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Abstract. We study variational mesh adaptation for axially symmetric solutions to two-
dimensional problems. The study is focused on the relationship between the mesh density distribution
and the monitor function and is carried out for a traditional functional that includes several widely
used variational methods as special cases and a recently proposed functional that allows for a weight-
ing between mesh isotropy (or regularity) and global equidistribution of the monitor function. The
main results are stated in Theorems 4.1 and 4.2. For axially symmetric problems, it is natural to
choose axially symmetric mesh adaptation. To this end, it is reasonable to use the monitor function
in the form G = λ1(r)ereTr + λ2(r)eθe

T
θ , where er and eθ are the radial and angular unit vectors.

It is shown that when higher mesh concentration at the origin is desired, a choice of λ1 and λ2
satisfying λ1(0) < λ2(0) will make the mesh denser at r = 0 than in the surrounding area whether or
not λ1 has a maximum value at r = 0. The purpose can also be served by choosing λ1 to have a local
maximum at r = 0 when a Winslow-type monitor function with λ1(r) = λ2(r) is employed. On the
other hand, it is shown that the traditional functional provides little control over mesh concentration
around a ring r = rλ > 0 by choosing λ1 and λ2.

In contrast, numerical results show that the new functional provides better control of the mesh
concentration through the monitor function. Two-dimensional numerical results are presented to
support the analysis.
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1. Introduction. Mesh adaptation has become an indispensable tool for use in
the numerical solution of PDEs. One of the most widely used approaches for gen-
erating adaptive meshes is a variational method. With such a method, meshes are
generated as images of a reference mesh through a coordinate transformation be-
tween the physical and computational (or logical) domains. The transformation is
determined as the minimizer of a functional formulated to measure difficulties in the
numerical approximation of the physical solution, typically through a so-called mon-
itor function prescribed by the user to control the mesh adaptation. A variational
method often results in an elliptic (PDE) mesh generation system. Such a system
generates smooth meshes, allows for full specification of mesh behavior at the bound-
ary, does not propagate boundary singularities into the domain, has less danger of
producing mesh overlappings, and can be solved efficiently using many well-developed
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236 CAO, CARRETERO-GONZÁLEZ, HUANG AND RUSSELL

algorithms. Moreover, the equidistribution principle, a concept which has been used
successfully in one-dimensional mesh adaptation [3], can be naturally extended to
multidimensions in the variational framework. Finally, many mesh features, such as
orthogonality, smoothness, and concentration, can be incorporated explicitly into the
mesh adaptation functional.

A number of variational methods have been developed in the past. For example,
Winslow [15] proposes the variable diffusion method for which the mesh lines play the
role of equipotentials of a potential problem [14]. Brackbill and Saltzman [1] develop
a popular method combining mesh concentration, smoothness, and orthogonality.
Several functionals are formulated by Steinberg and Roache [13] to control mesh
properties such as the spacing of the points, areas or volumes of the cells, and the
angles between mesh lines. Dvinsky [4] uses the energy of harmonic mappings as his
mesh adaptation functional. Knupp [9, 10] and Knupp and Robidoux [11] develop
functionals based on the idea of conditioning the Jacobian matrix of the coordinate
transformation. A functional balancing mesh regularity and adaptivity is proposed
by Huang [6].

Some theoretical work has been devoted to better understanding the existing
methods. Cao, Huang, and Russell [2] study the qualitative effect of monitor func-
tions on the resulting mesh for a general class of variational methods that includes
Winslow’s method [15] and the method using harmonic mappings [4] as special cases.
In the recent work of Huang and Sun [8], the monitor function for the functional of
[6] is defined based on interpolation error estimates, and asymptotic error bounds are
obtained for interpolation on the resulting adaptive meshes satisfying the so-called
isotropy and equidistribution conditions. The ability of the resulting method to gen-
erate adaptive meshes satisfying these conditions is also demonstrated numerically.
Nevertheless, more work remains to be done on better understanding the existing
variational methods, especially on precisely how the monitor function controls the
concentration of the generated mesh.

In this paper we present such a study for two functionals, the traditional one
studied in [2] and the new one proposed in [6], for the simple but important case
of two-dimensional problems with axisymmetrical solutions. These types of problems
arise in many practical situations, particularly for problems with blowup or quenching
solutions. There has been considerable recent interest in solving higher-dimensional
blowup problems such as the Schrödinger equation, and this work was motivated by
the observation that the standard moving mesh procedures generally perform inade-
quately on such problems (e.g., see [2, 12]).

Let (x, y) be the coordinates in the physical domain Ω, and let (ξ, η) be the
coordinates in the computational domain Ωc. The traditional functional is

Itrad[ξ, η] =

∫
Ω

(∇ξTG−1∇ξ +∇ηTG−1∇η
)
dxdy(1.1)

and the new functional in [6] has the form

Inew[ξ, η] = γ

∫
Ω

√
g
(∇ξTG−1∇ξ +∇ηTG−1∇η

)q
dxdy

+ (1− 2γ)2q
∫

Ω

√
g

(J
√
g)q

dxdy,

(1.2)

where J = xξyη − xηyξ is the Jacobian of the coordinate transformation, G is the
(matrix) monitor function with determinant g, and q ≥ 1 and γ ∈ (0, 1/2] are pa-
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ADAPTIVE MESHES FOR AXISYMMETRICAL PROBLEMS 237

rameters. Here, q ≥ 1 is required in order for the first integral of (1.2) to be convex.
The features of these functionals and the roles of the parameters will be discussed in
sections 2 and 3.

Axisymmetrical problems. For simplicity, we assume that the physical domain
is Ω = {(x, y) | x2 +y2 < 1} and the computational domain is Ωc = {(ξ, η) | ξ2 +η2 <
1}. Let the polar coordinate systems for the physical and computational domains be{

x = r cos θ,
y = r sin θ,

{
ξ = R cosΘ,
η = R sinΘ.

