the slow system itself is a singularly perturbed one which is examined
using again the geometric singular perturbation theory. In section 3, we construct a
singular orbit of the boundary value problem and apply the exchange lemma to show
the existence and uniqueness of a solution near the singular orbit. A derivation of the
integrals of the fast system is given in section 4 as an appendix.

2. A dynamical system framework.

2.1. A basis of geometric singular perturbation theory. We will recast
the singularly perturbed PNP system into a system of first order equations. This
singularly perturbed system corresponds to the slow scale which is suitable for under-
standing dynamics within the membrane channel. A fast scale system can be derived
through a change of scale of the independent variable x, which can be used to cap-
ture the sharp boundary behavior. Slow and fast systems of the singularly perturbed
PNP system are equivalent for ε �= 0, but their limits are not: they provide comple-
mentary limiting information for the full system. We begin with a dynamical system
formulation of the singularly perturbed PNP system (2).

Denote derivatives with respect to x by overdot symbols and introduce

u = εφ̇, v = βc2 − αc1, w = α2c1 + β2c2, and τ = x.
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SINGULARLY PERTURBED PNP SYSTEMS 757

System (2) becomes

εφ̇ =u, εu̇ = v, εv̇ = uw − ε(βJ2 − αJ1),

εẇ =αβuv + (β − α)uw − ε(α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1.

(4)

System (4) will be treated as a dynamical system with the phase space R
7, and the

independent variable x will be viewed as time. The boundary condition (3) becomes

φ(0) = v0, v(0) = βL2 − αL1, w(0) = α2L1 + β2L2, τ(0) = 0,

φ(1) = 0, v(1) = βR2 − αR1, w(1) = α2R1 + β2R2, τ(1) = 1.
(5)

Formulation of high order equations into dynamical systems of first order equa-
tions is not unique. For the boundary value problem considered in this paper, two
issues need particular attention. One is toward the derivative of φ(x). Since φ(x) is
expected to have large derivatives near the boundaries, the introduction of u = εφ̇
seems natural. The introduction of a new variable τ = x is a special treatment for
boundary value problems. The small price paid is the addition of an extra dimension
with trivial dynamics to the phase space. The apparent advantage is that, to find a
solution of the boundary value problem, one needs only an orbit from one boundary
to the other without worrying how much time it takes the orbit to move from one side
to the other: it is automatically 1 since, as a component of the orbit, τ = x will vary
from 0 to 1. The change of variables from c1 and c2 to v and w is motivated purely
from the analysis point of view.

Observe that by setting ε = 0 in system (4), we get u = v = 0. The set Z0 = {u =
v = 0} is called the slow manifold which supports the regular layer of the boundary
value problem. The regular layer will not satisfy all conditions in (5) if βL2−αL1 �= 0
or βR2−αR1 �= 0, and this defect has to be remedied by boundary layers. To examine
boundary layer behavior, we will now derive a system, the fast system, with a time
scale different from that of (4). This will be achieved through the following rescaling
of time (independent variable) for dependent variables:

Φ(ξ) = φ(εξ), U(ξ) = u(εξ), V (ξ) = v(εξ), W (ξ) = w(εξ),

Ii(ξ) =Ji(εξ), and T (ξ) = τ(εξ).

Note that capital letters for same dependent variables are used to indicate merely
different time scales. In terms of ξ, we obtain the fast system of (4):

Φ′ =U, U ′ = V, V ′ = UW − ε(βI2 − αI1),

W ′ =αβUV + (β − α)UW − ε(α2I1 + β2I2),

I ′1 = 0, I ′2 = 0, T ′ = ε,

(6)

where the prime symbol denotes the derivative with respect to the variable ξ. The
limiting fast system at ε = 0 is

Φ′ =U, U ′ = V, V ′ = UW, W ′ = αβUV + (β − α)UW,

I ′1 = 0, I ′2 = 0, T ′ = 0.
(7)

The slow manifold Z0 is precisely the set of equilibria of (7).
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758 WEISHI LIU

Now let BL and BR be the subsets of R
7 defined, respectively, by

BL ={φ = v0, v = βL2 − αL1, w = α2L1 + β2L2, τ = 0},
BR ={φ = 0, v = βR2 − αR1, w = α2R1 + β2R2, τ = 1}.

