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POISSON–NERNST–PLANCK SYSTEMS FOR ION CHANNELS
WITH PERMANENT CHARGES∗

BOB EISENBERG† AND WEISHI LIU‡

Abstract. Ionic channels and semiconductor devices use atomic scale structures to control
macroscopic flows from one reservoir to another. The one-dimensional steady-state Poisson-Nernst-
Planck (PNP) system is a useful representation of these devices, but experience shows that describing
the reservoirs as boundary conditions is difficult. We study the PNP system for two types of ions
with three regions of piecewise constant permanent charge, assuming the Debye number is large,
because the electric field is so strong compared to diffusion. Reservoirs are represented by the
outer regions with permanent charge zero. If the reciprocal of the Debye number is viewed as
a singular parameter, the PNP system can be treated as a singularly perturbed system that has
two limiting systems: inner and outer systems (termed fast and slow systems in geometric singular
perturbation theory). A complete set of integrals for the inner system is presented that provides
information for boundary and internal layers. Application of the exchange lemma from geometric
singular perturbation theory gives rise to the existence and (local) uniqueness of the solution of the
singular boundary value problem near each singular orbit. A set of simultaneous equations appears
in the construction of singular orbits. Multiple solutions of such equations in this or similar problems
might explain a variety of multiple valued phenomena seen in biological channels, for example, some
forms of gating, and might be involved in other more complex behaviors, for example, some kinds of
active transport.
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1. Introduction. Electrodiffusion, the diffusion and migration of electric charge,
plays a central role in a wide range of our technology and science [53, 11, 54, 14, 15, 67,
41]: semiconductor technology controls the migration and diffusion of quasi-particles
of charge in transistors and integrated circuits [75, 62, 71], chemical sciences deal
with charged molecules in water [11, 19, 8, 26, 9, 10], all of biology occurs in plasmas
of ions and charged organic molecules in water [3, 16, 33, 72]. It is no coincidence
that the physics of electrodiffusion is of such general importance: systems of moving
charge have a richness of behavior that can be sometimes easily controlled by bound-
ary conditions [67, 71], and the goal of technology (and much of physical science) is
to control systems to allow useful behavior.

Control is important to the medical and biological sciences as well. Medicine
seeks to control disease and help life. Evolution controls life by selecting those organ-
isms that successfully reproduce. Organisms control their internal environment and
external behavior to make reproduction possible, often using electrodiffusion for the
mechanism of control [72, 33]. Whatever the reason, it is a fact that nearly all biol-
ogy occurs in ultrafiltrates of blood called plasmas, in which ions move much as they
move in gaseous plasmas, or as quasi-particles move in semiconductors [21, 22, 23, 24].
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PNP SYSTEMS WITH PERMANENT CHARGES 1933

The pun between the medical and physical meanings of “plasma” is useful and
surprisingly precise.

In semiconductor and biological devices, macroscopic flows of charges are driven
through tiny (atomic scale) channels that link one macroscopic reservoir to another.
The reservoirs are macroscopic regions in which the concentration of charges is nearly
constant (because the dimensions of the reservoirs are macroscopic and so the total
number of charges is hardly changed by the flows) and electrical potentials are nearly
constant too. The electrical resistance of the macroscopic region is so small that
only a tiny electrical potential gradient is needed to drive significant flow of charge
in the reservoir. The electric field is strong throughout these systems and only a
few charges (ions) are needed to create significant electrical potentials, compared to
the enormous number of ions (1023, Avogadro’s number) needed to create chemical
potentials (and diffusion). That is why the Debye number is so large (see systems (1)
and (5)). Semiconductors and evolution take advantage of the strength of the electric
field. Engineers and biophysicists control flow by setting the electric potential at the
boundaries called terminals, contacts, or baths.

The flow through the atomic scale channel is affected by other variables besides the
applied boundary potentials, namely, by the shape of the pore in the channel (through
which permanently charged ions flow) and the distribution of permanent and induced
(i.e., polarization) charge on the wall of the channel as well as the mobility of ions
[49, 25, 17, 40, 32]. A precise description and understanding of flow on an atomic
scale is daunting. Enormous numbers of variables are needed to describe atomic scale
trajectories that have a fundamental time scale 10−16 sec and length scale 10−10 m
compared to biological function that is typically much slower than 10−5 sec. It is not
clear what to do with this number of variables and trajectories even if they could be
computed accurately or with known inaccuracies.

We are fortunate that description on the atomic time scale is unnecessary. What
is needed in fact is a reduced description that focuses attention on the properties that
control function in technology and biology. This reduced description needs to describe
channel structure on the atomic scale of distance, in all likelihood, but it needs to
describe flows and reservoirs only on the macroscopic scale.

Reduced descriptions of this type are familiar in engineering where they are called
device equations. Semiconductor manufacturers produce the device behaviors they
need by choosing particular structures of permanent charge, using as little atomic
structure as possible, so cost is minimized. Device behaviors are described by device
equations. It is device equations that we seek as we try to understand and control ion
channels (and molecular machines of biology in general).

Device equations are most useful when they predict complex behaviors realisti-
cally while using only a few parameters with fixed values (that do not need to be
changed to describe the complex behaviors). Fortunately, electrodiffusion allows rich
behavior with simple device equations and a fixed set of parameters. Remarkably, the
diverse (technologically important) behavior of transistors can be described by sim-
ple conservation laws and constitutive relations, the Poisson–Nernst–Planck (PNP)
equations using fixed values of parameters. A single transistor can behave as many
different devices, each with its own device equation, and this rich behavior can be
described quite well by the PNP equations with a fixed set of parameters. Different
values of the boundary potentials (i.e., power supply voltages) move the solution of
the equations into different domains, each with its own device equation.

The PNP system of equations has been analyzed mathematically to some extent,
but the equations have been simulated and computed to a much larger extent [18, 6,
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1934 BOB EISENBERG AND WEISHI LIU

16, 38, 49, 4, 17, 66, 36, 37, 40, 2, 20, 31, 55, 56, 1, 13, 70, 65, 29, 30, 43, 7]. Computa-
tional and experimental experience with a variety of PNP-like systems shows that the
existing mathematical analysis is unsatisfactory. It is clear from these simulations that
macroscopic reservoirs must be included in the mathematical formulation to describe
the actual behavior of channels (or useful transistors) [60, 32, 31, 12, 59, 57, 58, 34, 29].
Macroscopic boundary conditions that describe such reservoirs introduce boundary
layers of concentration and charge. If those boundary layers reach into the part of the
device performing atomic control, they dramatically affect its behavior. Boundary
layers of charge are particularly likely to create artifacts over long distances because
the electric field spreads a long way. Indeed, transistors, channels, transporters, and
receptors are actually built so that the contacts, electrodes, and control systems that
maintain the reservoirs are quite distant and distinct from the channel.

In this paper, we construct and analyze the minimal model that includes reservoirs
and channels and start the study of its mathematical properties. We begin with
simple setups and conditions using geometric singular perturbation theory to extract
powerful results. In particular, we consider three regions, two of which are reservoirs,
and one of which is the narrow channel (with permanent charge, i.e., doping). And
we consider only two species of current carriers. Nonetheless, we find quite complex
behavior showing clearly that the reservoirs are inextricably linked to the channel
and cannot be replaced by simple boundary conditions. We find general properties of
the system and hints that somewhat more complicated systems (with several regions
of permanent charge of different density and/or sign) carrying multiple ionic species
(with different valence, i.e., with different permanent charge on each type of ion) may
have quite rich behavior. Such rich behavior is apparent in biology where channels
switch (“gate”) between different values of current (one value nearly zero) and where
transporters couple the flow of different types of ions in an extremely important, quite
robust, but nearly unknown way.

The rest of the paper is organized as follows. In section 2, we begin with a
description of a three-dimensional PNP system as the model for ion flow through an
ion channel and discuss a one-dimensional reduction as the maximal radius of cross-
sections of the channel approaching zero. We then identify the problem to be studied
in this paper: steady-states of boundary value problems of the one-dimensional PNP
system. In section 3, we cast our problem in the language of geometric singular
perturbation theory. By introducing new dependent variables, we write the PNP
system as a singularly perturbed system of first order equations. Making use of
the inner and outer limiting systems, we then construct singular orbits for the PNP
boundary value problem. In section 4, we apply geometric singular perturbation
theory to show that, for small ε > 0, there is a true solution shadowing each singular
orbit. We conclude the paper by a general remark in section 5.

2. Three-dimensional model PNP system and a one-dimensional re-
duction. We now briefly describe the model PNP system of equations. As discussed
above, the key features of an ion channel are the shape of its pore and the distribution
of the permanent charge along its interior wall. As a first approximation, we consider
a special ion channel modeled by

Ωμ = {(x, y, z) : 0 < x < 1, y2 + z2 < g2(x, μ)},

where g is a smooth function satisfying

g(x, 0) = 0 and g0(x) =
∂g

∂μ
(x, 0) > 0 for x ∈ [0, 1].
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PNP SYSTEMS WITH PERMANENT CHARGES 1935

The small parameter μ measures the maximal radius of cross-sections of the channel.
The boundary ∂Ωμ of Ωμ consists of three portions:

Lμ = {(x, y, z) ∈ ∂Ωμ : x = 0},
Rμ = {(x, y, z) ∈ ∂Ωμ : x = 1},
Mμ = {(x, y, z) ∈ ∂Ωμ : y2 + z2 = g2(x, μ)}.

Here, Lμ and Rμ are viewed as the two ends of the reservoirs and Mμ the wall of the
channel and the reservoirs.

Then the model employed for flow through the channel is the PNP system (see [5]
for a derivation from Boltzmann transport equation; see [66] for a derivation including
correlations from coupled Langevin–Poisson equations; see [11, p. 773, eq. 26.64] for
the classical description of the system at thermodynamic equilibrium, when all fluxes
are zero):

Δφ = −λ

(
n∑

i=1

αici + Q

)
,

(1)
∂ci
∂t

= Di∇ · (∇ci + αici∇φ),

where φ is the electric potential; ci’s are the concentrations of the n species, and αi’s
are the valences, i.e., charge on one ion; Di’s are the diffusion constants; λ is the
Debye number; and Q is the distribution of the permanent charge along the interior
wall of the channel.

