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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP*

CHRIS J. BUDDt, WEIZHANG HUANGt, AND ROBERT D. RUSSELL

Abstract. In this paper we consider the numerical solution of PDEs with blow-up for which scaling invariance
plays a natural role in describing the underlying solution structures. It is a challenging numerical problem to capture the
qualitative behaviour in the blow-up region, and the use ofnonuniform meshes is essential. We consider moving mesh
methods for which the mesh is determined using so-called moving mesh partial differential equations (MMPDEs).
Specifically, the underlying PDE and the MMPDE are solved for the blow-up solution and the computational mesh
simultaneously. Motivated by the desire for the MMPDEto preserve the scaling invariance ofthe underlying problem,
we study the effect of different choices of MMPDEs and monitor functions. It is shown that for suitable ones the
MMPDE solution evolves towards a (moving) mesh which close to the blow-up point automatically places the mesh
points in such a manner that the ignition kernel, which is well known to be a natural coordinate in describing the
behaviour of blow-up, approaches a constant as -- T (the blow-up time). Several numerical examples are given to

verify the theory for these MMPDE methods and to illustrate their efficacy.
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1. Introduction. Many mathematical idealizations of physical models have the property
that they develop singularities in a finite time T. Examples are the blow-up of the solutions
of models describing combustion in chemicals or chemotaxis in cellular aggregates and the
formation of shocks in the inviscid Burgers’ equation and the space-charge equations. Such
a singularity often represents an important change in the properties of the model, such as the
ignition of a heated gas mixture, and it is important that it should be accurately reproduced by
a numerical computation.

When a singularity forms, changes occur on increasingly small length scales and, as the
time T is approached, on increasingly smaller timescales. If a numerical method with afixed
mesh is used to reproduce such behaviour then its accuracy will diminish significantly when
the length scale of the singularity approaches the spacing between mesh points. In some cases
this will lead to numerical solutions which differ qualitatively from the underlying analytic
solution. Indeed, examples can be found where a computation on a fixed mesh misses the
blow-up entirely, or where the numerical solution blows up over the whole region even though
the analytic solution develops a singularity at a single point [AB94].

To compute such singular behaviour accurately, it is essential to use a numerical method
which adapts the spatial mesh as the singularity develops. Ideally, the numerical method will
reproduce the singularity sufficiently accurately as -- T to mimic the asymptotic behaviour
of the solution. A feature of a wide class of PDEs (partial differential equations) which
makes this feasible is that the spatial structure of the singularity evolves in a fairly simple
manner, often independent of any local structure in the initial conditions. Provided that the
adaptive method can reproduce this simple asymptotic behaviour, there is reason to hope that
a numerical scheme can be designed to perform accurately for all times < T.

One class of problems which have this feature is the semilinear parabolic equations de-
scribing the blow-up of the temperature of a reacting medium, such as a burning gas. The

*Received by the editors February 14, 1994; accepted for publication November 28, 1994. This work was
supported in part by NSERC grant OGP-0008781, the Nuffield Foundation, and SERC grant GR/J56219.

School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. (Chris.Budd@bristol.ac.uk).
Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada.

Current address: Department of Mathematics, 405 Snow Hall, University of Kansas, Lawrence, KS 66045
(whuang@math.ukans.edu).

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
(rdr@cs.sfu.ca).

305

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



306 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

simplest equations describing such blow-up have the form

(1.1) ut Uxx + f(u), u(0, t) u(1, t) 0, u(0, x) uo(x),

where f(u) is any convex function of u such that f(u) cx as u -- x. In this paper
we shall consider the cases of f(u) up, f (u) eu, and slightly more general problems.
It is well known [FM85] that if uo(x) is "sufficiently large" and has a single nondegenerate
maximum, then there is a blow-up time T < cx and a unique blow-up point x* such that

(1.2) u(x*, t) -- o as --+ T

and

(1.3) u(x, t) --+ u(x, T) < cx ifx x*.

(If > T the solution becomes infinite everywhere.) Close to x*, the solution u(x, t) develops
an isolated peak which becomes narrower, tending to zero width, as T. A derivation and
general study of these systems is given in [BE89].

The computation of the solutions of (1.1) is important for several reasons. First, although
very simple, the formation of the singularities in this problem is typical of that of a wide
class of PDEs modelling many differing physical phenomena. Second, a great deal is known
about the analytic structure of the solutions of (1.1) for close to T and x close to x*, and
thus they make excellent problems for testing the performance of and verifying the analysis
for the numerical methods used in their solution. Third, having numerical methods which
are faithful to the underlying asymptotics of the PDEs raises the possibility of solving very
difficult problems for which the analytic structure is unknown, and then using the resulting
numerical solutions to lend insight into this structure. Of course this can in turn motivate
derivation of further theoretical results.

Existing adaptive numerical methods for solving (1.1) are described in [Cho81], [LPSS86],
[BK88], [Bet89], and [BDS93]. These are either based upon closely exploiting the known
analytic structure of the singularity or on an adaptive procedure which requires an increas-
ingly larger number ofmesh points to model the developing singularity as T. In contrast,
we shall describe here an elegant set of methods for solving (1.1) which use the dynamic
gridding algorithms described in [HRR94b]. These MMPDE (moving mesh PDE) methods
are based upon equidistributing a monitor function, say M(u, Ux, Uxx), which relies on no a
priori knowledge of the solution to the PDE u, although an analysis of scaling properties of
the PDE does lead to certain optimal choices of M. We shall show that these methods have
the significant property that they reproduce the dynamical nature of the development of the
singularity. In particular, there is a natural rescaling of the spatial coordinate close to the
singularity which is automatically captured by the moving mesh method.

The asymptotic scaling of the singularity was first observed formally by [Do185]. A full
proof is given in [BB92]. They showed that for x close to x* and close to T there was a
natural spatial coordinate, the so-called ignition kernel lz, where

(1.4) /x(x, t) (x x*) [(T t)l log(T t)l] -1/2

In [BK88] the original PDE is recast in terms of the closely related "similarity" variable

(1.5) ( =/z log (T t),

which is derived from a scaling invariance of the original PDE, and the resulting scaled PDE
is then solved by using a static regridding algorithm. In contrast, we show that the MMPDE
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 307

solution evolves towards a (moving) mesh which close to the singularity automatically places
the mesh points xi(t) in such a manner that Ix(xi, t) approaches a constant as -- T. In this
way, the MMPDE methods naturally inherit the correct spatial structure of the singularity.