(8)

The boundary value problem is then equivalent to the following connecting problem:
finding a solution of (4) from BL to BR.

For ε > 0, let M ε
L be the union of all forward orbits of (4) starting from BL and

let M ε
R be the union of all backward orbits starting from BR. To obtain the existence

and (local) uniqueness of a solution for the connecting problem, it thus suffices to
show M ε

L and M ε
R intersect transversally. The intersection is exactly the orbit of

a solution of the boundary value problem, and the transversality implies the local
uniqueness. The strategy is to obtain a singular orbit and track the evolution of M ε

L

and M ε
R along the singular orbit. As discussed in the introduction, a singular orbit

will be a union of orbits of subsystems of (4) with different time scales.
The boundary layers will be two orbits of (7): one from BL to Z0 in forward time

along the stable manifold of Z0 and the other from BR to Z0 in backward time along
the unstable manifold of Z0. The two boundary layers will be connected by a regular
layer on Z0, which is an orbit of a limiting system of (4). The next two subsections
are devoted to the study of boundary layers and regular layers.

2.2. Fast dynamics and boundary layers. We start with the study of bound-
ary layers governed by system (7). This system has many invariant structures that
are useful for characterizing the global dynamics.

The slow manifold Z0 = {U = V = 0} consisting entirely of equilibria of sys-
tem (7) is a five-dimensional manifold of the phase space R

7. For each equilibrium
z = (Φ, 0, 0,W, I1, I2, T ) ∈ Z0, the linearization of system (7) has five zero eigenvalues
corresponding to the dimension of Z0, and two eigenvalues in directions normal to
Z0. The latter two eigenvalues and their associated eigenvectors are given by

λ± = ±
√
W and n± =

(
(±

√
W )−1, 1,±

√
W,±(β − α)

√
W, 0, 0, 0

)τ

.(9)

Thus, every equilibrium has a one-dimensional stable manifold and a one-dimensional
unstable manifold. The global configurations of the stable and unstable manifolds
will be needed for the boundary layer behavior. For any constants I∗1 , I∗2 , and T ∗, the
set N = {I1 = I∗1 , I2 = I∗2 , T = T ∗} is a four-dimensional invariant subspace of the
phase space R

7.
Surprisingly, system (7) possesses a complete set of integrals with which the dy-

namics can be fully analyzed; in particular, the stable and unstable manifolds can be
characterized and the behavior of boundary layers can be described in detail.

Proposition 2.1. (i) System (7) has a complete set of six integrals given by

H1 = W − (β − α)V − αβ

2
U2, H2 = Φ − ln |W + αV |

β
,

H3 = |W + αV |α|W − βV |β , H4 = I1, H5 = I2, and H6 = T,

where the argument of Hi’s is (Φ, U, V,W, I1, I2, T ).
(ii) The stable and unstable manifolds W s(Z0) and Wu(Z0) of Z0 are character-

ized as follows:

W s(Z0) = ∪{W s(z∗) : z∗ ∈ Z0} and Wu(Z0) = ∪{Wu(z∗) : z∗ ∈ Z0}
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SINGULARLY PERTURBED PNP SYSTEMS 759

and, for z∗= (Φ∗, 0, 0,W ∗, I∗1 , I
∗
2 , T

∗)∈Z0, a point z = (Φ, U, V,W, I1, I2, T )∈W s(z∗)∪
Wu(z∗) if and only if

H1(z) = W ∗, H2(z) = Φ∗ − lnW ∗

β
, H3(z) = (W ∗)α+β , Ii = I∗i , T = T ∗.