As mentioned in the introduction, the concentrations of the ions and the electrical
potential in the reservoirs are nearly constants, and the wall of the channel is assumed
to be perfectly insulated. We thus assume the following boundary conditions:

φ|Lμ = ν0, φ|Rμ
= 0, ci|Lμ

= Li, ci|Rμ
= Ri,

(2)
∂φ

∂n

∣∣∣
Mμ

=
∂ck
∂n

∣∣∣
Mμ

= 0,

where ν0, Li, Ri are constants and n is the outward unit normal vector to Mμ.
We remark that, typically in the reservoirs, one imposes electroneutrality condi-

tions: αL1 − βL2 = 0 and αR1 − βR2 = 0. In this case, there will be no boundary
layers at the two ends although there will be internal layers where the permanent
charge Q jumps. For mathematical interest, we use the slightly more general bound-
ary conditions.

In [52], for n = 2 with Q = 0, we obtained the following limiting one-dimensional
PNP system as μ → 0:

1

g2
0

∂

∂x

(
g2
0

∂

∂x
φ

)
= −λ(α1c1 + α2c2),

∂c1
∂t

=
D1

g2
0

∂

∂x

(
g2
0

∂

∂x
c1 + α1c1g

2
0

∂

∂x
φ

)
,(3)

∂c2
∂t

=
D2

g2
0

∂

∂x

(
g2
0

∂

∂x
c2 + α2c2g

2
0

∂

∂x
φ

)

on x ∈ (0, 1) with the boundary conditions

φ(t, 0) = ν0, φ(t, 1) = 0, ci(t, 0) = Li, ci(t, 1) = Ri.(4)
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1936 BOB EISENBERG AND WEISHI LIU

In particular, we showed that the attractors Aμ of (1) and (2) are upper semi-
continuous at μ = 0 to the attractor A0 of (3) and (4). One-dimensional PNP systems
of the form (3) also arise in treatments based on the density functional theory of sta-
tistical mechanics [31]. The motivation for such a mathematical treatment is that,
first of all, the one-dimensional system is much simpler; second, if the one-dimensional
limiting system is structurally stable (i.e., if the global dynamics is robust), then the
dynamics for the system on the three-dimensional domain with small μ is essentially
the same as that of the limiting one-dimensional system. There is a well-established
framework for verification of structural stability although it is by no means trivial.
A key step is to understand the behavior of the steady-state of the limiting one-
dimensional system.

In light of the above result and discussion, we will then study steady-states of the
one-dimensional PNP system for two species of current carriers with valences α > 0
and −β < 0, including now a permanent charge:

ε2h−1(x)
d

dx

(
h(x)

d

dx
φ

)
= −(αc1 − βc2 + Q(x)),

dJi
dx

= 0,

h(x)
dc1
dx

+ αc1h(x)
dφ

dx
= −J1,(5)

h(x)
dc2
dx

− βc2h(x)
dφ

dx
= −J2,

with the boundary conditions

φ(0) = ν0, ci(0) = Li; φ(1) = 0, ci(1) = Ri.(6)

Here Ji is the total flux of the ith ion, Q(x) is the permanent charge along the channel,
h(x) = g2

0(x), and ε is related to λ via λ = ε−2.
Many mathematical papers have been written about the existence and uniqueness

of solutions of the boundary value problems, and numerical algorithms have been
developed to approximate solutions even for high-dimensional systems (see, e.g., [39,
42, 61, 44]). Under the assumption that ε � 1, the problem can be viewed as a
singular perturbation one. In particular, for α = β = 1, h(x) = 1, and Q(x) = 0, the
boundary value problem for the one-dimensional PNP system (5) was studied in [7]
using the method of matched asymptotic expansions as well as numerical simulations,
which provide a good quantitative understanding of the problem with one region
without permanent charge. In [51], assuming ε � 1 but for general α, β, h(x) = 1
and Q(x) = 0, the boundary value problem was treated using geometric theory for
singularly perturbed problems (see, e.g., [27, 45, 47, 50]).

We use the geometric framework in paper [51] to investigate PNP systems with
multiple regions of permanent charge and with multiple ions. A major difference
of the model studied in this paper from those previously studied is the inclusion of
multiple regions of permanent charge. The focus will be on the simple case of two
ions and two reservoirs (i.e., two regions without permanent charge). The idea is to
construct singular orbits for the boundary value problem and apply geometric singular
perturbation theory to obtain, for ε > 0 small, solutions near singular orbits. Issues of
the existence and multiplicity of singular orbits are reduced to the properties of a set
of nonlinear algebraic equations (43). To our surprise, for the simple case we study,
multiple solutions for the boundary value problem are shown to exist. This contrasts
to what was suspected in some early works (see, for example, [63, 64]) which expressed
the (entirely reasonable) opinion that multiple solutions cannot occur for the simple
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PNP SYSTEMS WITH PERMANENT CHARGES 1937

structure of permanent charge considered here. The set of equations (43) governs the
multiplicity of solutions to the boundary value problem. We will thoroughly examine
the set of algebraic equations in the future.

3. A dynamical system framework and a construction of singular or-
bits. We will rewrite the PNP system into a standard form for singularly perturbed
systems and convert the boundary value problem to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and
τ = x. System (5) becomes

εφ̇ = u, εu̇ = βc2 − αc1 −Q(τ) − ε
h′(τ)

h(τ)
u,

εċ1 = −αc1u− εh−1(τ)J1,
(7)

εċ2 = βc2u− εh−1(τ)J2,

J̇1 = J̇2 = 0, τ̇ = 1.

We will treat system (7) as a dynamical system of phase space R7 with state variables
(φ, u, c1, c2, J1, J2, τ). The introduction of the extra state variable τ = x and the τ -
equation seems to add complications to the problem, but this has a great advantage
that we will explain shortly.

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to an
equivalent system

φ′ = u, u′ = βc2 − αc1 −Q(τ) − ε
h′(τ)

h(τ)
u,

c′1 = −αc1u− εh−1(τ)J1,
(8)

c′2 = βc2u− εh−1(τ)J2,

J ′
1 = J ′

2 = 0, τ ′ = ε,

where prime denotes the derivative with respect to the variable ξ.

For ε > 0, systems (7) and (8) have exactly the same phase portrait. But their
limits at ε = 0 are different and, very often, the two limiting systems provide com-
plementary information on state variables. Therefore, the main task of singularly
perturbed problems is to patch the limiting information together to form a solution
for the entire ε > 0 system. In terms of asymptotic expansions, system (7) and its
limit at ε = 0 will be used to study outer or regular layer solutions. We will call this
system the outer system and its limit at ε = 0 the outer limit system. System (8) and
its limit at ε = 0 will be used to study inner or singular layer solutions, and we call
the system the inner system and its limit system at ε = 0 the inner limit system. By
a singular orbit, we mean a continuous and piecewise smooth curve in R7 that is a
union of finitely many orbits of the outer limit system or inner limit system. In the
theory of geometric singular perturbations, viewing the independent variables x and
ξ as slow and fast time variables, the outer system is called the slow system, the inner
system is called the fast system, and a singular orbit is a union of slow and fast orbits.

Let BL and BR be the subsets of the phase space R7 defined by

BL = {(ν0, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2},(9)

BR = {(0, u, R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}.(10)
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1938 BOB EISENBERG AND WEISHI LIU

Then the boundary value problem is equivalent to a connecting problem, namely,
finding a solution of (7) or (8) from BL to BR. To see this, suppose that (φ, u, c1, c2,
J1, J2, τ) is an orbit starting at a point on BL and ending at a point on BR. Due to
the definitions of BL and BR, the starting point automatically has x = τ = 0 with the
assigned values for φ, c1, and c2 at x = 0, and the ending point has x = τ = 1 with the
assigned values for φ, c1, and c2 at x = 1. This solution (φ, u, c1, c2, J1, J2, τ) satisfies
the boundary condition automatically. Most importantly, when we arbitrarily rescale
the independent variable x, the phase portrait will remain the same. Therefore, in
searching for a solution from BL to BR, we can apply any rescaling of the independent
variable x, even a rescaling that depends on each individual solution. (We will use
a rescaling that is different for each solution when we derive the system (34) from
system (33).) This is the significant advantage of introducing τ = x and τ̇ = 1
promised earlier. The idea of converting a boundary value problem to a connecting
one is now rather standard in applied dynamical systems.

In this paper, we will consider the case where the outer regions are reservoirs and
the permanent charge is constant along the channel; that is,

Q(x) =

⎧⎨
⎩

0 for 0 < x < a,
Q for a < x < b,
0 for b < x < 1,

where Q is a constant. The intervals [0, a] and [b, 1] are the reservoirs, and the interval
[a, b] is the channel.

We will be interested in solutions of the connecting problem for system (7) or
(8) from BL to BR defined in (9) and (10). In view of the jump of Q at x = a
and x = b, the best one can hope is that the solution is continuous and piecewise
differentiable. We therefore require our solutions to be continuous and piecewise
differentiable. The continuity of u implies that φ, c1, and c2 are differentiable. Our
requirement is motivated by two considerations: (i) the dissipation present in the full
PNP system (that includes time evolution) improves the regularity of solutions; in
particular, the attractor contains regular solutions. Steady-state solutions, being in
the attractor, should have the regularity imposed; (ii) if the requirement is relaxed,
say, only requiring φ, c1, c2 to be piecewise differentiable, then one can preassign
any value for (φ, c1, c2) at any partition points 0 < x1 < x2 < · · · < xk < 1 and
construct solutions over each subinterval and piece them together to create a solution
over [0, 1] with the preassigned values for (φ, c1, c2) at the partition points. (This
assertion follows from the work in [7, 51].) It is clear that the only relevant solutions
are those in which φ, c1, c2 are differentiable.

Our construction of a solution involves two main steps: the first step is to con-
struct a singular orbit to the connecting problem, and the second step is to apply
geometric singular perturbation theory to show that there is a unique solution near
the singular orbit for ε > 0 and small. Here we will give a detailed explanation for
the first step and leave the explanation of the second step to section 4.