Consider the case where the solution u(x, y) is axially symmetric; i.e., u is invariant
under rotation about the center (0, 0). It is natural to choose an axially symmetric
coordinate transformation

R = R(r), Θ = θ(1.3)

for mesh adaptation. To this end, it is reasonable to use the monitor function in the
form

G = λ1(r)ere
T
r + λ2(r)eθe

T
θ ,(1.4)

where er and eθ are unit vectors in the radial and angular directions, respectively.
Thus, G is determined by its radial and angular components λ1 > 0 and λ2 > 0.

We are interested in the relationship between the monitor function and the mesh
distribution. In particular, we focus on the mesh density D(r). The Jacobian of the
coordinate transformation J is easily seen to satisfy

1

J
≡ det

(
∂(ξ, η)

∂(x, y)

)
=

R

r

dR

dr
,(1.5)

and thus the mesh density is given by

D(r) =
R

r

dR

dr
.(1.6)

The central aim of this paper is to gain insight into how much control one has
on the mesh density D(r) by appropriately choosing λ1 and λ2. In order for the
variational method to be successful one needs that the solution to the variational
problem gives a mesh distribution compatible with the chosen monitor function. For
example, it is natural to choose one or more of the eigenvalues of the monitor function
to have a higher value (a maximum) in the region where a physical solution needs a
high concentration of mesh points; e.g., see [2]. It will become clear below that this
is not always achievable and that if one is not careful in choosing the appropriate
relation between λ1 and λ2 it is possible for the mesh density maximum to occur at a
different location than that of the maximum of the eigenvalue. This can in turn lead
to a large error in the numerical approximation of the physical solution.

An outline of the paper is as follows. In sections 2 and 3 basic properties of
the traditional and new functionals for radially symmetric problems are presented.
In section 4 we carry out an in-depth analysis on the control of the mesh density
via the monitor function. In particular, we find that the relationship between the
radial (λ1) and the angular (λ2) components of the monitor function is crucial for a
good control of the mesh density. Section 5 presents some two-dimensional numerical
results highlighting in part the lack of control of the mesh concentration for a wide
choice of monitor functions. A brief analysis is given in section 6 for the traditional
functional applied to spherically symmetric problems in three dimensions. Finally,
section 7 contains conclusions and comments.
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238 CAO, CARRETERO-GONZÁLEZ, HUANG AND RUSSELL

2. The traditional functional. In this section we consider the traditional func-
tional (1.1) for axisymmetrical problems and give some of its basic properties. It is a
generalization of the functionals for Winslow’s method and Dvinsky’s method of har-
monic mappings. The monitor function G can be defined by arbitrarily choosing λ1

and λ2. However, it is worth pointing out that a number of commonly used monitor
functions can be obtained through the interdependent relationship

λ2 = λp
1(2.1)

for some power p. For example, we have

(HM) p = −1 : harmonic mapping monitor function;
(Al) p = 0 : arclength monitor function;
(Ws) p = 1 : Winslow’s monitor function;
(St) p = 2 : strong concentration monitor function.

(2.2)

In polar coordinates the gradient operator reads as

∇ = er
∂

∂r
+

eθ
r

∂

∂θ
,

and it follows from (1.3) and (1.4) that

∇ξTG−1∇ξ +∇ηTG−1∇η =
1

λ1

(
dR

dr

)2

+
1

λ2

(
R

r

)2

.(2.3)

Substituting (2.3) into (1.1) gives

Itrad[R] = 2π

∫ 1

0

[
1

λ1

(
dR

dr

)2

+
1

λ2

(
R

r

)2
]
rdr,

and its Euler–Lagrange equation is

− d

dr

(
r

λ1

dR

dr

)
+

R

rλ2
= 0.(2.4)

This equation is supplemented with the boundary conditions

R(0) = 0, R(1) = 1.(2.5)

For a given monitor function (i.e., for given λ1 and λ2), solving (2.4) determines the
resulting mesh transformation R(r).

2.1. Nonnegativeness and mesh crossing. We have R(r) ≥ 0 for r ∈ (0, 1).
To see this, we note that the minimum of R(r) occurs at the left end and/or an
interior point due to the boundary conditions (2.5). If R(0) = minR(r), then we have
R(r) ≥ 0 from (2.5). If instead the minimum point is r0 ∈ (0, 1), then R′(r0) = 0 and
R′′(r0) ≥ 0. From (2.4)

1

r0λ2
R(r0) =

d

dr

(
r

λ1

)(
dR

dr

)∣∣∣∣
r0

+
r

λ1

d2R

dr2

∣∣∣∣
r0

≥ 0.

Hence, in either case R(r) ≥ R(r0) ≥ 0. Furthermore, (2.4) gives

dR

dr
=

λ1

r

∫ r

0

R(x)

xλ2(x)
dx,

so it follows that dR
dr > 0 for r ∈ (0, 1); i.e., the mesh transformation is guaranteed to

be nonsingular and produce no mesh crossing.

D
ow

nl
oa

de
d 

09
/1

5/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



ADAPTIVE MESHES FOR AXISYMMETRICAL PROBLEMS 239

2.2. Mesh transformation for harmonic mappings. For the case of har-
monic mappings (p = −1 or λ2 = 1/λ1) it is possible to find an analytical form for
the mesh transformation R(r). We explicitly construct R(r) here since it then serves
as the basis of study for other cases. Using the change of coordinates

s(r) =

∫ r

1

λ1(x)

x
dx,(2.6)

(2.4) reads

−d2R

ds2 + R = 0.

Its solution satisfying the boundary conditions (2.5) is R(r) = es. In section 4.1, using
a transformation based on (2.6), we study more general monitor functions (including
arclength and Winslow) in detail.

