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We exhibit the complexified spin and conformally weighted functions as sections of holomorphic line 
bundles over P1( C) X PJ C). As an example of a nontrivial bundle, we discuss the complex null cone in 
some detail. 

INTRODUCTION 

In recent work on general relativity, certain weighted 
scalars known as "spin and conformally weighted func
tions" have played a prominent role. During the past 
few years, in conjunction with work on complex space
time and twistor theory, 1,2 it has become necessary to 
consider the "complexifications" of these functions. 
Our purpose in this paper is to identify these scalars 
as sections of certain line bundles and to discuss some 
of their properties from this point of view. 

Since the material related to the real two-sphere is 
already known in another form, 3 we shall just review 
it briefly and concentrate our attention on the holomor
phic line bundles which appear in the discussion of com
plex space-times. Most of the formalism for the real 
case, developed in Sec. 2, carries over virtually un
changed, although some subtle and important differences 
do occur. For example, in Sec. 3, we show that the 
complex null cone is actually a nontrivial C* -bundle 
over its space of generators. In Sec. 4, we exhibit 
complex null infinity as a nontrivial bundle and examine 
its holomorphic global cross sections; these are the 
"good cuts" of Newman and his coworkers. 1,4 Each cut 
is doubly ruled by the asymptotic twistors of Penrose. 2 

Those asymptotic twistors "not entirely on C 9" are 
shown to be line bundles obtained from complex null 
infinity by suitable restrictions. 

1. PRELIMINARIES 

We begin by reviewing two ways of constructing line 
bundles (i. e., one complex-dimensional vector bundles) 
over a differentiable manifold AI. 5,6 

The first method involves patching together the trivial 
bundles {Ua XC} over an open cover {Ua} of AI. Suppose 
given, for each nonempty double intersection, a map 
hCY.a: UCY. n Ue-C*, where C* is the multiplicative group 
of nonzero complex numbers. Provided that h",ehar=h"'r 
in any nonempty triple intersection, we can glue these 
bundles together in a consistent fashion: If x E: U CY. U a, 
then the pair (x,za) in UaXC is identified with 
(X, hCY.a(x) za) in U CY. XC. The transition functions {hCY.a} 
determine the line bundle completely. A section s of 
the bundle is given by a set of maps {s'" : Uo< - C} satis
fying So< = h", as a in U CY. n U a; 5", is called the local repre
sentative of s in Ua • The bundle is C~ provided that each 
h",a is Coo; if !vI is a complex manifold and each h",a is 
holomorphic, the line bundle is said to be holomorphic. 

The second construction begins with a principal bun
dle 1T : P -!vI with structure group G. 5 Let p be a repre
sentation of G on C. Define an equivalence relatIon on 
PXC by (p,z)- (PJ;,p(J;-1)z) for allJ;E: G, and denote 
the equivalence class of (p, z) by {p, z}. 7 The set of all 
equivalence classes, B(p), is a line bundle ove:r !vI 
with projection IT({p,Z})=lT(p). In terms of the previous 
construction, it is not difficult to verify that if P is 
defined by the transition functions {rae}, then B(p) is 
defined by the transition functions 

(1. 1) 

Now suppose we are given a section s : /'vI·- B(P). 
Let PEe P with IT(p) =x. Denote the component of s(x) in 
the frame p by s(p): 

S(lT(p»={p,s(p)}. (1.2) 

This defines a complex-valued function on the principal 
bundle P. Note that, for J;E: G, S(lT(p» = {p, s(p)} 
= {PJ;, s(M)}, so that 

s(M) =p(!?" _1) s(p). (10 3) 

Conversely, any function satisfying (1. 3) gives rise to 
a section of B( p); this correspondence is 1-1. 