The paper is organized as follows. In 2 we introduce the blow-up problems and describe
the asymptotic form of solutions close to blow-up. In 3 we introduce the. MMPDE method
for determining the mesh coordinate transformation used to solve these problems. Motivated
by the desire to preserve scaling invariance, we consider the effect of different choices of the
MMPDE and monitor function M. In 4 we show that in fact the "approximate" similarity
solution behaviour of (1.1) is preserved by suitable choices of M, using techniques for the
discrete analysis which mimic the previous analyses for the continuous case. In 5 we give
numerical examples to verify the theory for theseMMPDEmethods and illustrate their efficacy.
Finally, in 6 we state some conclusions and briefly discuss a more general framework under
current investigation.

2. Structure ofblow-up solutions for PDEs. We now consider the form ofthe solutions
of the semilinear parabolic PDE

(2.1)
U --Uxx -[-Up p > 1,
u(O,t) u(1, t) =0,
u(x, O) uo(x) > O.

As well as looking at the asymptotic form of the solutions close to blow-up we also consider
some of the underlying principles which lead to these solutions. These principles can then be
used as a guide to the numerical method and also to study other related equations.

It has been shown by several authors, e.g., [FM85], that if uo(x) is sufficiently large and
positive and has a single nondegenerate maximum, then (1.2) and (1.3) hold. The point x* and
the time T depend subtlely upon uo(x) but, remarkably, the solution u(x, t) itself is almost
independent of u0 provided that x and are close to x* and T, respectively. The blow-up
profile takes the form of an isolated spike of increasingly narrow width and has been studied
by [Do185] and [BK88]. The behaviour of this spike may be described as follows.

THEOREM 2.1. Let and let Ix(x, t) be defined by

(2.2) Ix (x x*) [(T t) (c log(T t))]-
where is a constant which depends on uo(x).

(i) Ifx(t) is taken to keep Ix(x, t) constant, then the solution u(x, t) to (2.1) satisfies

(2.3) (T t)u(x, t) 1 + as -- T.

(ii) If Ix x*l is small butfixed and independent oft, then

(2.4) u(x, t) -- u(x, T) 4pfl2 lot 2 log Ix x II x*
Ix x*l e

(1 -t- O([x l)e

ast -+ T.
We observe that the expressions (2.3) and (2.4) coincide’ if we set Ix to be large. The

expression (2.3) describes the evolution of the blow-up peak in terms of the "ignition kernel"
Ix. This variable was first identified by [Do185], and is a natural variable to describe the spatial
structure of blow-up. A remarkable feature of the numerical methods we shall describe is that
close to x* the moving mesh is placed precisely at those points for which Ix is constant.
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308 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

The starting point for deriving these expressions is a natural scaling invariance of the
solutions of (2.1) (in the absence of boundary conditions). In particular, the equation is
invariant under the scaling

(T t) --+ k(T t),
luU--)" )

x - xfor any positive .. A similarity solution of (2.1) is any solution which is invariam under this
scaling. Many interesting PDEs, including problems leading to blow-up (see below), have a
scaling invariance similar to (2.5).

Motivated by (2.5) we recast (2.1) in terms of similarity variables w(s, y), y, and s

defined by

(2.6)
s -log(T t),
w(s, y) (T t)u(x, t),
y (x x*)(T t) -1/2

to give the partial differential equation

(2.7) w Wyy -yWy nt- W
p W

supplemented with

(2.8) Wy(S, 0) 0 and w(s, y) -- 0 as lY[

The latter condition is necessary to match the boundary conditions satisfied by the solutions
of the unscaled problem.

A similarity solution of the original PDE is a steady state (i.e., s independent) solution
of (2.7) which also satisfies (2.8). These solutions were originally proposed as solutions of
(2.1), but in fact, the only bounded, nonzero steady state solution of (2.7) is

(2.9) w(s, y) ,
which fails to satisfy (2.8). However, if we consider a set of poims x(t) such that y(x, t) is
fixed, then by using energy arguments Giga and Kohn [GK85] show that

(2.10) (T t)u(x, t) --+ ,
so that the function (2.9) is an attractor for solutions of (2.7) over compact sets in y.

To calculate a solution of (2.7) which corresponds to a solution of (2.1) we consider
instead a perturbation of the similarity solution by setting

(2.11) w(s y) f (g--(-() =-- f(z)

where f and g satisfy the conditions

(2.12)
f(z) --+ 0 as Izl ,
g(s)-- cx as s ,-- 0ass cx.
g
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 309

The derivation of these conditions is given in [BK88]. Substituting into (2.7) gives

g’ 1
fp(2.13) --zfz g-Z fzz + -;zfz + [3f 0

g z

which, for large s, reduces to the first-order equation

1
(2.14) -;zfz + flf fP 0

z

with solution

(2.15) f (z) [ d- cz21 -l
where c is a constant which without loss of generality may be set to 1. The reduction of
problem (2.1) from a second-order equation (2.7) to a first-order Hamilton-Jacobi one (2.14)
is a crucial feature of blow-up problems, see [GV93]. The function g, giving the spreading
rate, can be derived formally by making an expansion of the function w in powers of 1 and

matching terms. This implies that g-2, g’, and s- should all be ofthe same order for s > > 1.
The details of this derivation are given i [BK88] and [Do185] and give

(2.16) g(s) [4/32p(s + c)]
where ot is a constant which depends (weakly) upon the initial conditions. Combining (2.15)
with (2.16) and taking s large gives (2.3).

The derivation given here is formal and is closely related to an analysis of the behaviour of
the numerical scheme described in 4. A more precise derivation of the result (2.3) describing
the shape of the blow-up peak follows from a centre-manifold reduction of the solutions of
(2.7) and is given in [BB92], [FK92], and [HV93]. These papers also give a rigorous derivation
of (2.4), although this equation follows formally from taking the large/z limit of (2.3) and
matching to a steady state solution.

A useful conclusion from (2.3) is the natural relationship between the various scalings
involved in the solution of the blow-up problem. In particular, if we consider r (T t) to
be the local "timescale" for blow-up, then the corresponding scale for u is

(2.17) U

and the length scale for x is

(2.18) X [’t’(ot log "t’)] 1/2

Furthermore, the scale for ux is approximately given by

U
(2.19) Ux [’t’l+2C(Ot- log "t’)J

-1/2"

X

These scales are useful in deciding the choice of an appropriate numerical method. For
example, (2.18) gives an indication of the correct mesh spacing close to the blow-up point.

