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[1] The oxygen stable isotopic composition (d18O) of cellulose recorded in annual tree
rings reflects the climate and precipitation history experienced during tree growth and
development. Here, we show proxy evidence of El Niño events over the past 30 years
using juniper tree rings from southern California, United States. The relationship between
tree ring d18O in a cellulose and annual ring width was negative during most years,
reflecting amount-driven fractionation during precipitation. During El Niño years, the
relationship between d18O and ring width was positive with the largest ring widths
correlated to the heaviest d18O. Warmer sea surface temperatures during vapor formation
and the strengthening of vapor transport from the eastern Pacific Ocean inland is the
most likely mechanism driving heavier d18O in precipitation during El Niño years.
Based on this varying relationship between tree ring width and climate-dependent d18O
values, we created a model to estimate the probability that a given annual tree ring was
formed during an El Niño or non–El Niño year. The methods used in this analysis differ
from standard dendrochronological technique because we explicitly account for the
varying relationship between climate and tree ring characteristic during an El Niño or
non–El Niño year. Moreover, our approach accommodates uncertainty in model
parameters and predictions better than traditional classification methods. The application
of this model to prehistory tree samples or samples of unknown age may allow for El Niño
detection and subsequent determination of changes in El Niño frequency.
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1. Introduction

[2] At present, the El Niño–Southern Oscillation (ENSO)
is the most significant source of climate variability in the
world [Allan, 2000; Cane, 2005]. ENSO is a coupled
instability between the ocean and atmosphere with direct
effects localized to the tropical Pacific, while indirect tele-
communications of ENSO extend to extratropical regions
via altered global atmospheric circulation patterns [Hoerling
and Kumar, 2000]. The ENSO system has a warm phase
(El Niño) and a cool phase (La Niña). El Niño events have
aperiodic occurrence every 2–7 years [Allan, 2000; Cane,
2005], but temporal variability ranges from seasonal (intra-
annual) to millennial timescales [Michaelsen, 1989; Mann
et al., 2000; Tudhope et al., 2001]. During an El Niño event,
alterations in sea surface temperature and pressure shift
continental and oceanic climatic patterns, resulting in a

deviation from the typical timing, amount, and distribution
of precipitation [Allan et al., 1996; Allan, 2000]. These
events contribute to increased precipitation variability, along
with corresponding variability in terrestrial drought/flood
patterns [Rind et al., 1990]. The likelihood that terrestrial
vegetation in extratropical regions provides a record of
El Niño periodicity is spatially specific, depending on local
changes in climatic patterns and the degree to which local
species respond and record changes in climate variability
[e.g., Welker et al., 2005].
[3] The most consistent relationship between El Niño and

precipitation in the United States has been observed for
southern California [Schonher and Nicholson, 1989],
although regionally specific extratropical El Niño responses
in other regions of North America have been reported, but
are less pronounced [Stahle et al., 1998; Cook et al., 2000].
For California, the relationship between El Niño events and
precipitation variability is spatially and temporally specific
[Schonher and Nicholson, 1989; Haston and Michaelsen,
1994]. The climate in this region is responsive to low-
latitude circulation changes, which can be directly linked to
El Niño. The magnitude of El Niño effects varies between
years of occurrence, but generally results in a wetter and
warmer climate persisting into the winter months (DJF)
[Schonher and Nicholson, 1989]. Southern California is
generally water-limited, and thus annual fluctuations in
precipitation (whether driven by El Niño or inherent climate
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variability) are likely to be recorded in tree growth patterns,
and thus annual ring widths.
[4] Tree rings are commonly used to develop annual

climate reconstructions, and these efforts tend to be most
successful when one climate factor dominates tree growth
and when the trees studied have grown on a well drained
soil and rely predominantly on rainwater [Fritts, 1991;
Schweingruber, 1996; Cook et al., 2000]. Dendroclimatic
analyses have been used to link changes in tree ring growth
to El Niño [Diaz et al., 2001], and to reconstruct ENSO
indices including the Southern Oscillation Index [Michaelsen,
1989; Cleaveland et al., 1992; Meko, 1992; Stahle et al.,
1998], Palmer Drought Severity Index [Treydte et al., 2007],
and the Niño-3 sea surface temperature [Mann et al., 2000;
D’Arrigo et al., 2005]. Some of the strongest proxy evidence
recorded in tree rings for El Niño exists in conifers in the
southwestern U.S. and northern Mexico [Michaelsen, 1989;
Cleaveland et al., 1992; Stahle et al., 1998; Cook et al., 2000;
Diaz et al., 2001; Leavitt et al., 2002]. At these arid and
semiarid locations, El Niño–driven increases in winter pre-
cipitation amount increase soil moisture recharge and subse-
quently increase tree growth. The El Niño teleconnection is
then recorded in variation in annual ring width that ultimately
reflects changes in the amount of winter precipitation [Cook
et al., 2000].
[5] Beyond the aforementioned physical growth proxies,

