SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS ${ }^{1}$

By Jin Feng ${ }^{2}$, Jean-Pierre Fouque and Rohini Kumar
University of Kansas, University of California, Santa Barbara, and University of California, Santa Barbara

Abstract

In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear HJB-type equations where the "fast variable" lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. We derive a large deviation principle, and we deduce asymptotic prices for out-of-the-money call and put options, and their corresponding implied volatilities. The results of this paper generalize the ones obtained in Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126-141] by a moment generating function computation in the particular case of the Heston model.

1. Introduction. On one hand, the theory of large deviations has been recently applied to local and stochastic volatility models $[1,2,4,5,20]$ and has given very interesting results on the behavior of implied volatilities near maturity. (An implied volatility is the volatility parameter needed in the Black-Scholes formula in order to match a call option price; it is common practice to quote prices in volatility through this transformation.) In the context of stochastic volatility models, the rate function involved in the large deviation estimates is given in terms of a distance function, which in general cannot be calculated in closed form. For particular models, such as the SABR model [19, 21], approximations obtained by expansion techniques have been proposed; see also [18, 22, 28]. Semi closed form expressions for short time implied volatilities have been obtained in [15].

Received September 2010; revised April 2011.
${ }^{1}$ Supported in part by NSF Grants DMS-08-06434 and DMS-08-06461.
${ }^{2}$ Supported by funding from the State of Kansas Kan0064212.
AMS 2000 subject classifications. 60F10, 91B70, 49L25.
Key words and phrases. Stochastic volatility, multi-scale asymptotic, large deviation principle, implied volatility smile/skew.

[^0]On the other hand, multi-factor stochastic volatility models have been studied during the last ten years by many authors (see, e.g., $[8,16,18$, $27,29]$). They are quite efficient in capturing the main features of implied volatilities known as smiles and skews, but they are usually not simple to calibrate. In the presence of separated time scales, an asymptotic theory has been proposed in $[16,17]$. It has the advantage of capturing the main effects of stochastic volatility through a small number of group parameters arising in the asymptotic. The fast time scale expansion is related to the ergodic property of the corresponding fast mean-reverting stochastic volatility factor.

It is natural to try to combine these two modeling aspects and limiting results, by considering short maturity options computed with fast meanreverting stochastic volatility models, in such a way that maturity is of order $\varepsilon \ll 1$, and the mean-reversion time, δ, of volatility is even smaller of order $\delta=\varepsilon^{2}$ (fast mean-reversion) or $\delta=\varepsilon^{4}$ (ultra-fast mean-reversion).

In [12], the authors studied the particular case of the Heston model in the regime $\delta=\varepsilon^{2}$ by an explicit computation of the moment generating function of the stock price and its asymptotic analysis.

In this paper, we establish a large deviation principle for general stochastic volatility models in the two regimes of fast and ulta-fast mean-reversion, and we derive asymptotic smiles/skews. For such general dynamics, a moment generating function approach is no longer available. Our problem falls in the class of homogenization/averaging problems for nonlinear HJB-type equations where the "fast variable" lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. Viscosity solution techniques have been used in averaging of nonlinear HJB equations over noncompact space in [3]. However, the techniques in [3] were proved for a certain class of nonlinear HJB equations which does not include our case. In this paper, we develop a method more general than [3]. In particular, it can be used to treat the problems in [5], but not vice versa.

We start by considering the following stochastic differential equations modeling the evolution of the stock price $\left(S_{t}\right)$ under a risk-neutral pricing probability measure, and with a stochastic volatility determined by a process $\left(Y_{t}\right)$:

$$
\begin{align*}
& d S_{t}=r S_{t} d t+\sigma\left(Y_{t}\right) S_{t} d W_{t}^{(1)} \tag{1.1a}\\
& d Y_{t}=\frac{1}{\delta}\left(m-Y_{t}\right) d t+\frac{\nu}{\sqrt{\delta}} Y_{t}^{\beta} d W_{t}^{(2)} \tag{1.1b}
\end{align*}
$$

where $m \in \mathbb{R}, r, \nu>0, W^{(1)}$ and $W^{(2)}$ are standard Brownian motions with $\left\langle W^{(1)}, W^{(2)}\right\rangle_{t}=\rho t$, with $|\rho|<1$ constant. The process $\left(Y_{t}\right)$ is a fast meanreverting process with rate of mean reversion $1 / \delta(\delta>0)$. The parameters β and $\sigma(y)$ are chosen to satisfy the following.

Assumption 1.1. We assume that:
(1) $\beta \in\{0\} \cup\left[\frac{1}{2}, 1\right)$;
(2) in the case of $\beta=1 / 2$, we require $m>\nu^{2} / 2$ and $Y_{0}>0$ a.s., in the case of $1 / 2<\beta<1$, we require $m>0$ and $Y_{0}>0$ a.s.;
(3) $\sigma(y) \in C\left(\mathbb{R} ; \mathbb{R}_{+}\right)$satisfies

$$
\sigma(y) \leq C\left(1+|y|^{\sigma}\right)
$$

for some constants $C>0$ and σ with $0 \leq \sigma<1-\beta$.
These assumptions ensure existence and uniqueness of a strong solution of (1.1). This can be seen as a combination of existence of martingale problem solution (e.g., Theorem 5.3.10 in Ethier and Kurtz [9]) and the Yamada-Watanabe theory for 1-D diffusions (e.g., Chapter 5, Karatzas and Shreve [23]). In particular, Assumption 1.1(2) ensures that, in the case $\beta \in\left[\frac{1}{2}, 1\right), Y_{t}>0$ a.s. for all $t \geq 0$ (see Appendix A). In the case $\beta=0, Y$ is an Ornstein-Uhlenbeck (OU) process with a natural state space $(-\infty, \infty)$. In order to present both model cases using one simple set of notation, we denote the state space for Y as E_{0} with $E_{0}:=\mathbb{R}$ if $\beta=0$ and $E_{0}:=(0, \infty)$ when $\beta \in\left[\frac{1}{2}, 1\right)$.

Note that the Heston model, for which $\beta=1 / 2$ and $\sigma(y)=\sqrt{y}$, does not satisfy these assumptions, but it has been treated separately in [12] by explicit computation of the moment generating function.

The infinitesimal generator of the Y process, when $\delta=1$, can be identified with the following differential operator on the class of smooth test functions vanishing off compact sets:

$$
\begin{equation*}
B:=(m-y) \partial_{y}+\frac{1}{2} \nu^{2}|y|^{2 \beta} \partial_{y y}^{2} . \tag{1.2}
\end{equation*}
$$

Following the general theory of 1-D diffusion (e.g., Karlin and Taylor [24], page 221), we introduce the so called scale and speed measure of the $\left(Y_{t}\right)$ process,

$$
s(y):=\exp \left\{-\int_{1}^{y} \frac{2(m-z)}{\nu^{2}|z|^{2 \beta}} d z\right\}, \quad m(y):=\frac{1}{\nu^{2}|y|^{2 \beta} s(y)}
$$

Denoting $d S(y):=s(y) d y$ and $d M(y):=m(y) d y$, we then have

$$
\begin{equation*}
B f(y)=\frac{1}{2} \frac{d}{d M}\left[\frac{d f(y)}{d S}\right] . \tag{1.3}
\end{equation*}
$$

Under Assumption 1.1 there exists a unique probability measure

$$
\begin{equation*}
\pi(d y):=Z^{-1} m(y) d y, \quad Z:=\int_{E_{0}} m(y) d y<\infty \tag{1.4}
\end{equation*}
$$

such that $\int B f d \pi=0$ for all $f \in C_{c}^{2}\left(E_{0}\right)$. See Appendix C.

By a change of variable $X_{t}=\log S_{t}$, we have

$$
d X_{t}=\left(r-\frac{1}{2} \sigma^{2}\left(Y_{t}\right)\right) d t+\sigma\left(Y_{t}\right) d W_{t}^{(1)}
$$

In order to study small time behavior of the system, we rescale time $t \mapsto \varepsilon t$ for $0<\varepsilon \ll 1$; denoting the rescaled processes by $X_{\varepsilon, \delta, t}$ and $Y_{\varepsilon, \delta, t}$, we have, in distribution,

$$
\begin{align*}
d X_{\varepsilon, \delta, t} & =\varepsilon\left(r-\frac{1}{2} \sigma^{2}\left(Y_{\varepsilon, \delta, t}\right)\right) d t+\sqrt{\varepsilon} \sigma\left(Y_{\varepsilon, \delta, t}\right) d W_{t}^{(1)} \tag{1.5a}\\
d Y_{\varepsilon, \delta, t} & =\frac{\varepsilon}{\delta}\left(m-Y_{\varepsilon, \delta, t}\right) d t+\nu \sqrt{\frac{\varepsilon}{\delta}} Y_{\varepsilon, \delta, t}^{\beta} d W_{t}^{(2)} \tag{1.5b}
\end{align*}
$$

We are interested in understanding the two-scale $\varepsilon, \delta \rightarrow 0$ limit behavior of option prices and its implication to implied volatility. In this paper, we restrict our attention to the following two regimes:

$$
\delta=\varepsilon^{4} \quad \text { and } \quad \delta=\varepsilon^{2} .
$$

In view of [12], to obtain a large deviation estimate of option prices, it is sufficient to obtain a large deviation principle (LDP) for $\left\{X_{\varepsilon, \delta, t}: \varepsilon>0\right\}$. By Bryc's inverse Varadhan lemma [7] (Theorem 4.4.2), we know that the key step is proving convergence of the following functionals:

$$
\begin{equation*}
u_{\varepsilon, \delta}(t, x, y):=\varepsilon \log E\left[e^{\varepsilon^{-1} h\left(X_{\varepsilon, \delta, t}\right)} \mid X_{\varepsilon, \delta, 0}=x, Y_{\varepsilon, \delta, 0}=y\right], \quad h \in C_{b}(\mathbb{R}) \tag{1.6}
\end{equation*}
$$

to some quantity independent of y. The rate function in the LDP is then given in terms of a variational formula involving the limit of the functionals $u_{\varepsilon, \delta}$.

For each $h \in C_{b}(\mathbb{R})$, the function $u_{\varepsilon, \delta}$ satisfies a nonlinear partial differential equation given in (3.4). In Section 3.2, we use heuristic arguments to obtain PDEs that characterize the limit of these $u_{\varepsilon, \delta}$. Proving this convergence rigorously, however, is nontrivial. Intuitively we know that, as Y has a mean reversion rate $1 / \delta$ and $\delta \ll \varepsilon$, the effect of the Y process should get averaged out. To be exact, the form of nonlinear operator (3.5) indicates that convergence of $u_{\varepsilon, \delta}$ is an averaging problem (over the fast y variable) for Hamilton-Jacobi equations. Such problems, in the context of compact state space for the averaging variable, can be handled by extending standard linear equation techniques using viscosity solution language. The Y process in this article lies in E_{0}, which is \mathbb{R} in the case of $\beta=0$ and $(0, \infty)$ in other cases. E_{0} is a noncompact space, and therein lies an additional difficulty.

We adapt methods developed in Feng and Kurtz [13]. Indeed, an abstract method for large deviation for sequence of Markov processes, based on convergence of HJB equation, is developed fully in [13]. The two schemes treated in this article are of the nature of Examples 1.8 and 1.9 , introduced in Chapter 1 , and proved in detail in Chapter 11 of [13]. In this article, we not only
present a direct proof, but also introduce some argument to further simplify [13] in the setting of multi-scale. This is possible in a large part due to the locally compact state space and mean-reverting nature of the process Y.

In particular, modulo technical subtleties in verification of conditions, the setup of Section 11.6 in [13] corresponds to the large deviation result in our case of $\delta=\varepsilon^{2}$. Since E_{0} is locally compact, and we only deal with PDEs instead of abstract operator equations, great simplification of [13] can be achieved through the use of a special class of test functions. See Conditions 4.1 and 4.2. The techniques we introduce (Lemmas 4.1 and 4.2) are not limited to averaging problems, but are also applicable to problems of homogenization, which we will not delve into in this article. The rigorous justification of convergence of $u_{\varepsilon, \delta}$ is shown in Section 5.

The main results of the paper are stated in Section 2. Theorem 2.1 is a rare event large deviation-type estimate corresponding to short time, out-of-the-money option pricing. Corollary 2.1 and Theorem 2.2 give asymptotics of option price and implied volatility, respectively, for such situations. The proofs are given in the sections that follow, starting with heuristic proofs in Section 3.2 and finishing with rigorous justifications in Sections 4 and 5. The technical results in Lemmas 4.1 and 4.2 may be of independent interest.
2. Main results. Observe that in the SDE (1.5), while the scaled log stock price process runs on a time scale of order ε, the scaled Y process runs on a time scale of order ε / δ. This is due to the extremely short meanreversion time, $\delta=\varepsilon^{r}(r=2,4)$, of the $Y_{\varepsilon, \delta \text {. }}$ process. Thus, as ε approaches zero, long-time behavior of the unscaled Y process comes into play. This long-time behavior of the Y process manifests itself in the large deviation principle (LDP) of the scaled log stock price via the quantities $\bar{\sigma}^{2}$ and \bar{H}_{0} defined below. Define

$$
\begin{equation*}
\bar{\sigma}^{2}:=\int \sigma^{2}(y) \pi(d y) \tag{2.1}
\end{equation*}
$$

the average of the volatility function $\sigma^{2}(\cdot)$ with respect to the invariant distribution of Y. Recall B, the generator of the Y process, defined in (1.2). Define the perturbed generator

$$
\begin{equation*}
B^{p} g(y)=B g(y)+\rho \sigma \nu y^{\beta} p \partial_{y} g(y), \quad g \in C_{c}^{2}\left(E_{0}\right) . \tag{2.2}
\end{equation*}
$$

Let Y^{p} be the process corresponding to generator B^{p}, and define

$$
\begin{equation*}
\bar{H}_{0}(p):=\limsup _{T \rightarrow+\infty} \sup _{y \in E_{0}} T^{-1} \log E\left[e^{(1 / 2)|p|^{2} \int_{0}^{T} \sigma^{2}\left(Y_{s}^{p}\right) d s} \mid Y_{0}^{p}=y\right] . \tag{2.3}
\end{equation*}
$$

Y^{p} has strong enough ergodic properties that the limit above does not depend upon y even if we omitted the $\sup _{y \in E_{0}}$; and, in fact, the $\lim \sup _{T \rightarrow \infty}$ can be replaced with $\lim _{T \rightarrow \infty}$ in the above definition. We will justify this
fact in the rigorous derivations. By Girsanov's transformation

$$
\begin{equation*}
\bar{H}_{0}(p)=\limsup _{T \rightarrow+\infty} T^{-1} \log E\left[e^{\int_{0}^{T} \rho p \sigma\left(Y_{s}\right) d W^{(2)}(s)+\left(\left(1-\rho^{2}\right) / 2\right)|p|^{2} \int_{0}^{T} \sigma^{2}\left(Y_{s}\right) d s}\right] \tag{2.4}
\end{equation*}
$$

where Y is the process with generator B. From this expression, we see that \bar{H}_{0} is convex and superlinear in $p . \bar{H}_{0}(p)$ is the scaled limit of the log moment generating function of a function of occupation measures of the process Y^{p}. As such, it has an equivalent representation in terms of the rate function for the LDP of occupation measures of Y^{p}. This equivalent representation of \bar{H}_{0} is given in (5.12) in Section 5.2.

Having defined these crucial terms, we proceed to the statement of our results.