3. The new functional. The formulation of the new functional (1.2) is based
on the so-called isotropy (or regularity) and equidistribution (or adaptation) require-
ments for an error distribution [6]. Specifically, the first integral term corresponds to
the regularity requirement, while the second is associated with equidistribution. These
two requirements are balanced by adjusting the value of the parameter γ. When q = 1
or γ = 1/2, the second integral becomes constant or simply vanishes, and only the
isotropy plays a role. When q = 1 the functional gives rise to the energy functional of
a harmonic mapping. The relation between the new and traditional functionals will
be addressed later in section 3.3.

From (1.4) the determinant of G is g = det(G) = λ1λ2. Let

Λ =
√

λ1λ2,(3.1)

µ1(r) =
λ1

Λ1/q
, µ2(r) =

λ2

Λ1/q
.(3.2)

Using the symmetry assumption, we can rewrite (1.2) as

Inew[R] = γ

∫ 1

0

[
1

µ1

(
dR

dr

)2

+
1

µ2

(
R

r

)2
]q
rdr + (1− 2γ)2q

∫ 1

0

[
RR′

r
√
g

]q
r
√
gdr.

Its Euler–Lagrange equation is given by

− γ

βq−1

d

dr

(
rβq−1R′

µ1

)
+

γR

rµ2
(3.3)

− (1− 2γ)2q−1(q − 1)R

βq−1

(
RR′

r
√
g

)q−2
d

dr

(
RR′

r
√
g

)
= 0,

where

β =
1

µ1

(
dR

dr

)2

+
1

µ2

(
R

r

)2

.

The highly nonlinear form of the new functional does not lend itself to a straight-
forward analytical treatment of its basic properties. Nonetheless, we devote the rest
of this section to the study of several special cases of (3.3) subject to the boundary
conditions (2.5). These cases are important because they help to better understand
the functional and link it to the traditional one.
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240 CAO, CARRETERO-GONZÁLEZ, HUANG AND RUSSELL

3.1. The exact equidistribution case (γ = 0). We first consider the case
γ = 0 which corresponds to exact equidistribution. Assuming that R(r) > 0 for
r ∈ (0, 1), (3.3) implies

1√
g

R

r

dR

dr
= α,(3.4)

where α is a constant. From (1.5), this is equivalent to

1

J
√
g

= α,

which is a multidimensional generalization of the well-known equidistribution principle
in one dimension. This equation guarantees that J , the Jacobian of the coordinate
transformation, does not change sign in the domain.

3.2. The pure isotropy case (γ = 1/2). For γ = 1/2 the mesh equation (3.3)
reduces to

d

dr

[
βq−1r R′

µ1

]
=

βq−1R

rµ2
.

As in section 2.1, it is easy to show that R(r) ≥ 0 and R′(r) ≥ 0. Thus, for this case
the mesh is also guaranteed not to cross.

In Figure 1 we depict R′(r) for the traditional functional and the new functional
with γ = 1/2 and several values of q. As can be seen, the mesh transformation for the
new functional with different values of q is quite similar to the traditional functional.
This is not surprising since for γ = 1/2 the new functional shifts all the weight towards
isotropy and thus resembles the traditional functional.

3.3. The case q = 1. When q = 1, the second integral in (1.2) becomes con-
stant. From (3.1) the mesh equation (3.3) reduces to

− d

dr

(
Λr

λ1

dR

dr

)
+

ΛR

rλ2
= 0.(3.5)

Once again it is easy to prove that mesh crossing will not occur. Note that the mesh
equation (3.5) is independent of the parameter γ and very similar to (2.4) for the
traditional functional. In fact, for the harmonic mapping case where Λ = 1, the mesh
equations (3.5) and (2.4) are identical.

For the Winslow monitor function case (Λ = λ1 = λ2) the mesh equation is

d

dr

(
r
dR

dr

)
=

R

r
.(3.6)

The solution of (3.6) compatible with the boundary conditions is R(r) = r. Therefore,
the case q = 1 of the new functional method gives a trivial coordinate transformation
R = r and does not allow for any control of the mesh concentration when a Winslow-
type monitor function is used.

Finally, for the arclength monitor function (λ2 = 1) the mesh equation is

− d

dr

(
r√
λ1

dR

dr

)
+

R

r
√
λ1

= 0.

This mesh equation is equivalent to that for the traditional functional (2.4) using a
Winslow-type monitor function with

√
λ1 instead of λ1.

In summary, except for the Winslow case, for q = 1 the new functional corresponds
to the traditional functional with a suitable choice of the monitor function.
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0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

R
’(r

) 
 [H

M
]

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

R
’(r

) 
 [A

l]
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0

1

2

3

r

R
’(r

) 
 [W

s]

Fig. 1. Comparison of R′(r) for the traditional functional (solid line) and the new functional
with γ = 1/2 (q = 2: dashed, q = 3: dotted-dashed, q = 4: dotted). The plots correspond to
the three popular choices of monitor function (harmonic mapping, arclength, and Winslow) with
λ1(r) = 1 + exp(−r2/a)/a (a = 0.01).

4. Control of mesh density via λ1 and λ2.

4.1. The traditional functional. The Euler–Lagrange equation (2.4) for the
traditional functional relates the coordinate transformation to the monitor function
for a given choice of λ1 and λ2. The purpose of this section is to use this to show
that precise control of the mesh density D(r) cannot be achieved from the choice of
λ1 and λ2. In fact, we prove that the maximum for the mesh concentration does not
occur at the maximum of λ1, resulting in misplacement of mesh concentration.