the stable oxygen isotopic signature of cellulose in tree ring
sequences also reveals climate conditions experienced
throughout the lifespan of the tree [McCarroll and Loader,
2004; Loader et al., 2007]. The oxygen isotopic signature of
tree ring cellulose contains information about environmental
source water, relative humidity or leaf temperature during
carbon fixation, as well as inherent plant physiological
processes [Burk and Stuiver, 1981; Dawson and Ehleringer,
1993; Feng and Epstein, 1996; Roden et al., 2000; Anderson
et al., 2002; Helle and Schleser, 2004; McCarroll and
Loader, 2004; Etien et al., 2008; Helliker and Richter,
2008]. Differences in regional temperature and precipitation
produce varying isotopic fractionation effects for d18O of tree
ring cellulose [Anderson et al., 2002; Treydte et al., 2007;
Etien et al., 2008]. Because a cellulose d18O does not contain
exchangeable oxygen atoms, the signature does not fraction-
ate over the life history of the tree [Roden et al., 2000, 2005],
and provides a long-term record of the effects of environ-
mental forcing on plant processes [Anderson et al., 2002;
Evans and Schrag, 2004;Helle and Schleser, 2004; Roden et
al., 2005; Mora et al., 2007].
[6] When changes in the oxygen isotopic signature are

interpreted over a sequence, it provides information about
the climate history [Vincent et al., 2007]. Climatic anoma-
lies including El Niño [Evans and Schrag, 2004; Evans,
2007], and tropical cyclone activity [Miller et al., 2006;
Mora et al., 2007] have been established using the isotopic
signatures in individual tree rings. The nature of the proxy
El Niño record using d18O in tree rings has largely been
regionally specific and the interpretation of tree ring d18O
variability is limited to the sample record used. In La Selva,
Costa Rica, Evans [2007] reported a d18O anomaly during
El Niño years that, although not significant, appeared to
correlate with changes in precipitation amount. In the work
of Evans and Schrag [2004], no relationship between
drought and El Niño for Costa Rica was found using

d18O in tree rings, but a strong single El Niño anomaly
was detected in their Peru trees. Proxy El Niño records in
these tree ring studies largely pertain to a single event, or
events over a short timescale (<10 years). El Niño sensitiv-
ity of climate is spatially variable, and in some places such
as Belize, nodes exist with no discernable temperature or
precipitation variations between ENSO cycles. These results
provide proof of concept for regionally sensitive El Niño
responses, and forecast the potential for using tree ring d18O
to reflect variability in precipitation patterns resulting from
climate anomalies.
[7] This study aimed to identify a proxy for El Niño in

tree ring data for southern California, United States. A tree
ring proxy would have considerable value for predictive
modeling of prehistory El Niño. Our objectives for this
project were threefold, each based on the outcome of the
proceeding objective: (1) to identify a record of El Niño
events in juniper trees in southern California using the
stable isotopic signature of tree ring cellulose, (2) to isolate
a likely mechanism by which the stable isotopic signature of
tree rings serves as an El Niño proxy, and (3) to propose a
model using modern trees that may be applied to prehistory
tree rings to differentiate El Niño versus non–El Niño years
and that is easily extendable for more generalized modeling
efforts (e.g., accommodation of covariates or autoregressive
structure).