Theorem 2.1 (Large deviation). Assume $X_{\varepsilon, \varepsilon^{r}, 0}=x_{0}$ and $Y_{\varepsilon, \varepsilon^{r}, 0}=y_{0}$ where $r=2,4$ and suppose that Assumption 1.1 holds. For $x \in \mathbb{R}$, let

$$
\begin{equation*}
I_{4}\left(x ; x_{0}, t\right):=\frac{\left|x_{0}-x\right|^{2}}{2 \bar{\sigma}^{2} t} \tag{2.5}
\end{equation*}
$$

where $\bar{\sigma}$ is defined in (2.1) and

$$
\begin{equation*}
I_{2}\left(x ; x_{0}, t\right):=t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right) \tag{2.6}
\end{equation*}
$$

where \bar{L}_{0} is the Legendre transform of \bar{H}_{0} defined in (2.3).
Then, for each regime $r \in\{2,4\}$, for every fixed $t>0$ and $x_{0} \in \mathbb{R}, y_{0} \in E_{0}$, a large deviation principle $(L D P)$ holds for $\left\{X_{\varepsilon, \varepsilon^{r}, t}: \varepsilon>0\right\}$ with speed $1 / \varepsilon$ and good rate function $I_{r}\left(x ; x_{0}, t\right)$. In particular,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon \log P\left(X_{\varepsilon, \varepsilon^{r}, t}>x\right)=-I\left(x ; x_{0}, t\right) \quad \text { when } x>x_{0} \tag{2.7}
\end{equation*}
$$

Similarly, when $x<x_{0}$, we have

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \varepsilon \log P\left(X_{\varepsilon, \varepsilon^{r}, t}<x\right)=-I\left(x ; x_{0}, t\right) \tag{2.8}
\end{equation*}
$$

REMARK 2.1. The rate functions $I_{r}\left(x ; x_{0}, t\right)$, in both regimes, are convex, continuous functions of x and $I_{r}\left(x_{0} ; x_{0}, t\right)=0$.

REMARK 2.2. In the case $\delta=\varepsilon^{4}$, observe that the rate function I_{4}, in (2.5), is the same as the rate function for the Black-Scholes model with constant volatility $\bar{\sigma}$. In other words, in the ultra fast regime, to the leading order, it is the same as averaging first and then taking the short maturity limit.

REMARK 2.3. In the case $\delta=\varepsilon^{2}$, no explicit formula for the rate function is obtained. However, an explicit formula of the rate function is obtained for the Heston model in [12] which corroborates the formula in (2.6). The Heston model per se does not fall in the category of stochastic volatility models covered in this paper, but direct computation of \bar{H}_{0}, given by (2.3) and \bar{L}_{0}, its Legendre transform, is possible for this model.

Let $S_{0}>0$ be the initial value of stock price, and let $X_{\varepsilon, \varepsilon^{r}, 0}=x_{0}=\log S_{0}$. The asymptotic behavior of the price of out-of-the-money European call option with strike price K and short maturity time $T=\varepsilon t$ is given in the following corollary. We only consider out-of-the-money call options by taking

$$
\begin{equation*}
S_{0}<K \quad \text { or } \quad x_{0}<\log K \tag{2.9}
\end{equation*}
$$

The other case, $S_{0}>K$, is easily deduced by considering out-of-the-money European put options and using put-call parity.

Corollary 2.1 (Option price). For fixed $t>0$,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log E\left[e^{-r \varepsilon t}\left(S_{\varepsilon, \varepsilon^{r}, t}-K\right)^{+}\right]=-I_{r}\left(\log K ; x_{0}, t\right)
$$

for $r=2,4$.
Denote the Black-Scholes implied volatility for out-of the-money European call option, with strike price K, by $\sigma_{r, \varepsilon}\left(t, \log K, x_{0}\right)$, where $r=2,4$ correspond to the two regimes. By the same argument used in [12], we get an asymptotic formula for implied volatility:

Theorem 2.2 (Implied volatilities).

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sigma_{r, \varepsilon}^{2}\left(t, \log K, x_{0}\right)=\frac{\left(\log K-x_{0}\right)^{2}}{2 I_{r}\left(\log K ; x_{0}, t\right) t}
$$

Remark 2.4. In the case $\delta=\varepsilon^{4}$, the implied volatility is $\bar{\sigma}$, which is obtained by averaging the volatility term $\sigma^{2}(y)$ with respect to the equilibrium measure for Y. It is likely that more features of the Y process, beyond its equilibrium, will be manifested in higher order terms of implied volatility. Studying the next order term of implied volatility is a topic for future research.

Remark 2.5. The limit of at-the-money implied volatility, that is, $\lim _{\varepsilon \rightarrow 0} \sigma_{r, \varepsilon}^{2}\left(t, x_{0}, x_{0}\right)$, is obtained as in [12], Lemma 2.6. However, the continuity of the limiting implied volatility at $\log K=x_{0}$ is not obvious in the $r=2$ case. We discuss this at the end of Section 6.3.
3. Preliminaries. The process $\left(X_{\varepsilon, \delta}, Y_{\varepsilon, \delta}\right)$ is Markovian, and can be identified through a martingale problem given by generator

$$
\begin{align*}
A_{\varepsilon, \delta} f(x, y)= & \varepsilon\left(\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} f(x, y)+\frac{1}{2} \sigma^{2}(y) \partial_{x x}^{2} f(x, y)\right) \\
& +\frac{\varepsilon}{\delta} B f(x, y)+\frac{\varepsilon}{\sqrt{\delta}} \rho \sigma(y) \nu y^{\beta} \partial_{x y}^{2} f(x, y), \tag{3.1}
\end{align*}
$$

where $f \in C_{c}^{2}\left(\mathbb{R} \times E_{0}\right)$. Recall that B is given by (1.2). Let $g \in C_{b}(\mathbb{R})$ and define

$$
\begin{equation*}
v_{\varepsilon, \delta}(t, x, y):=E\left[g\left(X_{\varepsilon, \delta, t}\right) \mid X_{\varepsilon, \delta, 0}=x, Y_{\varepsilon, \delta, 0}=y\right] \tag{3.2}
\end{equation*}
$$

In general, $v_{\varepsilon, \delta} \in C_{b}\left([0, T] \times \mathbb{R} \times E_{0}\right)$. If, moreover, $v_{\varepsilon, \delta} \in C^{1,2}([0, T] \times \mathbb{R} \times \mathbb{R})$, then it solves the following Cauchy problem in classical sense:

$$
\begin{align*}
\partial_{t} v & =A_{\varepsilon, \delta} v & & \text { in }(0, T] \times \mathbb{R} \times E_{0} \tag{3.3a}\\
v(0, x, y) & =g(x), & & (x, y) \in \mathbb{R} \times E_{0} \tag{3.3b}
\end{align*}
$$

3.1. Logarithmic transformation method. Recall the definition of $u_{\varepsilon, \delta}$ in (1.6). That is, $u_{\varepsilon, \delta}:=\varepsilon \log v_{\varepsilon, \delta}$ when $g(x)=e^{\varepsilon^{-1} h(x)}, h \in C_{b}(\mathbb{R})$, in (3.2). By (3.3) and some calculus, at least informally, (3.4) below is satisfied. This is the logarithmic transform method by Fleming and Sheu. See Chapters VI and VII in [14]. In general, in the absence of knowledge on smoothness of $v_{\varepsilon, \delta}$, we can only conclude that $u_{\varepsilon, \delta}$ solves the Cauchy problem (3.4) in the sense of viscosity solution (Definition 4.1). In addition to Fleming and Soner [14], such arguments can also be found in Section 5 of Feng [11].

Lemma 3.1. For $h \in C_{b}(\mathbb{R})$, $u_{\varepsilon, \delta}$ defined as in (1.6), is a bounded continuous function satisfying the following nonlinear Cauchy problem in viscosity solution sense:

$$
\begin{align*}
\partial_{t} u & =H_{\varepsilon, \delta} u & & \text { in }(0, T] \times \mathbb{R} \times E_{0} \tag{3.4a}\\
u(0, x, y) & =h(x), & & (x, y) \in \mathbb{R} \times E_{0} \tag{3.4b}
\end{align*}
$$

In the above,

$$
\begin{align*}
H_{\varepsilon, \delta} u(t, x, y)= & \varepsilon e^{-\varepsilon^{-1} u} A_{\varepsilon, \delta} e^{\varepsilon^{-1} u}(t, x, y) \\
= & \varepsilon\left(\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} u+\frac{1}{2} \sigma^{2}(y) \partial_{x x}^{2} u\right) \tag{3.5}\\
& +\frac{1}{2}\left|\sigma(y) \partial_{x} u\right|^{2}+\frac{\varepsilon^{2}}{\delta} e^{-\varepsilon^{-1} u} B e^{\varepsilon^{-1} u} \\
& +\rho \sigma(y) \nu y^{\beta}\left(\frac{\varepsilon}{\sqrt{\delta}} \partial_{x y}^{2} u+\frac{1}{\sqrt{\delta}} \partial_{x} u \partial_{y} u\right)
\end{align*}
$$

where

$$
\frac{\varepsilon^{2}}{\delta} e^{-\varepsilon^{-1} u} B e^{\varepsilon^{-1} u}=\frac{\varepsilon}{\delta} B u+\delta^{-1} \frac{1}{2}\left|\nu y^{\beta} \partial_{y} u\right|^{2}
$$

Note that $H_{\varepsilon, \delta}$ only operates on the spatial variables x and y.
3.2. Heuristic expansion. By Bryc's inverse Varadhan lemma (e.g., Theorem 4.4.2 of [7]), we know that convergence of $u_{\varepsilon, \delta}$ is a necessary condition to obtain the LDP for $\left\{X_{\varepsilon, \delta, t}: \varepsilon>0\right\}$. In this section, we describe heuristically PDEs characterizing $u_{\varepsilon, \delta}$ in the limit and the nature of convergence itself.

Henceforth, for notational simplicity, we will drop the subscript δ and write u_{ε} and H_{ε} for $u_{\varepsilon, \delta}$ and $H_{\varepsilon, \delta}$, respectively. We begin by the following heuristic expansion of u_{ε} in integer powers of ε :

$$
\begin{equation*}
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\varepsilon^{3} u_{3}+\varepsilon^{4} u_{4}+\cdots \tag{3.6}
\end{equation*}
$$

in both regimes. The $u_{i}, i=0,1, \ldots$, are functions of t, x, y. In this heuristic section, we make reasonable choices of u_{i} which a posteriori, following a rigorous proof of the convergence of u_{ε} in Section 5, are shown to be the right choice.
3.2.1. The case of $\delta=\varepsilon^{4}$. Computation of $H_{\varepsilon} u_{\varepsilon}$ [see (3.5)] reveals that, in this scale, the fast process Y oscillates so fast that averaging occurs up to terms of order ε^{2}. Namely, $u_{0}=u_{0}(t, x), u_{1}=u_{1}(t, x)$ and $u_{2}=u_{2}(t, x)$ will not depend on y. To see this, we equate coefficients of powers of ε in $\partial_{t} u_{\varepsilon}=H_{\varepsilon} u_{\varepsilon}$.

Terms of $O\left(\frac{1}{\varepsilon^{4}}\right)$ satisfy

$$
0=\frac{1}{2} \nu^{2} y^{2 \beta}\left(\partial_{y} u_{0}\right)^{2},
$$

so we choose u_{0} independent of y. With this choice of u_{0} the equation for the coefficients of the next order terms, which is of $O\left(\frac{1}{\varepsilon^{2}}\right)$, reduces to

$$
0=B u_{1}+\frac{1}{2} \nu^{2} y^{2 \beta}\left(\partial_{y} u_{1}\right)^{2} .
$$

This equation is satisfied by choosing u_{1} independent of y. With this choice of u_{1}, the equation for coefficients of the next order terms, of $O\left(\frac{1}{\varepsilon}\right)$, becomes

$$
0=B u_{2} .
$$

By choosing u_{2} independent of y the last equation is satisfied.
Thus, by these choices of u_{0}, u_{1} and u_{2} independent of y, it follows that

$$
\begin{aligned}
H_{\varepsilon} u_{\varepsilon}(x, y)= & \frac{1}{2}\left|\sigma(y) \partial_{x} u_{0}\right|^{2}+B u_{3} \\
& +\varepsilon\left(\sigma^{2}(y) \partial_{x} u_{0} \partial_{x} u_{1}+\frac{1}{2} \sigma^{2}(y) \partial_{x x} u_{0}\right. \\
& \left.\quad+\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} u_{0}+\nu \rho \sigma(y) y^{\beta} \partial_{x} u_{0} \partial_{y} u_{3}+B u_{4}\right) \\
& +o(\varepsilon) .
\end{aligned}
$$

The ε^{0} order terms then satisfy

$$
\partial_{t} u_{0}(t, x)=\frac{1}{2}\left|\partial_{x} u_{0}(t, x)\right|^{2} \sigma^{2}(y)+B u_{3}(t, x, y),
$$

that is,

$$
B u_{3}(t, x, y)=\partial_{t} u_{0}(t, x)-\frac{1}{2}\left|\partial_{x} u_{0}(t, x)\right|^{2} \sigma^{2}(y) .
$$

The above is a Poisson equation for u_{3} with respect to the operator B in the y variable. We impose the condition that the right-hand side is centered with respect to the invariant distribution π [given in (1.4)]. This ensures a solution to the Poisson equation, which is unique up to a constant in y.

See Appendix B for growth estimates of the solution. Therefore we get

$$
\partial_{t} u_{0}(t, x)=\frac{1}{2}\left|\bar{\sigma} \partial_{x} u_{0}(t, x)\right|^{2} ;
$$

where

$$
\bar{\sigma}^{2}=\int \sigma^{2}(y) \pi(d y) .
$$

Thus the leading order term in the heuristic expansion satisfies

$$
\begin{align*}
\partial_{t} u_{0} & =\bar{H}_{0} u_{0}(x), \quad t>0 ; \tag{3.7a}\\
u_{0}(0, x) & =h(x), \tag{3.7b}
\end{align*}
$$

where

$$
\bar{H}_{0} u_{0}(x):=\frac{1}{2}\left|\bar{\sigma} \partial_{x} u_{0}(x)\right|^{2} .
$$

3.2.2. The case of $\delta=\varepsilon^{2}$. When δ goes to zero at a slower rate ε^{2}, limits become very different and more features in the Y process (rather than just its equilibrium) is retained. We observe that while u_{0} is independent of y as in the faster scaling regime, u_{1} may now depend on y. Equating coefficients of $O\left(\varepsilon^{-2}\right)$ in $\partial_{t} u_{\varepsilon}=H_{\varepsilon} u_{\varepsilon}$ we get

$$
0=\frac{1}{2} \nu^{2} y^{2 \beta}\left(\partial_{y} u_{0}\right)^{2},
$$

and so we choose $u_{0}=u_{0}(t, x)$ independent of y. Then $H_{\varepsilon} u_{\varepsilon}$ reduces to

$$
\begin{aligned}
H_{\varepsilon} u_{\varepsilon}(t, x, y)= & \frac{1}{2}\left|\sigma(y) \partial_{x} u_{0}\right|^{2}+\rho \sigma(y) \nu y^{\beta} \partial_{x} u_{0} \partial_{y} u_{1}+e^{-u_{1}} B e^{u_{1}} \\
& +\varepsilon\left(\sigma^{2}(y) \partial_{x} u_{0} \partial_{x} u_{1}+\frac{1}{2} \sigma^{2}(y) \partial_{x x} u_{0}+\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} u_{0}\right. \\
& +B u_{2}+\nu y^{2 \beta} \partial_{y} u_{1} \partial_{y} u_{2}+\rho \sigma(y) \nu y^{\beta} \partial_{x y} u_{1} \\
& \left.\quad+\rho \sigma(y) \nu y^{\beta} \partial_{x} u_{1} \partial_{y} u_{1}+\rho \sigma(y) \nu y^{\beta} \partial_{x} u_{0} \partial_{y} u_{2}\right) \\
& +o(\varepsilon) .
\end{aligned}
$$

