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Weak gravitational fields 
D. Lerner and J. R. Porter 
Department of Mathematics. University of Pittsburgh, Pittsburgh. Pennsylvania 15213 
(Received 12 February 1973) 

We consider the set of C k bounded tensor fields of type (r,s) on R 4 in the topology of uniform Ck 

convergence. For each k ~ 2, the map sending a metric to its curvature tensor is shown to be analytic 
at the Minkowski metric. The same is true of the map sending a metric to its Einstein tensor. The 
well-known linearized theory of gravitation amounts to studying the directional derivatives of these 
maps. An iterative method for solving the full field equations along an analytic curve of Einstein 
tensors passing through zero is proposed. 

I. INTRODUCTION 

A central problem in the general theory of relativity 
concerns the stability of solutions to Einstein's field 
equations. PreCisely, given a four-manifold M, a stress­
energy tensor T, and an exact solution g to the field 
equations E(g) = - T, the problem is to determine all 
"nearby" solutions and to examine, at least qualitatively, 
their physical properties. (E(g) = {Rab - tRgab}dx a ® 
dx b is the Einstein tensor of the metric g. The map 
g ~ E(g) is called the Einstein map.) There are essen­
tially two approaches to the problem, depending on what 
one means by the word "nearby." 

(a) In the first instance, one considers all metrics g' 
which are in some sense close to g, computes the 
energy-momentum tensors - E(g'), and examines the 
physical properties of the resulting space-times (M,g'). 
One normally requires the introduction of a topology on 
the set of Lorentz metrics in order to determine whether 
or not two metrics are close to one another. 

(b) In the second instance, one perturbs the energy­
momentum tensor T to a nearby T' and attempts to 
solve the resulting field equations E(g') = - T'. 

In connection with (a) if one regards all Lorentz metrics 
on M as being on an equal (mathematical footing, it 
appearsl that the only acceptable choice for a topology 
is the Whitney fine e" topology. However, it frequently 
happens that one is not concerned with all such metriCS, 
but only those g' which are in some sense close to a 
fixed metric g. In such cases, it is possible to construct 
a topology which is considerably more tractable than 
the Whitney topology and at the same time appears to 
provide a suitable analytiC framework within which to 
attack problem (b). 

In this paper, we examine such a topology in the particu­
lar case where M = R,4 and the preferred metric is a 
fixed Minkowski metric.1). Section II introduces the 
necessary mathematical formalism; the set of Lorentz 
metrics close to 1) is shown to be an open subset of a 
Banach space. In Sec. III we show that the curvature 
map (the map associating with each Lorentz metric its 
Riemann tensor) is analytic in a neighborhood of 1). 
[The metrics themselves need only be e k (k ~ 2).] It 
follows immediately that the Einstein map g ~ E(g) is 
analytic at 1). In Sec. IV we briefly discuss the linearized 
theory of gravitation, which is particularly well-posed 
in this formalism: The linearized Einstein tensor of 
the metric 1) + h is simply the derivative of E at 1) in 
the direction of h. In Sec. V we discuss an iterative 
procedure for solving the full field equations along an 
analytic curve of stress-energy tensors passing through 
zero. 

II. MATHEMATICAL PRELIMINARIES 
Fix, once and for all, a global coordinate system (xa ) on 
R4 and the Minkowski metric 1) defined by these co-
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ordinates,1)ab = diag{l, -1, -1, -I}. Let S" denote the 
set of e" twice-covariant symmetric tensor fields on 
R4, and for hE S,,' X E R4, put 

Ilh(X)II,,== < max < {lhab(X)I,lhcd.e(x)I, ... , 
l-a,b ..... -4 

1 hij ' ml'm
2 
... m" (x) I}, (1) 

and set 

Define 

(3) 