2. Materials and Methods

[8] We used California juniper (Juniperus californica
Carrière) samples collected from an alluvial scrub commu-
nity in the Lyttle Creek drainage near Fontana, California,
Untied States (34.14�N, 117.30�W). We collected a cross
section of the bole at the base of three sample trees
(minimum bole diameter: 15 cm) located 0.2–0.3 km apart
that were killed by the Grand Prix fire (21–23 October
2003). For the trees selected, the fire damaged the canopy,
bark and vascular cambium, but not the secondary xylem. In
2003, these trees were 63, 75, and 98 years old. Despite the
small sample size of this study, it is comparable to other
isotopic studies characterizing a population response
[Roden and Ehleringer, 2000; Leavitt et al., 2002; Evans
and Schrag, 2004; McCarroll and Loader, 2004; Roden et
al., 2005; Etien et al., 2008]. This is a low-elevation site
(629 m asl) with a dry climate (mean annual precipitation:
389 mm). The mean maximum and minimum temperatures
for this site are 26.3 and 11.3�C, respectively (climate data
from the Western Regional Climate Center (WRCC)
Fontana-Kaiser Station (043120)). The Fontana-Kaiser site
was closed in 1984, and therefore climate data were used
from the nearby (52 km) WRCC Riverside Fire Station 3
site (047470) for reconstruction of monthly temperature and
precipitation patterns from 1970 to 2003 (Figure 1).
[9] Each wood sample was sanded and scanned on a

flatbed scanner at high resolution (3000 dpi). Ring widths
were then measured to the nearest 0.01 mm. Anatomical
structure can vary for a given year within a given tree based
on varying environmental influences altering tension and
compression zones within the bole [Schweingruber, 1996].
The radial distance from growth center (pith) to bark was
not uniform along the circumference of each tree sample. To
identify false rings as well as to determine mean annual ring
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widths for each tree sample, we traced individual rings
around the circumference of the sample, and measured
individual annual rings along five equally spaced radii
drawn from pith to bark on each sample [see Vincent et
al., 2007]. This technique helped to identify and eliminate
false rings present in some but not all radii as well as
eliminate biases associated with unequal ring widths for a
given year depending on the location measured. Tree ring
widths vary from nonclimate factors including variations in

(1) tree ring geometry, (2) age of tree, (3) tree history, (4) local
stand conditions, and (5) site factors [Fritts, 1991]. To avoid
age biases and temporal compression zones during tree
growth, we analyzed only the sapwood portions of each
sample, minimizing nonclimatic variations between heart-
wood and sapwood. Thus, our methodology accounted for
these five sources of nonclimatic variation by measuring ring
widths at multiple locations in the sample cross section, and
focusing our analyses on samples from the same species,
similar site, and similar ages, reducing variance associated
with environmental history.
[10] Because individual rings were very narrow, it was

not possible to separate early and late wood within a given
year for stable isotopic analyses. However, d18O a cellulose
was previously shown to not vary between early and late
wood in Juniperus occidentalis from samples collected in
central Oregon, United States [Roden et al., 2005]. We used
a fine-tipped (1/64 in.) rotary drill on the stage of a
dissecting microscope to collect wood samples from indi-
vidual rings. For two of our samples, the sapwood began in
1980, while the third began in 1969. In this third sample,
8 rings were too small to generate sufficient sample for
isotopic analysis. To accumulate a sufficient amount of
sample for a cellulose extraction and subsequent stable
isotopic analysis as well as to account for variation within a
ring, many wood samples were collected within each ring
and were aggregated within a tree (mean: 10 samples per
ring per tree). Each tree sample cross section was cleaned
thoroughly using compressed air between sampling of wood
from individual rings to avoid contamination between years.
[11] We used the standard procedure to obtain a cellulose

from individual tree rings [Leavitt and Danzer, 1993; Ward
et al., 2005]. Stable isotopic analysis of a cellulose was
performed using a TC/EA and Conflo III interface
connected to a continuous-flow ThermoFinnigan Delta
Plus-XP isotope ratio mass spectrometer (Bremen, Germany)
at the Stable Isotope Core laboratory at Washington State
University. Results are reported using standard delta
notation:

d ¼ Rsample

Rstandard

� 1

� �
� 1000 ð1Þ

where Rsample and Rstandard are the molar abundance ratios,
18O/16O of the sample and standard (Vienna standard mean
ocean water), respectively. Data are expressed in per mil
(%). IAEA-601 (true value is 23.30 ± 0.3 SD) was used as
an in-house quality control. The mean (±1 SD) value of
IAEA-601 in our analysis was 23.31 (0.15), and varied by
<0.15% across runs.
[12] Similar to Schongart et al. [2004], we defined El Niño

years using the 3 month running means of SST anomalies
that exceeded 0.4�C for 4 or more consecutive months.
‘West Coast of Americas’ SST records were obtained from
the NOAA National Weather Service Climate Prediction
Center (http://www.cpc.ncep.noaa.gov/data/indices/). We
identified periods when the east Pacific SST anomaly
persisted into the winter seasons, corresponding to Juniper
growth in southern California. Based on this designation,
we classified 9 periods between 1969 and 2003 as El Niño
years for southwestern California that correspond temporally