The leading order terms should satisfy

$$
\begin{align*}
\partial_{t} u_{0}(t, x)= & \frac{1}{2}\left|\partial_{x} u_{0}(t, x)\right|^{2} \sigma^{2}(y)+\rho \nu \sigma(y) y^{\beta} \partial_{x} u_{0}(t, x) \partial_{y} u_{1}(t, x, y) \tag{3.8}\\
& +e^{-u_{1}} B e^{u_{1}}(t, x, y) .
\end{align*}
$$

We will rewrite the above equation as an eigenvalue problem. Recall B, the generator of the Y process defined in (1.2) and the perturbed generator B^{p} defined in (2.2). Then

$$
\begin{equation*}
e^{-u_{1}} B e^{u_{1}}+\rho \sigma(y) \nu y^{\beta} \partial_{x} u_{0} \partial_{y} u_{1}=e^{-u_{1}} B^{\partial_{x} u_{0}(t, x)} e^{u_{1}} . \tag{3.9}
\end{equation*}
$$

Fix t and x, and rewrite (3.8) in terms of the perturbed generator (3.9).

$$
e^{-u_{1}} B^{\partial_{x} u_{0}(t, x)} e^{u_{1}}(t, x, y)+\frac{1}{2}\left|\partial_{x} u_{0}(t, x)\right|^{2} \sigma^{2}(y)=\partial_{t} u_{0}(t, x) .
$$

Multiplying the above equation by $e^{u_{1}}$, we get the eigenvalue problem

$$
\begin{equation*}
\left(B^{\partial_{x} u_{0}}+V\right) g(y)=\lambda g(y) \tag{3.10}
\end{equation*}
$$

where $V(\cdot)=\frac{1}{2}\left|\partial_{x} u_{0}(t, x)\right|^{2} \sigma^{2}(\cdot)$ is a multiplicative potential operator, $g(\cdot)=$ $e^{u_{1}(t, x, \cdot)}$ and $\lambda(t, x)=\partial_{t} u_{0}(t, x)$. Choose u_{1} such that (λ, g) is the solution to the principal (positive) eigenvalue problem (3.10). Note that the dependence of the eigenvalue, λ, on t and x is only through $\partial_{x} u_{0}$. If (3.10) can be solved with a nice g, then we have

$$
\begin{equation*}
\lambda(t, x)=\bar{H}_{0}\left(\partial_{x} u_{0}\right) \tag{3.11}
\end{equation*}
$$

where \bar{H}_{0} is defined as (2.3). The leading order terms then satisfy

$$
\begin{equation*}
\partial_{t} u_{0}(t, x)=\bar{H}_{0}\left(\partial_{x} u_{0}(t, x)\right) \tag{3.12}
\end{equation*}
$$

Constructing a classical solution for (3.10) is a considerably hard problem, even in the 1-D situation. If (3.10) can be solved with a nice g, then (2.3) always holds with the \bar{H}_{0} given by (3.11). The converse is not always true. Especially, (2.3) says nothing about the eigenfunction g. However, we only need the definition in (2.3) in rigorous treatment of the problem. We will show (in Section 5.2) that (3.12) is the limit equation where \bar{H}_{0} is given by (2.3) irrespective of whether a solution to the eigenvalue problem (3.10) exists or does not.

To summarize,

$$
\begin{align*}
\partial_{t} u_{0}(t, x) & =\bar{H}_{0}\left(\partial_{x} u_{0}(t, x)\right), \quad t>0 ; \tag{3.13a}\\
u_{0}(0, x) & =h(x), \tag{3.13b}
\end{align*}
$$

where \bar{H}_{0} is given by (2.3) or (2.4).
4. Convergence of HJB equations. The results of this section can be independently read from the rest of the article.

We reformulate and simplify some techniques, regarding multi-scale convergence of HJB equations, introduced in [13]. Compared with [13], the simplification makes ideas more transparent and readily applicable. These are made possible because we are dealing with Euclidean state spaces which are locally compact. All these results are generalizations of Barles-Perthame's half-relaxed limit argument first introduced in single scale, compact state space setting.

Let $E \subset \mathbb{R}^{m}, E_{0} \subset \mathbb{R}^{n}$ and $E^{\prime}:=E \times E_{0} \subset \mathbb{R}^{d}$ where $d=m+n$. A typical element in E is denoted as x, and a typical element in E^{\prime} is denoted as $z=(x, y)$ with $x \in E$ and $y \in E_{0}$. We denote a class of compact sets in E^{\prime}

$$
\mathcal{Q}:=\left\{K \times \tilde{K}: \text { compact } K \subset \subset E, \text { compact } \tilde{K} \subset \subset E_{0}\right\} .
$$

We specify a family of differential operators next. Let Λ be an index set and

$$
\begin{aligned}
H_{i}(x, p, P ; \alpha): E \times \mathbb{R}^{m} \times M_{m \times m} \times \Lambda \mapsto \mathbb{R}, \quad i=0,1 ; \\
H_{\varepsilon}(z, p, P): E^{\prime} \times \mathbb{R}^{d} \times M_{d \times d} \mapsto \mathbb{R}
\end{aligned}
$$

be continuous. For each $f \in C^{2}\left(\mathbb{R}^{d}\right)$, let $\nabla f(x) \in \mathbb{R}^{d}$ and $D^{2} f(x) \in M_{d \times d}$, respectively, denote gradient and Hessian matrix evaluated at x. We consider a sequence of differential operators

$$
H_{\varepsilon} f(z):=H_{\varepsilon}\left(z, \nabla f(z), D^{2} f(z)\right)
$$

for f belongs to the following two domains:

$$
\begin{aligned}
& D_{\varepsilon,+}:=\left\{f: f \in C^{2}\left(E^{\prime}\right), f \text { has compact finite level sets }\right\} \\
& D_{\varepsilon,-}:=-D_{\varepsilon,+}:=\left\{-f: f \in C^{2}\left(E^{\prime}\right), f \text { has compact finite level sets }\right\} .
\end{aligned}
$$

We will separately consider these two domains depending on the situation of sub- or super-solution. We also define domains D_{+}, D_{-}similarly replacing E^{\prime} by E.

We will give conditions where $u_{\varepsilon}(t, z)=u_{\varepsilon}(t, x, y)$ solving

$$
\begin{equation*}
\partial_{t} u_{\varepsilon}(t, z)=H_{\varepsilon}\left(z, \nabla u_{\varepsilon}(t, z), D^{2} u_{\varepsilon}(t, z)\right) \tag{4.1}
\end{equation*}
$$

converging to $u(t, x)$ which is a sub-solution to

$$
\begin{equation*}
\partial_{t} u(t, x) \leq \inf _{\alpha \in \Lambda} H_{0}\left(x, \nabla u(t, x), D^{2} u(t, x) ; \alpha\right) \tag{4.2}
\end{equation*}
$$

and a super-solution to

$$
\begin{equation*}
\partial_{t} u(t, x) \geq \sup _{\alpha \in \Lambda} H_{1}\left(x, \nabla u(t, x), D^{2} u(t, x) ; \alpha\right) . \tag{4.3}
\end{equation*}
$$

The meaning of sub- super-solutions is defined as follows (as, e.g., in Fleming and Soner [14]).

Definition 4.1 (Viscosity sub- super-solutions). We call a bounded measurable function u a viscosity sub-solution to (4.2) [resp., super-solution to (4.3)], if u is upper semicontinuous (resp., lower semicontinuous), and for each

$$
u_{0}(t, x)=\phi(t)+f_{0}(x), \quad \phi \in C^{1}\left(\mathbb{R}_{+}\right), f_{0} \in D_{+}
$$

and each $x_{0} \in E$ satisfying $u-u_{0}$ has a local maximum [resp., each

$$
u_{1}(t, x)=\phi(t)+f_{1}(x), \quad \phi \in C^{1}\left(\mathbb{R}_{+}\right), f_{1} \in D_{-},
$$

and each $x_{0} \in E$ satisfying $u-u_{1}$ has a local minimum] at x_{0}, we have

$$
\partial_{t} u_{0}\left(t_{0}, x_{0}\right)-\inf _{\alpha \in \Lambda} H_{0}\left(x_{0}, \nabla u_{0}\left(t_{0}, x_{0}\right), D^{2} u_{0}\left(t_{0}, x_{0}\right) ; \alpha\right) \leq 0
$$

respectively,

$$
\partial_{t} u_{1}\left(t_{0}, x_{0}\right)-\sup _{\alpha \in \Lambda} H_{1}\left(x_{0}, \nabla u_{1}\left(t_{0}, x_{0}\right), D^{2} u_{1}\left(t_{0}, x_{0}\right) ; \alpha\right) \geq 0 .
$$

If a function is both a sub- as well as a super-solution, then it is a solution.

We will assume the following two conditions.
Condition 4.1 (limsup convergence of operators). For each $f_{0} \in D_{+}$ and each $\alpha \in \Lambda$, there exists $f_{0, \varepsilon} \in D_{\varepsilon,+}$ (may depend on α) such that:
(1) for each $c>0$, there exists $K \times \tilde{K} \in \mathcal{Q}$ satisfying

$$
\left\{(x, y): H_{\varepsilon} f_{0, \varepsilon}(x, y) \geq-c\right\} \cap\left\{(x, y): f_{0, \varepsilon}(x, y) \leq c\right\} \subset K \times \tilde{K}
$$

(2) for each $K \times \tilde{K} \in \mathcal{Q}$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup _{(x, y) \in K \times \tilde{K}}\left|f_{0, \varepsilon}(x, y)-f_{0}(x)\right|=0 ; \tag{4.4}
\end{equation*}
$$

(3) whenever $\left(x_{\varepsilon}, y_{\varepsilon}\right) \in K \times \tilde{K} \in \mathcal{Q}$ satisfies $x_{\varepsilon} \rightarrow x$,

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} H_{\varepsilon} f_{0, \varepsilon}\left(x_{\varepsilon}, y_{\varepsilon}\right) \leq H_{0}\left(x, \nabla f_{0}(x), D^{2} f_{0}(x) ; \alpha\right) . \tag{4.5}
\end{equation*}
$$

Condition 4.2 (liminf convergence of operators). For each $f_{1} \in D_{-}$and each $\alpha \in \Lambda$, there exists $f_{1, \varepsilon} \in D_{\varepsilon,-}$ (may depend on α) such that:
(1) for each $c>0$, there exists $K \times \tilde{K} \in \mathcal{Q}$ satisfying

$$
\left\{(x, y): H_{\varepsilon} f_{1, \varepsilon}(x, y) \leq c\right\} \cap\left\{(x, y): f_{1, \varepsilon}(x, y) \geq-c\right\} \subset K \times \tilde{K}
$$

(2) for each $K \times \tilde{K} \in \mathcal{Q}$,

$$
\lim _{\varepsilon \rightarrow 0} \sup _{(x, y) \in K \times \tilde{K}}\left|f_{1}(x)-f_{1, \varepsilon}(x, y)\right|=0
$$

(3) whenever $\left(x_{\varepsilon}, y_{\varepsilon}\right) \in K \times \tilde{K} \in \mathcal{Q}$, and $x_{\varepsilon} \rightarrow x$,

$$
\liminf _{\varepsilon \rightarrow 0} H_{\varepsilon} f_{1, \varepsilon}\left(x_{\varepsilon}, y_{\varepsilon}\right) \geq H_{1}\left(x, \nabla f_{1}(x), D^{2} f_{1}(x) ; \alpha\right)
$$

Let u_{ε} be the viscosity solutions to (4.1); we define

$$
\begin{array}{r}
u_{3}(t, x):=\sup \left\{\limsup _{\varepsilon \rightarrow 0+} u_{\varepsilon}\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right): \exists\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) \in[0, T] \times K \times \tilde{K},\right. \\
\left.\left(t_{\varepsilon}, x_{\varepsilon}\right) \rightarrow(t, x), K \times \tilde{K} \in \mathcal{Q}\right\}, \\
u_{4}(t, x):=\inf \left\{\liminf _{\varepsilon \rightarrow 0+} u_{\varepsilon}\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right): \exists\left(t_{\varepsilon}, x_{\varepsilon}, y_{\varepsilon}\right) \in[0, T] \times K \times \tilde{K},\right. \\
\left.\left(t_{\varepsilon}, x_{\varepsilon}\right) \rightarrow(t, x), K \times \tilde{K} \in \mathcal{Q}\right\},
\end{array}
$$

and $\bar{u}=u_{3}^{*}$ the upper semicontinuous regularization of u_{3} and $\underline{u}=\left(u_{4}\right)_{*}$ the lower semicontinuous regularization of u_{4}.

Lemma 4.1. Suppose that $\sup _{\varepsilon>0}\left\|u_{\varepsilon}\right\|_{\infty}<\infty$. Then:
(1) under Condition 4.1, \bar{u} is a sub-solution to (4.2);
(2) under Condition 4.2, \underline{u} is a super-solution to (4.3).

Proof. Let $u_{0}(t, x)=\phi(t)+f_{0}(x)$ for a fixed $\phi \in C^{1}\left(\mathbb{R}_{+}\right)$and $f_{0} \in D_{+}$. Let $\left(t_{0}, x_{0}\right)$ be a local maximum of $\bar{u}-u_{0}, t_{0}>0$. We can modify f_{0} and ϕ if necessary so that $\left(t_{0}, x_{0}\right)$ is a strict global maximum, for instance, by taking $\tilde{f}_{0}(x)=f_{0}(x)+k\left|x-x_{0}\right|^{4}$ and $\tilde{\phi}(t)=\phi(t)+k\left|t-t_{0}\right|^{2}$ for $k>0$ large enough. Note that such modification has the property that

$$
\lim _{\varepsilon \rightarrow 0+} \sup _{\left|x-x_{0}\right|<\varepsilon}\left|\nabla \tilde{f}_{0}(x)-\nabla f_{0}\left(x_{0}\right)\right|+\left|D^{2} \tilde{f}_{0}(x)-D^{2} f_{0}\left(x_{0}\right)\right|=0 .
$$

Let $\tilde{u}_{0}=\tilde{\phi}+\tilde{f}_{0}$.
Let $\alpha \in \Lambda$ be given. We now take $u_{0, \varepsilon}(t, z)=\tilde{\phi}(t)+f_{0, \varepsilon}(z)$ where $f_{0, \varepsilon}$ is the approximate of \tilde{f}_{0} in Condition 4.1. Since u_{ε} is bounded, and $u_{0, \varepsilon}$ has compact level sets, there exists $\left(t_{\varepsilon}, z_{\varepsilon}\right) \in[0, T] \times E^{\prime}$ such that

$$
\begin{equation*}
\left(u_{\varepsilon}-u_{0, \varepsilon}\right)\left(t_{\varepsilon}, z_{\varepsilon}\right) \geq\left(u_{\varepsilon}-u_{0, \varepsilon}\right)(t, z) \quad \text { for }(t, z) \in[0, T] \times E^{\prime} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{t} \tilde{\phi}\left(t_{\varepsilon}\right)-H_{\varepsilon} f_{0, \varepsilon}\left(z_{\varepsilon}\right) \leq 0 . \tag{4.7}
\end{equation*}
$$

The above implies $\inf _{\varepsilon} H_{\varepsilon} f_{0, \varepsilon}\left(z_{\varepsilon}\right)>-\infty$. We verify next that $f_{0, \varepsilon}\left(z_{\varepsilon}\right)<$ $c<\infty$. Then by Condition 4.1(1), there exists $K \times \tilde{K} \in \mathcal{Q}$ such that $z_{\varepsilon}=$ $\left(x_{\varepsilon}, y_{\varepsilon}\right) \in K \times K$.