(iii) The stable manifold W s(Z0) intersects BL transversally at points with

U = −sgn (βL2 − αL1)

√
2αβ(L1 + L2) − 2(α + β)(αL1)

β
α+β (βL2)

α
α+β

αβ
(10)

and arbitrary I1 and I2, where sgn is the sign function. The unstable manifold Wu(Z0)
intersects BR transversally at points with

U = sgn (βR2 − αR1)

√
2αβ(R1 + R2) − 2(α + β)(αR1)

β
α+β (βR2)

α
α+β

αβ
(11)

and arbitrary I1 and I2. Let NL = BL ∩W s(Z0) and NR = BR ∩Wu(Z0). Then,

ω(NL) =

{(
v0 +

1

α + β
ln

αL1

βL2
, 0, 0, (α + β)(αL1)

β
α+β (βL2)

α
α+β , I1, I2, 0

)}
,

α(NR) =

{(
1

α + β
ln

αR1

βR2
, 0, 0, (α + β)(αR1)

β
α+β (βR2)

α
α+β , I1, I2, 1

)}

for all I1 and I2.
Proof. The statement (i) can be verified directly (see section 4 for a derivation

of H3). The statement (ii) is a simple consequence of (i) together with the fact that
Φ(ξ) → Φ∗, W (ξ) → W ∗, U(ξ) → 0, and V (ξ) → 0 as ξ → ∞ for the stable manifold
and as ξ → −∞ for the unstable manifold.

For the statement (iii), we present only the proof regarding the intersection of
W s(Z0) and BL. Suppose

z0 = (Φ0, U0, V 0,W 0, I0
1 , I

0
2 , 0) = (v0, U

0, βL2 − αL1, α
2L1 + β2L2, I

0
1 , I

0
2 , 0)

is a point in BL ∩W s(Z0). Then, using the integrals H1, H2, and H3, the solution
z(ξ) = (Φ(ξ), U(ξ), V (ξ),W (ξ), I0

1 , I
0
2 , 0) of system (7) with initial condition z(0) = z0

satisfies

H1(z(ξ)) =W (ξ) − (β − α)V (ξ) − αβ

2
U2(ξ) = A,

H2(z(ξ)) = Φ(ξ) − ln |W (ξ) + αV (ξ)|
β

= B,

H3(z(ξ)) = |W (ξ) + αV (ξ)|α|W (ξ) − βV (ξ)|β = C

for some constants A, B, and C, and for all ξ. Since U(ξ) → 0 and V (ξ) → 0 as
ξ → +∞, W (+∞) = A from H1(z(ξ)) = A, and hence, C = Aα+β from H3(z(ξ)) = C.
Now using the equations H3(z(0)) = C = Aα+β and H2(z(0)) = B, we have

A = (α + β)(αL1)
β

α+β (βL2)
α

α+β , B = v0 −
ln ((α + β)βL2)

β
.
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760 WEISHI LIU

Then, from H1(z(0)) = A and H2(z(∞)) = B, one has

U0 = −sgn (V 0)

√
2(αβ(L1 + L2) −A)

αβ
and Φ(+∞) = v0 +

1

α + β
ln

αL1

βL2
.

The choice of the sign for U0 comes from the consideration that the stable eigenvector
n− in (9) has U and V components with opposite signs. Thus, BL and W s(Z0)
intersect at the points with U = U0 given above, and all I1 and I2. If NL = BL ∩
W s(Z0), then ω(NL) = {(Φ(+∞), 0, 0,W (+∞), I1, I2, 0)}. The above formulas for
Φ(+∞) and W (+∞) = A give the desired characterization of ω(NL). Lastly, since
the stable manifold is completely characterized, one can compute its tangent space
at each intersection point to verify the transversality of the intersection. It is slightly
complicated but straightforward. We will omit the detail here.