Let us then take (2.4) and solve for the mesh density D(r) in (1.6). Motivated
by the transformation (2.6) leading to the exact solution of (2.4) for the harmonic
mapping monitor function (λ2 = 1/λ1), we consider the change of dependent variable

R(r) = es(r) with s(r) =

∫ r

1

λ1(x) v(x)

x
dx(4.1)

for a to-be-determined and bounded function v. Substituting this into (2.4) yields the
ODE for v

dv

dr
=

λ1

r

(
1

Λ2
− v2

)
.(4.2)

It satisfies

v(0) =
1

Λ(0)
,(4.3)

since any other initial value (at r = 0) produces an unbounded solution v. The choice
(4.3) is compatible with the special case of the harmonic mapping where v(r) = 1.
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242 CAO, CARRETERO-GONZÁLEZ, HUANG AND RUSSELL

Lemma 4.1. v(r) > 0 for all r ∈ [0, 1].
Proof. This is an immediate result of the initial condition v(0) = 1/Λ(0) > 0 and

the fact that v′ > 0 on the line v = 0.
The overall behavior of v is determined by the nullcline

vnull(r) =
1

Λ(r)
.(4.4)

Lemma 4.2. vmin ≤ v(r) ≤ vmax for all r ∈ [0, 1], where vmin = minr{1/Λ(r)}
and vmax = maxr{1/Λ(r)}. Thus, the solution v(r) is bounded by the minimum and
maximum of the nullcline.

Proof. Note that v′ > 0 below the nullcline and v′ < 0 above it. Since vmin ≤
vnull(r), we have v′ ≥ 0. This and v(0) = 1/Λ(0) ≥ vmin imply that v(r) ≥ vmin.
Similarly, we have v(r) ≤ vmax.

Define rλ as the point where λ1 attains its maximum, i.e.,

λ1(rλ) = max
r∈[0,1]

λ1(r).

We have the following lemma.
Lemma 4.3. Let rλ be a strict maximum point of λ1 (so λ

′′
1 (rλ) < 0), and let

λ2 = cλp
1 for some power p > −1 and some constant c > 0. Then, v(rλ) > 1

Λ(rλ) .

Proof. For this particular choice of λ2, we have

Λ′(rλ) = 0, Λ′′(rλ) �= 0, vmin =
1

Λ(rλ)
.

We prove the lemma by contradiction. From Lemma 4.2, we can assume only v(rλ) =
1/Λ(rλ). By differentiating (4.2) twice and using the fact that λ

′
1(rλ) = 0, we get

v′(rλ) = v′′(rλ) = 0,

v′′′(rλ) = −2λ1(rλ)Λ
′′(rλ)

rλΛ(rλ)3
�= 0.

This implies that

v(r) = v(rλ) +
(r − rλ)

3

6
v′′′(rλ) + O((r − rλ)

4)

= vmin +
(r − rλ)

3

6
v′′′(rλ) + O((r − rλ)

4).

Hence, v(r) < vmin at some points in the neighborhood of rλ, which contradicts
Lemma 4.2.

Figure 2 shows a typical vector field for v.
To study the mesh density, note that in terms of s,

D(r) =
R

r

dR

dr
=

es

r
s′es =

s′e2s

r
,

and its rate of change

dD

dr
=

d

dr

(
s′e2s

r

)

=
e2s

r

(
s′′ + 2s′2 − s′

r

)

=
e2s

r2

(
λ′

1v + λ1v
′ − 2

λ1v

r
+ 2

λ2
1v

2

r

)
.(4.5)
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0
0

r

v

v
min

v
max

Fig. 2. Typical vector field for (4.2). The total variation [vmin, vmax] of the nullcline (4.4)
(dashed line) bounds the behavior of the solution with v(0) = 1/Λ(0) (solid line).

Using (4.2) one obtains

dD

dr
=

e2s

r2

{
λ′

1v +
λ2

1

r

[(
v − 1

λ1

)2

+

(
1

Λ2
− 1

λ2
1

)]}
.(4.6)

Equation (4.6) determines where the mesh density reaches an extremum in terms of
λ1 and λ2. In general, it is desired that the mesh has a higher concentration of points
at the maximum location of λ1 so that the mesh concentration can be controlled by
choosing λ1. We first consider mesh concentration at the origin r = 0.

Theorem 4.1. (i) If λ1(0)− λ2(0) �= 0, then D′(0) has the same sign as λ1(0)−
λ2(0) whether λ1 has a maximum at r = 0 or not. Specifically, if λ1(0) > λ2(0), then
D′(0) > 0 (i.e., the mesh at the origin is coarser than in the surrounding area), and
if λ1(0) < λ2(0), then D′(0) < 0 (i.e., the mesh at the origin is denser than in the
surrounding area).

(ii) Let λ2(r) = λ1(r). If λ
′
1(0) �= 0, then D′(0)λ

′
1(0) > 0. If λ

′
1(0) = 0 but

λ
′′
1 (0) �= 0, then D′(0)λ

′′
1 (0) > 0.

Proof. Let y(r) = λ1(r)v(r). Note that y(0) = λ1(0)/Λ(0) =
√

λ1(0)/λ2(0).
Equation (4.5) can be rewritten as

dD

dr
=

e2s

r2

(
y′ − 2y

r
+

2y2

r

)
.

Expanding the bracketed terms on the right-hand side about r = 0, we get

dD

dr
=

e2s

r2

{
2

r
y(0) (y(0)− 1) + y′(0) (4y(0)− 1) + O(r)

}

=
e2s

r2

{
2

r

√
λ1(0)

λ2(0)

(√
λ1(0)

λ2(0)
− 1

)
+ y′(0)

(
4

√
λ1(0)

λ2(0)
− 1

)
+ O(r)

}
.(4.7)

Thus, if λ1(0) �= λ2(0), the first term in the bracket dominates. In this case, D′(r)
has the same sign as λ1(0)− λ2(0). The result in (i) follows.
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We now prove part (ii) using (4.6). This can also be done through (4.5), but
higher order terms must be used. Using the assumption λ1(r) = λ2(r) and expanding
the bracketed terms of (4.6) about r = 0, we get

dD

dr
=

e2s

r2
{v(0)λ′

1(0) + r[λ1(0)v
′(0) + λ

′
1(0)(1 + v′(0)) + λ

′′
1 (0)v(0)] + O(r2)}.