Take a (\hat{t}, \hat{x}) such that $\tilde{u}_{0}(\hat{t}, \hat{x})<\infty$. Take $\hat{z}=(\hat{x}, \hat{y})$ for some $\hat{y} \in E_{0}$. Then

$$
u_{0, \varepsilon}(\hat{t}, \hat{z})=\tilde{\phi}(\hat{t})+f_{0, \varepsilon}(\hat{z}) \rightarrow \tilde{\phi}(\hat{t})+f_{0}(\hat{x})=\tilde{u}_{0}(\hat{t}, \hat{x})<\infty .
$$

Combined with (4.6),

$$
u_{0, \varepsilon}\left(t_{\varepsilon}, z_{\varepsilon}\right) \leq 2 \sup _{\varepsilon>0}\left\|u_{\varepsilon}\right\|_{\infty}+\sup _{\varepsilon>0} u_{0, \varepsilon}(\hat{t}, \hat{z})<\infty,
$$

and $\sup _{\varepsilon>0} f_{0, \varepsilon}\left(z_{\varepsilon}\right)<\infty$ follows.
Since $K \times \tilde{K}$ is compact in E^{\prime}, there exists a subsequence of $\left\{\left(t_{\varepsilon}, z_{\varepsilon}\right)\right\}$ (to simplify, we still use the ε to index it) and a $\left(\tilde{t}_{0}, \tilde{x}_{0}\right) \in[0, T] \times E$ such that $t_{\varepsilon} \rightarrow \tilde{t}_{0}$ and $x_{\varepsilon} \rightarrow \tilde{x}_{0}$. Such ($\tilde{t}_{0}, \tilde{x}_{0}$) has to be the unique global maximizer $\left(t_{0}, x_{0}\right)$ for $\bar{u}-\tilde{u}_{0}$ that appeared earlier. This is because, by using $x_{\varepsilon} \rightarrow \tilde{x}_{0}$ and $z_{\varepsilon}=\left(x_{\varepsilon}, y_{\varepsilon}\right)$, the definition of \bar{u} and (4.4), from (4.6) we have

$$
\begin{equation*}
\left(\bar{u}-u_{0}\right)\left(\tilde{t}_{0}, \tilde{x}_{0}\right) \geq\left(\bar{u}-u_{0}\right)(t, x) \quad \forall(t, x) . \tag{4.8}
\end{equation*}
$$

Now, from (4.7) and (4.5), we also have

$$
\partial_{t} u_{0}\left(t_{0}, x_{0}\right) \leq H_{0}\left(x_{0}, \nabla f_{0}\left(x_{0}\right), D^{2} f_{0}\left(x_{0}\right) ; \alpha\right) .
$$

Note that t_{0}, x_{0} and u_{0} are all chosen prior to, and independent of, α. We can take $\inf _{\alpha \in \Lambda}$ on both sides to get

$$
\partial_{t} u_{0}\left(t_{0}, x_{0}\right)-\inf _{\alpha \in \Lambda} H_{0}\left(x_{0}, \nabla u_{0}\left(t_{0}, x_{0}\right), D^{2} u_{0}\left(t_{0}, x_{0}\right) ; \alpha\right) \leq 0 .
$$

The proof that \underline{u} is a super-solution of (4.3) under Condition 4.2 follows similarly.

Lemma 4.2. Suppose that the conditions in Lemma 4.1 hold and that there exists $h \in C_{b}(E)$ such that

$$
\lim _{\varepsilon \rightarrow 0} \sup _{(x, y) \in K \times \tilde{K}}\left|h(x)-u_{\varepsilon}(0, x, y)\right|=0 \quad \forall K \times \tilde{K} \in \mathcal{Q} .
$$

Further suppose that for any sub-solution $u_{0}(t, x)$ of (4.2) with $u_{0}(0, x)=$ $h(x)$ and super-solution u_{1} of (4.3) with $u_{1}(0, x)=h(x)$, we have

$$
u_{0}(t, x) \leq u_{1}(t, x), \quad(t, x) \in[0, T] \times E .
$$

That is, a comparison principle holds for sub-solutions of (4.2) and supersolutions of (4.3) with initial data h.

Then $u=\bar{u}=\underline{u}$ and

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, T]} \sup _{(x, y) \in K \times \tilde{K}}\left|u(t, x)-u_{\varepsilon}(t, x, y)\right|=0 \quad \forall K \times \tilde{K} \in \mathcal{Q} .
$$

5. Rigorous justification of expansions. To rigorously prove the convergence of operators H_{ε} given by (3.5) to operators \bar{H}_{0} obtained by heuristic arguments in Section 3.2, we rely on and extend results developed in [13]. An exposition of the relevant results from [13] was laid out in Section 4. In this section we verify Conditions 4.1 and 4.2 and prove the comparison principle in Lemma 4.2. We will adhere to the notation used in Section 4.

Conditions 4.1 and 4.2 require us to carefully choose a class of perturbed test functions with an index set Λ and a family of operators $\left\{H_{0}(\cdot ; \alpha), H_{1}(\cdot ; \alpha)\right.$; $\alpha \in \Lambda\}$ to obtain viscosity sub- and super-solution estimates of u_{0}, the limit of u_{ε}. This technique was first introduced in [13] and illustrated through examples in Chapter 11 of that book. Our presentation simplifies the technique in the context of application here. We will make the sub-solution estimate given by $H_{0}(\cdot, \alpha)$ tight, by inf-ing over α, hence introducing yet another operator H_{0}. Similarly, we sup over α to tighten up the super-solution type estimate provided by $H_{1}(\cdot, \alpha)$ which introduces operator H_{1}.

Let

$$
\begin{equation*}
\zeta(y):=|y-m|^{\zeta} \tag{5.1}
\end{equation*}
$$

where $\zeta>0$ is any number satisfying $2 \sigma<\zeta<2(1-\beta)$ with σ and β given as in Assumption 1.1. Throughout the two regimes $\left(\delta=\varepsilon^{4}, \varepsilon^{2}\right)$, we take the index set

$$
\Lambda:=\left\{\alpha=(\xi, \theta): \xi \in C_{c}^{2}\left(E_{0}\right), 0<\theta<1\right\} ;
$$

and define two domains

$$
D_{+}:=\left\{f: f(x)=\varphi(x)+\gamma \log \left(1+|x|^{2}\right) ; \varphi \in C_{c}^{2}(\mathbb{R}), \gamma>0\right\}
$$

and

$$
D_{-}:=\left\{f: f(x)=\varphi(x)-\gamma \log \left(1+|x|^{2}\right) ; \varphi \in C_{c}^{2}(\mathbb{R}), \gamma>0\right\}
$$

A collection of compact sets in $\mathbb{R} \times E_{0}$ is defined by

$$
\mathcal{Q}:=\left\{K \times \tilde{K}: \text { compact } K \subset \subset \mathbb{R}, \tilde{K} \subset \subset E_{0}\right\} .
$$

5.1. Case $\delta=\varepsilon^{4}$. For each $f=f(x) \in D_{+}$, and each $\alpha=(\xi, \theta) \in \Lambda$, we let

$$
g(y):=\xi(y)+\theta \zeta(y)
$$

and define perturbed test function

$$
f_{\varepsilon}(x, y):=f(x)+\varepsilon^{3} g(y)=f(x)+\varepsilon^{3} \xi(y)+\varepsilon^{3} \theta \zeta(y)
$$

Note that $\left\|\partial_{x} f\right\|_{\infty}+\left\|\partial_{x x}^{2} f\right\|_{\infty}<\infty$. Then

$$
\begin{aligned}
H_{\varepsilon} f_{\varepsilon}(x, y)= & \varepsilon\left[\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} f+\frac{1}{2} \sigma^{2}(y) \partial_{x x}^{2} f\right]+\frac{1}{2} \sigma^{2}(y)\left|\partial_{x} f\right|^{2} \\
& +B \xi(y)+\theta B \zeta(y)+\frac{1}{2} \varepsilon^{2} \nu^{2} y^{2 \beta}\left|\partial_{y} \xi(y)+\theta \partial_{y} \zeta(y)\right|^{2} \\
& +\varepsilon \rho \sigma(y) \nu y^{\beta} \partial_{x} f\left(\partial_{y} \xi(y)+\partial_{y} \zeta(y)\right)
\end{aligned}
$$

The choice of the number ζ in definition of the function $\zeta(y)$ in (5.1) guarantees that $B \zeta(y) \leq-C \zeta(y)$. Moreover, with the earlier assumption that $0 \leq \sigma<1-\beta$, the growth of $\zeta(y)$ as $|y| \rightarrow \infty$ dominates the growth in y of all other terms in $H_{\varepsilon} f_{\varepsilon}$. Therefore, there exist constants $c_{0}, c_{1}>0$ with

$$
H_{\varepsilon} f_{\varepsilon}(x, y) \leq \frac{1}{2}\left|\sigma(y) \partial_{x} f(x)\right|^{2}+B \xi(y)-\theta c_{0} \zeta(y)+\varepsilon c_{1}
$$

In addition,

$$
f_{\varepsilon}(x, y)=f(x)+\varepsilon^{3} g(y) \geq f(x)-\varepsilon^{3}\|\xi\|_{\infty}
$$

Furthermore, for each $c>0$, we can find $K \times \tilde{K} \in \mathcal{Q}$, such that

$$
\begin{equation*}
\left\{(x, y): H_{\varepsilon} f_{\varepsilon}(x, y) \geq-c\right\} \cap\left\{(x, y): f_{\varepsilon}(x, y) \leq c\right\} \subset K \times \tilde{K} \tag{5.2}
\end{equation*}
$$

verifying Condition $4.1(1)$. The rest of Condition 4.1 can be verified by taking

$$
H_{0}(x, p ; \xi, \theta)=\sup _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}+B \xi(y)-\theta c_{0} \zeta(y)\right)
$$

We define

$$
\begin{aligned}
H_{0} f(x): & =\inf _{\alpha \in \Lambda} H_{0}\left(x, \partial_{x} f(x) ; \alpha\right) \\
& =\inf _{0<\theta<1} \inf _{\xi \in C_{c}^{2}\left(E_{0}\right)} \sup _{y \in E_{0}}\left(\frac{1}{2}\left|\sigma(y) \partial_{x} f(x)\right|^{2}+B \xi(y)-\theta c_{0} \zeta(y)\right)
\end{aligned}
$$

Similarly, for $f \in D_{-}, \alpha=(\xi, \theta) \in \Lambda$, we can choose

$$
f_{\varepsilon}(x, y)=f(x)+\varepsilon^{3} \xi(y)-\varepsilon^{3} \theta \zeta(y)
$$

Then Condition 4.2 holds for the choice of

$$
H_{1}(x, p ; \xi, \theta)=\inf _{y \in \mathbb{R}}\left(\frac{1}{2}|\sigma(y) p|^{2}+B \xi(y)+\theta c_{0} \zeta(y)\right)
$$

We define

$$
\begin{aligned}
H_{1} f(x): & =\sup _{\alpha \in \Lambda} H_{1}\left(x, \partial_{x} f(x) ; \alpha\right) \\
& =\sup _{0<\theta<1} \sup _{\xi \in C_{c}^{2}\left(E_{0}\right)} \inf _{y \in E_{0}}\left(\frac{1}{2}\left|\sigma(y) \partial_{x} f(x)\right|^{2}+B \xi(y)+\theta c_{0} \zeta(y)\right) .
\end{aligned}
$$

Next, to verify Lemma 4.2, we estimate $H_{0} f$ from above and $H_{1} f$ from below using some simple quantity.

Lemma 5.1.

$$
\begin{array}{ll}
H_{0} f(x) \leq \frac{1}{2}\left|\bar{\sigma} \partial_{x} f(x)\right|^{2}, & f \in D_{+} \\
H_{1} f(x) \geq \frac{1}{2}\left|\bar{\sigma} \partial_{x} f(x)\right|^{2}, & f \in D_{-}
\end{array}
$$

We note that H_{0}, H_{1} have different domains D_{+}and D_{-}, respectively, $D_{+} \cap$ $D_{-}=\varnothing$.

Proof. The key to obtaining the estimates in the statement of the lemma is the Poisson equation,

$$
\begin{equation*}
B \chi(y)=\frac{1}{2}|p|^{2}\left(\bar{\sigma}^{2}-\sigma^{2}(y)\right), \tag{5.3}
\end{equation*}
$$

where B is the differential operator (generator of Y) defined in (1.2). We will need growth estimates for χ. In the case of $\beta=0$ (i.e., Y is an $\mathrm{O}-\mathrm{U}$ process), Section 5.2.2 of Fouque, Papanicolaou and Sircar [16] contains such estimates. Specifically, if $\sigma(y)$ is bounded, $|\chi(y)| \leq C(1+\log (1+|y|))$; if $\sigma(y)$ has polynomial growth, χ has polynomial growth estimates of the same order. The following growth estimates for the situation $\frac{1}{2} \leq \beta<1$ are derived in Appendix B:

$$
\begin{equation*}
\left|\chi^{\prime}(y)\right| \leq C_{1} y^{2 \sigma-1} \quad \text { as } y \rightarrow \infty, \text { for some positive constant } C_{1} . \tag{5.4}
\end{equation*}
$$

Therefore $|\chi(y)| \leq C(1+\log (1+|y|))$ if $\sigma(y)$ is bounded and $|\chi(y)| \leq \tilde{C}(1+$ $y^{2 \sigma}$) when $0<\sigma<1-\beta$.