The scaling invariance (2.5) plays a crucial role in the analysis of (2.1). Although the
solution of the PDE is not self-similar, it is close to being self-similar and moreover converges
to the self-similar solution w /3 on any compact interval in the similarity variable y.
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310 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

Such scaling invariance and associated self-similar and approximately self-similar solution
behaviour is found in many other equations describing blow-up and for completeness we list
some of these here. Further examples of semilinear and quasi-linear PDEs related to (2.1)
include the Kassoy problem [Kas77], [Gel63]

(2.20) ut lgxx -t- eu

and porous-medium reaction-diffusion equations

(2.21) ut (luxlux)x + eu

and

(2.22) U (lgUx)x "at- Up,

which are analyzed in [BDG93] and in [GP91], respectively. Furthermore, the nonlinear
Schr6dinger equation [LPSS86]

(2.23) iapt / A7 / 17127 --0

is an example of a hyperbolic PDE for which blow-up occurs in Rt if N > 2, and this has
been used to model focusing in lasers.

The similarity variables for (2.20) and (2.21) are

| w(s, y) log(T t) + u(x, t),
(2.24)

y x(T t)

and with this change of variables (2.20) and (2.21) reduce to PDEs similar to (2.7), which can
be analyzed in an analogous way. Remarkably, the corresponding solution is approximately
self-similar if cr 0 and exactly self-similar if a > 0. Similar behaviour to that in (2.1) is
observed for (2.22) with ot > 0, where

(2.25) y x(T t) -1/2[l+t/(p-1)].

The behaviour of the nonlinear Schr6dinger equation is less well understood, but it is invariant
under various scalings. In particular, it has a natural set of similarity variables given by

Y= t),
ds(2.26)

u(y, r) L1/Cr,
where r Ixl and L(t) can be chosen in various ways. These follow from the scaling
invariance of solutions given by

(2.27) p(x, t) --+ Z-l/or l/t

In [LPSS86] extensive use is made of this rescaling in calculating the solution of (2.23)
numerically. Self-similar solutions arise when L(t) (T t)1/2, as in the previous problems,
and numerical evidence for the existence of such solutions has been obtained.

It is clear from this brief discussion that the scaling invariance of (2.1) and (2.20)- (2.23)
plays a key role in determining the dynamical solution behaviour. This strongly implies that
numerical methods which respect this invariance should be more effective in reproducing the
dynamics than those which do not. Such methods must necessarily employ moving meshes
to allow for rescalings in both space and the solution. We now consider these.
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 311

3. MovingmeshPDEswith scaling invariance. The class ofmethods whichwe propose
for solving (1.1) are the moving mesh PDE methods described in [HRR94a] and [HRR94b].
For these the function u(x, t) is discretized to give the solution values ui(t) defined on a
moving mesh xi(t), 0 N. The boundary conditions in (1.1) give u0 UN 0 and
x0 0, xN 1. The mesh Xi(t) is defined in terms of a differentiable mesh transformation
x(, t) [0, 1] -- [0, 1], where x is the physical coordinate and is the computational
coordinate such that

(3.1) xi(t) x (, t)
In the continuous formulation, the constraint

Ox
(3.2) > 0

assures that the mesh transformation is well defined for fixed t, and the discrete analogue
is that mesh crossing does not occur. For the MMPDE approach, a new partial differential
equation for x(, t), called the moving mesh PDE, is solved simultaneously with the original
PDE for u(x, t). The underlying strategy for determining x(, t) is to require equidistribution
of a positive monitorfunction, say M(u, Ux, Uxx), so that

/0
x

f0(3.3) Mdy Mdy.

Equivalently, differentiating this identity gives

(3.4)
0

m 0, x(0, t)=0, x(1, t)-- 1.

A mesh (or a coordinate transformation) is said to be equidistributed when (3.4) holds. It is
convenient in practice not to enforce exact equidistribution upon a mesh but to instead solve
an MMPDE for which it tends toward an equidistributed state. This has the advantages that a
simple initial mesh (such as a uniform one) can be used, the process produces stable meshes
with less risk of mesh crossing than if (3.3) were enforced, and combined with a smoothing
approach it reduces the problem (associated, for example, with the schemes proposed in
[LPSS86]) of placing so many points close to the developing singularity that resolution is lost
elsewhere. Of the various MMPDEs proposed in [HRR94a], we consider the two labelled
MMPDE4 and MMPDE6. These are, respectively,

(MMPDE4)

and

(MMPDE6) r M
02 0

Here, k denotes Ox-b-71 fixed and r is a small parameter which acts to relax the mesh to the
equidistributed state. Note that MMPDE6 is the second derivative with respect to of the
integro-differential equation

(3.5) zc (foX Mdx fol Mdx)
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312 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

It is worth remarking that many previous moving mesh equations can be regarded as variants
of or discrete approximations of these MMPDEs. (See, e.g., [HL89] for MMPDE6; see also
[HRR94a] and [HRR94b].)

If we apply moving mesh PDE methods to solve a PDE with an underlying scaling invari-
ance, then as the underlying PDE and the MMPDE are solved simultaneously to determine
both the solution u and the mesh x, it is desirable that the scaling invariance of the underlying
PDE be preserved. For (2.1) this requires that MMPDE4 or MMPDE6 be invariant under the
scaling (2.5). The parameter r and the monitor function M can indeed be suitably chosen to
meet this requirement. Assuming that the solution u (x, t) to (2.1) is positive for x 6 (0, 1) and
> 0, MMPDE6 can be made invariant under the scaling (2.5) if r is taken as a dimensionless

constant and

(3.6) M(u) up-1.

However, regardless of the choice of M, r cannot be constant if MMPDE4 is to be invariant
under (2.5) (although we can obtain an invariance if r is chosen adaptively).

This difference between MMPDE6 and MMPDE4 becomes important when we consider
the timescales under which the mesh adapts to follow the structure of the solution. An inspec-
tion of MMPDE4 and MMPDE6 shows that each has a natural timescale Tmesh for adapting
the mesh towards an equidistributed mesh. For MMPDE4 Trnesh O(r) and for MMPDE6
Tmesh O(). If Zmesh is significantly greater than the natural timescale for the evolution
of the solution structure, then the mesh cannot adapt rapidly enough to follow the solution
structure and is to all intents and purposes fixed. As we showed in 2, the natural timescale
for the evolution of the blow-up peak is O (T t). Hence, if

(3.7) T < < r,

then MMPDE4 will not be able to evolve the mesh rapidly enough to follow the evolution of
the peak. In contrast, if we look at MMPDE6 with M as in (3.6), then u-_ r(T t).
Hence the timescale for the evolution of the mesh is always a factor r smaller than the natural
timescale of the underlying problem, and MMPDE6 will continue to evolve the mesh for
close to T. This is a direct consequence of the scaling invariance of MMPDE6 under this
choice of monitor function. Other choices of monitor function (for example, arclength) do
not share this property, and we will study this in more detail in 4.