Figure 1. Mean monthly precipitation and maximum
daily temperature (Tmax) from 1970 to 2003 from the
WRCC Riverside Fire Station 3 climate station in southern
California. (a and b) Solid lines are responses during El Niño
years, while dashed lines are responses during non–El Niño
years. (c) The mean monthly difference between El Niño and
non–El Niño years for precipitation amount (left y axis) and
Tmax (right y axis). Positive values indicate more precipita-
tion or warmer temperatures comparatively during El Niño
years.
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with the seasonal period of tree growth: 1973, 1977, 1983,
1987, 1988, 1992, 1993, 1995, and 1998.
[13] We created a mixture model to explicitly account for

relationships between tree ring characteristics as well as the
uncertainty in associated parameters and predictions. This
model can be used to predict the likelihood of an El Niño
year using measured values of tree ring width and d18O of
cellulose from juniper. This model uses an extendable
framework for incorporating hierarchical model structure
using a Bayesian approach for parameter estimation. Such a
framework allows the user to easily upgrade the model to
accommodate additional structure in future studies (e.g.,
spatial and/or temporal autocorrelation, covariates).

2.1. Likelihood

[14] We first let xt denote a vector of measurements (i.e.,
d18O and tree ring width) at time t and assume that it arises
from one of two distributions, fE or fN, depending on
whether or not t 2 TE (the set of El Niño years). This
expression could also be written as xtjyt � f(yt, q), where yt
is a random variable with binary support (yt = 1 indicates
time t is an El Niño year), and q is a set of parameters
contained in the distribution f. When yt is unknown, the
following mixture model obtains:

xt �
fEðqEÞ;
fN ðqN Þ;

with probability
pt ¼ Pðyt ¼ 1Þ
1� pt ¼ Pðyt ¼ 0Þ:

�
ð2Þ

Assuming that {xt, t 2 T} can be adequately modeled by a
mixture of bivariate Gaussian distributions, and once yt has
been observed, the likelihood equation follows:

f ðxtjmE;SE;mN ;SN ; ytÞ ¼ N mE;SEð Þyt � N mN ;SNð Þ1�yt ð3Þ

Statistical estimation of model parameters (mE, mN, SE, SN,
and {pt}) can provide the necessary insight from which to
make formal inference about the specific relationships
between tree ring characteristics and El Niño. For example,
the parameters mE and mN, once estimated, will indicate
average d18O and ring width during El Niño and non–
El Niño years, respectively. Similarly, using the model
specified, the two covariance matrices SE and SN, once
estimated, provide information about the specific relation-
ship between d18O and ring width. That is, the diagonal
elements of SE specify the variation in d18O and ring width
for each tree ring, whereas the off-diagonal elements specify
the correlation between these characteristics during El Niño
years (likewise for SN during non–El Niño years). In this
way, the model we have specified could be considered a
Gaussian correlation model [e.g., Kutner et al., 2004]; the
difference being that our data (i.e., d18O and ring width
expressed as xt) can come from one of two Gaussian
distributions depending on an El Niño or non–El Niño
years. If the off-diagonal elements of SE differ significantly
from those of SN, this would imply that relationships
between d18O and ring width vary depending on whether
the ring occurred in an El Niño or non–El Niño years. We
utilized a Bayesian approach [Gelman et al., 2004] for
statistical estimation in order to account for uncertainty in
the parameters and provide an extendable framework for

additional model structure. The statistical modeling
approach presented here is largely phenomenological and
developed specifically to exploit the empirically observed
relationships between d18O and ring width for this study
region and species. While mechanistic models [e.g., Roden
et al., 2000] have immense value for direct inference of
the physiological mechanism responsible for the biological
process using known environmental conditions, this
approach allows for unsupervised inference and prediction
allowing the data to guide the form of the relationships
being modeled.