To construct a singular orbit, we first construct a singular orbit on each of the
subinterval [0, a], [a, b], and [b, 1]. The reason to split the interval [0, 1] into three
subintervals is simply because the permanent charge Q(x) has jumps at x = a and
x = b. To be able to construct a singular orbit on each subinterval, we need to
preassign the values of φ, c1, and c2 at x = a and x = b. Suppose, for the moment,
that φ = φa, c1 = ca1 , and c2 = ca2 at x = a, and that φ = φb, c1 = cb1, and c2 = cb2
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PNP SYSTEMS WITH PERMANENT CHARGES 1939

at x = b. Those six unknown values

φa, ca1 , c
a
2 ; φb, cb1, c

b
2(11)

will be determined along our construction of a singular orbit on the whole interval
[0, 1].

1. On the left subinterval [0, a] where Q = 0 or there is no permanent charge, we
construct a singular orbit for the boundary value problem with (φ, c1, c2, τ)
being

(ν0, L1, L2, 0) at x = 0 and (φa, ca1 , c
a
2 , a) at x = a.

The orbit consists of two boundary layers Γ0
l and Γa

l and one regular layer Λl.
In particular, given (φa, ca1 , c

a
2), the flux densities J l

1, J
l
2 and the value ul(a)

are uniquely determined (see section 3.1).
2. On the middle subinterval [a, b], we construct a singular orbit for the boundary

value problem with (φ, c1, c2, τ) being

(φa, ca1 , c
a
2 , a) at x = a and (φb, cb1, c

b
2, b) at x = b.

The orbit consists of two boundary layers Γa
m and Γb

m and one regular layer
Λm. In particular, given (φa, ca1 , c

a
2) and (φb, cb1, c

b
2), the flux densities Jm

1 , Jm
2

and the values um(a) and um(b) are uniquely determined (see section 3.2).
3. On the right subinterval [b, 1], we construct a singular orbit for the boundary

value problem with (φ, c1, c2, τ) being

(φb, cb1, c
b
2, b) at x = b and (0, R1, R2, 1) at x = 1.

The orbit again consists of two boundary layers Γb
r and Γ1

r and one regular
layer Λr. In particular, given (φb, cb1, c

b
2), the flux densities Jr

1 , Jr
2 and the

value ur(b) are uniquely determined (see section 3.3).
4. Finally, for a singular orbit on the whole interval [0, 1], we require that

J l
1 = Jm

1 = Jr
1 , J l

2 = Jm
2 = Jr

2 , ul(a) = um(a), um(b) = ur(b).

This consists of six conditions. The number of conditions is exactly the same
as the number of unknown values in (11) (see section 3.4).
The qualitative properties of these six equations and conditions are of great
importance. It turns out that they can have multiple solutions. Different
solutions yield different amounts of current for otherwise identical conditions,
suggesting that each level might correspond to a different functional state of
a transporter, or a different gating state of a channel. Indeed, it seems likely
that more complex systems than those considered here would be described
by similar systems of equations with multiple solutions. Interesting and very
important properties of channels and transporters—each corresponding to a
quite distinct device with a quite distinct input-output relation and device
equation—might arise this way in systems including Ca2+ or in systems with
multiple regions of nonzero permanent charge, or in systems with branched,
Y-shaped, or adjacent interacting channels.

Remark 3.1. We call Γa
l , Γa

m, Γb
m, and Γb

r boundary layers because, relative to
each subinterval, they are boundary layers. But, relative to the whole interval [0, 1],
they should be termed internal layers.
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1940 BOB EISENBERG AND WEISHI LIU

3.1. Singular orbit on [0, a] where Q(x) = 0. We consider the case with
zero permanent charge on the subinterval [0, a] because [0, a] is viewed as one of the
reservoirs. The nonzero Q over the subinterval [a, b] will affect the solution on [0, a]
and on [b, 1]. This effect will show up when we impose matching conditions on φa, ca1 ,
and ca2 to construct the singular orbit over the whole interval [0, 1].

Following the discussion above, we set φ(a) = φa, c1(a) = ca1 , and c2(a) = ca2 ,
where φa, cai are unknown values to be determined later on. Now let

Ba = {(φa, u, ca1 , c
a
2 , J1, J2, a) ∈ R7 : u, Ji arbitrary}.

In this part, we will construct a singular orbit that connects BL to Ba. Two boundary
layers will be constructed in section 2.1.1 followed by the construction of the regular
layer in section 2.1.2. The permanent charge Q is zero in both constructions.

If we set ε = 0 in system (7) with Q(x) = 0, we get the outer limit system and,
in particular, u = 0 and αc1 = βc2. The set

Zl = {u = 0, αc1 = βc2}

will be called the outer manifold. In the theory of geometric singular perturbations,
Zl is called the slow manifold because if x and ξ are viewed as time variables, the
evolution on Zl is characterized by the time variable ξ, which is slow.

Remark 3.2. In systems (7) and (8), there appear to be four fast equations and
three slow equations. Typically, one would expect a three-dimensional slow manifold.
But, in this specific problem, the slow manifold is five-dimensional. This fact indicates
some degeneracy of the slow flow, which is reflected in sections 3.1.2 and 3.2.2. The
exchange lemma applied in the proof of Theorem 4.1 in section 4 is still valid. In fact,
it applies to singular perturbation problems of more general forms than standard ones
(see, e.g., [46, p. 562, Remark 1]).

The geometric method for a construction of singular orbits on each of the subin-
tervals [0, a], [a, b], and [b, 1] is the same. Let us explain the approach for constructing
the singular orbit that connects BL to Ba on [0, a] (see Figure 1). Generally, the outer
manifold Zl will not intersect BL and Ba. Since every outer or regular layer orbit lies
entirely on the outer manifold Zl, it will not intersect BL and Ba; that is, it cannot
satisfy the boundary conditions. Two boundary or inner layers need to be introduced
to connect boundaries BL and Ba with the outer layer solution on Zl. These bound-
ary layers should satisfy the inner limit system. The boundary layer orbit Γ0

l at x = 0
will connect BL to Zl. It must lie on the stable manifold W s(Zl); that is, it belongs
to the intersection ML ∩W s(Zl), where ML is the collection of orbits starting from
points on BL. Similarly, the boundary layer Γa

l at x = a will connect Zl to Ba and
it must lie on the unstable manifold Wu(Zl); that is, it belongs to the intersection
Ma

l ∩Wu(Zl), where Ma
l is the collection of orbits starting from points on Ba

l .
The first step in the construction examines the stability of the outer manifold

Zl by linearizing along Zl. (Zl is the set of equilibria of the inner limit system.)
It turns out that the outer manifold Zl has a stable manifold W s(Zl) and an un-
stable manifold Wu(Zl). The next step is to check whether W s(Zl) intersects BL

and whether Wu(Zl) intersects Ba. This requires concrete knowledge of the global
behavior of W s(Zl) and Wu(Zl), and the information from the linearization is not
enough. Neither is abstract dynamical systems theory (since the inner limit system
is nonlinear). Luckily, we discovered a complete set of integrals for the inner limit
system (see Proposition 3.2). The set of integrals reflects the intrinsic mathematical

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



PNP SYSTEMS WITH PERMANENT CHARGES 1941

B L

B

W  (      )u Z

W  (      )s Z

a

a

l

l

Γ
Γl

a

Λ l

ML

M a
l

0

ω(       )M L α(      )lM a

Zl

α c −β c1 2

u

0
l

Fig. 1. Schematic picture of the singular orbit (solid curves) on [0, a]: one left boundary layer
Γ0
l , one regular layer Λl, and one right boundary layer Γa

l .

structure of this particular electrodiffusion system, the channel problem. This math-
ematical special structure implies particular specific physical and chemical properties
of the ion channel. It is irresistible, albeit speculative, to suspect that the special
mathematical structure produces biologically important properties of the channel. In
that sense, the mathematical structure of the problem provides one possible “device
equation” for the channel system.

It is this set of integrals in Proposition 3.2 that allows us to give a complete,
global description of the inner limit dynamics; in particular, we are able to establish
the required intersections ML∩W s(Zl) and Ma

l ∩Wu(Zl) and are also able to identify
the so-called ω-limit set ω(ML ∩ W s(Zl)) and the α-limit set α(Ma

l ∩ Wu(Zl)) of
the intersections. The intersections give the set of candidates for the boundary layers
(consisting of two parameter families of inner orbits parameterized by J1 and J2). The
foot points ω(ML ∩W s(Zl)) and α(Ma

l ∩Wu(Zl)) (each parameterized by J1 and J2

also) on Zl provide the (reduced) boundary conditions for the outer solutions. It turns
out there is only one outer orbit Λl that connects ω(ML∩W s(Zl)) to α(Ma

l ∩Wu(Zl))
and also determines the pair (J1, J2) uniquely. The desired singular orbit connecting
BL to Ba on [0, a] is formed by this outer orbit Λl together with the two boundary
layers Γ0

l and Γa
l that are uniquely determined by the pair (J1, J2).

We remind the reader that the singular orbit to be constructed on this subinter-
val with zero permanent charge will not be complete until the unknowns in (11) are
determined through matching conditions implicitly posed by the permanent charge Q
on the whole interval [0, 1], including the channel region where the permanent charge
is not zero. The entire system is coupled and must be solved together, suggesting the
source of difficulties with earlier treatments, which tried to replace the reservoirs with
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1942 BOB EISENBERG AND WEISHI LIU

boundary conditions. The importance of the coupling of different intervals suggests
that the shapes of antechambers commonly found in biological channels may be im-
portant to their function. It is interesting that synthetic nanochannels acquire some
properties of biological channels when they are built with antechambers of specific
shape [68, 69].

3.1.1. Inner dynamics on [0, a]: Boundary layers or inner solutions.
We start with the examination of boundary layers on the interval [0, a] where Q = 0.
These will be studied using the inner limit system obtained by setting ε = 0 in (8):

φ′ = u, u′ = βc2 − αc1,

c′1 = −αc1u,
(12)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.

This inner limit system describes what a chemist would call (thermodynamic) equilib-
rium. The reader should be warned that the word “equilibrium” is used widely, albeit
informally, in computational electronics to describe a system not at thermodynamic
equilibrium, namely, a system in which the distribution of velocities is a displaced
Maxwellian, with displacement given by the flux (in appropriate units). Only when
the flux of every species is zero is the “equilibrium” of computational electronics a
thermodynamic equilibrium.

