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We show how to construct all of the complex pp waves using the nonlinear graviton construction of 
Penrose. 

INTRODUCTION 

Several years ago, Penrose l showed that one could 
construct generic, half-flat solutions of the complex 
Einstein equations through the use of deformation 
theory. His idea is to deform the complex structure 
of a neighborhood of a projective line in P 3 (C). The 
original undeformed neighborhood contains a four-com­
plex-parameter family of lines which are identified with 
the points of an open subset of complex Minkowski 
space. For small deformations, Kodaira's theorems2

,3 

guarantee the continued existence of a four-parameter 
family of "lines" (L e", compact holomorphic curves) 
in the deformed space, these are identified as the points 
of a new complex manifold Cj. A holomorphic metric is 
then introduced on C; in a natural way and the resulting 
complex spacetime is shown to be half-flat, that is, its 
Ricci tensor vanishes and its conformal curvature ten­
sor is anti-self-dual. 

While it is a relatively straightforward matter to 
construct deformations, the task of finding the four­
parameter family of lines in the deformed space is 
usually very difficult. Because of this, only a few iso­
lated solutions have actually been explicitly constructed, 
only one of which, to our knowledge, has appeared in 
print. 4 The purpose of this paper is to show that the 
simplest half-flat spacetimes, known as complex pp 
waves or Plebanski plane waves, 5 can all be obtained 
explicitly using the Penrose construction, 

1. THE NONLINEAR GRAVITON CONSTRUCTION 

In this section we summarize the Penrose construc­
tion. For more details, in particular for the proof that 

Cj is half-flat, we refer the reader to Penrose's original 
article 0 l 

Denote a point of C1 - (0) (a twistor) by Z'" = (w A
, 7T A' ), 

and let [w A
, 7TA' 1 denote the corresponding point in P 3(C). 

If xAA' is any point in complex Minkowski space, CM, 
we may associate with it the projective line L(x): 
= {[ixAA' 7TA" 1TA , 11 [7T A' ](e: P 1(C)}. If W is a connected open 
neighborhood of x in CM, the set P1'(W): = {L(v) 1 y c::: W} 
is a connected open neighborhood of L(x) in P:)(C). In 
this paper we shall consider only the case W = CM and 
we set P1': =P1'(CM). Notice that P1' is just P 3 (C) with 
one projective line removed (namely, all points of the 

form [w A
, 0])" Tis the corresponding set of points in 

C4 _ (0), Then we have: 

(a) P1' is a holomorphic fiber space over PI (C) with 
projection twA, 1TA,j-l1TA' 1. Similarly we have a fiber 
space l' -C 2 

- (0) given by (w A
, 1T A') - 1T A' and the follow­

ing diagram commutes. 

l' • PT 

1 i (1) 

C2_(0)_PI (C) 

(b) The points of CM are in 1-1 correspondence with 
the global holomorphic cross sections of PT - PI (C): 
Given xAA', define a section by [1TA,j- [iXAA'1TA'1TA,j. Al­
ternately points of CM may be put in correspondence 
with global holomorphic cross sections of T - C2 - (0) 
which are homogeneous of degree 1 in 7TA,. 

(c) The conformal structure of CM is obtained by ob­
serving that points x and l' in CM are null-separated iff 
L (x) and L (v) intersect. If ,\' = X + c,.x and if wA (c,.x, 1TA') 

is the se ction of T - C2 
- (0) corresponding to c,.x, then 

WA(il.X, ;r A' ) = 0 for some;; A' [and hence for AIT A' for 
A (c C _ (O)J. Thus null vectors in CM correspond to 
global holomorphic sections of T - C2 

- (0) which van­
ish somewhere. In order to pin down the conformal 
factor, one makes use of the 2-form dw A ,\ dwA=j.L. 
This will be considered in more detail later. 

If we let lJ (resp. 1)) be the subset of C2 
- (0) given 

by 170, * 0 (resp, 17l'~* 0), then we get a decomposition of 
'{ as the unionUU()A' where U={(lL,A, 1TA,)I1TA'~ UJ and 
U = {(iDA, iTA,) liT A" /)~. We :nay view T as being formed 
by glueing together U and U by the trivial equations 
cZ,A ~ wA , ITA'= 1TA,. To deform T, we consider a one­
parameter family of patchings of the form 

satisfying 

Here A ranges over a neighborhood B of 0 ': C and the 

(3) 
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FIG. 1. 

functions jA are holomorphic in e2 x (f) niJ) X B. For 
each fixed A E: B the patching (2) gives a fiber space 
T(A) _e2 