2.2. Relation to Classification

[15] Traditionally, the delineation of unknown observa-
tions into classification boundaries (observations of xt into
either El Niño or non–El Niño years) could be performed
using Linear Discriminant Analysis (LDA) or Quadratic
Discriminant Analysis [Mardia et al., 1979]. Advantages of
these conventional methods revolve around their simplicity
and nonparametric nature. They are especially useful for
situations where classes are separable or even overlapping
and specific distributional assumptions are hard to justify.
However, we approached this problem in terms of predic-
tion rather than classification. That is, we utilized new data,
in terms of xt, for t = t*, to predict whether year t* was an
El Niño year. Due to the fact that considerable uncertainty
exists in any prediction of former climate, we characterized
El Niño prediction in terms of probability of El Niño
occurrence. Additionally, the Bayesian approach allowed
us to characterize the variability in the predicted probability
to aid in the construction of credible intervals (i.e., hypoth-
esis tests, and possibly future modeling efforts). Thus, we
considered pt* = P(yt* = 1) to be an unobserved random
quantity about which we desired statistical inference.

2.3. Parameters

[16] Adopting a fully Bayesian approach in this context
results in a very tractable parameter estimation framework
as well as an intuitive method for El Niño prediction. The
general Bayesian procedure requires the specification of a
data model (i.e., the likelihood; specified in the previous
section) and a set of parameter models. Here, we let the
joint parameter model be factored into a sequence of
independent probability models: [mE, mN, SE, SN, {pt}] =
[mE][mN][SE][SN][{pt}]. Note that square bracket notation
refers to a probability distribution and is commonly used in
Bayesian literature [e.g., Cressie et al., 2009].
[17] More specifically, let mE � N(aE, Sa,E), and mN �

N(aN, Sa,N), where each bivariate Gaussian distribution
was allowed to be vague a priori. The variance components
are critical for accommodating the differing relationships in
xt under the varying climate regimes. To model each of the
covariance structures, we used inverse Wishart random
matrices, or equivalently: SE

�1 � Wish((nESE)
�1, nE) and

SN
�1�Wish((nNSN)

�1, nN), where the hyper-parameters are
also selected to provide vague distributions a priori, but indi-
cate the hypothesized difference in association (i.e., El Niño
years indicate positively associated xt while non–El Niño
years indicate negatively associated xt). Thus, since the
marginal expectation for the covariance matrices are of the
form: E(S) = S, SE should have positive off-diagonals,
while SN should have negative off-diagonals. This latter spec-
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ification is reasonable, but likely unnecessary. The uniform
distribution served as a reasonable prior model for the El Niño
probabilities (pt); we used it here to specify a lack of prior
information which ensured that any information about El Niño
came from the data.

2.4. Implementation

[18] Ultimately, we seek to predict, in the Bayesian
context, the model parameters in the presence of data (i.e.,
xt and yt for all t). This is accomplished by finding the
posterior distribution of the model parameters given the
data. In this case, the posterior distribution has the form:

mE;mN ;SE;SN jfxt ;8tg; fyt; 8tg½ �a
Y
t2T

� xtjmE;mN ;SE;SN ; yt½ �½mE�½mN � SE½ � SN½ � fptg½ � ð4Þ

A Markov Chain Monte Carlo algorithm can be constructed
to sample from the posterior distribution by iteratively
sampling from the much simpler full conditional distribu-
tions [Gamerman and Lopes, 2006]. The specific details of
the algorithm are beyond the scope of this paper, but we
refer the interested reader to McCarthy [2007] or Gelman
et al. [2004] for more information on Bayesian methods
and computation.

2.5. Prediction

[19] As previously mentioned, our goal was to utilize
additional data regarding tree growth and physiology (xt=t*)
to predict the probability of El Niño (pt=t* = P(yt=t* = 1)
for t = t* such that yt=t* is unobserved). The probability
that year t* was an El Niño year can be thought of as the
probability that xt=t* arose from fE(q).
[20] In fact, since the parameters are considered to be

random variables with probability distribution given by the
posterior, the predicted probability of El Niño (pt*) is

random with its own distribution (i.e., the posterior predic-
tive distribution). We can find this distribution (and thus use
it for inference) given that we have tree ring data for the
prediction year t* by integrating the joint posterior distri-
bution over the remainder of the parameter space.