To relate this alternative construction to the first 
one, let {U a} be an open cover of M such that for each 
(Y there exists a local cross section eo< : Ua - pi Ua • 

Then each {p, z}E: B(p) I U'" has a unique representative 
(e"" za), and we assign to {p, z} the local coordinates 
(IT(e,,,), za) E: U 0< xC. In U 0< (l Ua, we have eo< = earao< , 
where r 80< : U B (1 U 0< - G, and the transition functions for 
B(p) are given by (1. 1). If s is a section of B(p), its 
local representative in U 0< is given simply by 

We shall use this construction extensively in what 
follows. 

2. SPIN AND CONFORMALL Y WIEGHTED 
FUNCTIONS ON 52 

Consider the principal C* -bundle 1T : C2 
- {a} 

(1.4) 

- P 1(C) '" 52 determined by IT: (~o, ~1) - [~O, ~1] (homo
geneous coordinates). For any complex number wand 
any inte_ger or half-integer s, the mapping (s, w) : A 
- A (s-w) A -( s+w) is a representation of C * on C; using 
this, we construct a line bundle B(s, w) - 52. By means 
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of (1. 3), a cross section of B(s, w) may be identified 
with a functionj(~O, ~t, P' , rl') =j(~A, r A') homogeneous 
of degree (w-s,w+s): 

j(A~A, X:~A') =Aw-sXW<-Sj(~A, ~ A'), "-EO C*. (2.1) 

{Technically [cf. (1. 3)], we should write the argument 
ofjas ~AA; obviously, ex=X!;A.} 

The sections of B(s, w) are called functions of spin 
weight s and conformal weight w. To see that this 
agrees with the usual definition, it is necessary to 
introduce a particular local trivialization of the prin
cipal bundle: 

For each f3=(~B)EO SL(2,C), define a local complex 
coordinate on 52 by ~ a([~O, ~1]) == ~o i~1, where st = f3A B ~B. 
The domain of ~B is the open set VB defined by ~1 *- o. 
Put P{3== (1 + ~8?;{3}1/2 and define a local cross section 
ea:V{3-C2-{0}IVa by 

ea = (~O / ~1Pa, ~1 /~1p a)' 
If (]I is another element of SL(2, C), then clearly 

eo< =eB(~1Pi~~p,,) in V", n Va. 

(2.2) 

(2.3) 

Thus Y",e= ~~p,,/s1Pe; and using (1.1), the transition 
functions for B(s, w) are given by 

(2.4) 

If we let (~~)=(]IW1, and note that ~",=(a~a+b)/(c~B+d), 
this becomes 

h"a(~a,rB)=(~t:~) S Ca1;8+b1/11~t+dI2) w. 

(2.5) 

Recalling that the local representatives {s,,} of a section 
of B(s, w) satisfy s" =h",aSB, we have shown that these 
are precisely the functions of spin weight S and con
formal weight w as defined in Refs. 3, 8. 

It should be noted that although these bundles are all 
different from the standpoint of representation theory, 9 

they are not all topologically distinct. In fact B(s, w) 
is isomorphic to B(s, 0), for all w. One way to see this 
is to observe that the defining representations (5, w) 
and (5,0) are homotopic to one another (Ref. 5, pp. 
pp. 27-29), the homotopy being given simply by 
{(s, fw) : tEO [0, I]}. To conclude this section, we recall 
that any smooth line bundle is completely characterized 
by its Chern class,5 which for 52 is an element of 
H2 (52 ;Z) 3'. Z. Though we do not give the proof here, it 
is not difficult to show that the Chern class of B(s, w) 
is given by - 2s EO Z, 

3. HOlOMORPHIC BUNDLES OVER S2 X S2 

In dealing with complex space-times, one often en
counters "complexified" functions of definite spin and 
conformal weight. Examples include the asymptotic 
shear of a complex null hyper surface and the related 
"cut functions" of Newman and co-workers. 1,4 

Intuitively, one simply proceeds by analytic continua-
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tion: If j(e, r A') is real analytic, and homogeneous of 
degree (w - 5, W + s) in (SA, ~ A'), thenj(~A, T)A') is a 
holomorphic function of four complex variables, defined 
in an open neighborhood of the "real slice" T)A' = r A'). 
By analogy with the real case, one expects these func
tions to correspond to sections of certain holomorphic 
line bundles over the "complexification" of 52. We shall 
see below that this implies a restriction on the possible 
values of 5 and w. 