The 1·1 Ii norm is easily seen to be equivalent to the 
standard e" norm; this particular formulation is slightly 
easier to calculate with. <B" is a Banach space. Simi­
larly, let '0" denote the set of four- covariant e" tensor 
fields on R4 having the symmetries of curvature ten­
sors (R[ab][cd] = R abcd , Ra[bcd] = 0). For R E '0", de­
fine IRI" as above and let 

(4) 

W" is a Banach space as well. Notice that 1) E <B k and 
that the ball of radius 1/4 about 1) consists entirely of 
Lorentz metricsj it is these which we shall call "close" 
to 1). Thus we are concerned with an open ball in a 
Banach space. {Notice that the complete set of Lorentz 
metrics contained in <E" is not an open set; for example, 
(1/(1 + r 2)]1)(r2 = L:;a (xa)2] is not an interior point. 
This would be a real problem if we were interested in 
all Lorentz metrics.} 

III. ANALYTICITY OF THE CURVATURE MAP 

Let n be the map sending a nondegenerate e" metric 
to its e" -2 curvature tensor. As mentioned above, the 
domain of n contains an open ball around 1) in <Bk' 

Theorem: For any k ~ 2, the map 0: <B" ~ W"_2 is 
analytic at 1). Precisely, for any g in the ball of radius 
1/4 about 1), write g = 1) + h where I hi" < 1/4; then 

j times, (5) 
where, as usual, 

DjO(1)'(h, ••• ,h) = d~ ... dt 
j 1 

{Rabcd (1) + tlhl + ... + tjhj)dx a ® dx b ® dx c ® dxd}. 

t1= .. ·=tj=O 

hI = ···=hj=h 

Copyright © 1974 American Institute of Physics 
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The series on the right converges in norm in the space 
W"-2' 

Proof: We exhibit the power series for 0(11 + h) and 
show that it converges to 0(11 + h). It is necessary to 
work in components; all raising and lowering of indices 
is done with 11 and the summation convention is em­
ployed throughout. We have g = 11 + h, where Ih I" = 
a < 1/4. By long division, the components of the inverse 
matrix to g are 

This is a series of real-valued functions on JR4; we need 
to show uniform C" convergence. Put b == 4a < 1, and 
differentiate the series n times (0 :s n :s k). One finds 
without difficulty that, for any x E R4, 

I (hei1h. i 2h . is ••• h. d), a
1
a2 ••• t'l (x) 1< (j + l)nbJ+l. (8) 

'1 '2 'j ...,. 

Since .6;0 (j + l)nbi+l < co for b < 1 (ratio test), all the 
series for gcd, •• . ,gcd, a l ••. a" converge uniformly and 
absolutely on JR4 (Weierstrass test); and in the notation 
of Sec. II we have 

00 

== 1 +.6 (j + 1) "bJ+l < co. 
j=O 

So g-! is well defined. 

Let r~ (g) be the Christoffel symbols of g with respect 
to (x a). Setting Hdbc == Hhab,c + hac,/) - hoc,a}, we have 

with absolute and uniform C"-l convergence. Thus 
O(g) = RaIJcd(g)dxa ® dx b ® dx c ® dx d , where 

and we may expand and regroup in the following way: 

where we have convergence in the space 'W"_2' with 
Has[cHleld)b == t(HascHedb - HasaHeco). 

(10) 

(11) 

Pemark: Because of the absolute and uniform con­
vergence, it follows that the series for Ric(g) = 
Rcabtlg-1cddxa ® dx b == Rabdxa ® dx b and R(g) ::;:: Rabgab 
are also convergent. From this it follows immediately 
that the map E: ffi" -) ffi 10 -2 sending a Lorentz metric 
to its Einstein tensor is also analytic at 11 in the ball 
of radius 1/4. Similar remarks apply to the map send­
ing a Lorentz metric to its conformal curvature tensor. 