The results in (ii) follow since λ
′
1(0) = 0 implies v′(0) = 0.

We now consider the case where mesh concentration away from the origin is
desired, i.e., when rλ > 0. Let

rD : D(rD) = max
r∈[0,1]

D(r).

The following theorem shows the relative positioning of rD with respect to rλ.
Theorem 4.2. Let rλ > 0.
(i) If λ1(rλ) > λ2(rλ), then D′(rλ) > 0 and thus rD > rλ.
(ii) Further, if we assume that λ2(r) = λ1(r) (Winslow’s method) and rλ is a

strict maximum point of λ1 (i.e., λ1
′′(rλ) < 0), then D′(rλ) > 0 or again rD > rλ.

Proof. (i) The result is an immediate consequence of (4.6) and the assumptions.
(ii) When λ2(r) = λ1(r), we have Λ(r) = λ1(r). Lemma 4.3, the fact that

λ1(rλ) = 0, and (4.6) imply that D′(rλ) > 0.
We note that a result can be obtained for the general choice of λ2 satisfying

λ2(r) = λ1(r) only at r = rλ. Moreover, numerical experiments (see below) show
that the mismatch between rD and rλ for the Winslow monitor function is relatively
small.

The situation with λ1(rλ) < λ2(rλ) is much more complex. Note that the last
term in (4.6) is now negative. In order to determine the relative positions of rD and rλ
it is necessary to compare all the terms on the right-hand side of (4.6). It is possible
for rD and rλ to coincide. However, numerical results (see section 4.1.4) also show
that for λ2 = λp

1 with p > 1, rD can be located on either side of rλ.
It is emphasized that part (i) of both Theorems 4.1 and 4.2 requires no explicit

relationship between λ1 and λ2, although we typically apply them to the monitor
functions defined in (2.2).

4.1.1. The harmonic mapping case (p = −1). In this case, λ2 = 1/λ1.
Assuming that λ1(rλ) > 1, we have λ1(rλ) > λ2(rλ). Theorem 4.2 implies that
rD > rλ, or the location of maximum mesh density is to the right of the maximum
for λ1.

When a (local) higher mesh concentration at the origin is desired, Theorem 4.1
implies that if (a) λ1(0) > 1, the mesh at the origin is coarser than in the surrounding
area, whether λ1 has a maximum at r = 0 or not. This effect is clearly depicted in
Figure 3 (left column, second plot) where rD > rλ = 0 implies a failure to concentrate
the points at the origin. If instead (b) 0 < λ1(0) ≤ 1, then λ1(0) ≤ λ2(0) and the
mesh will be denser in the center than in the surrounding area.

We now consider conditions under which rλ > 0 and rD coincide. There is a tight
restriction on the choice of λ1 since D′ = 0 must hold where λ

′
1 = 0. Notice that we

have Λ = 1 for the current case. Equation (4.6) implies that this can be achieved if
and only if λ1(rλ) = 1. However, this cannot hold in general unless the high mesh
concentration is desired only at the global maximum point and λ1(rλ) = 1 can be
achieved by rescaling.
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Fig. 3. Normalized mesh densities obtained with the traditional functional for different monitor
functions defined in (2.2) and with λ1(r) = 1+exp(−(r−rλ)2/a)/a (a = 0.01) that has its maximum
located at rλ = 0 (left column) and rλ = 0.2 (right column). The top plot depicts λ1(r). For
guidance, we plot, along with the normalized densities (solid lines), the normalized curve for λ1(r)
(dashed lines).

From the above analysis we see that if λ1(rλ) > 1, rD will be located to the right
of rλ. This failure to place the higher concentration of points in the desired area is
depicted in Figure 3 (right column, second plot).

4.1.2. The arclength case (p = 0). For the arclength case λ2(r) = 1, a similar
analysis as the one for the harmonic mapping case can be carried out. We assume
λ1(rλ) > 1 since this is the one commonly used in the literature.

If rλ > 0, Theorem 4.2 and λ1(rλ) > 1 = λ2 imply that the maximum of the
mesh density occurs at a location to the right of that of the maximum of λ1. This
mismatch is illustrated in Figure 3 (right column, third plot).

The argument for rλ = 0 is similar, and there is again a mismatch (to the right)
between the locations of the maxima of the mesh density and λ1 (see Figure 3, left
column, third plot.

4.1.3. The Winslow case (p = 1). If a high mesh concentration is desired at
a strict maximum point rλ > 0 of λ1, Theorem 4.2 implies that rD will be located
to the right of rλ. Nevertheless, as Figure 3 (right column, fourth plot) shows, the
mismatch between the maxima for D and λ1 can be very small (compared with the
other cases).

On the other hand, Theorem 4.1 implies that the mesh has higher concentration
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Fig. 4. Normalized mesh densities obtained with the traditional functional for the strong con-
centration case (p = 2) with λ1(r) = 1 + A exp(−(r − rλ)2/a)/a (a = 0.02, rλ = 0.5) and (a)
A = 0.01 and (b) A = 10. The top plots show λ1(r). For guidance, in a2 and b2 we plot the
normalized curve for λ1(r) (dashed lines) along with the normalized densities (solid lines).

at r = 0 if either λ′
1(0) < 0 or r = 0 is a local maximum point of λ1. Figure 3 (left

column, fourth plot) shows good agreement between the shape of λ1 and the mesh
density.