3. Results

[21] For Fontana, California, the majority of precipitation
occurs between December and March, coinciding with the
coolest daily maximum temperatures (Tmax) (data for 1970–
2003; Figures 1a and 1b). Thus, half of the year is very dry
(mean total precipitation May–October is 20.3 mm;
November–April is 190.5 mm) and warm (mean May–
October Tmax = 23.2�C). When considering El Niño years,
however, there is a near doubling of winter precipitation
(Figure 1a), with a corresponding increase in winter Tmax

(during January–March; Figures 1a–1c).
[22] Annual ring width was not significantly influenced

(p > 0.05) by annual precipitation amount (water year July–
June) for all tree ring samples combined (data not shown).
When analyzed individually, growth in one tree was signif-
icantly related to water-year precipitation amount (p < 0.05;

r2 = 0.20; intercept = 1.92; slope = 0.06). The d18O of a
cellulose was not correlated to annual tree ring widths when
compared across all sapwood years (r = 0.01). However,
when the data were separated by climate history (non–
El Niño versus El Niño years), there was a negative correla-
tion between d18O and ring width during non–El Niño years
(r =�0.42), and a positive correlation during El Niño years
(r = 0.64) (Figure 2).
[23] Utilizing the complete data set, we fit the mixture

model previously discussed to estimate the relationships
between ring width and d18O within tree rings as well as to
make predictions of El Niño probability on a grid of
possible values using a cellulose d18O and ring width
(Figure 3a). The Bayesian approach allows for very rich
statistical inference in which various forms of uncertainty
are explicitly modeled. Specifically, fitting the model pro-
vides entire probability distributions for the predictions of
El Niño (i.e., posterior predictive distributions). The result-
ing predictive distributions were then utilized to calculate
the statistics necessary to facilitate inference (e.g., predic-
tion standard deviation: Figure 3b). Using this information,
we obtained hypothesis tests for significance by computing
the quantity: P(p* > 0.50). This result is interpreted as such:
if the resulting quantity is above 0.95, significant evidence
of El Niño exists (black color in Figure 3c). Likewise, the
quantity P(p* > 0.50) can be used to test for non–El Niño
years (white color in Figure 3c). Finally, all data points that
do not fall significantly into one of the two regimes are
labeled as inconclusive (gray color in Figure 3c).
[24] In order to perform a cross-validation we sequentially

withheld each year of data for fitting the model and then
predicted the probability of El Niño for each of those years.
Figure 4 illustrates the predictive distribution for El Niño
probability as a time series when considering all of the
validation-based predictions together. From Figures 3 and 4
it is evident that the relationship between tree ring character-
istics provides enough information to sufficiently detect
El Niño and non–El Niño events during years when low

Figure 2. Changes in the stable isotopic signature of
oxygen (d18O) in a cellulose correlate with tree ring width
during non–El Niño and El Niño years. Data reflect local
environmental conditions recorded in juniper tree rings from
1969 to 2003.
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and/or high probabilities are observed in the data (i.e., xt).
However, when medium probability values were observed,
the El Niño and non–El Niño signals become difficult to
separate and thus predictions at those values are inconclu-

sive (i.e., gray areas in Figure 3c and dark shades near 0.50
in Figure 4).

4. Discussion

[25] The sign of the correlation between a cellulose d18O
and ring width in California juniper varied between El Niño
and non–El Niño years, suggesting the predominant driver
of isotopic fractionation varied during these periods, respec-
tively. Tree ring d18O varies according to changes in leaf
evaporative enrichment that determines leaf water d18O,
oxygen exchange between xylem water and the sugars used
in cellulose synthesis, and variation in the oxygen isotopic
signature of source water [Sternberg et al., 1986; Roden et
al., 2000; Anderson et al., 2002; McCarroll and Loader,
2004; Barbour, 2007; Gessler et al., 2007]. In this study, the
exchange of oxygen isotopes between xylem water and
organic molecules are not a likely source of variability over
time since we compared trees of the same species, similar
age, and at the same location [Anderson et al., 2002]. The
oxygen isotopic signature of leaf water reflects multiple
environmental variables including relative humidity, d18O
of atmospheric vapor, and leaf vapor pressure deficit [Roden
et al., 2000, 2005]. The effects of CO2-H2O equilibrium on
leaf d18O enrichment have been shown to be very small
[Farquhar et al., 1998]. Similar to Roden et al. [2005], we
assume the majority of growth in J. californica occurs in the
winter to early spring, corresponding to the majority of
annual rainfall and the coolest temperatures (Figure 1).
During this period, cooler and more humid conditions
would result in less evaporative enrichment of leaf water
d18O compared to drier and hotter periods of the year.
Juniper is a shallow-rooted tree species with primary
reliance on surface water (<1 m deep) [Leffler et al.,
2002; Eggemeyer et al., 2009], and therefore variability in
precipitation would be expected to highly influence growth
and physiology [Anderson et al., 2002; Helle and Schleser,
2004].
[26] Tree growth is limited by precipitation recharging

surface water during El Niño and non–El Niño years (e.g.,
above-average rainfall contributed to above-average
growth), yet changes in a cellulose d18O reflected differ-
ences in precipitation d18O which varied during El Niño
events compared to non–El Niño periods. During a non–
El Niño year, the relationship between tree ring width and
the d18O of a cellulose was negative, indicative of an