For the numerical computation, PDE (2.1) is transformed in terms of the computational
coordinate and discretized by central finite differences on a uniform mesh in the computa-
tional domain. That is, (2.1) is first transformed into the quasi-Lagrangian form

(3.8) { ,_ -v-i= l(U) +up
x x

u(0, t) u(1, t) 0,

and discretization gives the equation

X
Xi+l Xi-1 Xi+l Xi-1 Xi+l Xi Xi Xi-1

1 N 1 and u0 UN 0. Similar finite difference equations can be obtained for
discretizations of MMPDEs 4 and 6.

It is well known that formoving meshmethods, some sort ofsmoothing ofthe mesh is often
necessary in order to obtain nonoscillatory, reasonably accurate solutions (e.g., see [DD87],
[FVZ90], and [HRR94b]). In [DD87], Dorfi and Drury use a technique which smooths the
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 313

node concentration defined by x, x," In [VBFZ89], Verwer et al. prove that smoothing the
o+

node concentration is basically equivalent to smoothing the monitor function over all points.
To maintain the local structure of the underlying difference equations, we use the technique
employed in [HRR94b]. Specifically, the values ofthe smoothed monitor function M at nodes
are defined by

i+ip

Mk (y+l) Ik-il

lii k=i-i
i+ip Ik-il

k=i-ip

where Mi =- M(i, t), ip is a nonnegative integer, and , is a positive constant. The summations
in (3.10) are understood to contain only elements with indices in the range between 0 and N.
Notice that the replacement of Mi by M is basically equivalent to using a smoother monitor
function, and p 0 corresponds to the nonsmoothing case. Values of the parameters ,
and ip need to be selected for these moving mesh PDE methods. In our experience (also see
[HRR94b]), the choice of , is fairly insensitive and can generally be fixed. In this paper, we
use ?, 2. The value for ip usually is taken as 0, 1, 2, 3, or 4.

The final forms for the discrete moving mesh equations for MMPDE4 and MMPDE6 are

(3.11)

and

"g (]/li+1/2 (Jfi+l i) )i-1/2 (JCi -i-1))
(]li+1/2 (Xi-4-1-- Xi) ]"li_1/2 (Xi Xi-1))

/

()i+1(3.12) 2J:i "k- 3i-1)-- l’liA_ (Xi+X Xi) (Xi Xi-1))
1, N 1 supplemented with x0 0, XN 1, where/Qi+ := (/i +/i+1)/2. We
thnote at the smoothing process maintains the dimension of the monitor function, which will

become important when we consider rescalings of the equations.

4. Analysis of the solutions of the moving mesh equations. We now analyze the solu-
tion behaviour for the discretization of problem (2.1), using the discrete version ofMMPDE6
together with the monitor function given by (3.6). The analysis will be in two parts. First, we
shall solve MMPDE6 exactly assuming that u(x, t) is as described in 2. This will, in effect,
determine the "optimum" mesh for such a problem. Second, we shall analyze the solutions of
the coupled finite difference equations (3.9) and (3.12), assuming exact time integration, and
compare the solutions with those obtained in the continuous case.

4.1. Analysis of the moving mesh equations. Integrating MMPDE6 with respect to ,
we know that the mesh transformation x(, t) satisfies the equation

(4.1) rk Mx + O(t)

where O(t) is an integral constant which will be determined by the boundary conditions for
x (, t). Indeed, integrating (4.1) with respect to we have

(4.2) "r.(: t) fI=0 Mxd + O(t).
o
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314 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

Then, from the boundary conditions

(4.3) x(0, t) x(1, t) 1 0,

(4.2) implies that

(4.4) O(t) f Mdx.

0

Because the function u (x, t) has a sharp peak, the integral above is asymptotically domi-
nated by the contribution from the peak. It follows from (3.6) and (2.3) that within the blow-up
region M has the asymptotic form

(4.5) M
(T- t)[1 q- 4p4]

where/z(x, t) is defined in (2.2). If we take e to be a small (fixed) positive value, we then
have that

(4.6)

o(t)
x*q-

dx,_ f (T_t)[I+UX* -- 4pfl

e[ot-log(T-t)]-l/2(T-t)-l/2
fl[a-log(T-t t/2 l" d

(T-t)l/2 _[_log(T_t)]_/2(T_t)_/2 1+ 4p

As -- T the limits in the above integral tend to 4-cx so that

(4.7)
o(t) fl[ot-l(T-t)]l/2

(T_t)l/2 f
zr/4[a-log(T-t)]t/2

(7,_01/2

The contribution to O(t) from the range outside that considered will be of O(1) in time and will
be asymptotically dominated by the estimate in (4.7). It then follows that within the blow-up
region (4.1) reads as

fl 7rfl4,f[ot log(T t)] 1/2
(4.8) r2 x

(T t)(1 + 4p-) (T t) 1/2

The definition of/z(x, t) in (2.2) suggests an ansatz for the mesh behaviour of the form

(4.9) x(, t) x* + (T t)l/2[ct log(T t)]l/2z().

Substituting this into (4.8) gives

(4.10) rz -+O log(f-t) lq 4--t
The choice of the monitor function to be Up-1 ensures that the left-hand side and the first

(1)term of the right-hand side of (4.1) have the same scale in (T t). The term O log(T-t)

on the left-hand side of (4.10) emphasizes the difference between an exactly self-similar and
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 315

an approximately self-similar solution. Since z() should be finite in the blow-up region, the
left-hand side term is small compared with the first term on the fight-hand side if z < < 1 and
therefore can be dropped. Hence, to the approximation of order we obtain an asymptotic
equation within the blow-up region as

(4.11) z zr/v/-p/ 0
l+4-b-

or

(4.12) fl4X/ tan-1 (p) --zrflV/-4p](--"*)
2

where we have assumed that z 0 when *, i.e., blow-up occurs at the point x*
x(*, T).

Equation (4.12) describes the distribution of the mesh points within the peak, and the
boundary conditions (4.3) determine *. From (4.9) these two conditions correspond in the
limit of large Izl, i.e.,

(4.13) / z-o, as0,
/ z---+o, as--- 1,

implying

1
(4.14) * 2"

Our choice ofM implies that the terms of order r will be consistently small inside the blow-up
peak.

Combining these results, we deduce that the mesh function x is given by

(4.15) x(,t)=x*+2x/(T-t)l/2[ot-log(T-t)] 1/2 tan (zr( )) q- O(r)

so that

(4.16)
x(, t)- x* 2x/- as T.

(T t)l/2[ct log(T t)] 1/2 tanzr( 3)

Substituting this into the expression for u (x, t) gives

(4.17) u(, t) (T t)-/[cos(zr( 1/2))]2.

This expression for u in the computational domain may be easily checked against numerical
calculations.