Part (iii) of this result implies that the boundary layer on the left end will be an
orbit of (7) from (v0, UL, βL2 − αL1, α

2L1 + β2L2, I1, I2, 0) ∈ BL to the point

zL =

(
v0 +

1

α + β
ln

αL1

βL2
, 0, 0, (α + β)(αL1)

β
α+β (βL2)

α
α+β , I1, I2, 0

)
∈ Z0,

where UL is given by the display (10) and I1 and I2 are arbitrary at this moment,
and that on the right end will be a backward orbit of (7) from the point (0, UR, βR2−
αR1, α

2R1 + β2R2, I1, I2, 1) ∈ BR to the point

zR =

(
1

α + β
ln

αR1

βR2
, 0, 0, (α + β)(αR1)

β
α+β (βR2)

α
α+β , I1, I2, 1

)
∈ Z0,

where UR is given by the display (11) and I1 and I2 are arbitrary at this moment. It
turns out that there is a unique pair of numbers I1 and I2 so that the corresponding
points zL and zR can be connected by a regular layer solution on Z0. The regular
orbit together with the two boundary layer orbits provides the singular orbit.

Remark 2.1. The integrals H2 and H3 imply that

H̃2 = Φ +
ln |W − βV |

α

is also an integral which can be viewed as the symmetric part to H2.
To find the explicit expressions of the boundary layers from BL and BR to Z0,

there are certain technical difficulties. But for some special cases, for example, α = β,
or α = 2 and β = 1, or α = 1 and β = 2, the difficulty can be overcome. In particular,
our results for the case α = β = 1 agree with those in [2], and we provide the detail
below for demonstration.

Corollary 2.2. If α = β = 1, then the expressions of the solutions from BL

and BR to Z0 can be explicitly given.
Proof. We will derive the solution from BL to Z0 for general α and β first. Let

r = W +αV and s = W −βV . Then, rαsβ = Aα+β , where A is as in Proposition 2.1,
W = (βr + αs)/(α + β), and V = (r − s)/(α + β). Using the equations in (7), one
gets

r′ = ±
√

2β

α(α + β)
r

√
αr + βA

α+β
β r−

α
β − (α + β)A.
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SINGULARLY PERTURBED PNP SYSTEMS 761

The technical difficulty mentioned above for general α and β is the integration of this
equation. Once r is found, the rest can be explicitly solved. The equation can be
integrated for the cases mentioned above. We now carry out the rest of the analysis
for α = β = 1.

Without loss of generality, we assume L2 > L1. Then, A = 2
√
L1L2 and

r′ = −
√
r(r − 2

√
L1L2).

Solving the equation and using r(0) = W (0) + V (0) = 2L2, one gets

r =
A(1 + ce−

√
Aξ)2

(1 − ce−
√
Aξ)2

, where c =
L

1/4
2 − L

1/4
1

L
1/4
2 + L

1/4
1

.

Thus,

s =
A2

r
=

A(1 − ce−
√
Aξ)2

(1 + ce−
√
Aξ)2

, W =
r + s

2
= A

(
1 +

8c2e−2
√
Aξ

(1 − c2e−2
√
Aξ)2

)
,

V =
r − s

2
=

4Ace−
√
Aξ(1 + c2e−2

√
Aξ)

(1 − c2e−2
√
Aξ)2

, U = −
√

2W − 2A = − 4
√
Ace−

√
Aξ

1 − c2e−2
√
Aξ

,

Φ = B + ln(W + V ) = v0 +
1

2
ln

L1

L2
+ 2 ln

∣∣∣∣∣1 + ce−
√
Aξ

1 − ce−
√
Aξ

∣∣∣∣∣ .
The expression for Φ is obtained by either using the integral H2 and the solutions for
V and W or by directly integrating Φ′ = U from U .

2.3. Slow dynamics and regular layers. We now examine the slow flow in
the vicinity of the slow manifold Z0 = {u = v = 0} for regular layers. If we take ε = 0
in system (4), we get u = v = 0 and

J̇1 = 0, J̇2 = 0, τ̇ = 1.