Figure 3. Mixture model results fit to data from all tree
ring samples. The data in each plot reflect individual tree
ring widths and corresponding a cellulose d18O. Data from
El Niño years are red, and data from non–El Niño years are
blue. (a) Model predictions for the probability of El Niño
and non–El Niño years are expressed as darker shading
(El Niño year) and lighter shading (non–El Niño year).
(b) Illustration of the uncertainty associated with the
predicted probability in Figure 3a. Darker shading illustrates
data regions of greater uncertainty. (c) Hypotheses tests for
regions of significant (P < 0.05) El Niño probability (black
shading) and non–El Niño probability (white shading)
using estimates of uncertainty in Figure 3b. Gray regions are
labeled as inconclusive (P > 0.05).
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amount-driven fractionation trend (Figure 2). This trend was
likely reinforced by differences in evaporative soil and leaf
enrichment occurring during wet and dry (non–El Niño)
years. For example, during non–El Niño years, the negative
relationship between d18O and ring width indicated years
with high rainfall and high rainout per storm produced
lighter oxygen isotopic signatures [Gat, 1996] and wider
tree rings (Figure 2). Conversely, smaller tree rings reflected
a greater effect of low rainfall amounts and greater evapo-
rative enrichment during dry, non–El Niño years [Gat,
1996]. A similar trend would occur from amount-driven
fractionation resulting from secondary evaporation during
rainfall [Dansgaard, 1964]. In this situation, smaller rainfall
events are more enriched compared to larger events and
would contribute to the negative relationship noted in
Figure 2 during non–El Niño years.
[27] During El Niño years, the largest tree ring widths

corresponded to the heaviest cellulose d18O (Figure 2). This
response likely reflects variability in zonal moisture trans-
port and changes in sea surface temperature. During El Niño
events, there is a substantial increase in moisture influx to
the atmosphere from the northern and eastern Pacific and
greater transport magnitudes of this vapor [Cohen et al.,
2000; Sohn et al., 2004]. Trends in vapor transport reflect
stronger lower tropospheric winds from strengthened Had-
ley circulation, and significantly enhanced Pacific ocean
vapor flux during the winter in the northern hemisphere
[Cohen et al., 2000]. Increases in the efficiency of vapor
transport from the oceans to southern California would
result in heavier precipitation because a greater fraction of
heavy vapor arrives inland compared to large precipitation
events during non–El Niño years. The larger ring widths
and heavier d18O during El Niño years also reflects the
warmer winter air temperatures during these periods (late
December to early March, Figures 1b and 1c). Rainfall from
water vapor formed at warmer temperatures is isotopically
heavier than rainfall produced during cooler temperatures
[Cole et al., 1993; Pendall, 2000; Evans and Schrag, 2004].
Therefore, the correspondence between large rings and
heavier d18O during El Niño years reflects SST anomalies
forcing increased transport of water vapor formed under
warmer Pacific SST.

[28] Using these varying patterns between non–El Niño
and El Niño years we created a mixture model to identify
the probability that a given tree ring was produced during a
non–El Niño or El Niño year using the relationship between
cellulose d18O and ring width (Figure 3). This model has
potential ecological and climatological value for identifying
the history of El Niño events into prehistory periods.
Furthermore, this framework accommodates various forms
of uncertainty that would not be possible using traditional
methods. For example, by allowing the parameters of the
El Niño and non–El Niño distributions to be stochastic
(i.e., variables in equations (2) and (3)) we allow for
possible overdispersion in the model. This potential extra
variability in the lower-level components will propagate
through the model space to the predictions, preventing
erroneous inference due to type I and II errors.
[29] Despite the influence of local environmental vari-