4.1.4. The strong concentration case (p = 2). Consider first the case where
a higher mesh concentration at the origin is desired. Theorem 4.1 implies that the
maximum for the mesh density is located at the origin if λ1(0) > 1 (see the last plot in
Figure 3, left column). However, the rate of change of the density may be a very large
negative value—proportional to limr→0 e2s/r3. This effect is observed in Figure 3
(last plot, left column) where the mesh density is very steep at the origin, giving
an overconcentration of points at r = 0. Incidentally, our use of the term “strong
concentration” for the p = 2 case reflects this behavior.

For rλ > 0, the current situation is more complex than the previous cases and
Theorem 4.2 does not apply if λ1(rλ) > 1. Figure 4 shows that rD can be located
to either side of rλ. Since in this case we have λ1(0) < λ2(0), Theorem 4.1 implies
that the mesh concentration has a maximum at the origin. Thus, it is possible for
the mesh concentration to have two (or more) maxima, one near the desired location
rλ and a spurious (and steep) maximum at r = 0 (see the last plot in Figure 3, right
column).

4.2. The new functional. The Euler–Lagrange equation (3.3) corresponding
to the new functional is too complex to carry out an analysis similar to the one for
the traditional functional, and we instead perform a numerical study of the relation
between the monitor function (λ1 and λ2) and the mesh density D(r). In particular,
we show that by appropriate control of the weighting γ between isotropy and equidis-
tribution it is possible to reduce the mismatch between the location of the maximum
for the monitor function and that of the maximum for D(r). As for the traditional
functional, we concentrate our attention on monitor functions of the type (2.1) and
use the same notation as in (2.2) to designate the most popular choices of p. Note
that for the harmonic mapping monitor function g = 1, and equidistribution reads as
J = constant, giving no mesh control in the new functional. As a result, it is expected
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Fig. 5. Normalized mesh densities (solid lines) obtained with the new functional for a monitor
function (dashed lines) such that λ1(r) = 1 + exp(−(r − rλ)2/a)/a (a = 0.01, rλ = 0) for different
choices of λ2 and γ (q = 2).

that the new functional combined with the harmonic mapping monitor function gives
no better results than those with the traditional functional, even for a small value
of γ.

4.2.1. Concentration at r = 0. For rλ = 0, Figure 5 shows the monitor
function and the mesh density for the various choices of monitor function (2.2) and
weighting between isotropy and equidistribution. For large γ (close to 1/2), the
new functional tends to emphasize isotropy, giving similar results to those for the
traditional functional. For γ = 0.1 (first column in Figure 5), the harmonic mapping
and the arclength monitor functions tend to misplace the position of the maximum for
the density as before. For the Winslow and strong concentration cases, D(r) achieves
its maximum at r = 0.

Decreasing γ puts more weight on equidistribution, allowing for a better distri-
bution of the mesh density. In fact, by decreasing γ (second and third columns in
Figure 5) the maximum for the mesh density is pulled towards the correct position
r = 0. As pointed out above, the harmonic mapping case fails to have its maximum
at r = 0 even for very small γ. For the other cases (p ≥ 0), as γ tends to zero, not
only the mesh density has its maximum placed correctly, but its shape tends to mimic
the shape of λ1. This suggests that for small γ it is possible to control the position of
the maximum mesh concentration as well as the shape of the mesh density from the
choice of monitor function. Interestingly, the Winslow case provides the best control
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Fig. 6. Normalized mesh densities (solid lines) obtained with the new functional for a monitor
function (dashed lines) such that λ1(r) = 1+exp(−(r−rλ)2/a)/a (a = 0.001, rλ = 0.2) for different
choices of λ2 and γ (q = 2).

on the mesh density, and for small γ (γ < 0.01) D(r) is almost indistinguishable from
λ1(r).

4.2.2. Concentration at r > 0. For rλ > 0 we obtain similar results to
those for the traditional functional when using a large value of γ (see left column
in Figure 6). In particular, the position of the mesh density maximum does not
coincide with rλ except in the Winslow case. As we decrease γ, the new functional
weights more towards equidistribution, and the location of the maximum for D(r)
tends to approach rλ, again reinforcing the observation that for small γ and p ≥ 0 it
is possible to have a good control on the mesh density (maximum and shape) from
the monitor function.

5. Numerical results. In this section we present some numerical results ob-
tained with the functionals (1.1) and (1.2). For simplicity, square physical and com-
putational domains and structured meshes are used in the computation. As a con-
sequence, axially symmetric meshes are not generated. Nevertheless, the numerical
results are sufficient to support the analysis of the previous sections and highlight the
level of control of mesh concentration through the monitor functions.

The (two-dimensional) Euler–Lagrange equations for functionals (1.1) and (1.2)
are discretized with central finite differences and solved using the moving mesh PDE
approach [5, 7]. With this approach, a derivative (∂x)/(∂t) (where x = (x, y)T ) with
respect to pseudotime t is added to the Euler–Lagrange equation, and the resulting
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parabolic system is integrated using a modified backward Euler scheme with which
the coefficients of terms (∂x)/(∂ξi) and (∂2x)/(∂ξi∂ξj) are calculated at the previous
time level. The linear algebraic system is solved using a preconditioned conjugate
gradient method. The converged mesh is obtained when the root-mean-square norm
of the residual is less than 10−4. All computations start with a uniform mesh of size
41×41 and use a uniform boundary correspondence between Ω and Ωc. We use q = 2
in all cases and, following the common practice, choose λ1 to be greater than 1.

Example 5.1. The first example is to generate adaptive meshes for the monitor
function (1.4) with

λ1 = 1 +
1

a
e−(r−0.2)2/a,(5.1)

where r =
√

x2 + y2 and a = 0.01. In the (x, y) coordinate system, G has the form

G =
λ1

x2 + y2

(
x2 xy
xy y2

)
+

λ2

x2 + y2

(
y2 −xy

−xy x2

)
.(5.2)

The goal is to generate meshes with higher point concentration around the circle
x2 + y2 = 0.22.