The above analysis only applies for mesh points within the peak. However, as -- 0 or
1 the mesh points must eventually tend to 0 and 1, respectively, and close to 0 they

correspond to points where u (x, t) is not changing rapidly and hence is bounded as T.
If we fix x, then as T,

8/2p log Ix x*ll 1(4.18) u(, t)
(x x*)2

-[- O(x x*)2.
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316 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

Thus,

(4.19) ul/fl 8f12p log Ix x*ll 8f12p
(x x*)

Similarly, from (4.11),

/re [ct log(T t)] 1/2
(4.20) u 1/# O(t)

(T -/,)1/2

so that an equidistributed mesh will give

(4.21) U 1/ O(t)s,

and hence

log [x x*ll
(X --X*)2

which leads to

(4.27) u(, t) (T t)-Z fl [1 21 ’*1]
However, when r[ct log(T t)]l/2(T t)/-1/2 > > 1, which occurs when p > 3 and t
is sufficiently close to T, then the left-hand side of (4.25) dominates over other terms and
then there exists no solution satisfying the resulting asymptotic equation and the matching

After some manipulation we find that this is precisely the form that (4.16) takes as -- 0 (or
indeed as -- 1).

We observe from (4.15) and (4.22) that x is close to x* if lies in the interval [e, 1 e]
where e (T t)l/2[ot log(T t)] 1/2. Outside this interval, x rapidly tends to 0 or 1. The
implications of this analysis are that if A is the mesh spacing in the computational domain,
then a significant number of mesh points will be away from the peak only if

(4.23) A < (T t)l/2[ct log(T t)] 1/2.

A similar calculation can be made for the arclength monitor function

(4.24) M 1 + Ux2.

Indeed, when Ux is large, M u, and we have from (4.1), (4.4), and (4.9) that

[ (I)][c log(T t)]’/2-rz -3 +O (T-t)#-log(T-t)
(4.25)

2fl#+lzlz -+- O,
4pfl(l+ z2 a#+

4pfl

where (R) is a constant. Thus, when r[c log(T t)]l/2(T t)-/2 << 1, for which we
require p < 3 and z to be fixed and small, then within the blow-up region the mesh equation
is asymptotic to

2fl#+llzlz(4.26) + (R) 0,
4p(1 + z2 +

4pfl

8f12p log Ix x*]l fire.tip# lot log(T t)]x/2
(4.22)

(x x*)2 (T -/)1/2
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 317

conditions (4.13). This implies that the mesh (or the coordinate transformation) cannot take
the form (4.9) and hence is not "optimal" when r[ct log(T t)]l/2(T t)t-l/2 > > 1.
Indeed, in this case the timescale for the mesh evolution is greater than T and the mesh
ceases to evolve. To be precise, this occurs when

(4.28) r(T t)/-1/2 r(T t)(3-p)/2(p-1) ztt(mPa-3)/2 > > 1.

Finally we note that the above analysis is general and can also be applied to MMPDE4.
Since the argument is quite similar, we omit it here but refer the reader to the discussion in 3.

4.2. The analysis of the discrete equations. We now turn our attention to an analysis
of the discretizations (3.9) and (3.12) of the PDEs for blow-up and mesh evolution. We show
that these equations admit a discrete solution which evolves in an "approximately self-similar"
manner very closely related to that of the solution described in 2. Although we do not prove
that this discrete solution is an attractor, the numerical calculations given in 5 strongly imply
that it is, and the asymptotic predictions of this section agree with the observations in 5.
(We emphasize at this point that the numerical solution may have a slightly different blow-up
time from the analytical solution. However, as we are interested in the dynamics close to
blow-up rather than the blow-up time itself we shall treat the blow-up times of the analytic
and numerical methods as the same.)

Since the discrete equations have the same scaling invariance as the continuous ones, it
is reasonable to consider a discrete solution in terms of similarity variables closely related to
those in (2.6), namely

Wi (T t)tli,
(4.29) yi(s) (xi x*)(T t)-1/2,

s log(T t).

In these similarity variables we consider solutions with wi independent of time. Substituting
into (3.9) gives

Wi ..3t_ [Oi+l--ll’i-I (1
Yi+l-Yi-I Yi i)

(4.30)
2 (i+,-wi oi-wi_.__:_) + w"Yi+l --Yi-1 Yi+l --Yi Yi --Yi-1

The equation (4.30) is essentially a discretization of (2.7) on the nonuniform mesh {Yi and
must also satisfy a discrete form of the boundary conditions (2.8). Like (2.7) it also possesses
discrete "similarity solutions" for which both wi and yi are independent of time, and these
solutions satisfy a discretization of the steady state of (2.7). However, this latter equation has
only one solution which does not grow exponentially with y, and that is the constant solution,
which does not satisfy the boundary conditions. (We note that wi =- is also a solution of
(4.30).) Provided that the mesh {Yi is sufficiently fine we will expect that the (nonconstant)
discrete solutions ofthe steady state of (4.30) should approximate their continuous counterparts
and also grow rapidly with i. Such solutions will not then match the boundary conditions.
We can conclude from this reasoning that (4.30) is unlikely to have a steady state solution and
that we should instead seek a solution which, like its analytical counterpart, is approximately
self-similar rather than self-similar. We can compute these as in 2 by setting

(4.31) yi(s) g(s)zi

where zi is independent of time and the function g satisfies (cf. (2.12))

gt
(4.32) g(s) -- cx and-

g
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318 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

Substituting into (4.30) and letting s oe, we have

(4.33) iWi + ll)i-t-1 113i-1 Zi

This is a centred difference discretization of (2.14), and hence, provided the mesh {Zi} is
sufficiently regular,

1 /2)-(4.34) Wi -’ " Z "t- 6i,

where i is a small error which decreases with the number ofmesh points. As before, the form
of g for large s can be derived from formal scaling arguments which give

(4.35) g(s) C[Ol "-[- S] 1/2.

We can repeat the arguments in [BK88] to deduce the value of the constant c which, to within
a small error similar to i, is consistent with (2.16). This demonstrates that an approximately
self-similar solution for the numerical scheme (4.30) exists which has the correct dependence
upon zi and hence upon xi. Finally, we evaluate zi. The moving mesh equation (3.12) gives

--r(3i+l 2i -t- i-1)
(4.36)

1 p-1 -1) (u/P-12 (/’//+.1 + U/p (X/+I Xi) " -JI- g)(Xi Xi-1),

which has first integral

1 p-1 tit/-1 Xi) nUO(t).(4.37) z(2i+ 2i) (ui+ + )(Xi+l

Substituting for zi and wi we have after some manipulation that

+
(4.38)

(T-t) 1/2

--2---1 (//3/P-ll -1- W-1)(zi+l Zi) "Jr- g(s) O(t).