To proceed rigorously, we consider the principal 
C*xC* bundle rr: (C 2 - {0})x(e2 - {O}) - P 1(e)x P 1(e) 
3'. 52 X52; the mapping rr sends the pair (~A,T)A') to 
([~A], [T)A'). The base space should be regarded as the 
projective space of complex null directions at some 
fixed point in a complex space-time. We denote the 
total space of the bundle by E. 

Notice that the points ([~A], [T)A']) of Pl(C)XP1(C) are 
in one-to-one correspondence with the proportionality 
classes of nonzero, singular 2 x 2 matrices [eT)A']. 
We shall use this identification in the following. 

The only holomorphic representations of e* x e* on 
e are given by (x, /1) - X m /1 n, where III and n are inte
gers. We set s=(m-n)/2, W=- (m+n)/2; note that 
wand s are either both integer or half-integer depend
ing on whether in and n have the same or opposite 
parity. Sections of the resulting bundles B(s, w) are in 
one-to-one correspondence with holomorphic functions 

on E satisfying 

f(>t~A, /1T)A') = A w-s/l w+Sj(e, rJA'). (3.1) 

By restricting B(s, 11') - P 1(C) xP1(e) to each of the 
factors of the base, one easily shows that the Chern 
class of this bundle is given by (w - S, 1i' + s) 
EOH2(P1xP1>Z)~ZxZ. Thus, if (s,u')*-(s',lI"), the 
bundles B(s, w) and R(s', w') are topologically, and 
hence analytically, inequivalent, a significant differ
ence from the situation in the real case. Note, in par
ticu~r, that none of these bundles is a product except 
for B(O, 0). 

Example: The complex null cone 

In a real space-time, the nonzero null vectors at any 
given point form a trivial R*-bundle over the 2-sphere 
of real null directions; in a complex space-time, how
ever, the analogous bundle is nontrivial. To see this, 
choose and fix a spin frame at the point in question, so 
that any nonzero null vector may be represented in the 
form ~AT)A' *- 00 Of course, the same vector may be 
written as rrArA', where rrA = (]I ~A and TA' = (Y-1T)A', for 
any CY E C*. The mapping eT)A' -le17 A'] exhibits the 
complex null cone CN as a C*-bundle over 
P 1(e)xP1(c). 

Now consider the e* -bundle obtained from B(O 1) by 
deleting the zero section. Recall that an element'of this 
bundle 1S a~ equivalence class {(e, T).A'), z}, with Z(", C* 
and{(~ ,T)A ),z}-{(I\~\/1T)A'),I\/lz}for (71.,/1) in 
:* ~iC: 'It .is clear that t~e mappin~ {(e, T)A'), z} 
_ Z ~ T) IS a holomorphlC bundle Isomorphism of 
B(0,1) - {zero section} onto CN. Thus the complex null 
cone is a nontrivial C*-bundle over its space of gen
erators. This means in particular that, in contrast to 
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the real case, the complex null cone has no global 
cross-sections or "cuts. ,,12 This situation may be 
remedied by adding back the zero section in an appro
priate way, as we shall see below. 

4. THE STRUCTURE OF COMPLEX NULL INFINITY 

The conformal compactification of complex Minkowski 
space is obtained as follows (see Ref. 13 for the anal
ogous construction in the real case): 

Define a complex metric on C6 by h (y, y) = (yO)2 
- (yl)2 _ ••• _ (y4)2 + (y5)2, and let Nbe the set of all 
nonzero null vectors. If YEN, so is Ay for all AE C*, 
and the conformal compactification c/Yi =N /C* is a 
well-defined compact complex 4-manifold in P 5{C). The 
space c/Yi is well known to mathematicians as the 
Grassmann manifold of lines in P 3(C). Denote the image 
of y in c/Yi by its homogeneous coordinates [ya]. 