The set of equilibria of (12), that is, the set of points at which the vector field
of (12) vanishes, is precisely Zl = {u = 0, αc1 = βc2}. The linearization at points
(φ, 0, c1, c2, J1, J2, τ) ∈ Zl is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0
0 0 −α β 0 0 0
0 −αc1 0 0 0 0 0
0 βc2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This linearization is similar to the Green–Kubo expansion used by physical
chemists to describe a nonequilibrium system close to equilibrium [11, 48, 74, 76].
Of course, such a linearization is useful only around some specific (operating) point;
here the thermodynamic operating point with zero fluxes. To study nonlinear behav-
ior far from the thermodynamic operating point, one must do a linearization around
other points, at which fluxes are not zero. Such analyses have not been attempted,
as far as we know for the PNP system, or in physical chemistry in general, perhaps
because the locations and properties of operating points other than the thermody-
namic one are hard to specify simply. Linearization around general nonequilibrium
operating points is a crucial method in electrical engineering and has been used to
design nonlinear circuits since the invention of electron valves—i.e., vacuum tubes—in
the 1930s.

The linearized system has five zero eigenvalues whose generalized eigenspace is
the tangent space of the five-dimensional outer manifold Zl of equilibria. The two
other eigenvalues are ±

√
(α + β)αc1 �= 0 whose eigenvectors are not tangent to Zl.
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PNP SYSTEMS WITH PERMANENT CHARGES 1943

In this sense, Zl is called normally hyperbolic. The theory of normally hyperbolic
invariant manifolds (e.g., [27]) states that

(i) there is a six-dimensional stable manifold W s(Zl) of Zl that consists of points
approaching Zl in forward time;

(ii) there is a six-dimensional unstable manifold Wu(Zl) of Zl that consists of
points approaching Zl in backward time;

(iii) Zl as well as W s(Zl) and Wu(Zl) persists for ε > 0 small; that is, for ε > 0
small, there exist invariant manifolds Zε

l , W
s(Zε

l ), and Wu(Zε
l ), close to their

counterparts.
What this result suggests is that, for a singular orbit connecting BL to Ba, the
boundary layer at x = 0 must lie in ML ∩W s(Zl) and the boundary layer at x = a
must lie in Ma

l ∩ Wu(Zl), where ML is the collection of orbits from BL in forward
time under the flow of system (12) and Ma

l is the collection of orbits from Ba in
backward time under the flow of system (12). This is precisely what we will show.

Definition 3.1. A smooth function H : Rn → R is called an integral of system
d
dtz = f(z), z ∈ Rn, if d

dt [H(z(t))] = 0 whenever z(t) is a solution.
For a system on Rn, if there are (n− 1) (independent) integrals, then any orbits

can be theoretically determined by the intersections of (n−1) level sets of the integrals.
Proposition 3.2. System (12) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2,

H4 = J1, H5 = J2, H6 = τ.

Proof. The proof can be verified directly.
The reader seeking physical insight is reminded that α is the valence (i.e., charge)

of the ions with number density c1; (−β) is the charge of the ions with number density
c2, u = εφ̇, τ = x; and ε is the Debye length.

These integrals allow one to completely understand the boundary layers (at x =
0, a) and characterize landing points of boundary layers on the outer manifold Zl. The
information on landing points is crucial because it provides the boundary conditions
that allow the regular layer to connect boundary layers.

Corollary 3.3. (i) Let φ = φL be the unique solution of

αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0, that is, φL = ν0 −
1

α + β
ln

βL2

αL1
,

and let

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β .

The stable manifold W s(Zl) intersects BL transversally at points with

u0 = [sgn(φL − ν0)]
√

2(L1 + L2) − 2(L1eα(ν0−φL) + L2e−β(ν0−φL))

= [sgn(αL1 − βL2)]

√
2

(
L1 + L2 −

α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β

)
(13)

and arbitrary Ji’s, where sgn is the sign function (see Figure 1).
Let φ = φa,l be the unique solution of

αca1e
α(φa−φ) − βca2e

−β(φa−φ) = 0, that is, φa,l = φa − 1

α + β
ln

βca2
αca1

,

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1944 BOB EISENBERG AND WEISHI LIU

and let

ca,l1 =
1

α
(αca1)

β
α+β (βca2)

α
α+β , ca,l2 =

1

β
(αca1)

β
α+β (βca2)

α
α+β .

The unstable manifold Wu(Zl) intersects Ba transversally at points with

ul(a) = [sgn(φa − φa,l)]
√

2(ca1 + ca2) − 2(ca1e
α(φa−φa,l) + ca2e

−β(φa−φa,l))

= [sgn(βca2 − αca1)]

√
2

(
ca1 + ca2 − α + β

αβ
(αca1)

β
α+β (βca2)

α
α+β

)
(14)

and arbitrary Ji’s (see Figure 1).
(ii) Potential boundary layers Γ0

l at x = 0 are determined up to (J1, J2) as follows:
the φ-component satisfies the Hamiltonian system

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0,

together with φ(0) = ν0 and φ(ξ) → φL as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = L1e
α(ν0−φ(ξ)), c2(ξ) = L2e

−β(ν0−φ(ξ)).

Similarly, potential boundary layers Γa
l at x = a are determined in the following

way: the φ-component satisfies the Hamiltonian system

φ′′ + αca1e
α(φa−φ) − βca2e

−β(φa−φ) = 0,

together with φ(0) = φa and φ(ξ) → φa,l as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = ca1e
α(φa−φ(ξ)), c2(ξ) = ca2e

−β(φa−φ(ξ)).

(iii) Let NL = ML ∩W s(Zl) and Na
l = Ma

l ∩Wu(Zl). Then,

ω(NL) =
{(

φL, 0, cL1 , c
L
2 , J1, J2, 0

)
: all J1, J2

}
,

α(Na
l ) =

{(
φa,l, 0, ca,l1 , ca,l2 , J1, J2, a

)
: all J1, J2

}
,

where φL, cL1 , cL2 , φa,l, ca,l1 , and ca,l2 are given explicitly as in part (i).
Proof. We provide a proof for the first part that is related to the boundary layer

on the left in each statement.
Let z(ξ) = (φ(ξ), u(ξ), c1(ξ), c2(ξ), J1(ξ), J2(ξ), τ(ξ)) be a solution of system (12)

with z(0) ∈ BL and z(ξ) ∈ W s(Zl). Then, Ji(ξ) = Ji, τ(ξ) = 0 for all ξ, z(ξ) →
z(∞) = (φL, 0, cL1 , c

L
2 , J1, J2, 0) ∈ Zl for some φL and cLi with αcL1 = βcL2 , and

φ(0) = ν0, c1(0) = L1, c2(0) = L2.

Using the integrals H1 and H2, we have

eαφc1 = eαν0L1, e−βφc2 = e−βν0L2.

Therefore,

c1 = L1e
α(ν0−φ), c2 = L2e

−β(ν0−φ).(15)
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PNP SYSTEMS WITH PERMANENT CHARGES 1945

φ
φ

φ = u

u

u

0

0

’

ν0 0ν

sgn(     )=sgn(          )u0 φ −ν0

L

L

W  (     )φLuW  (     )φLs

Fig. 2. The stable manifold W s(φL) of the equilibrium (φL, 0) is the solid curve, and the un-
stable manifold Wu(φL) is the dashed curve. The left branch of W s(φL) has positive u-coordinates,
and the right branch has negative u-coordinates; e.g., if (φ, u) ∈ W s(φL), then sign[u] = sign[φL−φ].

Taking the limit as ξ → ∞, we have

cL1 = L1e
α(ν0−φL), cL2 = L2e

−β(ν0−φL).

In view of the relation αcL1 = βcL2 , one has

αL1e
α(ν0−φL) = βL2e

−β(ν0−φL) or φL = ν0 −
1

α + β
ln

βL2

αL1
.

Hence,

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β .

Since φ′′ = βc2 − αc1, (15) implies that φ satisfies the Hamiltonian equation

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0

with φ(0) = ν0 and φ(ξ) → φL as ξ → ∞. The Hamiltonian is

H(φ, u) =
u2

2
− L1e

α(ν0−φ) + L2e
−β(ν0−φ).

In terms of φ and u = φ′, the equation becomes

φ′ = u, u′ = βL2e
−β(ν0−φ) − αL1e

α(ν0−φ).(16)

The Hamiltonian system has a unique equilibrium (φL, 0) with φL given above. If
W s(φL) is the stable manifold of (φL, 0), then it is the restriction of W s(Zl) to the
(φ, u)-plane. In order to have (ν0, u0) ∈ W s(φL) (see Figure 2), H(φL, 0) = H(ν0, u0)
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1946 BOB EISENBERG AND WEISHI LIU

and one has the expression for u0 in (13). To determine the sign of u0, note that
the left branch of the stable manifold W s(φL) lies above the φ-axis and hence that
ν0 < φL implies u0 > 0; similarly, if ν0 > φL, then u0 < 0.

Remark 3.3. We claim that the quantities under the square root in the displays
(13) and (14) are nonnegative. In fact, quite interestingly, the nonnegativeness is
equivalent to Young’s inequality

ap

p
+

bq

q
≥ ab for a, b ≥ 0,

1

p
+

1

q
= 1; “ = ” holds if and only if ap = bq.

Take (13) for example. If we set

a = (αL1)
β

α+β , b = (βL2)
α

α+β , p =
α + β

β
, q =

α + β

α
,

then

L1 + L2 −
α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β =

α + β

αβ

(
ap

p
+

bq

q
− ab

)
.

Thus, the quantity is always nonnegative and it is zero if and only if αL1 = βL2.

3.1.2. Outer dynamics on [0, a]: Regular layers or outer solutions. We
now construct regular layers or outer solutions on Zl that connect ω(NL) to α(Na

l ).
We find that the outer flow on Zl is itself a singular perturbation problem. To see
this, we zoom in on an O(ε)-neighborhood of Zl by blowing up the u and αc1 − βc2
coordinates; that is, we make a scaling u = εp and βc2−αc1 = εq. System (7) becomes

φ̇ = p, εṗ = q − ε
h′(τ)

h(τ)
p,

(17)
εq̇ = (α(α + β)c1 + εβq)p− h−1(τ)(βJ2 − αJ1),

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1,

which is indeed a singular perturbation problem due to the factor ε in front of ṗ and
q̇. Its limit, as ε → 0, is

φ̇ = p, 0 = q,

0 = α(α + β)c1p− h−1(τ)(βJ2 − αJ1),
(18)

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1.