Choosing 0 appropriately and using (4.34), this is a centred difference discretization of (4.10),
and hence zi is a discrete approximation to z() given in (4.9).

We conclude that the discrete form of the PDE coupled with MMPDE6 admits an ap-
proximately self-similar solution for which both the mesh xi and the function ui are consistent
approximations to the mesh x(, t) and function u(, t) calculated in 4.1. Provided that this
solution is (like its analytic counterpart) an attractor for a wide class of initial data, then the
numerical method given will faithfully reproduce the dynamics of the blow-up peak for all
times up to the blow-up time. In particular, the asymptotic estimates given in 4.1 will be
reproduced in the numerical calculations. It is difficult to analyze analytically whether the
solution is an attractor, and we do not attempt it here.

5. Numerical examples. We now present some numerical calculations for several blow-
up problems using MMPDE4 and MMPDE6. These calculations support the analysis of3
and 4 and also illustrate the effect ofsmoothing the monitor function M. For these calculations
we take uo(x) 20 sin(zrx).

After spatial discretization, the resulting ODE systems are solved using the double preci-
sion version of the stiff ODE solver DASSL [Pet82]. The time integration uses the backward
differentiation formulas (BDF), wherein an approximate Jacobian is computed by DASSL in-
ternally using finite differences. The relative and absolute local time-stepping error tolerances
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 319

/:’ ’.\ L2
0"8 ",\ L3

L5

0.6,

0,4

0,2 -- -*-’--’-----"
0.2 0.4 0.6 0.8

1/tau

10 15 20 25 3O
Iog(u_max)

le+lO

le+09

le+08

le+07

le+06

1O0000

1000O

1000
0.5 0,51 0.52 0.53 0.54 0,56 0.56 0.57 0.56 0.59 0,6

FIG. (la, lb, and lc from the left). MMPDE4 without smoothing is usedfor solving (2.1) with p 2. In
Figs. la and lc LO initial solution, L1 Umax 108, L2 Umax 109, L3 Umax 1010, L4 Umax 1011,
L5 Umax 5 1011, L6: the asymptotic solution.

(in a root-mean-square norm) are chosen as rtol 10-8 and atol 10-8, respectively. Unless
stated otherwise, we use a uniform mesh (in x) initially with N 40 and take 3 10-5. As
pointed out in [HRR94a] and [HRR94b], the choice of value for the time correction parameter
3 is not critical and can generally be fixed to be a small positive value.

5.1. Calculations using MMPDE4. The analysis in 3 indicates that MMPDE4 ceases
to evolve the mesh when the timescale of the blow-up is less than 3, i.e., when

(5.1) (T- t) < 3.

Since u(x*, t) (T t)-, the mesh ceases to evolve when

(5.2) u(x* t) > 3-after which MMPDE4 gives a nonuniform but essentiallyfixed mesh. The results of [AB94]
show that if p > 2, ui will blow up at only one point and if p 2 it will blow up at three
points, but the blow-up is asymptotically dominated by the growth at one point.

To confirm these results we integrate (2.1) when p 2 coupled with MMPDE4 using
the monitor function given by (3.6). Blow-up occurs at T 0.082291 and x* SO
that the maximum value occurs at u20. In Fig. la we present a graph of the scaled discrete
solution values u_,, for u20 108 109, 1010, 1011 5 1011 and in Fig. lb we show the

U20

corresponding mesh, plotting log Ixi 1 against log(u20). From the second figure it is clear
that the mesh evolves until u20

I and is then fixed. The results of Fig. a show convergence
of the normalized solution to a delta function, demonstrating that, effectively, it is only u20
which is blowing up. In Fig. lc we plot the approximation for u (x, t) when u20 1011 and
compare it with the asymptotic function u(x, t) given in (2.3). It is clear that it approximates
the limiting asymptotic function rather well (except at the blow-up point), showing that the
mesh generated by MMPDE4 leads to an accurate approximation to u(x, t) away from the
point of blow-up and the behaviour of u(x, T) is well approximated in this range. Indeed, at

is given bythe point when MMPDE4 ceases to evolve the mesh, the mesh point nearest

1
(5.3) x - - O(A31/2 log1/2 3),

where A is the mesh spacing in the computational domain. Thus MMPDE4 gives an accurate
1/2picture of the evolution of the solution in the region [0, O(A31/ log 3)] U [. +

0(A31/ log1/ 3), 1], but it will not resolve the structure in the remaining blow-up region.
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320 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

0.8

0.4

0.2

I
1/tau

-16
0.2 0.4 0.6 0.8 10 15 20 25 30

Iog(u_max)

10

0.05 0.1 0.15 0.2 0.:25 0.3 0.35
1/Iog(u_max)

Fm 2 (2a, 2b, and 2cfrom the left). MMPDE6 withoutsmoothing is usedfor solving (2.1) with p 2. In Fig. 2a
LO: initialsolution, L1 Umax 108, L2 Umax 109, L3 Umax 1010, L4 Umax 1011, L5 Umax 5 1011,
L6: the asymptotic solution.

5.2. Calculations using MMPDE6. The analysis given in 3 and 4 indicates that (in
contrast to MMPDE4) using MMPDE6 with the monitor function given by (3.6) should
give an accurate resolution of the blow-up peak. A calculation of the evolution of the
PDE gives a blow-up time of T 0.082283 when p 2. The scaled solution {,2-0 for

u20 108, 109, 1010, 1011, 5 1011, is given in Fig. 2a together with the theoretical scaled
solution cos2 zr( 3) where A (cf. (2.10) and (4.17)). It is clear from the figure
that there is close agreement between the predicted and computed curves implying that the
solution calculated in 4.2 is indeed an attractor. Figure 2b shows a graph of log Ixi 31 as a
function of log t/max with clear evidence that each of the mesh points (apart from those close
to the boundary) evolves in the same (approximately self-similar) manner. To confirm that the

mesh behaves precisely as predicted in 4, we give a graph in Fig. 2c of (T_t)/2llog(T+/-t)li/2 as

a function of log(T t)1-1 where we use the estimate T 1- According to formula
u20

(4.16),

Ixi 31 1
(5.4)

(T t)1/21 log(T t)ll/2 I 2 log(T t)l

as log(T t)l cx. Thus, for each we expect to obtain a graph which is asymptotically
_1linearin log(T t)1-1 and converges to tanrr(i 3) with slope 3cV- tanzr(i 3)"

The figure clearly shows that this is the case, and we estimate ot to be 7.
Thus MMPDE6 accurately reproduces the evolution of the peak profile; however, with

40 mesh points X39 3 35.94(T t)l/21 log(T t)l 1/2 SO that X39 0.500966 when
u20 1011 Thus, the mesh points are concentrated in the blow-up region, so that the solution
away from the peak is poorly resolved.