The information on φ and w is lost. This indicates that the slow flow in the vicinity
of Z0 is itself a singular perturbation problem. To see this, we zoom into an O(ε)-
neighborhood of Z0 by blowing up the u and v coordinates; that is, we make a scaling
u = εp and v = εq. System (4) becomes

φ̇ = p, εṗ = q, εq̇ = pw − (βJ2 − αJ1),

ẇ = εαβpq + (β − α)pw − (α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1,

(12)

which is indeed a singular perturbation problem. When ε = 0, the system reduces to

φ̇ = p, 0 = q, 0 = pw − (βJ2 − αJ1),

ẇ = (β − α)pw − (α2J1 + β2J2),

J̇1 = 0, J̇2 = 0, τ̇ = 1.

(13)D
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The dynamics of φ and w survives in this limiting process. For this system, the slow
manifold is

S0 =

{
p =

βJ2 − αJ1

w
, q = 0

}
.

The corresponding fast system obtained by the scaling of time

Φ(ξ) = φ(εξ), P (ξ) = p(εξ), Q(ξ) = q(εξ), and W (ξ) = w(εξ)

is

Φ′ = εP, P ′ = Q, Q′ = PW − (βI2 − αI1),

W ′ = ε2αβPQ + ε(β − α)PW − ε(α2I1 + β2I2),

I ′1 = 0, I ′2 = 0, T ′ = 0.

(14)

The limiting system of (14) when ε = 0 is

Φ′ = 0, P ′ = Q, Q′ = PW − (βI2 − αI1),

W ′ = 0, I ′1 = 0, I ′2 = 0, T ′ = 0.
(15)

The slow manifold S0 is the set of equilibria of (15). The eigenvalues normal to S0

are λ±(p) = ±
√
W . In particular, the slow manifold S0 is normally hyperbolic, and

hence, it persists for system (14) for ε > 0 small (see [4]).
The limiting slow dynamic on S0 is governed by system (13), which reads

φ̇ =
βJ2 − αJ1

w
, ẇ = −αβ(J1 + J2), J̇i = 0, τ̇ = 1.

The general solution is characterized as follows: J1 and J2 are arbitrary constants,
and

τ(x) = τ0 + x, w(x) = α0 − αβ(J1 + J2)x,

φ(x) =φ0 −
βJ2 − αJ1

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0
x

)
,

(16)

where τ0 = τ(0), φ(0) = φ0, and w(0) = α0. Note that if J1 +J2 = 0, then w(x) = α0

and φ(x) = φ0+(βJ2−αJ1)x/α0. The latter is the limit of φ(x) in (16) as J1+J2 → 0.
We thus use the unified formula (16) even if J1 + J2 = 0.

To identify the slow portion of the singular orbit on S0, we need to examine the
ω-limit (resp., the α-limit) set of M ε

L ∩W s(S0) (resp., M ε
R ∩Wu(S0)) as ε → 0. To

do this, we fix an O(1)-neighborhood of S0. In terms of U and V , this neighborhood
is of order O(ε). For ε > 0 small, the time taken in terms of ξ for M ε

L and M ε
R to

evolve to any O(ε)-neighborhood of {U = V = 0} is of order O(ε| ln ε|). Thus, the
λ-lemma (see [3]) implies that M ε

L (resp., M ε
R) is C1 O(ε)-close to M0

L (resp., M0
R) in

any O(ε)-neighborhood of {U = V = 0}. Therefore, in an O(1)-neighborhood of S0 in
terms of P and Q, M ε

L (resp., M ε
R) intersects W s(S0) (resp., Wu(S0)) transversally.

And, by abusing the notation, if NL = M0
L ∩ W s(S0) and NR = M0

R ∩ Wu(S0),
then ω(NL) and α(NR) have the same descriptions as those in Proposition 2.1 with
U = V = 0 replaced by P = (βI2 − αI1)/W and Q = 0.

The slow orbit should be one given by (16) that connects ω(NL) and α(NR). Let
M̄L (resp., M̄R) be the forward (resp., backward) image of ω(NL) (resp., α(NR))
under the slow flow (13).
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Proposition 2.3. M̄L and M̄R intersect transversally along the unique orbit
given by (16) from x = 0 to x = 1 with

τ0 = 0, α0 = (α + β)(αL1)
β

α+β (βL2)
α

α+β , φ0 = v0 +
1

α + β
ln

αL1

βL2
,

J1 =

(
ln R1

L1
− αv0

)(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
αβ
α+β ln R1

L1
+ α2

α+β ln R2

L2

,

J2 =

(
ln R2

L2
+ βv0

)(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
β2

α+β ln R1

L1
+ αβ

α+β ln R2

L2

.