For this system, the outer manifold is

Sl =

{
p =

βJ2 − αJ1

α(α + β)h(τ)c1
, q = 0

}
.

The outer limit dynamics on Sl is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
,

ċ1 = − β(J1 + J2)

(α + β)h(τ)
,(19)

J̇i = 0, τ̇ = 1.
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PNP SYSTEMS WITH PERMANENT CHARGES 1947

Remark 3.4. Following the suggestion of one of the referees, we give a sketch of
an alternative and more standard way of deriving the outer limit dynamics (19).

Introduce q̂ = βc2 − αc1. In terms of the variables (φ, u, q̂, c1, Ji, τ), system (8)
(with Q = 0) becomes

φ′ = u, u′ = q̂ − ε
h′(τ)

h(τ)
u,

q̂′ = (α(α + β)c1 + βq̂)u− εh−1(τ)(βJ2 − αJ1),
(20)

c′1 = −αc1u− εh−1(τ)J1,

J ′
i = 0, τ ′ = ε.

For ε = 0, the set {u = q̂ = 0} is a normally hyperbolic invariant manifold consisting
of equilibria. By Fenichel’s theory, the manifold persists for ε > 0 small and is given
by

u = εA(φ, c1, Ji, τ) + O(ε2), q̂ = εB(φ, c1, Ji, τ) + O(ε2).

Using the invariance of the manifold and substituting the above expressions for u and
q̂ into system (20), one obtains

B = O(ε), A =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε).

System (20) on the perturbed invariant manifold can be obtained by substituting the
expression of u and q̂ with the approximations of A and B above. It reads as follows:

φ′ = ε
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε2),

c′1 = −ε
β(J1 + J2)

(α + β)h(τ)
+ O(ε2),(21)

J ′
i = 0, τ ′ = ε.

The corresponding outer dynamics is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε),

ċ1 = − β(J1 + J2)

(α + β)h(τ)
+ O(ε),(22)

J̇i = 0, τ̇ = 1.

Its limiting dynamics at ε = 0 is exactly system (19).
The outer limit dynamics (33) in section 3.2.2 can also be derived this way.
The solution of (19) with the initial condition (φL, cL1 , J1, J2, 0) that corresponds

to the point (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) is

τ(x) = x, c1(x) = cL1 − β(J1 + J2)

α + β

∫ x

0

h−1(s)ds,

φ(x) = φL +
βJ2 − αJ1

α(α + β)

∫ x

0

h−1(s)c−1
1 (s)ds

= φL − βJ2 − αJ1

αβ(J1 + J2)

∫ x

0

ċ1(s)

c1(s)
ds ((19) is used here)

= φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)

cL1
.
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1948 BOB EISENBERG AND WEISHI LIU

Recall that we are looking for solutions that belong to α(Na
l ) when τ = a. Evaluating

the solution at τ = x = a, we have

ca,l1 = cL1 − β(J1 + J2)

α + β

∫ a

0

h−1(s)ds,

φa,l = φL − βJ2 − αJ1

αβ(J1 + J2)
ln

ca,l1

cL1
;

in particular,

J1 =
(cL1 − ca,l1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL1 − ln ca,l1

)
,

(23)

J2 =
(cL2 − ca,l2 )∫ a

0
h−1(s)ds

(
1 − β(φL − φa,l)

ln cL2 − ln ca,l2

)
.

We have used the relations αcL1 = βcL2 and αca,l1 = βca,l2 to get this more symmetric
form for J2.

The regular layer Λl is given by

φ(x) = φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)

cL1
,

u(x) = 0, αc1(x) = βc2(x),
(24)

c1(x) = cL1 − β(J1 + J2)

α + β

∫ x

0

h−1(s)ds,

τ(x) = x

with J1 and J2 determined by (23).

To summarize, for given values (φa, ca1 , c
a
2), we have constructed a unique sin-

gular orbit on the left subinterval [0, a] that connects BL to Ba. It consists of
two boundary layer orbits Γ0

l from the point (ν0, u0, L1, L2, J1, J2, 0) ∈ BL to the

point (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) ⊂ Zl and Γa

l from the point (φa,l, 0, ca,l1 , ca,l2 ,
J1, J2, a) ∈ α(Na

l ) ⊂ Zl to the point (φa, ul(a), c
a
1 , c

a
2 , J1, J2, a) ∈ Ba, and a regular

layer Λl on Zl that connects the two foot points (φL, 0, cL1 , c
L
2 , J1, J2, 0) ∈ ω(NL) and

(φa,l, 0, ca,l1 , ca,l2 , J1, J2, a) ∈ α(Na
l ) of the two boundary layers.

3.2. Singular orbits on [a, b] with Q(x) = Q. We now construct a singular
orbit on the subinterval [a, b] viewed as the channel where the permanent charge
Q(x) = Q is a nonzero constant. The construction is nearly the same as that for
singular orbits on [0, a].

We set φ(b) = φb, c1(b) = cb1, and c2(b) = cb2, where φb, cbi are unknowns to be
determined later. Let

Bb = {(φb, u, cb1, c
b
2, J1, J2, b) ∈ R7 : arbitrary u, J1, J2}.

The singular orbit to be constructed will be a connecting orbit from Ba to Bb over
[a, b].
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PNP SYSTEMS WITH PERMANENT CHARGES 1949

3.2.1. Inner dynamics on [a, b]: Boundary layers or inner solutions. By
setting ε = 0 in system (7) with Q(x) = Q, we get u = 0 and αc1 + Q = βc2. The
outer manifold is

Zm = {u = 0, αc1 + Q = βc2}.

In terms of ξ, we obtain the inner system of (7):

φ′ = u, u′ = βc2 − αc1 −Q− ε
h′(τ)

h(τ)
u,

c′1 = −αc1u− εh−1(τ)J1,
(25)

c′2 = βc2u− εh−1(τ)J2,

J ′
1 = J ′

2 = 0, τ ′ = ε.

The limiting system at ε = 0 is

φ′ = u, u′ = βc2 − αc1 −Q,

c′1 = −αc1u,
(26)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.

The set of equilibria of (26) is precisely Zm, and Zm is normally hyperbolic with
a six-dimensional stable manifold W s(Zm) and a six-dimensional unstable manifold
Wu(Zm). The manifolds Zm, W s(Zm), and W s(Zm) persist for ε > 0 small.

Proposition 3.4. (i) System (26) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2 −Qφ,

H4 = J1, H5 = J2, H6 = τ.

(ii) Let φ = φa,m be the unique solution of

αca1e
α(φa−φ) − βca2e

−β(φa−φ) + Q = 0,(27)

and let

ca,m1 = eα(φa−φa,m)ca1 , ca,m2 = e−β(φa−φa,m)ca2 .

The stable manifold W s(Zm) intersects Ba transversally at points with

um(a)

(28)

= [sgn(φa,m − φa)]
√

2ca1(1 − eα(φa−φa,m)) + 2ca2(1 − e−β(φa−φa,m)) − 2Q(φa − φa,m).

and arbitrary Ji’s.
Let φ = φb,m be the unique solution of

αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) + Q = 0,(29)

and let

cb,m1 = eα(φb−φb,m)cb1, cb,m2 = e−β(φb−φb,m)cb2.
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1950 BOB EISENBERG AND WEISHI LIU

The unstable manifold Wu(Zm) intersects Bb transversally at points with

um(b)

(30)

= [sgn(φb − φb,m)]
√

2cb1(1 − eα(φb−φb,m)) + 2cb2(1 − e−β(φb−φb,m)) − 2Q(φb − φb,m).

and arbitrary Ji’s.
(iii) Potential boundary layers Γa

m at x = a can be determined in the following
way: the φ-component satisfies the Hamiltonian system

φ′′ + αca1e
α(φa−φ) − βca2e

−β(φa−φ) + Q = 0,

together with φ(0) = φa and φ(ξ) → φa,m as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = ca1e
α(φa−φ(ξ)), c2(ξ) = ca2e

−β(φa−φ(ξ)).

Similarly, potential boundary layers Γb
m at x = b can be determined in the follow-

ing way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) + Q = 0,

together with φ(0) = φb and φ(ξ) → φb,m as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb1e
α(φb−φ(ξ)), c2(ξ) = cb2e

−β(φb−φ(ξ)).

(iv) Let Na
m = Ma

m∩W s(Zm) and N b
m = M b

m∩Wu(Zm), where Ma
m is the collec-

tion of orbits from Ba in forward time under the flow (26) and M b
m is the collection

of orbits from Bb in backward time under the flow (26). Then,

ω(Na
m) = {(φa,m, 0, ca,m1 , ca,m2 , J1, J2, a) : all Ji} ,

α(N b
m) = {(φb,m, 0, cb,m1 , cb,m2 , J1, J2, b) : all Ji}.

Remark 3.5. To show that the quantity under the square root in the display (28)
is nonnegative, we assume ca1 > 0 and ca2 > 0 for the moment and let

f(x) = ca1 + ca2 − ca1e
α(φa−x) − ca2e

−β(φa−x) −Q(φa − x).

Then,

f ′(x) = αca1e
α(φa−x) − βca2e

−β(φa−x) + Q

and

f ′′(x) = −α2ca1e
α(φa−x) − β2ca2e

−β(φa−x) < 0.

Therefore f(x) is concave downward. Note that f ′(x) → +∞ as x → −∞ and
f ′(x) → −∞ as x → +∞. Hence, f(x) has a unique critical point and it must have
a global maximum at this critical point. Since x = φa

m is the critical point, we have

f(φa
m) ≥ f(φa) = 0.

By continuity, we have f(φa
m) ≥ 0 even if ca1 = 0 and/or ca2 = 0. Similarly, the

quantity under the square root in the display (30) is nonnegative.
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PNP SYSTEMS WITH PERMANENT CHARGES 1951

3.2.2. Outer dynamics on [a, b]: Regular layers or outer solutions. We
now study the flow in the vicinity of the outer manifold Zm. Following the treatment
of the outer flow on Zl in section 3.1.2 (see also Remark 3.4), we make a scaling u = εp
and βc2 − αc1 −Q = εq. System (7) becomes

φ̇ = p, εṗ = q − ε
h′(τ)

h(τ)
p,

εq̇ = ((α + β)αc1 + βQ + εβq)p− h−1(τ)(βJ2 − αJ1),
(31)

ċ1 = −αc1p− h−1(τ)J1,

J̇1 = J̇2 = 0, τ̇ = 1.