If smoothing as described in 3 is introduced, the resulting form of u__/for the same value
U20

of t/max is given in Fig. 3a. In this case, the blow-up is slightly delayed to T 0.082319.
Now, the scaled discrete solution u__/} no longer approaches a constant curve, but instead,

U20
slowly approaches the delta function which would.be obtained using a uniform mesh. This
is because smoothing tends to place fewer points in the peak and more points away from the
peak. Nevertheless, we see from Fig. 3b that the mesh points close to the peak evolve in a
manner similar to those in Fig. 2b. Hence, whilst these points are close to the blow-up point,
the analysis of 4 still applies and the value of ui will be close to u(xi, t). Thus, although
smoothing does not precisely align the mesh along the level curves of the function/z in (4.16),
it still gives an accurate resolution of the structure of the peak.

The resolution of the peak in the two cases is made apparent in Figs. 4a and 4b, which
plot u__z./as a function of log Ixi 31 for u20 109, 1010, 1011 5 1011 for the unsmoothed

U20
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LO ----------..’

0.8

!
0.6

o., } .o

0.2
-12

ltau
-16

0,2 0.4 0.6 0,8 10 15 20 25 30
Iog(u_max)

FIG. 3 (3a and 3b from the left). MMPDE6 with smoothing (ip 2) is usedfor solving (2.1) with p 2.
In Fig. 3a LO: initial solution, L1 Urnax 108, L2 Urnax 10, L3 Urnax 1010, L4 Urnax 1011,
L5 Urnax 5 1011, L6: the asymptotic solution which is valid onlyfor the unsmoothed case.

0.8 L4

0.7
L5

0.6

(I.2

0.

-16 -10
Ioglx-O.5i

L1
0.9 L2

L3
0.8 L4

0.7

0.6

0.5

11.4

-16 -10
Ioglx-O,51

FIG. 4 (4a and 4bfrom the left). MMPDE6 is usedfor solving (2.1) with p 2. Fig. 4a isfor the case without
smoothing and Fig. 4b for that with smoothing (ip 2). In the figures, L Umax 108, L2 Umax 109,
L3 Urnax 1010, L4 Umax 1011, L5 Umax 5 1011.

and smoothed meshes, respectively. The coordinate log IXi "1 is used to stretch the length
scale close to the peak so that its structure can be seen more easily. The two figures are almost
identical, confirming that smoothing does not affect the accuracy of the resolution of the peak
for these values of u (although presumably it would for much larger values). As a further test
of the accuracy of the schemes the graphs in Figs. 4a and 4b can be compared with the graph
of the function

(s.s)

-1
u

1+
(x-g

t/max 8(T t)(ot log(T t))

where Umax (T t) -1. Indeed, the value of ot 7 estimated earlier gives a good fit for
each of the curves.

Although smoothing is not necessary when p 2, it becomes essential when dealing
with more severe nonlinearities, as unsmoothed moving mesh equations can tend to introduce
oscillations in solutions away from singularities by placing too few points there (e.g., see
[VBFZ89]). We see this by taking p 5, M u4, and using an initial mesh equidistributed
with respect to the initial solution u (x, 0) 20 sin(zrx). Figure 5a shows the computed value

(14of " plotted as a function of in the case ofno smoothing for umax5 108 ,109 10, 10
Nmx

5and 10. These computed solutions approximate cos ( g) for Urea 10 but deviate
from it, due to mesh oscillations, when 5 10Ureax > In contrast, the smoothed solution
(obtained with ip 4) does not oscillate and still retains enough points near the blow-up point
to give good resolution in the peak, where for reference purposes we also give the asymptotic
solution cos rr( g) which applies only for the nonsmooth moving mesh case (see Fig. 5b).
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Fro. 5 (5a and 5bfrom the left). MMPDE6 is usedfor solving (2.1) with p 5. In Fig. 5a (without smoothing),
LO:. initial solution, L1 uSmax 108, L2 U5max 109, L3 uSmax 1010, L4 uSmax 1011, L5 U5max 1012,
L6: the asymptotic solution. In Fig. 5b (with smoothing (ip 4)), LO: initial solution, L1 USmax 109,

10 1011, 1013,L2" Uma 10 L3 Uma L4 U5max 1012, L5 U5max L6: the asymptotic solution which is
valid onlyfor the unsmoothed case.

LO
L1

/ ".
0.2

0.2 0.4 0.6 0.8

..0,5

-1.5

-2

-4.5

3.5 4.5 5.5 6.5

F/G. 6 (6a and 6bfrom the left). MMPDE6 with smoothing (ip 4) and the arclength monitorfunction is used

for solving (2.1)with p 5. In Fig. 6a, LO: initialsolution, L1 ’USmax 101, L2 USmax 1011, L3 USmax 1012,
L4 USmax 1013, L5 U5max 10TM, L6: the asymptotic solution.

It is interesting to repeat the calculations for p 5 using the common choice of the
arclength monitor function M v/1 + Ux2 [HRR94b]. The results of4 indicate that the mesh

(p-3)/2will cease to evolve when "CUmax > > 1, which in this case occurs when Umax > > 1/r. In
Figs. 6a and 6b we present the resulting computed solution for different values of Umax5 and
the evolution of the mesh (with smoothing ip 4), respectively. We see clearly that the mesh
ceases to evolve in this case. The value of Umax at which this occurs is, in fact, rather smaller
than the value predicted above. This is a result of the smoothing we have employed.

5.3. Exponential nonlinearities. We can easily extend the results of the previous sub-
sections to the case of an exponential nonlinearity, such as for the equation

(5.6) ut Uxx + eu

and its generalization

(5.7) ut (lul"ux)x + eu,

using the monitor function M(u) eu. It is well known [Do185] that close to the blow-up
point the solutions of (5.6) have an approximately self-similar solution of the form

(5.8) u(x, t) log(T t) log 1 +
x2

4(T t) log(T t)
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP 323

The solutions of (5.7) are, in contrast, self-similar such that

(5.9) ( x )u(x, t) log(T t) + W (T t) 1/(a+2)

where for small cr the function W has the form

(5.10) W(() -log 1 + .2

(see [BG94]). Using an analysis identical to that given earlier we may derive the following
formal result.

PROPOSITION 5.1. Let M(u eu.
(i) Ifa O, then an equidistributed mesh transformation is given by

(5.11) x(,t)=x*+(4(T-t)log(T-t)) x/2 tan-1 (zr ( )),
(5.12) eU(1/2.t

)" cos2zt -(ii) Let

X

f(x) =-- 1 + ya+2’
o

F 2f(cxz).