We will make use of χ as a test function in the expressions for $H_{0} f$ and $H_{1} f$. However, χ does not have compact support. We choose a cut-off function φ to approximate it using localization arguments. Let nonnegative $\varphi(y) \in C^{\infty}\left(E_{0}\right)$ be such that $\varphi(y)=1$ when $|y| \leq 1$ and 0 when $|y|>2$. We take a sequence of $\xi_{n}(y)=\varphi\left(\frac{y}{n}\right) \chi(y)$, which are truncated versions of χ. Then

$$
\begin{aligned}
B \xi_{n}(y)= & \varphi\left(\frac{y}{n}\right) B \chi(y)+(m-y) \chi(y) n^{-1} \varphi^{\prime}\left(\frac{y}{n}\right) \\
& +\frac{1}{2} \nu^{2} y^{2 \beta} \chi(y) n^{-2} \varphi^{\prime \prime}\left(\frac{y}{n}\right)+\nu^{2} y^{2 \beta} \chi^{\prime}(y) n^{-1} \varphi^{\prime}\left(\frac{y}{n}\right) .
\end{aligned}
$$

Suppose $\sigma>0$. Noting that $|\varphi(y)|,\left|\varphi^{\prime}(y)\right|$ and $\left|\varphi^{\prime \prime}(y)\right|$ are uniformly bounded and are 0 when $|y|>2$, and using the growth estimates (5.4) for χ and χ^{\prime}, we get

$$
\begin{aligned}
\left|B \xi_{n}(y)\right| & \leq c y^{2 \sigma}\left(1+\frac{(m-y)}{n}+\left(\frac{y}{n}\right)^{2 \beta} n^{2 \beta-2}+y^{\beta-1}\left(\frac{y}{n}\right)^{\beta} n^{\beta-1}\right) 1_{\{y / n \leq 2\}} \\
& \leq c y^{2 \sigma} \quad \text { for all } n
\end{aligned}
$$

In the above, we used the fact that $\frac{y}{n} \leq 2$ and $\beta-1<0$. Similarly, if $\sigma(y)$ is bounded, that is, $\sigma=0$, we get $\left|B \xi_{n}(y)\right|$ is uniformly bounded for all n. Therefore, for large $y, \zeta(y)$ dominates $B \xi_{n}(y)$ uniformly in n in the following sense: there exists a sub-linear function $\psi: \mathbb{R} \mapsto \mathbb{R}_{+}$such that

$$
\sup _{n=1,2, \ldots}\left|B \xi_{n}(y)\right| \leq \psi(\zeta(y))
$$

With the above estimate, we have

$$
\begin{aligned}
H_{0} f(x) & \leq \limsup _{n \rightarrow \infty} \inf _{0<\theta<1} \sup _{y \in E_{0}}\left(\frac{1}{2}\left|\sigma(y) \partial_{x} f(x)\right|^{2}+B \xi_{n}(y)-\theta c_{0} \zeta(y)\right) \\
& \leq \frac{1}{2}\left|\bar{\sigma} \partial_{x} f(x)\right|^{2}
\end{aligned}
$$

Similarly, one can prove the case for $H_{1} f$.
By standard viscosity solution theory (e.g., [6]), the comparison principle holds for sub-solutions and super-solutions of

$$
\begin{aligned}
\partial_{t} u_{0} & =\frac{1}{2}\left|\bar{\sigma} \partial_{x} u_{0}\right|^{2}, \quad t>0 \\
u_{0}(0, x) & =h(x)
\end{aligned}
$$

and the solution is uniquely given by the Lax formula (see [10]),

$$
\begin{equation*}
u_{0}(t, x)=\sup _{x^{\prime} \in \mathbb{R}}\left\{h\left(x^{\prime}\right)-\frac{\left|x-x^{\prime}\right|^{2}}{2 \bar{\sigma}^{2} t}\right\} \tag{5.5}
\end{equation*}
$$

Putting together the above result and Lemmas 4.1 and 4.2, we get:
Lemma 5.2.

$$
\lim _{\varepsilon \rightarrow 0+} \sup _{|t|+|x|+|y|<c}\left|u_{\varepsilon}(t, x, y)-u_{0}(t, x)\right|=0 \quad \forall c>0
$$

where u_{0} is the solution of (3.7) and is given by (5.5).
5.2. Case $\delta=\varepsilon^{2}$. For each $f=f(x) \in D_{+}$and $\alpha=(\xi, \theta) \in \Lambda$, we choose our perturbed test function as

$$
f_{\varepsilon}(x, y):=f(x)+\varepsilon g(y)
$$

where $g(y)=(1-\theta) \xi(y)+\theta \zeta(y) ; \zeta(y)$ is defined as before in (5.1). Then

$$
\begin{aligned}
H_{\varepsilon} f_{\varepsilon}(x, y)= & \varepsilon\left[\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} f+\frac{1}{2} \sigma^{2}(y) \partial_{x x}^{2} f\right]+\frac{1}{2} \sigma^{2}(y)\left|\partial_{x} f\right|^{2} \\
& +e^{-g(y)} B^{\partial_{x} f(x)} e^{g}(y) \\
\leq & \varepsilon\left[\left(r-\frac{1}{2} \sigma^{2}(y)\right) \partial_{x} f+\frac{1}{2} \sigma^{2}(y) \partial_{x x}^{2} f\right]+\frac{1}{2} \sigma^{2}(y)\left|\partial_{x} f\right|^{2} \\
& +(1-\theta) e^{-\xi} B^{\partial_{x} f} e^{\xi}(y)+\theta e^{-\zeta} B^{\partial_{x} f} e^{\zeta}(y),
\end{aligned}
$$

where $B^{\partial_{x} f(x)}$ is the perturbed generator defined in (2.2). Recall that $\left\|\partial_{x} f\right\|_{\infty}+\left\|\partial_{x x}^{2} f\right\|_{\infty}<\infty$ by the choice of domain D_{+}. We can thus find a constant $c_{0}>0$ such that

$$
H_{\varepsilon} f_{\varepsilon}(x, y) \leq \frac{1}{2}\left|\sigma(y) \partial_{x} f(x)\right|^{2}+(1-\theta) e^{-\xi} B^{\partial_{x} f} e^{\xi}(y)+\theta e^{-\zeta} B^{\partial_{x} f} e^{\zeta}(y)+\varepsilon c_{0}
$$

Note that

$$
e^{-\zeta} B^{\partial_{x} f(x)} e^{\zeta}(y)=B \zeta(y)+\rho \sigma(y) \nu y^{\beta} \partial_{x} f(x) \partial_{y} \zeta(y)+\frac{1}{2} \nu^{2} y^{2 \beta}\left|\partial_{y} \zeta(y)\right|^{2},
$$

where

$$
\begin{equation*}
B \zeta(y)=-\zeta \cdot|y-m|^{\zeta}+\frac{1}{2} \nu^{2} y^{2 \beta} \zeta(\zeta-1)|y-m|^{\zeta-2} . \tag{5.6}
\end{equation*}
$$

The term $-\zeta(y)$ in $B \zeta(y)$ dominates growth in y from all other terms in $H_{\varepsilon} f_{\varepsilon}$ as $|y| \rightarrow \infty$. Since $\zeta(y) \rightarrow \infty$ as $|y| \rightarrow \infty, H_{\varepsilon} f_{\varepsilon}(x, y) \rightarrow-\infty$ as $|y| \rightarrow \infty$. We also have $f_{\varepsilon}(x, y)=f(x)+\varepsilon g(y) \geq f(x)-\varepsilon\|\xi\|_{\infty}$. Therefore, for each $c>0$, we can find $K \times \tilde{K} \in \mathcal{Q}$, such that

$$
\begin{equation*}
\left\{(x, y): H_{\varepsilon} f_{\varepsilon}(x, y) \geq-c\right\} \cap\left\{(x, y): f_{\varepsilon}(x, y) \leq c\right\} \subset K \times \tilde{K} \tag{5.7}
\end{equation*}
$$

verifying Condition 4.1(1).
The super-solution case follows similarly, where we define the perturbed test function as $f_{\varepsilon}(x, y)=f(x)+\varepsilon(1+\theta) \xi(y)-\varepsilon \theta \zeta(y)$, for each $f \in D_{-}$and $(\xi, \theta) \in \Lambda$.

Take

$$
\begin{aligned}
& H_{0}(x, p ; \xi, \theta):=\sup _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1-\theta) e^{-\xi} B^{p} e^{\xi}(y)+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right), \\
& H_{1}(x, p ; \xi, \theta):=\inf _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1+\theta) e^{-\xi} B^{p} e^{\xi}(y)-\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
H_{0} f(x) & :=\inf _{0<\theta<1} \inf _{\xi \in C_{c}^{\infty}\left(E_{0}\right)} H_{0}\left(x, \partial_{x} f ; \xi, \theta\right), \\
H_{1} f(x) & :=\sup _{0<\theta<1} \sup _{\xi \in C_{c}^{\infty}\left(E_{0}\right)} H_{1}\left(x, \partial_{x} f ; \xi, \theta\right) .
\end{aligned}
$$

Conditions 4.1 and 4.2 are satisfied by these choices of H_{0} and H_{1}. Note that, although $\frac{1}{2}|\sigma(y) p|^{2}$ is not bounded in y, its growth is at most $|y|^{2 \sigma}$ and is dominated by the growth of $\zeta(y)$ for $|y|$ large enough.

To verify Lemma 4.2, we develop useful sharp estimates for H_{0} and H_{1} next. Denote

$$
T(t) g(y):=E\left[g\left(Y_{t}\right) \mid Y(0)=y\right], \quad g \in C_{b}\left(E_{0}\right),
$$

and let \mathbb{B} be the weak infinitesimal generator for semigroup $\{T(t): t \geq 0\}$ in $C_{b}\left(E_{0}\right)$ (see page 244 of [13] for a definition of a weak infinitesimal generator). Let $D^{++}(\mathbb{B})$ denote the domain of \mathbb{B} with functions strictly bounded from below by a positive constant. Similarly define notations for \mathbb{B}^{p}, the weak infinitesimal generator corresponding to the process Y^{p} introduced in Section 3.2.2. For each $g \in D^{++}\left(\mathbb{B}^{p}\right) \subset C_{b}\left(E_{0}\right)$, since $\zeta>2 \sigma$, there exists compact $K \subset \subset E_{0}$ with

$$
\begin{aligned}
\sup _{y \in E_{0}} & \left(\frac{1}{2}|\sigma(y) p|^{2}+(1-\theta) \frac{\mathbb{B}^{p} g}{g}(y)+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) \\
& =\sup _{y \in K}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1-\theta) \frac{\mathbb{B}^{p} g}{g}(y)+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) .
\end{aligned}
$$

For each $\varepsilon>0$, by truncating and mollifying g, we can find a $\xi:=\xi_{\varepsilon} \in$ $C_{c}^{\infty}\left(E_{0}\right)$ such that

$$
H_{0}(x, p ; \xi, \theta) \leq \varepsilon+\sup _{y \in K}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1-\theta) \frac{\mathbb{B}^{p} g}{g}(y)+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) .
$$

Denote $p=\partial_{x} f(x)$. Then

$$
\begin{align*}
H_{0} f(x) \leq \inf _{0<\theta<1} \inf _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \sup _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}\right. & +(1-\theta) \frac{\mathbb{B}^{p} g}{g}(y) \\
& \left.+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) . \tag{5.8}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
H_{1} f(x) \geq \sup _{0<\theta<1} \sup _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \inf _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}\right. & +(1+\theta) \frac{\mathbb{B}^{p} g}{g}(y) \\
& \left.-\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) . \tag{5.9}
\end{align*}
$$

We define $I_{B}(\cdot ; p): \mathcal{P}\left(E_{0}\right) \mapsto \mathbb{R} \cup\{+\infty\}$ by

$$
I_{B}(\mu ; p):=-\inf _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \int_{E_{0}} \frac{\mathbb{B}^{p} g}{g} d \mu \wedge \int_{E_{0}} e^{-\zeta(y)} B^{p} e^{\zeta(y)} d \mu(y)
$$

However, we can find a sequence $\left\{g_{n}\right\} \subset D^{++}\left(\mathbb{B}^{p}\right)$ [take, e.g., $g_{n}:=e^{\zeta_{n}}$ where $\zeta_{n} \in C_{c}^{2}\left(E_{0}\right)$ are some smooth truncations of $\left.\zeta\right]$, such that

$$
\int_{E_{0}} e^{-\zeta(y)} B^{p} e^{\zeta(y)} d \mu(y) \geq \limsup _{n \rightarrow \infty} \int_{E_{0}} \frac{\mathbb{B}^{p} g_{n}}{g_{n}} d \mu
$$

Therefore we have

$$
\begin{equation*}
I_{B}(\mu ; p)=-\inf _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \int_{E_{0}} \frac{\mathbb{B}^{p} g}{g} d \mu \tag{5.10}
\end{equation*}
$$

Recall that Y^{p} denotes the process corresponding to generator B^{p} (or, equivalently, \mathbb{B}^{p}). It can be directly verified that Y^{p} has a unique stationary distribution π^{p} and that Y^{p} is reversible with respect to it (see Appendix C of this article). Let

$$
\mathcal{E}^{p}(f, g):=-\int f \mathbb{B}^{p} g d \pi^{p}
$$

be the Dirichlet form for Y^{p}. By the material in Section 7 of Stroock [30] (particularly Theorem 7.44; note that the diffusion generated by B^{p} has transition density with respect to Lebesgue measure, e.g., Theorem 4.3.5 of Knight [25]), we get

$$
\begin{equation*}
I_{B}(\mu ; p)=\mathcal{E}^{p}\left(\sqrt{\frac{d \mu}{d \pi^{p}}}, \sqrt{\frac{d \mu}{d \pi^{p}}}\right)=\frac{\nu^{2}}{2} \int_{0}^{\infty} y^{2 \beta}\left|\partial_{y} \sqrt{\frac{d \mu}{d \pi^{p}}}(y)\right|^{2} \pi^{p}(d y) ; \tag{5.11}
\end{equation*}
$$

see Appendix C. 3 for the last equality above. If μ in $I_{B}(\mu ; p)$ is not absolutely continuous with respect to π^{p}, then the right-hand quantity in (5.11) is viewed as $+\infty$. Again through Theorem 7.44 of [30], we also get that \bar{H}_{0}, defined in (2.3), can be expressed as

$$
\begin{align*}
\bar{H}_{0}(p)= & \sup _{\mu \in \mathcal{P}\left(\mathbb{R}_{+}\right)}\left(\frac{|p|^{2}}{2} \int_{\mathbb{R}_{+}} \sigma^{2} d \mu-I_{B}(\mu ; p)\right) \\
= & \sup _{h \in L^{2}\left(\pi^{p}\right),\|h\|_{L^{2}\left(\pi^{p}\right)}=1}\left(\frac{|p|^{2}}{2} \int_{\mathbb{R}_{+}} \sigma^{2}(y) h^{2}(y) \pi^{p}(d y)\right. \tag{5.12}\\
& \left.-\frac{\nu^{2}}{2} \int_{0}^{\infty} y^{2 \beta}|\partial h(y)|^{2} \pi^{p}(d y)\right) .
\end{align*}
$$

As in Lemma 11.35 of [13],

$$
\inf _{0<\theta<1} \inf _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \sup _{y \in E_{0}}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1-\theta) \frac{\mathbb{B}^{p} g}{g}(y)+\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right)=\bar{H}_{0}(p) .
$$

Using (5.8), this immediately gives

$$
H_{0} f(x) \leq \bar{H}_{0}(\partial f(x)), \quad f \in D_{+} .
$$

We will prove a similar inequality estimate for H_{1}, hence giving the following:
Lemma 5.3.

$$
\begin{array}{ll}
H_{1} f(x) \geq \bar{H}_{0}(\partial f(x)), & f \in D_{-} \\
H_{0} f(x) \leq \bar{H}_{0}(\partial f(x)), & f \in D_{+}
\end{array}
$$

It remains to prove the estimate for H_{1}. By the proof of Lemma B. 10 of [13],

$$
\begin{gather*}
\sup _{0<\theta<1} \sup _{g \in D^{++}\left(\mathbb{B}^{p}\right)} \inf _{y \in \mathbb{R}_{+}}\left(\frac{1}{2}|\sigma(y) p|^{2}+(1+\theta) \frac{\mathbb{B}^{p} g}{g}(y)-\theta e^{-\zeta} B^{p} e^{\zeta}(y)\right) \tag{5.13}\\
\quad \geq \inf _{\nu \in \mathcal{P}\left(\mathbb{R}_{+}\right),\langle\zeta, \nu\rangle<+\infty} \liminf _{t \rightarrow \infty} t^{-1} \log E^{\nu}\left[e^{(1 / 2)|p|^{2} \int_{0}^{t} \sigma^{2}\left(Y_{s}^{p}\right) d s}\right]
\end{gather*}
$$

We show that:

Lemma 5.4.

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t^{-1} \log E\left[e^{(1 / 2)|p|^{2} \int_{0}^{t} \sigma^{2}\left(Y_{s}^{p}\right) d s} \mid Y_{0}^{p}=y\right] \geq \bar{H}_{0}(p) \tag{5.14}
\end{equation*}
$$

Proof. The proof of (5.14) follows essentially the same argument used in Example B. 14 in the Appendix of [13], which we will outline. Two ingredients need to be emphasized. First, for each μ with $I_{B}(\mu ; p)<\infty$, by a mollification and truncation argument, we can find a sequence $\mu_{n}(d y)=$ $\frac{e^{h_{n}(y)}}{\int e^{h_{n}} d \pi^{p}} d \pi^{p}(y)$ with $h_{n}+c_{n} \in C_{c}^{\infty}\left(E_{0}\right)$ for some constant c_{n}, such that $\lim _{n \rightarrow \infty} I_{B}\left(\mu_{n} ; p\right)=I_{B}(\mu ; p)$. Second, for every $y \in E_{0}$ and every $h \in C_{c}^{\infty}\left(E_{0}\right)$, the following ergodic theorem holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} E\left[\int_{0}^{t} \sigma^{2}\left(\tilde{Y}_{s}^{h}\right) d s \mid \tilde{Y}_{0}^{h}=y\right]=\int_{-\infty}^{\infty} \sigma^{2}(z) d \tilde{\pi}^{h}(z) \tag{5.15}
\end{equation*}
$$

where

$$
d \tilde{Y}_{s}^{h}=\left(\left(m-\tilde{Y}_{s}^{h}\right)+\rho p \sigma\left(\tilde{Y}_{s}^{h}\right) \nu\left(\tilde{Y}_{s}^{h}\right)^{\beta}+\nu^{2}\left(\tilde{Y}_{s}^{h}\right)^{2 \beta} \partial h\left(\tilde{Y}_{s}^{h}\right)\right) d s+\nu\left(\tilde{Y}_{s}^{h}\right)^{\beta} d W_{s}^{2}
$$

and where $\tilde{\pi}^{h}$ is the unique stationary distribution of \tilde{Y}^{h}. We will prove (5.15) in Lemma 5.5.