The meshes obtained are shown in Figures 7 and 8. The first row corresponds to
the traditional functional, while the second, third, and fourth rows are for the new
functional with γ = 0.5, 0.1 and 0.01, respectively. Each column is associated with a
given monitor function.

The left column of Figure 7 shows that the mesh concentration is badly mis-
placed for both the traditional and new functionals using the harmonic mapping
monitor function (p = −1). In this case the traditional functional gives exactly the
harmonic mapping method used by Dvinsky [4]. Note that the new functional does
not work well, as expected, since g = 1 and J = constant, giving no control of mesh
concentration.

For the arclength monitor function (p = 0, the right column of Figure 7), the
traditional functional still produces the mismatched concentration. However, since
g = λ and the equidistribution becomes J

√
λ = constant, the new functional bears

the feature of equidistribution and leads to the correct concentration when a small
value of γ is used.

Interestingly, with the Winslow-type monitor function, both the traditional and
new functionals generate correct mesh concentration—see the left column of Figure 8.
For the case of strong concentration with p = 2 (see the right column of Figure 8),
the new functional produces the correct results, whereas the traditional one seems to
overconcentrate mesh points inside the circle x2 + y2 = 0.22, although there is also
concentration around the circle.

From these two figures one can also see that the new functional with γ = 0.5 leads
to results similar to but slightly less adaptive than those obtained with the traditional
functional.

Example 5.2. The second example is to generate adaptive meshes for the monitor
function (1.4) with

λ1 = 1 +
1

a
e−r2/a, a = 0.01.(5.3)

The goal is now to generate adaptive meshes with higher point concentration at the
origin.
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-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(e): new, gamma = 0.1, p = -1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(f): new, gamma = 0.1, p = 0
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(h): new, gamma = 0.01, p = 0

Fig. 7. Adaptive meshes are obtained for Example 5.1 with the harmonic mapping (p = −1)
and arclength (p = 0) monitor functions. Desirable mesh point concentration is around the circle
x2 + y2 = 0.22 (the bold solid circle).D

ow
nl

oa
de

d 
09

/1
5/

14
 to

 1
29

.2
37

.4
6.

10
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ADAPTIVE MESHES FOR AXISYMMETRICAL PROBLEMS 251

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(a): old, p = 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(b): old, p = 2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(c): new, gamma = 0.5, p = 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(d): new, gamma = 0.5, p = 2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(e): new, gamma = 0.1, p = 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(f): new, gamma = 0.1, p = 2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(g): new, gamma = 0.01, p = 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

(h): new, gamma = 0.01, p = 2

Fig. 8. Adaptive meshes are obtained for Example 5.1 with the Winslow-type (p = 1) and strong
concentration (p = 2) monitor functions. Desirable mesh point concentration is around the circle
x2 + y2 = 0.22 (the bold solid circle).D
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The meshes obtained are shown in Figures 9 and 10. The results confirm the obser-
vations made in Example 5.1 and the analysis given in the preceding sections. That
is, the traditional functional misplaces meshes for the harmonic mapping and arc-
length monitor functions and correctly places them for the Winslow-type and strong
concentration monitor functions; the new functional with γ = 0.5 leads to meshes sim-
ilar to but slightly less adaptive than those obtained with the traditional functional;
and the new functional with a small value of γ leads to meshes with correct concen-
tration when the arclength, Winslow-type, or strong concentration monitor function
is used.

6. The traditional functional for spherically symmetric problems. A
similar analysis can be carried out for the traditional functional applied to spherically
symmetric problems in three dimensions. Consider

Itrad[ξ, η, ζ] =

∫
Ω

(∇ξTG−1∇ξ +∇ηTG−1∇η +∇ζTG−1∇ζ
)
dxdydz,(6.1)

where Ω = {(x, y, z) |x2 + y2 + z2 < 1}. Take Ωc = {(ξ, η, ζ) | ξ2 + η2 + ζ2 < 1}, and
let the spherical coordinates for Ω and Ωc be


x = r sin(θ) cos(φ),
y = r sin(θ) sin(φ),
z = r cos(θ),




ξ = R sin(Θ) cos(Φ),
η = R sin(Θ) sin(Φ),
ζ = R cos(Θ).

Consider the case where the physical solution is spherically symmetric. Assume that
the corresponding mesh adaptation is also spherically symmetric, i.e.,

R = R(r), Θ = θ, Φ = φ.(6.2)

Then it is reasonable to use the monitor function in the form

G = λ1(r)ere
T
r + λ2(r)eθe

T
θ + λ3(r)eφe

T
φ ,(6.3)

where er, eθ, and eφ are the unit vectors in the radial, latitudinal, and longitudinal
axes. Under the symmetry assumption, (6.1) reduces to

Itrad[R] =

∫ 1

0

[
1

λ1

(
dR

dr

)2

+
2

λ23

(
R

r

)2
]
r2dr,

where λ23 is defined as

2

λ23
=

1

λ2
+

1

λ3
.

The corresponding boundary value problem is given by

− d

dr

(
r2

λ1

dR

dr

)
+

2

λ23
R = 0,

R(0) = 0, R(1) = 1.(6.4)

The transformation (4.1) can be used for analyzing (6.4). We obtain the equation
for v

v′ =
λ1

r

(
2

λ1λ23
− v

λ1
− v2

)
(6.5)
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Fig. 9. Adaptive meshes are obtained for Example 5.2 with the harmonic mapping (p = −1)
and arclength (p = 0) monitor functions. Desirable mesh point concentration is near the origin.
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Fig. 10. Adaptive meshes are obtained for Example 5.2 with the Winslow-type (p = 1) and
strong concentration (p = 2) monitor functions. Desirable mesh point concentration is near the
origin.D
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which is subject to the initial condition

v(0) =
1

2

√
1

λ1(0)2
+

8

λ1(0)λ23(0)
− 1

2λ1(0)
.(6.6)

It is straightforward to show that the solution v of (6.5) has the properties stated in
Lemmas 4.1–4.3.