- (0) (a deformed twistor space). Since the 
transition functions are homogeneous of degree 1, the 
identification (WA!.1Tk )-(Cl'WA, Cl'1TA ,), Cl'Ee-(O), is con­
sistent over f) n f) and gives rise to a deformed projec­
tive twistor space PT(A) -P1 (e), An important aspect of 
these deformed twistor spaces is the existence of a pre­
ferred 2-form on the fibers of T(A) - e2 

- (0); the trans­
formations (2) are required to satisfy dwo 1\ dw1 

= dwo 1\ dw1 + (terms involving d1T k L 
Kodaira's stability theorem2 ensures that for I A I 

sufficiently small, PT(A)-P1 (e) still has a global holo­
morphic section. His completeness theorem3 then guar­
antees the existence of a four-parameter family of glo­
bal holomorphic sections of PT(A)-P1(e). So for A 

fixed and sufficiently small we have an open set 9 c e4 

and for each Z E: 0 a global holomorphic section, 
L,(z), of PT(A) - P 1 (e), distinct z's giving rise to 
distinct sections. Each such L,(z) pulls back to a global 
holomorphic section of T(A) - e2 

- (0) which is homo­
geneous of degree 1. This section, LA (z), is repre­
sented by a pair {wA(z, 1T, A), wA(z, 1T, A)} satisfying the 
transition relation (2). Each function wA(z, IT, A), 
wA(z, IT, A) is holomorphic on its domain and homogen­
neous of degree 1 in IT A' • 

Henceforth we shall consider a fixed value of A and 
shall omit ,\ from the notation. 

Now let ZoEr; and let 6z = ~a(a/aza)(zo) be tangent 
to C; at ZOo Define ~A(zo' IT): = ~a(awA/az")(za' IT) and 
~A(zo, 1T): = ~a(awA /az")(zo. IT). Then 

fA(za, IT)= (aJA/ilwB)(w(za,lT), 1T)~B(zo, IT). (4) 

Thus the pair {~A, €A} is a section of the normal bundle 
of L (zo) in T. Intuitively the situation is as follows: L (zo) 
is a section of T - e2 -(0) which we view as a submani­
fold of T. We write (to first order) L (zo + 6z): ={wA(zQ' 1T) 
+ ~A(zo' 1T); wA(za, IT) + €A(za, IT)}. 

That is, we have a "nearby" section L (zo + 6z) and the 
"difference" between the two is a section of the normal 
bundle of L (zo)(see Fig. 1). It follows from Kodaira's 
completeness theorem3 that the map 62 = ~a(il/aza)(zo) 
- ~(zo, 1f) is an isomorphism from T./; onto the space 
of global holomorphic sections of the normal bundle of 
L (zo) which are homogeneous of degree 1 in 1TA,. 

The conformal metric on q is obtained by defining 
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~ E T to be null if and only if ~ (z, IT) has a zero at 
s~me ziT (and hence for any nonzero multiple of ;). See 
(c) above. 

In order to define the actual metric on C; we use the 
2-form, J.1.=EAB dwA IIdwB =EABdWA /\d(;jB (mod d1TA,), 
which is well defined on the fibers of T. If ~ E T /f 
the relation (4) shows that we may regard ~(z, IT) as 
a vector field along L (z) which is everywhere tangent 
to the fibers. Suppose ~ and 1) are null vectors at z and 
that ~(z, 1T), 1)(z, IT) vanish at (lA" i3A , respectively. 
Then Penrose defines 

The right side of (5) is symmetric in (~, 1). As a function 
of IT A" it is homogeneous of degree 0, and holomorphic 
on e2 _(0). Thus it is constant and so Kz(~' T) is a well­
defined complex number. 

2. CONSTRUCTION OF THE COMPLEX pp WAVES 

We choose the patching (2) to have the form 

(6) 

where h is homogeneous of degree 1 and holomorphic 
on ex (f) nLJ). We set A = 1 in what follows. We shall 
write down all global holomorphic sections of the bundle 
T - e2 _(0) obtained using (6) which are also homogeneous 
of degree 1 in 1f A" Such a section is giv:n by a pmr 
{WA(1T), (;jA(1T)} satisfying (6) with WA(1T), w~(1f) homoge­
neous of degree 1 and holomorphic inf), IJ respectIvely. 
Thus WO(lT) = WO(lT), so these give a holomorphic function 
on e2 _(O), homogeneous of degree 1. Therefore, there 
exist u, I;; E: C, constants, such that 

(7) 

W1 (1T) and W1(1T) are related as follows: 

w1 (lT)=W 1 (1T)+h(wO(lT),1T), lTrcD ,']0. (8) 

For fixed u ~nd 1;;, h(U1To' + 1;;1T1' ,1T0', 1f1,) is a holomorphic 
functionD 110, To construct a section of our bundle, we 
must express this function as a difference W1 (1T) _ W