The process \tilde{Y}^{h} is Y^{p} under the Girsanov transformation of measures

$$
\left.\frac{d P^{h}}{d P}\right|_{\mathcal{F}_{t}}=\exp \left\{h\left(Y_{t}\right)-h\left(Y_{0}\right)-\int_{0}^{t} e^{-h} B^{p} e^{h}\left(Y_{s}\right) d s\right\}
$$

where P and P^{h} refer to the probability measures of the processes Y^{p} and \tilde{Y}^{h}, respectively. The invariant distribution of \tilde{Y}^{h} is then

$$
d \tilde{\pi}^{h}=\frac{e^{2 h} d \pi^{p}}{\int e^{2 h} d \pi^{p}}
$$

We can write

$$
\liminf _{t \rightarrow+\infty} \frac{1}{t} \log E^{P}\left[\left.\exp \left\{\frac{1}{2}|p|^{2} \int_{0}^{t} \sigma^{2}\left(Y_{s}^{p}\right) d s\right\} \right\rvert\, Y_{0}^{p}=y\right]
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \frac{1}{t} \log E^{P^{h}}\left[\operatorname { e x p } \left\{\frac{1}{2}|p|^{2} \int_{0}^{t} \sigma^{2}\left(\tilde{Y}_{s}^{h}\right) d s\right.\right. \\
& -\left(h\left(\tilde{Y}_{t}^{h}\right)-h\left(\tilde{Y}_{0}^{h}\right)\right. \\
& \left.\left.\left.\quad-\int_{0}^{t} e^{-h} B^{p} e^{h}\left(\tilde{Y}_{s}^{h}\right) d s\right)\right\} \mid \tilde{Y}_{0}^{h}=y\right] \\
& \geq \lim _{t \rightarrow \infty} \frac{1}{t} E^{P^{h}\left[\frac{1}{2}|p|^{2} \int_{0}^{t} \sigma^{2}\left(\tilde{Y}_{s}^{h}\right) d s\right.} \\
& \quad-\left(h\left(\tilde{Y}_{t}^{h}\right)-h\left(\tilde{Y}_{0}^{h}\right)\right. \\
& \\
& \left.\left.\quad-\int_{0}^{t} e^{-h} B^{p} e^{h}\left(\tilde{Y}_{s}^{h}\right) d s\right) \mid \tilde{Y}_{0}^{h}=y\right]
\end{aligned}
$$

(by Jensen's inequality)

$$
\begin{aligned}
= & \frac{1}{2}|p|^{2} \int_{-\infty}^{\infty} \sigma^{2}(z) d \tilde{\pi}^{h}(z) \\
& \left.+\int_{-\infty}^{\infty} e^{-h} B^{p} e^{h}(z) d \tilde{\pi}^{h}(z) \quad \text { (by ergodicity of } \tilde{Y}^{h}\right) \\
= & \frac{1}{2}|p|^{2} \int_{-\infty}^{\infty} \sigma^{2}(z) d \tilde{\pi}^{h}(z)-\mathcal{E}^{p}\left(\sqrt{\frac{d \tilde{\pi}^{h}}{d \pi^{p}}}, \sqrt{\frac{d \tilde{\pi}^{h}}{d \pi^{p}}}\right) \\
= & \frac{1}{2}|p|^{2} \int_{-\infty}^{\infty} \sigma^{2}(z) d \tilde{\pi}^{h}(z)-I\left(\tilde{\pi}^{h} ; p\right)
\end{aligned}
$$

By arbitrariness of $h,(5.14)$ follows. To complete the proof, we finally check that:

Lemma 5.5. Equation (5.15) holds.
Proof. By Itô's formula,

$$
E\left[\zeta\left(\tilde{Y}_{t}^{h}\right)\right]=E\left[\zeta\left(\tilde{Y}_{0}^{h}\right)\right]+E\left[\int_{0}^{t} \tilde{B}^{h} \zeta\left(\tilde{Y}_{s}^{h}\right)\right] d s
$$

where $\tilde{B}^{h} \zeta(y)=\left(m-y+\rho p \sigma(y) \nu y^{\beta}+\nu^{2} y^{2 \beta} \partial_{y} h(\underset{\sim}{x})\right) \zeta^{\prime}(y)+\frac{1}{2} \nu^{2} y^{2 \beta} \zeta^{\prime \prime}(y)$. As in $(5.6),-\zeta(y)$ is the dominating growth term in $\tilde{B}^{h} \zeta(y)$. Therefore, defining a family of mean occupation measure,

$$
\tilde{\pi}^{h}(t, y, A):=E\left[t^{-1} \int_{0}^{t} \mathbf{1}_{\left\{\tilde{Y}_{s}^{h} \in A\right\}} d s \mid \tilde{Y}_{0}^{h}=y\right]
$$

we have that

$$
\sup _{t>0} \int_{z} \zeta(z) \tilde{\pi}^{h}(t, y, d z)=\sup _{t>0} t^{-1} E\left[\int_{0}^{t} \zeta\left(\tilde{Y}_{s}^{h}\right) d s \mid \tilde{Y}_{0}^{h}=y\right] \leq C(y ; h(\cdot))<\infty .
$$

Hence $\left\{\tilde{\pi}^{h}(t, y, \cdot): t>0\right\}$ is tight and along convergent subsequences and corresponding limiting point $\tilde{\pi}^{h}$, we have

$$
\begin{equation*}
E\left[t^{-1} \int_{0}^{t} \varphi\left(\tilde{Y}_{s}^{h}\right) d s \mid \tilde{Y}_{0}^{h}=y\right] \rightarrow \int_{z} \varphi d \tilde{\pi}^{h}, \quad \varphi \in C_{b}\left(E_{0}\right) \tag{5.16}
\end{equation*}
$$

Such $\tilde{\pi}^{h}$ is necessarily a stationary distribution satisfying $\int \tilde{B}^{h} \psi d \tilde{\pi}^{h}=0$ for all $\psi \in C_{c}^{2}\left(E_{0}\right)$. Uniqueness of such probability measure can be proved by an argument similar to the one in Appendix C. We thus conclude that there is only one such $\tilde{\pi}^{h}$ and that convergence (5.16) occurs along the whole sequence, not just subsequences. Furthermore, the growth of σ^{2} is dominated by ζ, and so by uniform integrability argument, (5.15) holds.

Now (5.9), (5.13) and (5.14) together give us the estimate for H_{1} in Lemma 5.3.

From (2.4), we see that $\bar{H}_{0}(p)$ is convex in $p \in \mathbb{R}$. Let us denote its Legendre transform as \bar{L}_{0}, then we have the following.

Lemma 5.6. The unique viscosity solution to (3.13) is

$$
\begin{equation*}
u_{0}(t, x):=\sup _{x^{\prime} \in \mathbb{R}}\left\{h\left(x^{\prime}\right)-t \bar{L}_{0}\left(\frac{x-x^{\prime}}{t}\right)\right\} . \tag{5.17}
\end{equation*}
$$

Moreover, u_{ε} converges uniformly over compact sets in $[0, T] \times \mathbb{R} \times E_{0}$ to u_{0}.
Proof. We know that u_{0}, defined by (5.17), solves (3.13) by the Lax formula. That u_{0} is the unique solution follows from standard viscosity comparison principle with convex Hamiltonians. The convergence result follows from multi-scale viscosity convergence results developed in Section 4, Lemmas 4.1 and 4.2.
6. Large deviation, asymptotic for option prices and implied volatilities. We finish the proof of Theorem 2.1, Corollary 2.1 and Theorem 2.2.

6.1. A large deviation theorem.

Proof of Theorem 2.1. From the previous section we have $u_{\varepsilon}(t, x, y) \rightarrow$ $u_{0}(t, x)$ as $\varepsilon \rightarrow 0$ for each fixed $(t, x, y) \in[0, T] \times \mathbb{R} \times E_{0}$. All we need is exponential tightness of $\left\{X_{\varepsilon, \delta, t}\right\}$ to apply Bryc's lemma and to conclude our proof. This is obtained as follows.

Let $f(x)=\log \left(1+x^{2}\right)$ and $\zeta(y)$ be defined as in (5.1). Take

$$
f_{\varepsilon}(x, y)= \begin{cases}f(x)+\varepsilon^{3} \zeta(y), & \text { for the case } \delta=\varepsilon^{4}, \\ f(x)+\varepsilon \zeta(y), & \text { for the case } \delta=\varepsilon^{2} .\end{cases}
$$

Note that $f(x)$ is an increasing function of $|x|$ and $\zeta(\cdot) \geq 0$; therefore, for any $c>0$ there exists a compact set $K_{c} \subset \mathbb{R}$ such that $f_{\varepsilon}(x, y)>c$ when $x \notin K_{c}$. We next compute $H_{\varepsilon} f_{\varepsilon}(x, y)$ [see (3.5)]. Observe that since $\left\|\partial_{x} f\right\|_{\infty}+$ $\left\|\partial_{x x}^{2} f\right\|_{\infty}<\infty$, by our choice of $\zeta(\cdot), H_{\varepsilon} f_{\varepsilon}(x, y) \rightarrow-\infty$ as $|y| \rightarrow \infty$. Therefore $\sup _{x \in R, y \in R} H_{\varepsilon} f_{\varepsilon}(x, y)=C<\infty$. For simplicity, we denote $X_{\varepsilon, \delta, t}$ by $X_{\varepsilon, t}$. The P and E below denote probability and expectation conditioned on (X, Y) starting at (x, y).

$$
\begin{aligned}
& P\left(X_{\varepsilon, t} \notin K_{c}\right) e^{\left(c-f_{\varepsilon}(x, y)-t C\right) / \varepsilon} \\
& \leq E\left[\operatorname { e x p } \left\{\frac{f_{\varepsilon}\left(X_{\varepsilon, t}, Y_{\varepsilon, t}\right)}{\varepsilon}-\frac{f_{\varepsilon}(x, y)}{\varepsilon}\right.\right. \\
& \left.\left.\quad-\int_{0}^{t} e^{-f_{\varepsilon}\left(X_{\varepsilon, s}, Y_{\varepsilon, s}\right) / \varepsilon} A_{\varepsilon} e^{f_{\varepsilon}\left(X_{\varepsilon, s}, Y_{\varepsilon, s}\right) / \varepsilon} d s\right\}\right] \\
& \leq 1 .
\end{aligned}
$$

In the above inequalities, the term within expectation in the second line is a nonnegative local martingale (and hence a supermartingale); see [9], Lemma 4.3.2. We apply the optional sampling theorem to get the last inequality above. Therefore

$$
\varepsilon \log P\left(X_{\varepsilon, t} \notin K_{c}\right) \leq t C+f_{\varepsilon}(x, y)-c \leq \text { const }-c
$$

giving us exponential tightness of $X_{\varepsilon, t}$.
Let $u_{0}^{h, r}$ denote the limit of $u_{\varepsilon, \delta}$ when $u_{\varepsilon, \delta}(0, x, y)=h(x)$ and $\delta=\varepsilon^{r}$, $r=2,4$. Applying Bryc's lemma we get, $\left\{X_{\varepsilon, \varepsilon^{r}, t}\right\}$ for $r=2,4$ satisfies a LDP with speed $1 / \varepsilon$ and rate function

$$
\begin{equation*}
I_{r}\left(x ; x_{0}, t\right):=\sup _{h \in C_{b}(R)}\left\{h(x)-u_{0}^{h, r}\left(t, x_{0}\right)\right\} . \tag{6.1}
\end{equation*}
$$

In Appendix D we check that $I_{2}\left(x ; x_{0}, t\right)=t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right)$ where \bar{L} is the Legendre transform of \bar{H}_{0} defined in (2.3), and $I_{4}=\frac{\left|x_{0}-x\right|^{2}}{2 \bar{\sigma}^{2} t}$.

6.2. Option prices.

Proof of Corollary 2.1. We follow the proof of Corollary 1.3 in [12] and show that $\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log E\left[\left(S_{\varepsilon, t}-K\right)^{+}\right]$is bounded above and below by $-I_{r}\left(\log K ; x_{0}, t\right)$.

Recall that we are considering out-of-the-money call options and hence $x_{0}<\log K$ [see (2.9)]. Since our rate functions $I_{r}\left(x ; x_{0}, t\right)$, for both $r=2,4$, are nonnegative, convex functions with $I_{r}\left(x_{0} ; x_{0}, t\right)=0$, they are consequently monotonically increasing functions of x when $x \geq x_{0}$. Using this fact and the continuity of the rate functions, the proof of the lower bound follows verbatim from the proof in [12]. We refer the reader to [12] for details.