Its limit, as ε → 0, is

φ̇ = p, 0 = q,

0 = ((α + β)αc1 + βQ)p− h−1(τ)(βJ2 − αJ1),
(32)

ċ1 = −αc1p− h−1(τ)J1,

J̇i = 0, τ̇ = 1.

For this system, the outer manifold is

Sm =

{
p =

βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
, q = 0

}
.

The outer limit dynamics on Sm is governed by system (32), which reads as
follows:

φ̇ =
βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
,

ċ1 = − (βJ2 − αJ1)αc1
h(τ)((α + β)αc1 + βQ)

− h−1(τ)J1

(33)

= − αβ(J1 + J2)c1 + βQJ1

h(τ)((α + β)αc1 + βQ)
,

J̇i = 0, τ̇ = 1.

Since h(τ) > 0 and βc2 = αc1 + Q > 0, system (33) has the same phase portrait
as that of the following system obtained by multiplying h(τ)((α + β)αc1 + βQ) on
the right-hand side of system (33) (here we see the reason why τ = x and τ̇ = 1 were
introduced into the analysis; see (7)):

d

dy
φ = βJ2 − αJ1,

d

dy
c1 = −αβ(J1 + J2)c1 − βQJ1,(34)

d

dy
Ji = 0,

d

dy
τ = h(τ)((α + β)αc1 + βQ).D
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1952 BOB EISENBERG AND WEISHI LIU

The solution with the initial condition (φa,m, ca,m1 , J1, J2, a) that corresponds to
the point (φa,m, 0, ca,m1 , ca,m2 , J1, J2, a) ∈ ω(Na

m) is

φ(y) = φa,m + (βJ2 − αJ1)y,

c1(y) = e−αβ(J1+J2)yca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y

)
,∫ τ

a

h−1(s)ds = (α + β)α

∫ y

0

c1ds + βQy(35)

=
(α + β)ca,m1

β(J1 + J2)

(
1 − e−αβ(J1+J2)y

)

− (α + β)QJ1

J1 + J2

(
y − 1

αβ(J1 + J2)

(
1 − e−αβ(J1+J2)y

))
+ βQy.

We are looking for solutions to reach α(N b
m); that is, whenever τ(y) = b, we require

φ(y) = φb,m and c1(y) = cb,m1 . Assume τ(y0) = b for some y0 > 0. Then, φ(y0) = φb,m

and c1(y0) = cb,m1 , and hence,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,

(36) ∫ b

a

h−1(s)ds =
(α + β)ca,m1

β(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)

− (α + β)QJ1

J1 + J2

(
y0 −

1

αβ(J1 + J2)

(
1 − e−αβ(J1+J2)y0

))
+ βQy0.

System (36) is equivalent to

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,(37)

J1 + J2 =
α(α + β)(ca,m1 − cb,m1 ) − αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

.

Therefore, the outer or regular layer solution Λm on [a, b] is given by (35) with
J1 and J2 determined by (37). Together with the boundary layers Γa

m and Γb
m in

statement (iii) of Proposition 3.4, this gives the singular orbit on the interval [a, b].

3.3. Singular orbits on [b, 1] with Q(x) = 0. The construction of singular
orbits on [b, 1] is virtually identical to the construction of singular orbits on [0, a] in
section 3.1. We will state only the results for later use.

3.3.1. Inner dynamics on [b, 1]: Boundary layers or inner solutions.
The inner limit system is

φ′ = u, u′ = βc2 − αc1,

c′1 = −αc1u,
(38)

c′2 = βc2u,

J ′
1 = J ′

2 = 0, τ ′ = 0.
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PNP SYSTEMS WITH PERMANENT CHARGES 1953

The outer manifold is

Zr = {u = 0, αc1 = βc2}.

It consists of equilibria of system (38) and is normally hyperbolic with a six-dimensional
stable manifold W s(Zr) and a six-dimensional unstable manifold Wu(Zr). Concern-
ing the boundary layers, we have the following proposition.

Proposition 3.5. (i) System (38) has the following six integrals:

H1 = eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1

2
u2,

H4 = J1, H5 = J2, H6 = τ.

(ii) Let φ = φb,r be the unique solution of

αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) = 0, that is, φb,r = φb − 1

α + β
ln

βcb2
αcb1

,

and let

cb,r1 =
1

α
(αcb1)

β
α+β (βcb2)

α
α+β , cb,r2 =

1

β
(αcb1)

β
α+β (βcb2)

α
α+β .

The stable manifold W s(Zr) intersects Bb transversally at points with

ur(b) = [sgn(αcb1 − βcb2)]

√
2

(
cb1 + cb2 −

α + β

αβ
(αcb1)

β
α+β (βcb2)

α
α+β

)
(39)

and arbitrary Ji’s.
Let φ = φR be the unique solution of

αR1e
−αφ − βR2e

βφ = 0, that is, φR = − 1

α + β
ln

βR2

αR1
,

and let

cR1 =
1

α
(αR1)

β
α+β (βR2)

α
α+β , cR2 =

1

β
(αR1)

β
α+β (βR2)

α
α+β .

The unstable manifold Wu(Zr) intersects BR transversally at points with

u1 = [sgn(βR2 − αR1)]

√
2

(
R1 + R2 −

α + β

αβ
(αR1)

β
α+β (βR2)

α
α+β

)
(40)

and arbitrary Ji’s.
(iii) Potential boundary layers Γb

r at x = b can be determined in the following
way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb1e
α(φb−φ) − βcb2e

−β(φb−φ) = 0,

together with φ(0) = φb and φ(ξ) → φb,r as ξ → ∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb1e
α(φb−φ(ξ)), c2(ξ) = cb2e

−β(φb−φ(ξ)).

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1954 BOB EISENBERG AND WEISHI LIU

Similarly, potential boundary layers Γ1
r at x = 1 can be determined in the following

way: the φ-component satisfies the Hamiltonian system

φ′′ + αR1e
−αφ − βR2e

βφ = 0,

together with φ(0) = 0 and φ(ξ) → φR as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = R1e
−αφ(ξ), c2(ξ) = R2e

βφ(ξ).

(iv) Let N b
r = M b

r ∩W s(Zr) and NR = MR∩Wu(Zr), where M b
r is the collection

of orbits from Bb in forward time under the flow (38) and MR is the collection of
orbits from BR in backward time under the flow (38). Then,

ω(N b
r ) = {(φb,r, 0, cb,r1 , cb,r2 , J1, J2, b) : all Ji},

α(NR) =
{(

φR, 0, cR1 , c
R
2 , J1, J2, 1

)
: all Ji

}
.

3.3.2. Outer dynamics on [b, 1]: Regular layers or outer solutions. We
now examine the existence of regular layers or outer solutions that connect ω(N b

r ) to
α(NR). Following exactly the same analysis as in section 3.1.2, we find that the outer
limit dynamics is

φ̇ =
βJ2 − αJ1

(α + β)αh(τ)c1
,

ċ1 = − β(J1 + J2)

(α + β)h(τ)
,(41)

J̇i = 0, τ̇ = 1,

and the outer solution Λr on [b, 1] with the initial condition (φb,r, cb,r1 , J1, J2, b) that

corresponds to the point (φb,r, 0cb,r1 , cb,r2 , J1, J2, b) ∈ ω(N b
r ) is given by

φ(ξ) = φb,r − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(ξ)

cb,r1

,

u(ξ) = 0, αc1(ξ) = βc2(ξ),

c1(ξ) = cb,r1 − β(J1 + J2)

α + β

∫ ξ

b

h−1(s)ds,

τ(ξ) = ξ.

The outer solution Λr hits the point (φR, 0, cR1 , c
R
2 , J1, J2, 1) ∈ α(NR) if and only if

J1 =
cb,r1 − cR1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r1 − ln cR1

)
,

(42)

J2 =
cb,r2 − cR2∫ 1

b
h−1(s)ds

(
1 − β(φb,r − φR)

ln cb,r2 − ln cR2

)
.

The outer solution Λr together with the inner solutions Γb
r and Γ1

r in statement
(iii) of Proposition 3.5 gives the singular orbit on [b, 1].
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PNP SYSTEMS WITH PERMANENT CHARGES 1955

B L

0

BR

1a b

Γ Γ

Γ Γ

Γ

Λ

Λ

Γ

l
a

a
m

m

m

r
r

b

b

u

α c1−βc2

Z m

Λ l

Z l Z r

τ

0

1

l

r

Fig. 3. Schematic picture of the singular orbit (solid curves): left boundary layer Γ0
l ; right

boundary layer Γ1
r; four internal layers Γa

l , Γa
m, Γb

m; and Γb
r, and three regular layers Λl, Λm, and

Λr.

3.4. Matching and singular orbits on [0, 1]. A singular orbit on the whole
interval [0, 1] will be the union of the singular orbits constructed on each of the
subintervals (see Figure 3). The matching conditions are ul(a) = um(a), um(b) =
ur(b), and J1 and J2 have to be the same on all subintervals; that is, from formulas
(14), (23), (27), (28), (29), (30), (37), (39), and (42),

αca1e
α(φa−φa,m) − βca2e

−β(φa−φa,m) + Q = 0,

αcb1e
α(φb−φb,m) − βcb2e

−β(φb−φb,m) + Q = 0,

α + β

β
ca,l1 = ca1e

α(φa−φa,m) + ca2e
−β(φa−φa,m) + Q(φa − φa,m),

α + β

β
cb,r1 = cb1e

α(φb−φb,m) + cb2e
−β(φb−φb,m) + Q(φb − φb,m),

J1 =
(cL1 − ca,l1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL1 − ln ca,l1

)

=
cb,r1 − cR1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r1 − ln cR1

)
,(43)

J2 =
(cL2 − ca,l2 )∫ a

0
h−1(s)ds

(
1 − β(φL − φa,l)

ln cL2 − ln ca,l2

)

=
cb,r2 − cR2∫ 1

b
h−1(s)ds

(
1 − β(φb,r − φR)

ln cb,r2 − ln cR2

)
,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m1 = e−αβ(J1+J2)y0ca,m1 − QJ1

α(J1 + J2)

(
1 − e−αβ(J1+J2)y0

)
,

J1 + J2 =
α(α + β)(ca,m1 − cb,m1 ) − αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

,
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1956 BOB EISENBERG AND WEISHI LIU

where

cL1 =
1

α
(αL1)

β
α+β (βL2)

α
α+β , cL2 =

1

β
(αL1)

β
α+β (βL2)

α
α+β ,

ca,l1 =
1

α
(αca1)

β
α+β (βca2)

α
α+β , ca,l2 =

1

β
(αca1)

β
α+β (βca2)

α
α+β ,

cb,r1 =
1

α
(αcb1)

β
α+β (βcb2)

α
α+β , cb,r2 =

1

β
(αcb1)

β
α+β (βcb2)

α
α+β ,

ca,m1 = eα(φa−φa,m)ca1 , cb,m1 = eα(φb−φb,m)cb1.