Proof. We show first that M̄L and M̄R intersect along the orbit with the above
characterization. In view of (16) and the descriptions for ω(NL) and α(NR) in Propo-
sition 2.1, the intersection is uniquely determined by

τ0 = 0, α0 = w(0) = (α + β)(αL1)
β

α+β (βL2)
α

α+β ,

w(1) = (α + β)(αR1)
β

α+β (βR2)
α

α+β ,

φ0 = Φ(0) = v0 +
1

α + β
ln

αL1

βL2
, Φ(1) =

1

α + β
ln

αR1

βR2
.

Substituting into (16) gives

J1 + J2 =
α + β

αβ

(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
,

βJ2 − αJ1 =
(α + β)

(
(αL1)

β
α+β (βL2)

α
α+β − (αR1)

β
α+β (βR2)

α
α+β

)
β

α+β ln R1

L1
+ α

α+β ln R2

L2

×
(
v0 +

1

α + β
ln

L1R2

L2R1

)
,

which in turn yields the expressions for J1 and J2. To see the transversality of the
intersection, it suffices to show that ω(NL) · 1 (the image of ω(NL) under the time
one map of the flow of system (13)) is transversal to α(NR) on S0 ∩ {τ = 1}. If we
use (φ,w, J1, J2) as a coordinate system on S0 ∩ {τ = 1}, then the set ω(NL) · 1 is
given by {(φ(J1, J2), w(J1, J2), J1, J2)} with

φ(J1, J2) = v0 +
1

α + β
ln

αL1

βL2
− βJ2 − αJ1

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0

)
,

w(J1, J2) = (α + β)(αL1)
β

α+β (βL2)
α

α+β − αβ(J1 + J2).

Thus, the tangent space to ω(NL) · 1 restricted on S0 ∩ {τ = 1} is spanned by
(φJ1

, wJ1
, 1, 0) = (φJ1

,−αβ, 1, 0) and (φJ2
, wJ2

, 0, 1) = (φJ2
,−αβ, 0, 1). In view of

the display in Proposition 2.1, the tangent space to α(NR) restricted on S0 ∩{τ = 1}
is spanned by (0, 0, 1, 0) and (0, 0, 0, 1). Note that S0 ∩ {τ = 1} is four-dimensional.
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764 WEISHI LIU

Thus, it suffices to show that the above four vectors are linearly independent or,
equivalently, φJ1 �= φJ2 . The latter can be verified by a direct computation. Indeed,
if J1 + J2 �= 0 at the intersection points, then

φJ1
− φJ2

=
α + β

αβ(J1 + J2)
ln

(
1 − αβ(J1 + J2)

α0

)
�= 0;

if J1 + J2 = 0 at the intersection points, then φ(J1, J2) = φ0 + (βJ2 − αJ1)/α0 and
hence φJ1 − φJ2 = −(α + β)/α0 �= 0.

3. Main result. Based on the study of the limiting behavior of boundary layers
and regular layers in the previous section, we can easily construct a singular orbit
(zeroth order approximation) of the boundary value problem. To show that there
indeed exists a true solution near the singular orbit, we apply the exchange lemma to
show M ε

L and M ε
R intersect around the singular orbit.

We now state the existence and uniqueness result of the boundary value problem,
which also provides the description of a singular orbit.