Complex Minkowski space, CM, is naturally em
bedded in c/Yi, via 

</>(z")=[z",H1+z'z),H1-z'z)], zoz=z"z". (4.1) 

It is easily checked that the image of </> contains all 
points of e/Yi except those for which l + l = O. These 
exceptional points have the form [y", l, -l], where 
y" y" = 0 and not all ya = O. The complex 3-manifold 
obtained from them by deleting the singular point 
1 = [0, + 1, -1] is called complex null infinity and de
noted by C!). Precisely as in the real case any null 
geodesic {z" + Ab": AE e, b' b = O} in CJ\t has a unique 
"end point" on C!) given by 

lim [</>(z" + Ab")]=[b" ,z· b, -z' b]. (4.2) 
A _ 00 

Changing to spinor coordinates and putting I; = l 
= - y5, e!) may be represented by the sub manifold of 
P4(e) given by 

(4.3) 

which exhibits C!) as a line bundle over PI(e)xPI(C). 
The projection is given simply by 1T : [el1 A' , 1;] ~ [~Al1A'] 
and the vector space structure is defined as follows: 
If IT([~Al1A' , z]) = IT([OATA' , w]), there is a unique A E C * 
such that AOATA' = ~~A'; we set 

(4.4) 

We may now observe that the mapping {(~A, l1A'), I;} 
- [el1A" 1;] defines a vector bundle isomorphism be
tween B(O, 1) and C!). Thus, the difference between CN 
and C!) is just the difference between a e * -bundle and 
the naturally associated line bundle. 

Using (4.2), we see that the zero section of C!) is 
just the set of "end points" of all null geodesics passing 
through the point 0 in CM. From the standpoint of 1, 
of course, it is the null cone at 0 which is "at infinity", 
so that C!) minus its zero section is just the (ordinary) 
complex null cone of the point 1. 
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In contrast to CN, e!) admits a four-dimensional 
vector space of global sections; these are precisely 
the "good cuts." If ZM' is an arbitrary point of eM, 
and ZAA' is an arbitrary point of eM, and ZAA' + A~Al1A' 
is a null geodesic through ZAA', it intersects C!) in the 
point [~Al1A' ,ZAA' ~Al1A'] [see (4.2)]. Notice that this 
point depends only on the direction ([~A], [l1A']) of the 
geodesic through ZAA'. As the direction varies, we 
obtain the global cross section 

(4.5) 

of Cf}. The section Z can be concisely represented as a 
holomorphic function on E: 

(4.6) 

Conversely, any section of C defines a holomorphic 
function homogeneous of degree (1,1) on E =e2 - {O}; 
since any such function is automatically an entire func
tion (Hartog's theorem, Ref. 14, pp. 50ff.), it must be 
a polynomial such as that in (4.6). Thus the sections of 
e!) are parametrized by the points of eM\ and form 
a four-dimensional vectcrr space, as asserted. In any 
trivialization of C!), the local representatives ll" 
= Z(I;", 110) of Z will be characterized as solutions to 
the differential equation 

(4.7) 

We conclude with a few remarks concerning asymp
totic twisters. At any point ZAA' of eM, the null cone 
is generated by totally null two-planes (twistor sur
faces4) of the form 

{ZAA' + el1~' :l1f fixed * 0, ~A * O}. (4.8) 

This surface intersects C!) in the set {[~Al1~·,zAA.~Al1fl}, 
a projective asymptotic twistor of efJ,r. 2 Clearly, each 
section of C!) is ruled by asymptotic twistors. Of 
course, C!) itself is also generated by twistor surfaces. 
These have the form (in the valence m case) 
{[~Al1A' ,z] : z E C, ~A fixed * 0, l1 A' * O}, and are actually 
line bundles over P 1(e). They correspond to the re
striction of e!) - P1(C)x PI (e) to {[el}xPI (e). Similar 
remarks apply to the valence m asymptotic twistors. 
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