Recall that h(x) = g2
0(x), where g0(x) is the radius of the cross-section of the

channel at x, Q is the concentration of the permanent charge over the interval [a, b],
(φa, ca1 , c

a
2) and (φb, cb1, c

b
2) are the unknown values preassigned at x = a and x = b,

and J1 and J2 are the unknown values for the flux densities of the two types of ions.

There are also three auxiliary unknowns φa,m, φb,m, and y0 in the set of equations
(43). The total number of unknowns in (43) is eleven, which matches the total number
of equations.

A qualitative important question is whether the set of nonlinear equations (43)
has a unique solution. Next, we will consider a special case and demonstrate that
(43) can have multiple solutions.

3.4.1. α = β = 1, and a = 1/3, b = 2/3, and h = 1. We now consider
a special case where α = β = 1. It turns out that the nonlinear system of algebraic
equations (43) in eleven unknowns can be reduced to a single algebraic equation with
only one unknown. Further restrictions that a = 1/3, b = 2/3, and h = 1 will be
posted later merely for simplicity.

Set ca1c
a
2 = A2, cb1c

b
2 = B2, L1L2 = L2, R1R2 = R2, and Q = 2Q0. From the first

two equations in (43), one has

φa − φa,m = ln

√
Q2

0 + A2 −Q0

ca1
,

φb − φb,m = ln

√
Q2

0 + B2 −Q0

cb1
.

System (43) becomes

A =
√
Q2

0 + A2 + Q0 ln

√
Q2

0 + A2 −Q0

ca1
,

B =
√
Q2

0 + B2 + Q0 ln

√
Q2

0 + B2 −Q0

cb1
,

J1 =
L−A∫ a

0
h−1(s)ds

· ν0 − φa + lnL1 − ln ca1
lnL− lnA

=
B −R∫ 1

b
h−1(s)ds

· φ
b + ln cb1 − lnR1

lnB − lnR
,
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PNP SYSTEMS WITH PERMANENT CHARGES 1957

J2 =
L−A∫ a

0
h−1(s)ds

(
2 − ν0 − φa + lnL1 − ln ca1

lnL− lnA

)
(44)

=
B −R∫ 1

b
h−1(s)ds

(
2 − φb + ln cb1 − lnR1

lnB − lnR

)
,

(J2 − J1)y0 = φb − φa + ln
cb1(
√
Q2

0 + A2 −Q0)

ca1(
√
Q2

0 + B2 −Q0)
,

J1 + J2 =
2(
√
Q2

0 + A2 −
√
Q2

0 + B2) − 2Q0(J1 − J2)y0∫ b

a
h−1(s)ds

,

√
Q2

0 + B2 −Q0 = e−(J1+J2)y0

(√
Q2

0 + A2 −Q0

)

− 2Q0J1

J1 + J2

(
1 − e−(J1+J2)y0

)
.

Add the J1 and J2 equations in (44) to get

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

; hence, B =

∫ 1

b
h−1∫ a

0
h−1

(L−A) + R.

The first two equations in (44) give

ca1 =

(√
Q2

0 + A2 −Q0

)
exp

{√
Q2

0 + A2 −A

Q0

}
,

(45)

cb1 =

(√
Q2

0 + B2 −Q0

)
exp

{√
Q2

0 + B2 −B

Q0

}
.

The first two equations together with (J2 − J1)y0 and the J1 + J2 equations give

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

= 2
A−B −Q0(φ

a − φb)∫ b

a
h−1

.

Hence,

J1 + J2 = 2
L−R−Q0(φ

a − φb)∫ 1

0
h−1

,

φb − φa =
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

,(46)

and

(J2 − J1)y0 = φb − φa − ln

√
Q2

0 + B2 −Q0

cb1
+ ln

√
Q2

0 + A2 −Q0

ca1

=
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

+ ln
(
√
Q2

0 + A2 −Q0)c
b
1

(
√
Q2

0 + B2 −Q0)ca1

=
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

+

√
Q2

0 + B2 −
√
Q2

0 + A2

Q0
.
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1958 BOB EISENBERG AND WEISHI LIU

Using

L−A∫ a

0
h−1

=
B −R∫ 1

b
h−1

and the second equality in the J1 equation in (44), one has

ν0 − φa + lnL1 − ln ca1
lnL− lnA

=
φb + ln cb1 − lnR1

lnB − lnR
.

Hence,

φb + ln cb1 − lnR1

lnB − lnR
=

ν0 + φb − φa + ln(L1c
b
1) − ln(R1c

a
1)

ln(BL) − ln(AR)
.

The latter together with (46) and (45) gives

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1c
b
1

R1ca1
+

(L−A)
∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

)
+ ln

R1

cb1

=
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)
+

√
Q2

0 + B2 −
√
Q2

0 + A2

Q0

+
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

)
+ lnR1 − ln

(√
Q2

0 + B2 −Q0

)
−
√
Q2

0 + B2 −B

Q0
.

Note that all the variables in (44) can be expressed in terms of A. Substituting
into the last equation in (44) we will get an equation F (A) = 0 in the variable A only.
The expression of F (A) is complicated but can be explicitly given.

We now suppose further that a = 1/3, b = 2/3, and h = 1. Then,

B = L + R−A, J1 + J2 = 6(L−A),(47)

ca1 =

(√
Q2

0 + A2 −Q0

)
exp

{√
Q2

0 + A2 −A

Q0

}
,

cb1 =

(√
Q2

0 + B2 −Q0

)
exp

{√
Q2

0 + B2 −B

Q0

}
,

φb − φa =
2L + R− 3A

Q0
,

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)
+

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0

)

+ lnR1 − ln

(√
Q2

0 + B2 −Q0

)
−
√

Q2
0 + B2 −B

Q0
,
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PNP SYSTEMS WITH PERMANENT CHARGES 1959

J2 − J1 = 6(L−A) − 6(L−A)

ln BL
AR

(
ν0 + ln

L1(
√
Q2

0 + B2 −Q0)

R1(
√
Q2

0 + A2 −Q0)

)

−6(L−A)(
√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A)

Q0 ln BL
AR

,

(J2 − J1)y0 =

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0
.

The final equation involving the only unknown A is F (A) = 0, where

F (A) = eK(A)

(√
Q2

0 + A2 − Q0(J2 − J1)

6(L−A)

)

+
Q0(J2 − J1)

6(L−A)
−
√
Q2

0 + B2,(48)

where

K(A) = −6(L−A)

√
Q2

0 + B2 −
√
Q2

0 + A2 + L−A

Q0(J2 − J1)
,

B = L + R−A, and J2 − J1 is given above.

To summarize, for the special case where

α = β = 1, a = 1/3, b = 2/3, h = 1,

the set of nonlinear algebraic equations is equivalent to F (A) = 0, where F (A) is given
in (48). The formula F (A), although terribly complicated, involves only one unknown
A =

√
ca1c

a
2 . Other parameters in F (A) are L1, L =

√
L1L2, R1, R =

√
R1R2, ν0,

and Q0.

For L = L1 = 2, R = R1 = 3, Q = 2Q0 = 2, and ν0 = −20, we find, numerically,
two solutions of F (A) = 0: A1 = 0.6858357 and A2 = 2 (the latter is a removable
singularity of the functions F (A), Ji’s, φ

b, and φa).

Once a feasible value for A is determined, all the unknowns will be determined.
We then get a singular orbit that consists of nine pieces Γ0

l ∪ Λl ∪ Γa
l ∪ Γa

m ∪ Λm ∪
Γb
m ∪ Γb

r ∪ Λr ∪ Γ1
r (see Figure 3).

4. Main results and numerical simulations. Any solution of the set of al-
gebraic equations determines a singular orbit for the connecting problem. Once a
singular orbit is constructed, we apply geometric singular perturbation theory to
show that, for ε > 0 small, there is a unique solution that is close to the singular
orbit. Before giving the precise statement of our result and its proof, let us explain
the ideas behind it.

Let Γ0
l ∪Λl∪Γa

l ∪Γa
m∪Λm∪Γb

m∪Γb
r∪Λr∪Γ1

r be a singular orbit to the connecting
problem (7) associated to BL and BR. For ε > 0 small, let ML(ε) be the forward
trace of BL under the flow of system (7) or, equivalently, system (8). To establish
the existence of a unique solution to the boundary value problem near the singular
orbit, we will show that ML(ε) intersects BR transversally in a neighborhood of the
singular orbit.
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1960 BOB EISENBERG AND WEISHI LIU

Roughly speaking, the evolution of ML(ε) from x = 0 to x = 1 undergoes the
following nine stages with each stage guided by one of the nine pieces of the singular
orbit (see Figure 3):

(l1) Along Γ0
l : Since BL intersects W s(Zl) transversally, ML(ε) will first follow

the orbit Γ0
l towards the vicinity of Zl under the inner limit flow (12) near

x = 0.
(l2) Along Λl: Once ML(ε) gets close to Zl, the outer limit flow (19) takes over,

and ML(ε) will then follow the outer flow on Zl or Sl along the orbit Λl

towards the hypersurface {x = a}.
(l3) Along Γa

l : Near but before {x = a}, ML(ε) will leave the vicinity of Zl,
follow the orbit Γa

l under the inner limit flow (12) near x = a, and hit the
hypersurface {x = a}.