In the current situation, the mesh density has the form

D(r) =
R2

r2

dR

dr
.

Its rate of change reads as

D′(r) =
e3s

r3

[
(λ1v)

′ − 3(λ1v)

r
+

3(λ1v)
2

r

]

=
e3s

r3

[
λ

′
1v +

2λ2
1

r

((
v − 1

λ1

)2

+

(
1

λ1λ23
− 1

λ2
1

))]
.(6.7)

We have the following theorems which are basically identical to Theorems 4.1 and
4.2. One may notice that in this three-dimensional case, the relation between λ1 and
λ23, rather than those between λ1 and each of λ2 and λ3, plays a role in affecting the
corresponding mesh adaptation.

Theorem 6.1. (i) If λ1(0)−λ23(0) �= 0, then D′(0) has the same sign as λ1(0)−
λ23(0), whether r = 0 is a maximum point of λ1 or not.

(ii) Let λ23(r) = λ1(r). If λ
′
1(0) �= 0, then D′(0)λ

′
1(0) > 0. If λ

′
1(0) = 0 but

λ
′′
1 (0) �= 0, then D′(0)λ

′′
1 (0) > 0.

Theorem 6.2. Let rλ > 0.
(i) If λ1(rλ) > λ2(rλ), then D′(rλ) > 0 and thus rD > rλ.
(ii) Further, if we assume that λ23(r) = λ1(r) and rλ is a strict maximum point

of λ1 (i.e., λ1
′′(rλ) < 0), then D′(rλ) > 0 or rD > rλ.

7. Conclusions and comments. The question of how variational grid genera-
tors behave when solving problems with axisymmetric solutions has been investigated.
Specifically, two functionals have been analyzed in the previous sections for their abil-
ities to precisely control the mesh concentration via monitor functions. One is the
traditional functional (1.1) which includes Winslow’s method and Dvinsky’s method
of harmonic mappings as special cases. The other is the new functional (1.2) proposed
by Huang in [6] which explicitly includes the isotropy (or regularity) and equidistri-
bution features. The analysis is primarily done for axisymmetrical problems in two
dimensions. For axially symmetric mesh adaptation, it is reasonable to use a monitor
function of the form in (1.4).

Theoretical results for the traditional functional are given in Theorems 4.1 and
4.2. Specifically, when higher mesh concentration at the origin is desired, a choice
of the radial and angular components λ1 and λ2 of the monitor function satisfying
λ1(0) < λ2(0) will make the mesh denser at r = 0 than in the surrounding area
whether or not λ1 has a maximum value at r = 0. The purpose can also be served by
choosing λ1 to have a local maximum at r = 0 when a Winslow-type monitor function
with λ1(r) = λ2(r) is employed. Unfortunately, the choice λ2(r) = λ1(r)

p with p < 0,
which includes Dvinsky’s method of harmonic mappings and the arclength monitor
function as special cases, will not satisfy the condition λ1(0) < λ2(0) if λ1(0) > 1 (as
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commonly taken in the literature) and leads to a mesh with coarser concentration of
points in the center than in the surrounding area.

On the other hand, when higher mesh concentration around a ring r = rλ > 0
is desired, the traditional functional provides far less control by choosing λ1 and λ2.
Indeed, Theorem 4.2 shows that there surely is a mismatch between the position rλ of
the maximum of λ1 and the location rD of the maximum of the mesh density if either
(a) λ1(rλ) > λ2(rλ) (which is the case for the harmonic mapping or the arclength
monitor function with λ1(rλ) > 1) or (b) a Winslow-type monitor function is used
and rλ is a strict maximum point of λ1. Moreover, a mismatch between rD and rλ
is also possible for the case λ1(rλ) < λ2(rλ). Indeed, the numerical results show that
rD can be located to either side of rλ when λ1(rλ) > 1 and λ2 is taken as λ2 = λp

1 for
p > 1. Nevertheless, the numerical results suggest that |rD−rλ| is relatively small for
the Winslow case λ2 = λ1. The analysis also shows that for the harmonic mapping
case λ2 = 1/λ1, rD can be made to agree with rλ by rescaling λ1 such that λ1(rλ) = 1.
However, this can be done if the mesh concentration is needed only at the location of
the (global) maximum of λ1.

For axially symmetric problems, the new functional leads to a nonlinear mesh
equation too complex to permit an analysis like that for the traditional functional.
Nevertheless, numerical results presented in sections 4 and 5 show that the new func-
tional offers explicit control for mesh concentration by adjusting the value of γ that
weights the isotropy and equidistribution. Specifically, when using a large value of γ
(close to 1/2) we obtain similar results to those for the traditional functional cases.
However, as we decrease γ, the new functional weights more towards equidistribution,
and both the location of the maximum and the profile of the mesh density tend to
coincide with those of λ1 for a monitor function with a nonconstant determinant. For
the case of the harmonic mapping monitor function, the determinant is g = 1 and
equidistribution becomes J = constant so no control of mesh concentration is possible
by choosing λ1. Thus, as expected, the new functional does not work in this case even
when a small value of γ is used.

Analysis has also been carried out for the traditional functional applied to spher-
ically symmetric problems in three dimensions. The results are stated in Theorems
6.1 and 6.2.

In the future we intend to investigate a number of higher-dimensional axisym-
metrical problems arising in physical applications and show the practicability of the
methods which have performed well here.
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