The upper bound follows from [12] once we justify the following limit: for any $p>1$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log E\left[S_{\varepsilon, \delta, t}^{p}\right]=0 \quad \text { for both } \delta=\varepsilon^{4} \text { and } \delta=\varepsilon^{2} \tag{6.2}
\end{equation*}
$$

Recall the operator $A_{\varepsilon, \delta}$ defined at the beginning of Section 3. By a slight abuse of notation, we can use $A_{\varepsilon, \delta}$ to denote the operator acting on the unbounded function $e^{p x}$ given below:

$$
A_{\varepsilon, \delta} e^{p x}=\varepsilon\left(\left(r-\frac{1}{2} \sigma^{2}(y)\right) p e^{p x}+\frac{1}{2} \sigma^{2}(y) p^{2} e^{p x}\right)
$$

Let

$$
M_{t}:=\exp \left\{p X_{\varepsilon, \delta, t}-p X_{\varepsilon, \delta, 0}-\int_{0}^{t} e^{-p X_{\varepsilon, \delta, s}} A_{\varepsilon, \delta} e^{p X_{\varepsilon, \delta, s}} d s\right\}
$$

Then M_{t} is a nonnegative local martingale (supermartingale); this follows from the proof of [9], Lemma 4.3.2. By the optional sampling theorem,

$$
E M_{t} \leq 1
$$

Recall that $X_{\varepsilon, \delta, t}=\log S_{\varepsilon, \delta, t}$, then

$$
\begin{aligned}
E\left[S_{\varepsilon, \delta, t}^{p / 2}\right] & =E\left[e^{p / 2 X_{\varepsilon, \delta, t}}\right] \\
& \leq\left(E M_{t}\right)^{1 / 2}\left(E\left[\exp \left\{p X_{\varepsilon, \delta, 0}+\int_{0}^{t} e^{-p X_{\varepsilon, \delta, s}} A_{\varepsilon, \delta} e^{p X_{\varepsilon, \delta, s}} d s\right\}\right]\right)^{1 / 2}
\end{aligned}
$$

(by Hölder's inequality)

$$
\leq 1 \cdot e^{p x_{0} / 2}\left(E\left[\exp \left\{\int_{0}^{t} e^{-p X_{\varepsilon, \delta, s}} A_{\varepsilon, \delta} e^{p X_{\varepsilon, \delta, s}} d s\right\}\right]\right)^{1 / 2}
$$

We simplify and bound the right-hand side of the above inequality:

$$
\begin{aligned}
E & {\left[\exp \left\{\int_{0}^{t} e^{-p X_{\varepsilon, \delta, s}} A_{\varepsilon, \delta} e^{p X_{\varepsilon, \delta, s}} d s\right\}\right] } \\
& =E\left[\exp \left\{\int_{0}^{t} \varepsilon\left(\left(r-\frac{1}{2} \sigma^{2}\left(Y_{\varepsilon, \delta, s}\right)\right) p+\frac{1}{2} \sigma^{2}\left(Y_{\varepsilon, \delta, s}\right) p^{2}\right) d s\right\}\right] \\
= & e^{\varepsilon r p t} E\left[\exp \left\{\delta\left(p^{2}-p\right) \int_{0}^{\varepsilon t / \delta} \sigma^{2}\left(Y_{\varepsilon, \delta,(\delta / \varepsilon) u}\right) d u\right\}\right] \\
& \left(\text { by change of variable } u=\frac{\varepsilon}{\delta} s ; \text { recall that } \delta=\varepsilon^{2} \text { or } \varepsilon^{4}\right) \\
= & e^{\varepsilon r p t} E\left[\exp \left\{\delta\left(p^{2}-p\right) \int_{0}^{\varepsilon t / \delta} \sigma^{2}\left(Y_{u}\right) d u\right\}\right]
\end{aligned}
$$

where Y_{u} is the process with generator B given in (1.2). By convexity of exponential functions we get

$$
\begin{align*}
& E\left[\exp \left\{\int_{0}^{t} e^{-p X_{\varepsilon, \delta, s}} A_{\varepsilon, \delta} e^{p X_{\varepsilon, \delta, s}} d s\right\}\right] \tag{6.4}\\
& \quad \leq e^{\varepsilon r p t} E\left[\frac{\delta}{t \varepsilon} \int_{0}^{\varepsilon t / \delta} \exp \left\{t \varepsilon\left(p^{2}-p\right) \sigma^{2}\left(Y_{u}\right)\right\} d u\right] .
\end{align*}
$$

Since $\delta=\varepsilon^{2}$ or $\varepsilon^{4}, \varepsilon / \delta \rightarrow \infty$ as $\varepsilon \rightarrow 0$. Therefore, by the ergodicity of Y and $\exp \left\{t\left(p^{2}-p\right) \sigma^{2}(y)\right\} \in L^{1}(d \pi)$ [this follows from an argument similar to proof of Lemma 5.5; note that $\sigma<1-\beta$ by Assumption 1.1(3)], the righthand side of the above inequality (6.4) is uniformly bounded for all $\varepsilon>0$. Putting this together with (6.3), we get (6.2).

6.3. Implied volatilities.

Proof of Theorem 2.2. Recall that $X_{\varepsilon, t}=\log S_{\varepsilon, t}$ and $x_{0}=\log S_{0}$. Note that we have dropped the subscript δ in the notation and the dependence on $\delta=\varepsilon^{4}$ or ε^{2} should be understood by context. Our first step is to show that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \sigma_{\varepsilon}\left(t, \log K, x_{0}\right) \sqrt{\varepsilon t}=0 \tag{6.5}
\end{equation*}
$$

Once we have shown this, the rest of the proof is identical to that of Corollary 1.4 in [12].

By the definition of implied volatility,

$$
\begin{align*}
E\left[\left(S_{\varepsilon, t}-K\right)^{+}\right]= & e^{r \varepsilon t} S_{0} \Phi\left(\frac{x_{0}-\log K+r \varepsilon t+\sigma_{\varepsilon}^{2} \varepsilon t / 2}{\sigma_{\varepsilon} \sqrt{\varepsilon t}}\right) \tag{6.6}\\
& -K \Phi\left(\frac{x_{0}-\log K+r \varepsilon t-\sigma_{\varepsilon}^{2} \varepsilon t / 2}{\sigma_{\varepsilon} \sqrt{\varepsilon t}}\right),
\end{align*}
$$

where Φ is the Gaussian cumulative distribution function. Let $l \geq 0$ be the limit of $\sigma_{\varepsilon} \sqrt{\varepsilon t}$ along a converging subsequence. If $\lim _{\varepsilon \rightarrow 0^{+}}$of the left-hand side of (6.6) is 0 , then l satisfies

$$
S_{0} \Phi\left(\frac{x_{0}-\log K}{l}+\frac{l}{2}\right)-K \Phi\left(\frac{x_{0}-\log K}{l}-\frac{l}{2}\right)=0 .
$$

The only solution of the above equation is $l=0$, and thus we get (6.5).
We therefore need to prove

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} E\left[\left(S_{\varepsilon, t}-K\right)^{+}\right]=0 \tag{6.7}
\end{equation*}
$$

By (1.5a) we have

$$
S_{\varepsilon, t}-K=S_{0}-K+\varepsilon \int_{0}^{t} r S_{\varepsilon, t} d t+\sqrt{\varepsilon} \int_{0}^{t} S_{\varepsilon, t} \sigma\left(Y_{\varepsilon, t}\right) d W_{t}^{(1)} .
$$

It can be verified that $E\left[\left(S_{\varepsilon, t}-K\right)-\left(S_{0}-K\right)\right]^{2} \rightarrow 0$, as $\varepsilon \rightarrow 0$, for both cases $\delta=\varepsilon^{4}$ and $\delta=\varepsilon^{2}$. Therefore

$$
\lim _{\varepsilon \rightarrow 0^{+}} E\left[\left(S_{\varepsilon, t}-K\right)^{+}\right]=E\left[\left(S_{0}-K\right)^{+}\right]=0
$$

as $S_{0}<K$ (this is an out-of-the-money call option).
The same formula is obtained when $S_{0}>K$ by considering out-of-themoney put options. We finally turn our attention to at-the-money implied volatility. The asymptotic limit of at-the-money (ATM) volatility can be shown to be $\bar{\sigma}^{2}$, that is,

$$
\lim _{\varepsilon \rightarrow 0} \sigma_{r, \varepsilon}^{2}\left(t, \log K, x_{0}\right)=\bar{\sigma}^{2} \quad \text { when } x_{0}=\log K ; r=2,4
$$

by a similar argument as in [12], Lemma 2.6. The continuity, at-the-money, of the limiting implied volatility, that is,

$$
\lim _{\left|\log K-x_{0}\right| \rightarrow 0} \frac{\left(\log K-x_{0}\right)^{2}}{2 I_{r}\left(\log K, x_{0}, t\right) t}=\bar{\sigma}^{2}
$$

is obvious in the $r=4$ regime, but is more involved in the $r=2$ regime. We conjecture that it is true, that is,

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{z^{2}}{2 t^{2} \bar{L}_{0}(z / t)}=\bar{\sigma}^{2} \tag{6.8}
\end{equation*}
$$

and we briefly indicate an outline of the proof. Let

$$
\Lambda_{T}(p):=T^{-1} \log E\left[e^{\int_{0}^{T}} \rho p \sigma\left(Y_{s}\right) d W_{s}^{(2)}+\left(\left(1-\rho^{2}\right) / 2\right)|p|^{2} \int_{0}^{T} \sigma^{2}\left(Y_{s}\right) d s\right],
$$

so that $\bar{H}_{0}(p)=\lim _{T \rightarrow \infty} \Lambda(p)$. The result (6.8) follows if $\bar{H}_{0}(p)$ is twice differentiable in a neighborhood of $p=0$ and $H_{0}^{\prime \prime}(0)=\frac{\bar{\sigma}^{2}}{2}$. It can easily be checked that $\lim _{T \rightarrow \infty} \Lambda_{T}^{\prime \prime}(0)=\frac{\bar{\sigma}^{2}}{2}$. The main difficulty is to get a uniform bound on $\Lambda_{T}^{\prime \prime \prime}(p)$ for all T and in a neighborhood of $p=0$. Obtaining such a uniform bound on $\Lambda_{T}^{\prime \prime \prime}(p)$ involves tedious calculations but should follow from the multiplicative ergodic properties of the Y process (see [26]).

In the following Appendix, we collect some material regarding 1-D diffusions Y and technical but elementary estimates.

APPENDIX A: POSITIVITY OF THE Y PROCESS

In this section we prove positivity of the Y process when $\frac{1}{2}<\beta<1$ in (1.1b). Assume $m>0$ and $Y_{0}>0$. Recall the scale function $s(y)$ defined in the Introduction, and let $S(y)=\int_{1}^{y} s(y) d y$. By Lemma 6.1(ii) in Karlin and Taylor [24], to prove that Y_{t} remains positive a.s. for all $t \geq 0$, it is sufficient to show that

$$
\lim _{\varepsilon \rightarrow 0^{+}} S(\varepsilon)=-\infty
$$

For $0<\varepsilon \ll 1$,

$$
\begin{aligned}
-S(\varepsilon) & =\int_{\varepsilon}^{1} s(y) d y=\int_{\varepsilon}^{1} \exp \left\{-\int_{1}^{y} \frac{2(m-z)}{\nu^{2}|z|^{2 \beta}} d z\right\} d y \\
& =C \int_{\varepsilon}^{1} \exp \left\{\frac{2 m}{\nu^{2}(2 \beta-1) y^{2 \beta-1}}+\frac{y^{2-2 \beta}}{\nu^{2}(1-\beta)}\right\} d y
\end{aligned}
$$

(where C is a positive constant and $2 \beta-1,1-\beta>0$)
$=\int_{2 \varepsilon}^{1}($ positive integrand $) d y$
$+C \int_{\varepsilon}^{2 \varepsilon} \exp \left\{\frac{2 m}{\nu^{2}(2 \beta-1) y^{2 \beta-1}}+\frac{y^{2-2 \beta}}{\nu^{2}(1-\beta)}\right\} d y$
$\geq C \varepsilon \exp \left\{\frac{2 m}{\nu^{2}(2 \beta-1)(2 \varepsilon)^{2 \beta-1}}\right\} \rightarrow+\infty$
as $\varepsilon \rightarrow 0^{+}$, provided $m>0$. Therefore $\lim _{\varepsilon \rightarrow 0^{+}} S(\varepsilon)=-\infty$.

APPENDIX B: GROWTH ESTIMATES FOR SOLUTIONS TO POISSON EQUATIONS

Assume χ satisfies the Poisson equation

$$
B \chi(y)=\frac{1}{2}|p|^{2}\left(\bar{\sigma}^{2}-\sigma^{2}(y)\right),
$$

where $\bar{\sigma}^{2}$, defined in (2.1), is the average of $\sigma^{2}(y)$ with respect to the invariant distribution $\pi(d y)$, given in (1.4), of the Y process. In this section we find growth estimates for χ.

The right-hand side of the above Poisson equation is centered with respect to the invariant distribution $\pi(d y)=\frac{m(y)}{Z} d y$ [given in (1.4)], and so

$$
\begin{equation*}
\int_{0}^{\infty} m(z)\left(\bar{\sigma}^{2}-\sigma^{2}(z)\right) d z=0 \tag{B.1}
\end{equation*}
$$

where

$$
m(y)=\frac{1}{\nu^{2} y^{2 \beta}} \exp \left\{\int_{1}^{y} \frac{2(m-z)}{\nu^{2} z^{2 \beta}} d z\right\} .
$$

By (1.3),

$$
\begin{aligned}
\chi(y) & :=\int d S(y) \int_{0}^{y}|p|^{2}\left(\bar{\sigma}^{2}-\sigma^{2}(z)\right) d M(z) \\
& =\int \frac{1}{y^{2 \beta} m(y)}\left[\int^{y} \frac{|p|^{2} m(z)\left(\bar{\sigma}^{2}-\sigma^{2}(z)\right)}{\nu^{2}} d z\right] d y
\end{aligned}
$$

is a solution up to a constant, and so

$$
\begin{aligned}
\chi^{\prime}(y) & =\frac{|p|^{2}}{\nu^{2} y^{2 \beta} m(y)}\left[\int_{0}^{y} m(z)\left(\bar{\sigma}^{2}-\sigma^{2}(z)\right) d z\right] \\
& =-\frac{|p|^{2}}{\nu^{2} y^{2 \beta} m(y)}\left[\int_{y}^{\infty} m(z)\left(\bar{\sigma}^{2}-\sigma^{2}(z)\right) d z\right]
\end{aligned}
$$

The last equality is by the centering condition (B.1). Given the bounds on $\sigma(y)$ in Assumption 1.1(3), we can compute the following bounds where the constants, denoted by c, are positive and vary from line to line:

$$
\begin{aligned}
\left|\chi^{\prime}(y)\right| & \leq \frac{c|p|^{2}}{\nu^{2} y^{2 \beta} m(y)} \int_{y}^{\infty} z^{2 \sigma} m(z) d z \\
& =\frac{c|p|^{2} e^{\alpha y^{1-2 \beta}}}{\nu^{2} e^{-\left(y^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)}} \int_{y}^{\infty} z^{2 \sigma-2 \beta} e^{-\alpha z^{1-2 \beta}} e^{-\left(z^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)} d z
\end{aligned}
$$

where $\alpha=\frac{2 m}{\nu^{2}(2 \beta-1)}>0$. Bounding $e^{-\alpha z^{1-2 \beta}}$ above by 1 we get

$$
\begin{aligned}
\left|\chi^{\prime}(y)\right| & \leq \frac{c|p|^{2} e^{\alpha y^{1-2 \beta}}}{\nu^{2} e^{-\left(y^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)}} \int_{y}^{\infty} z^{2 \sigma-2 \beta} e^{-\left(z^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)} d z \\
& =\frac{c|p|^{2} e^{\alpha y^{1-2 \beta}}}{\nu^{2} e^{-\left(y^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)}} \int_{y^{2-2 \beta}}^{\infty} u^{(2 \sigma-1) /(2-2 \beta)} \exp \left\{-\frac{u}{\nu^{2}(1-\beta)}\right\} d u
\end{aligned}
$$

(by change of variable $u=z^{2-2 \beta}$)

$$
\leq \frac{c|p|^{2} e^{\alpha y^{1-2 \beta}}}{\nu^{2} e^{-\left(y^{2-2 \beta}\right) /\left(\nu^{2}(1-\beta)\right)}}\left[y^{2 \sigma-1} \exp \left\{-\frac{y^{2-2 \beta}}{\nu^{2}(1-\beta)}\right\}\right]
$$

In the last inequality we used $\int_{a}^{\infty}\left[u^{(2 \sigma-1) /(2-2 \beta)} e^{-u /\left(\nu^{2}(1-\beta)\right)}\right] d u \leq \nu^{2}(1-$ $\beta) a^{(2 \sigma-1) /(2-2 \beta)} e^{-a /\left(\nu^{2}(1-\beta)\right)}\left(\right.$ since $\left.\frac{2 \sigma-1}{2-2 \beta}<0\right)$. Therefore

$$
\left|\chi^{\prime}(y)\right| \leq \frac{c|p|^{2} e^{\alpha y^{1-2 \beta}}}{\nu^{2}} y^{2 \sigma-1} \sim c|p|^{2} y^{2 \sigma-1} \quad \text { as } y \rightarrow \infty
$$

since $e^{\alpha y^{1-2 \beta}} \sim O(1)$ as $y \rightarrow \infty$.

APPENDIX C: Y^{P} PROCESS

Fix $p \in \mathbb{R}$. Denote $\mu_{p}(y):=(m-y)+\rho p \sigma(y) \nu y^{\beta}$, and let Y^{p} be the process with generator

$$
B^{p} g=\mu_{p}(y) \partial_{y} g+\frac{1}{2} \nu^{2} y^{2 \beta} \partial_{y y}^{2} g, \quad g \in C_{c}^{2}\left(E_{0}\right)
$$

In this section we calculate the unique stationary distribution and Dirichlet form of the process Y^{p}, and we show that it is a reversible process. To this end, we first compute the scale function and speed measure.