IV. THE LINEARIZED THEORY OF GRAVITATION 

The best-known method for obtaining approximate solu­
tions to the field equations is called the linearized 
theory (see Pirani, Ref. 2, for a fairly complete exposi­
tion and references). It has often been remarked that it 
is not a particularly good method, and in this section we 
shall see preCisely why this is so. The linearized 
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theory proceeds roughly as follows. An energy-momen­
tum tensor T is given; instead of solving the full equa­
tions E{g) ::::: - T, one replaces E by a I inear operator 
L and conSiders the simpler equations L(g) = - T. 
L(g) is defined simply by writing g =: 11 + h, calculating 
E(11 + h), and retaining only those terms which are first 
order in h. The resulting linear system is then solved 
for h, and one obtains the apprOximate solution g =: 11 + h. 

Of course, if one now calculates the full Einstein tensor 
E(1J + h) for this metric, it will not be equal to - T. 
However, there is a fairly obvious relation between the 
two quantities, namely 

DE(TJ)' h =: - T. (12) 

This should be evident from the remarks in the pre­
ceeding section; DE(11)' h is just the first term in the 
power series expansion of E(TJ + h}. In words, the 
linearized Einstein tensor is the derivative of the Ein­
stein map at 11 in the direction of h. Similarly, the first 
term 00 (Tj)' h in the series (5) or (11) is iust the usual 
linearized curvature tensor of the metric TJ + h. 

Once it is recast in this formalism, the shortcomings 
of the linearized theory are readily apparent. The 
relationship between TJ + h and an exact solution to 
E(g) == - T is essentially nonexistent. What we have 
instead is 

E(11 + h) + T = f; ~ DIIE(11)' h 10; 
"=2 k. 

(13) 

a real solution (if it exists) to E(g) = - T is well 
apprOximated by the linearized solution only in the 
case that the entire power series on the right can be 
neglected. 

V. AN ITERATIVE METHOD FOR SOLVING THE 
FIELD EQUATIONS 

Consider a curve of the form 

00 t' 
get) = 11 +.6 h ""1' 

.=1 (i) L 
(14) 

where,for the sake of definiteness, I ~ I" < H-)i·l. Then 
for t E (- 1, 1), this defines an analytU) curve of metrics 
passing through 11 and lying in the ball of radius 1/4 
about 11 in CB". The image of this curve under the Ein­
stein map will be an analytic curve passing through 0 
in ffill -2' Setting 

we have 

E(g(t)) = DE(TJ)' H(t) + (1/21) D2E(11HH(t), H(t)} 

+ (1/3!)D3E(11HH(t),H(t),H(t)) + .... (15) 

Expanding and regrouping according to powers of t, we 
have 

E(g(t» =: {lJE(1J)'( h Ht + {DE(11)( h ) 
(1) (2) 

I 

+ J)2E(1JH h, h )}t2 /2! 
(1) (1) 

n 
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+{DE(-ry)( h ) + 3D2E(1J)( h, h) + D3E(1j)( h, h, h)} 
(3) (1) (2) (1) (1) (1) 

"lII 
x t 3 /3! + .... (16) 

Now conversely, suppose we are given an analytic curve 

ti 
T -
(i) t! 

of stress-energy tensors with T(O) = O. Then we can 
try to find a solution curve of the form (l4). According 
to (16), the equations to be solved are then (in order) 

I: DE(1j)'( h ) = - T, for h, 
(1) (1) (1) 

il: DE(7)H h ) = - T - D2E(7)( h, h), for (h), 
(2) (2) (1) (1) '2 
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Ill: DE(1j)( h ) == - T - 3D2E(1j)( h, h) 
(3) (3) (1) (2) 

- D3 E(1j)( (~ ) (~) (~», for (~)' 

... etc. (17) 

It should be noted that at each stage of the iteration 
process, one has only to solve a linear equation, which 
is, in principle, possible. 

1 D. Lerner, Comm. Math. Phys. (to be published). 
2F. A. E. Pirani, in Lectures on General Relativity, 1964 Brandeis 

Summer Institute in Theoretical Physics, Vol. 1 (Prentice-Hal!, 
Englewood Cliffs, N. J., 1965). 
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