Theorem 3.1. Assume that αL1 �= βL2 and αR1 �= βR2. For ε > 0 small, the
connecting problem (4), (8) has a unique solution near a singular orbit. The singular
orbit is the union of two fast orbits of system (7) and one slow orbit of system (13);
more precisely, with both I1 = J1 and I2 = J2 given in Proposition 2.3,

(i) the fast orbit representing the limiting boundary layer at x = 0 lies on BL ∩
W s(Z0) from BL to ω(NL) ⊂ Z0, whose starting point has the U -component given
by (10) in Proposition 2.1;

(ii) the fast orbit representing the limiting boundary layer at x = 1 lies on BR ∩
Wu(Z0) from BR to α(NR) ⊂ Z0, whose starting point has the U -component given
by (11) in Proposition 2.1;

(iii) the slow orbit on S0 connecting the two boundary layers from x = 0 to x = 1
is displayed in (16) together with the quantities in Proposition 2.3.

Proof. The singular orbit which has been studied in sections 2.2 and 2.3 is sum-
marized in (i), (ii), and (iii) of this theorem. It remains to show the existence and
uniqueness of a solution near the singular orbit for ε > 0. Recall that M ε

L (resp.,
M ε

R) is the union of all forward (resp., backward) orbits starting from BL (resp., BR).
It suffices to show that, for ε > 0 small, M ε

L and M ε
R intersect transversally with

each other around the singular orbit. We note that the assumptions αL1 �= βL2 and
αR1 �= βR2 imply that the vector field of (4) is not tangent to BL and BR and hence,
M ε

L and M ε
R are smooth invariant manifolds.

For ε > 0 small, the evolutions of M ε
L and M ε

R from BL and BR, respectively, to
an ε-neighborhood of Z0 along the two boundary layers are governed by system (6).
Since, for system (7), M0

L and M0
R intersect W s(Z0) and Wu(Z0) transversally, we

have that M ε
L and M ε

R intersect W s(Z0) and Wu(Z0) transversally. As discussed in
section 2.3, in terms of the blow-up coordinates, M ε

L and M ε
R intersect W s(S0) and

Wu(S0) transversally for system (14). And, if we denote NL = M0
L ∩ W s(S0) and

NR = M0
R ∩Wu(S0), then the vector field on S0 is not tangent to ω(NL) and α(NR).

Furthermore, the traces M̄L and M̄R of ω(NL) and α(NR), respectively, under the
slow flow on S0 intersect transversally. All conditions for the exchange lemma (see [15]
and also [10, 8, 9]) are satisfied, and hence, M ε

L and M ε
R intersect transversally. The

intersection has dimension

dimM ε
L + dimM ε

R − 7 = 4 + 4 − 7 = 1,
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SINGULARLY PERTURBED PNP SYSTEMS 765

which is the orbit of the unique solution for the connecting problem near the singular
orbit.

Remark 3.1. We have considered the situation that αL1 �= βL2 and αR1 �= βR2.
In the case that αL1 = βL2 or αR1 = βR2, then BL or BR is on the slow manifold
S0 and hence there is no boundary layer at x = 0 or x = 1.

4. Appendix. A derivation of the integral H3 in Proposition 2.1. The
complete set of six integrals of system (7) in Proposition 2.1 is crucial in the quantita-
tive investigation of the boundary layers of the boundary value problem. The integrals
H1 and H2 are relatively easy to guess. The integral H3, although easily verified, is
discovered through several observations. It may have some general interest, and we
provide a formal derivation below.

We divide the W -equation by the V -equation from system (7) to get

dW

dV
=

αβV

W
+ (β − α),

which is a homogeneous equation of order zero. This leads to the substitution W =
yV . From dW = V dy + ydV and the above equation one gets(

αβV

yV
+ (β − α)

)
dV = V dy + ydV or − dV

V
=

ydy

y2 − (β − α)y − αβ
.

Integrating both sides, we have, for some constant C,

− lnV + C =
α

α + β
ln |y + α| + β

α + β
ln |y − β|,

or, for some constant D,

V =
D

|y + α| α
α+β |y − β|

β
α+β

, W =
Dy

|y + α| α
α+β |y − β|

β
α+β

.

Substitute y = W/V to get

|W + αV |α|W − βV |β = Dα+β .

This completes the derivation of the integral H3.
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