Ifr > O, a small, then

(5.14) l-a)
1/(a+2)

eU(g,t)
(5.15)

eU( 1/2,t)
-’+

1 + (f-l[F(

Computations with the exponential nonlinearity raise issues similar to those discussed
earlier, especially with regard to smoothing. For example, if r 0 then a calculation with
uo(x) 5 sin(zrx) and no smoothing is successful when Umax < 15 (e"mx < 3 x 106), giving
a close approximation to the asymptotic results, but it becomes unstable for larger values of
u. We illustrate this in Fig. 7a, giving eui-umx for Umax 10, 11.6, 13.33, 15, 16.6. A graph
of the resulting mesh in Fig. 7b shows the oscillations in the mesh points at the boundary
even more dramatically. In Figs. 7c and 7d we give the corresponding results with smoothing,
taking e 4.

It is interesting to compare the functions u(x, t) computed in these cases, and in Figs.
7e and 7f we present graphs of eu-um"x as a function of the physical coordinate x for Umax
10, 11.6, 13.33, 15, 16.6 for both the unsmoothed and smoothed cases, respectively. These
graphs are nearly identical, except that the peak is smoother in Fig. 7f. Figure 8 gives the
results of the same calculation on a fixed, uniform mesh. We conclude again that smoothing
greatly improves the method without losing the advantages of mesh adaption.
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0.8

0.2

L4 --i

0,2 0.4 0,6 0,8 10 16 18 20

LO
L1

0.8
; L4

0.2 0.4 0.6 0.8

10 16 18 20

0,9

0.8

0,7

0,5

0.4

0.2

0.2 0.4

’’ ’LO
L1

L3

L5

0.6 0.8

0.8

0.7

0.6

0.5

(I,4

0,2

OA

0.2 0.4 0.6 0.8

FIG. 7 (7a, 7b, 7c, 7d, 7e, and 7ffrom the top left). MMPDE6 is usedfor solving (5.6). Figures 7a, 7b, and 7e
arefor the case without smoothing and Figs. 7c, 7d, and 7f arefor that with smoothing (it, 4). In thefigures, LO:
initialsolution, L1 Umax 10, L2 "Umax 11.6, L3 "Umax 13.33, L4 Umax 15, L5 Umax 16.6, L6: the
asymptotic solution which is valid onlyfor the unsmoothed case.

" LO
0.9

0,8

0.7

0.5

I).4

0,2 0.4 0.6 0.8

FIG. 8. Afixed, uniform mesh is usedfor solving (5.6). LO: initial solution, L1 ’Umax 10, L2 Umax 11.6,
L3 Umax 13.33, L4 Urnax 15, L5 "Umax 16.6.

5.4. Degenerate parabolic equations. To show the ability of the MMPDE methods to
handle different types ofblow-up, we conclude this section with the application oftheMMPDE
methods to a problem that has not been as extensively analyzed as (2.1) or (2.20). We consider
the degenerate parabolic problem

(5.16) XUt Uxx + 15u2

subject to the boundary conditions u(0, t) u(1, t) 0. This problem has been studied
theoretically and numerically in [Flo91] and [SF90]. It is shown in [Flo91] that a distinct
feature of the blow-up for (5.16) from that for nondegenerate problems (e.g., (1.1)) is that the
solution blows up at the boundary x 0. In contrast to that for nondegenerate problems, the
blow-up behaviour for degenerate problems like (5.16) is as yet not well understood.

The results obtained with MMPDE6 and smoothing (ip 2) are shown in Figs. 9a-9e. In
the computation, we have used uo(x) 4x(1 x) and M u3/2, which is chosen so that the
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0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

’IA/\
0.0

0.0

0.4

0.2

0.01 0.02 0.03 0.04 0.05

0.8

0.6

,1
0.4

0.2

0.2 0.4 0.6 0.8

10 15 20 25
Ioglu max)

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 9 (9a, 9b, 9c, 9d, and 9efrom the top left). MMPDE6 with smoothing (ip 2) is usedfor solving (5.16).
Figure 9b is the magnification ofthe left portion ofFig. 9a.

extended system consisting of the physical PDE and the MMPDE preserves the underlying
scaling invariance of (5.16). The results show the blow-up at the boundary x 0. Our
computation gives a blow-up time of T 0.056015, which is close to the value obtained
in [SF90] with a so-called peak-tracking strategy. The computation required roughly 36.7
seconds of CPU time on an SGI R3000 Indigo.

6. Conclusions and comments. In this paper we have considered PDEs which model
blow-up problems for which scaling invariance plays a natural role in describing the under-
lying solution structures. When one computes the solutions to such problems, adaptive mesh
methods are virtually unavoidable. It is useful to interpret such numerical methods as dis-
cretizations (on a uniform mesh) of the PDEs rewritten in terms of a computational coordinate
transformation. This transformation can in turn be defined through an MMPDE [HRR94b]
which is determined by equidistribution with respect to a monitor function M. It is natural to
seek a monitor function which preserves the scaling invariance; note that this does not require
detailed knowledge of the solution behaviour itself. The scaling invariance is then preserved
by the discretization, i.e., by the actual moving mesh method which is implemented. To our
knowledge, this is the first instance in which rigorous analysis has been used to motivate the
choice of specific monitor functions. For the blow-up problems with known detailed solution
behaviour, the solutions are only approximate similarity solutions, and, quite remarkably, their
structure is also preserved by the discrete equations when suitable monitor functions are cho-
sen. As a result, with relatively few mesh points the analytic structure ofthe blow-up solutions
can be accurately computed in a very efficient way. We briefly present some computations
(without accompanying analysis) for a degenerate parabolic problem whose solution has not
been extensively analyzed.

A comparison of our approach for blow-up problems with those of others is outside the
scope ofthis paper. Nevertheless, we have tried to emphasize the naturalness of our method for
automatically picking up the self-similar coordinate and to demonstrate the ease with which
these problems can often be solved with little a priori knowledge.
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326 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

This is not to say that the moving mesh methods are without pitfalls, however. It is
important to use proper monitor functions, and examples are given where the popular choice
of arclength fails to perform adequately. The MMPDEs must also be implemented with care.
For example, in Figs. la and lbMMPDE4with fixed z fails to give the properblow-up structure
when the solution becomes sufficiently large, and the question of whether or not to use mesh
smoothing, and if so, the judicious choice of one, are issues with no simple resolution. The
blow-up problems considered here are part of a larger framework of PDEs having similarity
solutions for which MMPDEs with suitable monitor functions preserve the scaling invariance,
and we are in the process of developing a theory for such problems.
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