1 (1T) 
where WI(WI) is holomorphic in DW) and homogeneous of 
degree 1. Each distinct way of splitting h will give a pair 
{wI, Wi} and hence a section. We claim that for each pair 
(u, 1;;) there is a two complex parameter family of split­
tingso Thus we get a four-parameter family of sections 
of T - e2 (O) as desired, 

To see this, let ~ * O. Then setting (1To', 1T1.) = (1/!;, 1) 
in (8), 

Wl(~-l, 1)=~-lw1(1, O+Clh(u+~!;, 1, ~). (8') 

Let h(~): = h(u + ~!;, 1, 0 and expand h(O in a Laurent 
series, h= Z;=_~bn(u, I;;)C. Put wl(l, ~)=Zn:o nneo 
This series is convergent for all ~ E C, and ~-lw1(1, ~) 
+ ~-lh(!;) is to be entire in ~-l. We conclude that in the 
series expansion of the right side of (8') all positive 

Curtis,Lerner, and Miller 2025 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Wed, 17 Sep 2014 13:19:58



power~ of ~ disappear. We conclude an == - b" for n?- 2, 
while t: = ao and v: = a1 are free parameters. Thus in the 
first chart the sections are given by 

(9) 

and in the second chart by 

(9) 

Computing the metric: Consider (u, v, 1:, D as co­
ordinates of a point in C;. Let (du, dv, dl:, dE) be com­
ponents of a tangent vector at (u, v, I:, i:). According to 
the discussion in Sec. 1, we get a section of the normal 
bundle to the section of T labelled by (u, v, t, I) by 
writing, in un-hatted coordinates, 

Assume dl:*O. Then, for a null vector, (VO(7Tk ), 

V1
(7T k )) = (0, 0) for some 7TA ., We must in fact have 

a zero at (7To', 7T1') = (- dl:, du). But then V1 = ° gives 

- ~ ab (dU)"+1 
O==-dtdt+dudv- 6 _1L -( )"-1 (_1)"-1 

n=2 (Ju dl: 

- (Jb 
O=dudv- dl:dl: + a~ du2 

(10) 

But, recalling that h(u+~I:, 1, ~)=~;=_~b"(u, I:)C, 
we conclude ab/au=abn./ol:. Thus the power series 
vanishes and the conformal metric is given by 

(11) 

where K is an arbitrary nonzero holomorphic function. 
We now show that the actual metric on q as defined by 
Penrose is obtained by taking K =2. Let 

X·-~-~~ 
. - au al: ov ' 

a 
Y:=-::;-- • 

uV 

X and Y define sections as in (10). For X we have 

Xo= 710" 
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(12) 

(13) 

For Y we have 

(14) 

The section XA vanishes at 1T A' = (0, 1) while yA vanishes 
at 7Tk =(1,0). ThatXA(O, 1)=0 is not evident in (13), 
but one must remember "unhatted" coordinates are not 
valid for 7T0' =0. 

Let x N = (0, 1), YA' = (1,0). Now xA
' = (1, 0), yk 

= (0, -1). Then the Penrose inner product of X and Y 
is 

and 

So g(X, Y)=(-I)7To.7T1./-7TO'A1. =10 On the other hand, 
if we simply substitute X and Y into (11), to obtain 
g(X, Y)=1 we find that we must take /(=2, as asserted. 

Now let f(u, 1:) be any entire function on C2
• We 

claim we can choose h so that ab2 (u, 1:)/iJl:=!(u,l:l. If 
so, then we will have generated all metrics of the form 

It is enough to show we can choose h so as to make 
b2 (u, 1:) = g(u, 1:), where g is a given entire function. 
Write 

where the series converges everywhere. Define 

CP(x, y):= 6 (~m.~) xmy", 
n,m';!!oO n 

Then cP is an entire function of x, Yo We then write, 

h(W ,7To" 1T1').- cP -, - --, ° . _ (WD WD) (7T1')2 
Tr e" iT l' 'IT 0' 

Clearly his holomorphic on C x (D r 15), and h is homo­
geneous of degree 1: 

(
u + I:~ u + I:~) 2 

h(ll+I:~, 1, ~)=CP -1-' -~-- ~ 

so when everything is expanded in powers of ~ for fixed 
u and I: the coefficient of e is 6n,m;,0(lmnuml;;n=g(u, 1;;) as 
desired. For the metric (15) one can directly show that 
the Ricci tensor vanishes; whether the Weyl tensor is 
self-dual or anti-self-dual depends on the choice of 
complex volume element Eabcd ' There is on 0- a natural 
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choice of E due to the existence of a natural spinor struc­
ture on g, In the coordinates (z") = (u, v, 1;;, D used 
above, E is specified by E0123 = - i. With this choice the 
space is right-flat, Le., *C.bca=-iC.bca' 
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