(m1) Along Γa
m: Upon hitting the hypersurface {x = a}, the flow switches to the

inner limit flow (26) with Q(x) = Q. ML(ε) then follows Γa
m towards the

vicinity of Zm.
(m2) Along Λm: Once ML(ε) gets close to Zm, the outer limit flow (33) takes over,

and ML(ε) will then follow the outer flow on Zm or Sm along the orbit Λm

towards the hypersurface {x = b}.
(m3) Along Γb

m: Near but before {x = b}, ML(ε) will leave the vicinity of Zm,
follow the orbit Γb

m under the inner limit flow (26) near x = b, and hit the
hypersurface {x = b}.

(r1) Along Γb
r: Upon hitting the hypersurface {x = b}, the flow switches to the

inner limit flow (38) with Q(x) = 0. ML(ε) then follows Γb
r towards the

vicinity of Zr.
(r2) Along Λr: Once ML(ε) gets close to Zr, the outer limit flow (41) takes over,

and ML(ε) will then follow the outer flow on Zr or Sr along the orbit Λr

towards the hypersurface {x = 1}.
(r3) Along Γ1

r: Near but before {x = 1}, ML(ε) will leave the vicinity of Zr and
follow the orbit Γ1

r under the inner limit flow (38) near x = 1. If it hits BR,
then we get our solution.

The main task is to justify the above description of the stages that ML(ε) under-
goes. The exchange lemma—see, for example, [47, 45, 46, 50, 51, 73]—of geometric
singular perturbation theory is a result that precisely characterizes the configuration
of ML(ε) during its evolution through the above stages. To apply this abstract theory,
one need only verify certain transversality conditions of some limiting objects.

We now state our results and provide a proof using the geometric singular per-
turbation theory described above.

Theorem 4.1. Let Γ0
l ∪ Λl ∪ Γa

l ∪ Γa
m ∪ Λm ∪ Γb

m ∪ Γb
r ∪ Λr ∪ Γ1

r be a singular
orbit to the connecting problem (7) associated to BL and BR. Then, for ε > 0 small,
the boundary value problem (5) and (6) has a unique continuous and piecewise smooth
solution near the singular orbit.

Proof. For ε > 0 small, choose δ > 0 small. Let

BL(δ) = {(ν0, u, L1, L2, J1, J2, 0) : |u− u0| < δ, |Ji − J0
i | < δ},

and let ML(ε) be the forward trace of BL(δ) under the flow of system (7) or, equiv-
alently, system (8). To prove the theorem, we need to show that ML(ε) intersects
BR transversally in a neighborhood of the singular orbit. Indeed, if we let MR(ε)
be the backward trace of BR near the singular orbit, then ML(ε) and MR(ε) in-
tersect transversally too. The transversality implies that dim(ML(ε) ∩ MR(ε)) =
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PNP SYSTEMS WITH PERMANENT CHARGES 1961

dimML(ε) + dimMR(ε) − 7 = 1. Therefore, the intersection ML(ε) ∩MR(ε) consists
of precisely one solution to the boundary value problem, and the solution is near the
singular orbit.

To establish the transversal intersection of ML(ε) with BR near the singular orbit,
we apply the exchange lemma successively along the stages described above. The first
application of the exchange lemma verifies the descriptions for stages (l1), (l2), and
(l3); the second one for stages (m1), (m2), and (m3); and the last application verifies
the descriptions for stages (r1), (r2), and (r3).

Note that dimBL(δ) = 3. Since the fast flow is not tangent to BL(δ), one has
dimML(ε) = 4. The transversality of the intersection BL ∩W s(Zl) along Γ0

l implies
the transversality of the intersection ML(0) ∩W s(Zl). The exchange lemma implies
that ML(ε) will first follow Γ0

l towards NL ⊂ Zl, then follow NL · x in the vicinity of
Λl towards x = a, and leave the vicinity of Zl. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(NL × (a− δ, a)) in the vicinity of Γa

l .
Denote the intersection of Wu(NL × (a− δ, a)) with {x = a} by I(a). Then I(a)

intersects W s(Zm) transversally for the flow (26). Let K(a) be the forward trace
of I(a) under (25). The exchange lemma implies that ML(ε) will first follow K(a)
in the vicinity of Γa

m towards Na
m ⊂ Zm, then follow Na

m · x in the vicinity of Λm

towards x = b, and leave the vicinity of Zm. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(Na

m × (b− δ, b)) in the vicinity of Γb
m.

Denote the intersection of Wu(Na
m × (b− δ, b)) with {x = b} by I(b). Then I(b)

intersects W s(Zr) transversally for the flow (38). Let K(b) be the forward trace of
I(b) under the full system. Then exchange lemma implies that ML(ε) will first follow
K(b) in the vicinity of Γb

r towards N b
r ⊂ Zr, then follow N b

r · x in the vicinity of Λr

towards x = 1, and leave the vicinity of Zr. And upon exit, ML(ε) is C1 O(ε)-close
to Wu(NR × (1 − δ, 1)) in the vicinity of Γ1

r.
In summary, after three applications of the exchange lemma, we determine that

ML(ε) is C1 O(ε)-close to Wu(NR × (1− δ, 1)) in the vicinity of Γ1
r. Since Wu(NR ×

(1− δ, 1)) intersects BR transversally along Γ1
r, we have shown that ML(ε) intersects

BR transversally. The proof is complete.
Numerical simulations are performed for A1 = 0.6858357 and A2 = 2 (see Fig-

ures 4 and 5). The following properties of the two solutions are predicted from the
analytical results and can be observed from the numerical simulations:

(i) For both A1 and A2, approximately c2(x)−c1(x) = Q(x) for x ∈ (0, 1) except
around x = 1/3 and x = 2/3—the jumping points of Q.

(ii) For A2 = L, J1 + J2 = 0 from (47). As a consequence of (19) and (41),
c1(x) = c2(x) = L = 2 for x ∈ (0, 1/3) and c1(x) = c2(x) = R = 3 for x ∈
(2/3, 1). The decreasing behavior of c1(x) = c2(x) for x ∈ (0, 1/3) ∪ (2/3, 1)
can be also predicted from that of the singular orbit corresponding to A1.

(iii) There is a significant difference between the two solutions for A1 �= L and
A2 = L: the solution for A1 has two internal layers with limit orbits Γa

l

and Γa
m at x = a = 1/3 that match at a point on Ba (see Figure 3); the

solution for A2 has only one internal layer Γa
l = Γa

m at x = 1/3. This
analytical consequence is not clearly shown in the figures but is indicated by
the different behaviors of the φ-component: for A1, with the extra transition
through Ba, the layers near x = 1/3 are smoother than the one layer for A2.
The same remarks are true for the two solutions near x = b = 2/3.

5. Remarks. The defining equation F (A) = 0 in (48) that determines multi-
plicity of steady-states of the PNP system should be investigated thoroughly.
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Numerical solution for A=0.6858357, ν
0
=−20, L=2, R=3, Q=2, ε=0.02

Fig. 4. φ (stars), c1 (solid curve), and c2 (dashed curve) for A1 = 0.6858357 with L1 = L2 = 2,
R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.
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Numerical solution for A=2, L=2, R=3, Q=2, ν
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=−20, ε=0.02

Fig. 5. φ (stars), c1 (solid curve), and c2 (dashed curve) for A2 = 2 with L1 = L2 = 2,
R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.

This could be studied using bifurcation theory of dynamical systems and numeri-
cal tools (e.g., AUTO) due to the presence of multiple parameters (Li, Ri, ν0, Q,
etc. should be viewed as perturbation parameters). Another important problem is
the stability of each solution in the full time evolution PNP system. Both multi-
plicity and stability have important biological consequences for ion channels. Single
channels are in fact often defined in the laboratory by their characteristic current
signal which switches from one nearly zero level (“the closed channel”) to another
nonzero level (“the open channel”) in a random telegraph signal, with brief incomplete
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spiky interruptions. Different types of channels perform their functions by controlling
the open probability and/or mean duration of the stochastic signal. These gating
phenomena are central to the biological function of channels and are almost always
explained by saying the channel changes shape (“conformation”) when it switches
current level. Another explanation could be that the steady-state solutions of the
PNP equations themselves have multiple solutions, and the different current levels
correspond to those different solutions. Because the actual current data is stochastic,
it is not clear whether the “open channel” state is stationary or not. Indeed, the open
probability and/or duration of the open state might be stochastic representations of
the instability of the PNP equations. Ion channels also act (in many cases) as if they
have two spatially distinct gates, one of which is normally open and the other nor-
mally closed. The opening and closing processes of these gates do not overlap in ion
channels so there is always a time when both gates are open and current flows through
the channel. The stability properties of the equations may determine many of these
gating properties. It is hard to see how the stability properties of the equations (and
underlying physics) could not be involved to some significant extent, even if that gat-
ing is modulated by other processes and involves additional physics or conformational
changes. Finally, there is a vitally important class of “channel” proteins in which
the two gates open and close in ping pong fashion, so current can never flow right
through the channel pore. These channels form mediated transporters of the greatest
biological importance. It is hard to imagine that the stability of multiple solutions
of the PNP equations (and the underlying physics) is not involved in the correlated
gating properties of transporters, even if that gating is modulated by other processes
and involves additional physics or even conformational changes.

Clearly our methods will be challenged when we try to extend them to other
geometries of channels, multiple regions with nonzero permanent charges, and the even
more important problems of three or more ions of different charge (e.g., Na+, Ca2+,
Cl−). The depletion layers that then occur allow the wide diversity of devices (from
amplifier, to limiter, to multiplier, etc.) that can be built from a single PNP transistor,
and that can be described by numerical solutions of the PNP equations [67, 35, 41,
28, 71, 34]. An alarming diversity of treatments must arise from any perturbation
analysis of PNP systems because such a diversity of real devices actually exist and are
built on that (physical and intellectual) substrate! Existing mathematical analysis of
the PNP equations will need to be extended to show how those different devices can be
built on one substrate. That is to say, analysis is needed to show how different devices
arise from different values of the boundary potential but just one set of differential
equations (and boundary equations), with one set of parameters (other than boundary
potentials). Many useful applications in the design of channels and semiconductors
depend on this analysis.
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