The scale function and speed measure for the Y^{p} process are given by

$$
s_{p}(y)=\exp \left\{-\int_{1}^{y} \frac{2 \mu_{p}(z)}{\nu^{2} z^{2 \beta}}\right\} \quad \text { and } \quad m_{p}(y)=\frac{2}{\nu^{2} y^{2 \beta} s_{p}(y)}
$$

Evaluating the integral in $s_{p}(y)$ we get (the C below denotes a positive constant that varies from line to line)

$$
s_{p}(y)= \begin{cases}C \exp \left\{-\frac{2 m \log y}{\nu^{2}}+\frac{y^{2-2 \beta}}{\nu^{2}(1-\beta)}-\frac{2 \rho p}{\nu} J\right\}, & \text { if } \beta=\frac{1}{2} \\ C \exp \left\{\frac{2 m}{\nu^{2}(2 \beta-1) y^{2 \beta-1}}+\frac{y^{2-2 \beta}}{\nu^{2}(1-\beta)}-\frac{2 \rho p}{\nu} J\right\},\end{cases}
$$

where

$$
J(y)=\int^{y} \frac{\sigma(z)}{z^{\beta}} d z
$$

Due to bounds on σ given in Assumption 1.1(3), there exist $C_{1}, C_{2}>0$ such that

$$
C_{1} y^{1-\beta} \leq J(y) \leq C_{2} y^{1-\beta+\sigma}
$$

where

$$
\begin{cases}0<1-\beta \leq 1-\beta+\sigma \leq 1, & \text { if } \frac{1}{2} \leq \beta<1 \\ 1=1-\beta \leq 1-\beta+\sigma<2, & \text { if } \beta=0\end{cases}
$$

Therefore

$$
\begin{cases}\frac{1}{s_{p}(y)} \rightarrow 0 \text { when } y \rightarrow 0 \text { or } y \rightarrow \infty, & \text { if } \frac{1}{2} \leq \beta<1 \tag{C.1}\\ \frac{1}{s_{p}(y)} \rightarrow 0 \text { when }|y| \rightarrow \infty, & \text { if } \beta=0\end{cases}
$$

Define for $y \in E_{0}$,

$$
S_{p}(y):=\int_{1}^{y} s_{p}(z) d z
$$

Observe that $S_{p}(y) \rightarrow-\infty$ as y approaches the left endpoint of E_{0} and $S_{p}(y) \rightarrow+\infty$ as $y \rightarrow \infty$.
C.1. Stationary distribution. Let π^{p} be an invariant distribution of the process Y^{p}. Suppose it has density function $\Psi(y)$, that is, $d \pi^{p}(y)=\Psi(y) d y$, then Ψ is uniquely determined as the solution of

$$
\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left(\nu^{2} y^{2 \beta} \Psi(y)\right)-\frac{\partial}{\partial y}\left(\mu_{p}(y) \Psi(y)\right)=0
$$

satisfying $\Psi(y) \geq 0$ for all y and $\int_{E_{0}} \Psi(y) d y=1$. Solving the above differential equation, we get $\Psi(y)=m_{p}(y)\left[C_{1} S_{p}(y)+C_{2}\right]$. Since Ψ is nonnega-
tive, and $S_{p}(y) \rightarrow-\infty$ as y approaches the left boundary of E_{0}, we take $C_{1}=0$. The other constant C_{2} is uniquely determined by the condition $\int_{E_{0}} \Psi(y) d y=1$. Therefore π^{p} is the unique invariant distribution of Y^{p} and is given by

$$
\begin{equation*}
d \pi^{p}(y)=\Psi(y) d y=\frac{m_{p}(y)}{Z_{1}} d y=\frac{2}{Z_{1} \nu^{2} y^{2 \beta} s_{p}(y)} d y \quad \text { for } y \in E_{0} \tag{C.2}
\end{equation*}
$$

where $Z_{1}=\int_{E_{0}} m_{p}(y) d y$.
C.2. Reversibility. Let $\varphi, \psi \in C_{c}^{2}\left(E_{0}\right)$, then

$$
\begin{aligned}
\int_{E_{0}} \psi B^{p} \varphi d \pi^{p} & =\frac{1}{Z_{1}} \int_{E_{0}} \psi\left[\frac{1}{2} \nu^{2} y^{2 \beta} \varphi^{\prime \prime}+\mu_{p}(y) \varphi^{\prime}\right] \frac{2}{\nu^{2} y^{2 \beta} s_{p}(y)} d y \\
& =\frac{1}{Z_{1}} \int_{E_{0}} \psi\left[\varphi^{\prime \prime} e^{\int^{y} 2 \mu_{p}(y) /\left(\nu^{2} y^{2 \beta}\right)}+\frac{2 \mu_{p}}{\nu^{2} y^{2 \beta}} \varphi^{\prime} e^{\int^{y} 2 \mu_{p}(y) /\left(\nu^{2} y^{2 \beta}\right)}\right] d y \\
& =\frac{1}{Z_{1}} \int_{E_{0}} \psi \frac{d}{d y}\left(\frac{\varphi^{\prime}}{s_{p}(y)}\right) d y .
\end{aligned}
$$

Integrating by parts twice and using the boundary conditions (C.1), we get

$$
\int_{E_{0}} \psi B^{p} \varphi d \pi^{p}=\frac{1}{Z_{1}} \int_{E_{0}} \varphi \frac{d}{d y}\left(\frac{\psi^{\prime}}{s_{p}(y)}\right) d y=\int_{E_{0}} \varphi B^{p} \psi d \pi^{p} .
$$

C.3. Dirichlet form. By similar calculations as before, when proving reversibility, we get, for $f, g \in L^{2}\left(\pi^{p}\right)$,

$$
\begin{aligned}
\mathcal{E}^{p}(f, g) & :=-\int_{E_{0}} f B^{p} g d \pi^{p} \\
& =-\frac{1}{Z_{1}} \int_{E_{0}} f(y) \frac{d}{d y}\left(\frac{g^{\prime}(y)}{s_{p}(y)}\right) d y \\
& =\frac{1}{Z_{1}} \int_{E_{0}} f^{\prime}(y) g^{\prime}(y) \frac{1}{s_{p}(y)} d y \\
& =\frac{\nu^{2}}{2} \int_{E_{0}} y^{2 \beta} f^{\prime}(y) g^{\prime}(y) d \pi^{p}(y)
\end{aligned}
$$

where we integrated by parts once and used (C.1) in the second last line.

APPENDIX D: RATE FUNCTION FORMULAS

Recall the following characterization of the rate functions given in (6.1):

$$
I_{r}\left(x ; x_{0}, t\right)=\sup _{h \in C_{b}(\mathbb{R})}\left\{h(x)-u_{0}^{h, r}\left(t, x_{0}\right)\right\},
$$

where $r=2,4$ correspond to the two regimes $\delta=\varepsilon^{2}$ and $\delta=\varepsilon^{4}$, respectively. The $u_{0}^{h, r}$ are given in (5.17) and (5.5), respectively, as

$$
\begin{aligned}
& u_{0}^{h, 2}\left(t, x_{0}\right)=\sup _{x^{\prime} \in \mathbb{R}}\left\{h\left(x^{\prime}\right)-t \bar{L}\left(\frac{x_{0}-x^{\prime}}{t}\right)\right\} \\
& u_{0}^{h, 4}\left(t, x_{0}\right)=\sup _{x^{\prime} \in \mathbb{R}}\left\{h\left(x^{\prime}\right)-\left(\frac{\left|x_{0}-x^{\prime}\right|^{2}}{2 \bar{\sigma}^{2} t}\right)\right\}
\end{aligned}
$$

For notational convenience, we will drop the subscript r in I_{r}, and, in the case $r=4$, we will denote the term $\left(\frac{\left|x_{0}-x^{\prime}\right|^{2}}{2 \bar{\sigma}^{2} t}\right)$ by $t \bar{L}\left(\frac{x_{0}-x^{\prime}}{t}\right)$. The rate functions can then be rewritten as

$$
I\left(x ; x_{0}, t\right)=\sup _{h \in C_{b}(\mathbb{R})} \inf _{x^{\prime} \in \mathbb{R}}\left\{h(x)-h\left(x^{\prime}\right)+t \bar{L}\left(\frac{x_{0}-x^{\prime}}{t}\right)\right\}
$$

for both regimes $r=2$ and $r=4$.
Lemma D. 1.

$$
I\left(x ; x_{0}, t\right)=t \bar{L}\left(\frac{x_{0}-x}{t}\right)
$$

Proof. Note that for both cases $r=2,4, \bar{L}_{0}$ is convex, $\bar{L}_{0}(0)=0$ and \bar{L}_{0} is a nonnegative function. This is obvious for the case $r=4$. We can deduce this in the $r=2$ case since $\bar{H}_{0}(p)$ [defined in $\left.(2.3)\right]$ is convex and $\bar{H}_{0}(0)=0$.

Re-write

$$
\begin{aligned}
I\left(x ; x_{0}, t\right)= & t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right) \\
& +\sup _{h \in C_{b}(\mathbb{R})} \inf _{x^{\prime} \in \mathbb{R}}\left\{h(x)-h\left(x^{\prime}\right)+t \bar{L}_{0}\left(\frac{x_{0}-x^{\prime}}{t}\right)-t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right)\right\} \\
= & t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right)+J
\end{aligned}
$$

where $J=\sup _{h \in C_{b}(\mathbb{R})} J_{h}$ and $J_{h}=\inf _{x^{\prime} \in \mathbb{R}}\left\{h(x)-h\left(x^{\prime}\right)+t \bar{L}_{0}\left(\frac{x_{0}-x^{\prime}}{t}\right)-t \times\right.$ $\left.\bar{L}_{0}\left(\frac{x_{0}-x}{t}\right)\right\}$. Taking $x^{\prime}=x$ in the inf we get $J_{h} \leq 0$ and therefore

$$
\begin{equation*}
J \leq 0 \tag{D.1}
\end{equation*}
$$

Note that x_{0} and x are fixed. Define a function $h^{*} \in C_{b}(\mathbb{R})$ as follows:

$$
h^{*}\left(x^{\prime}\right)=t \bar{L}_{0}\left(\frac{x_{0}-x^{\prime}}{t}\right) \wedge t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right)
$$

Then

$$
J_{h^{*}}=0
$$

and consequently

$$
\begin{equation*}
J \geq 0 \tag{D.2}
\end{equation*}
$$

By (D.1) and (D.2), $J=0$ and we get

$$
I\left(x ; x_{0}, t\right)=t \bar{L}_{0}\left(\frac{x_{0}-x}{t}\right) .
$$

Acknowledgments. The authors are greatly indebted to two anonymous referees, whose suggestions greatly improved both the content and readability of this paper.

REFERENCES

[1] Avellaneda, M., Boyer-Olson, D., Busca, J. and Friz, P. (2002). Reconstructing volatility. Risk Magazine 15 87-91.
[2] Avellaneda, M., Boyer-Olson, D., Busca, J. and Friz, P. (2003). Application of large deviation methods to the pricing of index options in finance. C. R. Math. Acad. Sci. Paris 336 263-266. MR1968270
[3] Bardi, M., Cesaroni, A. and Manca, L. (2010). Convergence by viscosity methods in multiscale financial models with stochastic volatility. SIAM J. Financial Math. 1 230-265. MR2658580
[4] Berestycki, H., Busca, J. and Florent, I. (2002). Asymptotics and calibration of local volatility models. Quant. Finance 2 61-69. MR1919586
[5] Berestycki, H., Busca, J. and Florent, I. (2004). Computing the implied volatility in stochastic volatility models. Comm. Pure Appl. Math. 57 1352-1373. MR2070207
[6] Crandall, M. G., Ishii, H. and Lions, P. L. (1992). User's Guide to Viscosity Solutions of Second Order Partial Differential Equations. Amer. Math. Soc., Providence, RI.
[7] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036
[8] Duffie, D., Pan, J. and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68 1343-1376. MR1793362
[9] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. MR0838085
[10] Evans, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics 19. Amer. Math. Soc., Providence, RI. MR1625845
[11] Feng, J. (1999). Martingale problems for large deviations of Markov processes. Stochastic Process. Appl. 81 165-216. MR1694569
[12] Feng, J., Forde, M. and Fouque, J.-P. (2010). Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model. SIAM J. Financial Math. 1 126-141. MR2592567
[13] Feng, J. and Kurtz, T. G. (2006). Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs 131. Amer. Math. Soc., Providence, RI. MR2260560
[14] Fleming, W. H. and Soner, H. M. (2006). Controlled Markov Processes and Viscosity Solutions, 2nd ed. Stochastic Modelling and Applied Probability 25. Springer, New York. MR2179357
[15] Forde, M. and Jacquier, A. (2009). Small-time asymptotics for implied volatility under the Heston model. Int. J. Theor. Appl. Finance 12 861-876. MR2590295
[16] Fouque, J.-P., Papanicolaou, G. and Sircar, K. R. (2000). Derivatives in Financial Markets with Stochastic Volatility. Cambridge Univ. Press, Cambridge. MR1768877
[17] Fouque, J.-P., Papanicolaou, G., Sircar, R. and Solna, K. (2003). Multiscale stochastic volatility asymptotics. Multiscale Model. Simul. 2 22-42 (electronic). MR2044955
[18] Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. Wiley, Hoboken, NJ.
[19] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E. (2002). Managing smile risk. Willmott Magazine 84-108.
[20] Henry-Labordère, P. (2005). A general asymptotic implied volatility for stochastic volatility models. In Proceedings "Petit Déjeuner de la Finance." Available at http://ssrn.com/abstract=698601.
[21] Henry-Labordère, P. (2007). Combining the SABR and LMM models. Risk Magazine 20 102-107.
[22] Henry-Labordère, P. (2009). Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing. CRC Press, Boca Raton, FL. MR2468077
[23] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. MR1121940
[24] Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, New York. MR0611513
[25] Knight, F. B. (1981). Essentials of Brownian Motion and Diffusion. Mathematical Surveys 18. Amer. Math. Soc., Providence, RI. MR0613983
[26] Kontoyiannis, I. and Meyn, S. P. (2005). Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes. Electron. J. Probab. 10 61-123 (electronic). MR2120240
[27] LeBaron, B. (2001). Stochastic volatility as a simple generator of apparent financial power laws and long memory. Quant. Finance 1 621-631. MR1870018
[28] Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, CA. MR1742310
[29] Perello, J., Masoliver, J. and Bouchaud, J. P. (2003). Multiple time scales in volatility and leverage correlations: An stochastic volatility model. Available at http://ssrn.com/abstract=381780.
[30] Stroock, D. W. (1984). An Introduction to the Theory of Large Deviations. Springer, New York. MR0755154
J. Feng
Department of Mathematics
University of Kansas
Lawrence, Kansas 66045
USA
E-mail: jfeng@math.ku.edu
URL: http://www.math.ku.edu/~jfeng/
J.-P. Fouque
R. Kumar

Department of Statistics
and Applied Probability
University of California
Santa Barbara, California 93106
USA
E-mail: fouque@pstat.ucsb.edu
kumar@pstat.ucsb.edu
URL: http://www.pstat.ucsb.edu/faculty/fouque/ http://www.pstat.ucsb.edu/faculty/kumar/

[^0]: This is an electronic reprint of the original article published by the Institute of Mathematical Statistics in The Annals of Applied Probability, 2012, Vol. 22, No. 4, 1541-1575. This reprint differs from the original in pagination and typographic detail.