ability on ring widths and cellulose d18O between non–El
Niño and El Niño years, predictions of El Niño probability
contain variability, especially in regions of overlap (Figure 3c,
gray region). Uncertainty associated with predictions of
El Niño probability would decrease with increased sample
size, but some uncertainty will remain in regions where
these relationships intersect. In fact, the model we devel-
oped (and any other model exploiting the described relation-
ships between cellulose d18O and ring width) will have
inherent difficulty in predicting El Niño given data in the
overlapping region. Thus, some misclassification is
unavoidable (Figure 3c). Even with potential misclassifica-
tion in overlapping regions, the approach we present is a
significant improvement over traditional models because we
are responsibly accounting for uncertainty in our predictions
(Figure 4). Thus, the novelty of this technique is the
emphasis placed on honestly accounting for uncertainty in
the prediction to avoid drawing incorrect conclusions. It
should be similarly noted that the predictive power of the
model depends directly on the data used, and no other
technique utilizing the relationship between cellulose d18O
and ring width would result in greater predictive power. For
example, 1992 and 1993 are known to be El Niño years, but
model prediction suggests they lean toward non–El Niño
years (Figure 4). Data analyzed from these years occurred in

Figure 4. Cross-validation of the predictions of El Niño probability. Each year of data was sequentially
withheld for model fitting, and then the probability of an El Niño year was predicted. Solid vertical lines
illustrate actual El Niño years during this period. The black line represents the mode of the predictive
distribution of El Niño probability over the years. The gray shading represents the predictive distribution
itself, where darker gray indicates areas of high probability density (i.e., likely) and lighter values indicate
lower-density areas (i.e., unlikely). Years where the gray shading is more spread out indicate a higher
prediction variance (i.e., less certainty in the prediction).
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the overlapping region. While these years were misclassi-
fied by the model, the corresponding variability is suffi-
ciently high to recognize the low certainty in the El Niño
prediction for those years. In contrast, predictions for years
1987 and 1988, which were El Niño years, provide signif-
icant evidence of El Niño due to both high probabilities and
lower prediction variance. Thus, by including estimates of
variability in the classification of data points to El Niño or
non–El Niño periods, the inherent perils of misclassified
data points are minimized.
[30] The analytical technique we used differs from tradi-

tional techniques using tree rings as a proxy of El Niño
events. Generally, tree ring widths are standardized to
remove low-order serial autocorrelation that may confound
trends associated with biological rather than climatic per-
sistence [Fritts, 1976]. However, when nonclimate growth
trends are removed from tree rings, multidecadal El Niño
variability is difficult to reconstruct using interannual var-
iation in tree rings [Mann et al., 2000]. We did not
standardize our ring widths using traditional techniques as
this process would likely remove any El Niño signal, if
present. Many traditional dendrochronological analyses
employ some form of autoregressive modeling or spectral
methods for examining periodic signals in tree ring data
[Cook, 1992] that coincide with climatic traits (or their
surrogates). The methods we have described and imple-
mented are fundamentally different in their approach to the
problem. The mixture model proposed in (2) was specifi-
cally formulated to allow for the estimation and exploitation
of the relationships in tree ring characteristics to predict
El Niño while explicitly accounting for variability in the data
and uncertainty in the model parameters and predictions.
Thus, this approach provides true statistical prediction and
honest accounting of uncertainty in the solution. Moreover,
post hoc analyses of periodicity via spectral methods can
still be employed using the predictive distribution of El Niño
probability itself.

5. Conclusions

[31] These results from juniper in southern California
suggest that El Niño and non–El Niño years may be
differentiated using changes in the relationship between
ring width and a cellulose d18O. While these results are
species-specific, similar trends may occur in other shallow-
rooted species with direct reliance on recent precipitation in
this region. During El Niño events, increased vapor trans-
port and warmer SST result in the delivery of precipitation
to southern California with heavier d18O corresponding to
the largest ring widths. Predictive modeling of variability
associated with El Niño may be possible for prehistory time
periods for southern California, and perhaps for other
regions with similar El Niño responses using the mixture
model describing the uncertainty between d18O in tree ring
cellulose and the corresponding ring widths. Our ability to
link modern d18O-growth response in tree rings as a
predictor of El Niño years is contingent upon a similar
El Niño response for this region over the recent millennia. If
El Niño–driven changes in past climate variability are
similar to the present, then changes in d18O recorded in a
cellulose may be useful for estimates of climate-biotic

relationships beyond periods of recorded history [Anderson
et al., 2002; Leavitt et al., 2002; Loader et al., 2007].
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