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Abstract

The graph of a polytope is the graph whose vertex set is the set of vertices of the

polytope, and whose edge set is the set of edges of the polytope. Several problems

concerning graphs of polytopes are discussed. The primary result is a set of bounds

(Theorem 39) on the maximal size of an anticlique (sometimes called a coclique, stable

set, or independent set) of the graph of a polytope based on its dimension and number

of vertices.

Two results concerning properties preserved by certain operations on polytopes are

presented. The first is that the Gale diagram of a join of polytopes is the direct sum of

the Gale diagrams of the polytopes and dually, that the Gale diagram of a direct sum

of polytopes is the join of their Gale diagrams (Theorem 23). The second is that if two

polytopes satisfy a weakened form of Gale’s evenness condition, then so does their

product (Theorem 32).

It is shown, by other means, that, with only two exceptions, the complete bipar-

tite graphs are never graphs of polytopes (Theorem 47). The techniques developed

throughout are then used to show that the complete 3-partite graph K1,n,m is the graph

of a polytope if and only if Kn,m is the graph of a polytope (Theorem 49). It is then

shown that K2,2,3 and K2,2,4 are never graphs of polytopes. A conjecture is then stated

as to precisely when a complete multipartite graph is the graph of a polytope. Finally,

a section is devoted to results concerning the dimensions for which the graph of a

crosspolytope is the graph of a polytope.
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Chapter 1

Polytopes

This chapter will provide relevant background material in the theory of convex polytopes. Proofs

of any theorems which appear can be found in McMullen & Shephard (1971) (unless otherwise

noted).

The set {1,2, . . . ,n} will be denoted [n]. Throughout, Rd will denote the real inner product

space of column vectors of length d with real entries and the Euclidean inner product. The set of

vectors {eeei | i ∈ [d]} ⊆ Rd is called the standard basis and eeei has jth entry (eeei) j =





0 if i 6= j

1 if i = j
.

The vectors 000d,111d ∈ Rd have jth entry (000) j = 0, and (111) j = 1 respectively. When no confusion

may arise, these vectors shall be denoted simply 000 and 111. If xxx,yyy ∈ Rn, then 〈xxx,yyy〉 will denote the

inner product of xxx and yyy, ‖xxx‖= 〈xxx,xxx〉1/2 is the Euclidean norm, and Bε (xxx) = {yyy | ‖xxx− yyy‖ ≤ ε} is

the closed ball of radius ε > 0 centered at xxx. No distinction shall be made between the vector space

Rd and its dual (Rd)∗. Therefore all vectors will be considered to be column vectors. If A⊆R and

d ∈ N, then Ad =
{

xxx ∈ Rd
∣∣ 〈xxx,eeei〉 ∈ A for all i ∈ [d]

}
.

1.1 Hulls; or, The Parts That Touch the Water

If {xxx1,xxx2, . . . ,xxxk} ⊆ Rn, then a vector vvv is an affine combination of xxx1,xxx2, . . . ,xxxk if there are ele-

ments λi ∈ R such that vvv = ∑i∈[k]λixxxi and ∑i∈[k]λi = 1. If A ⊆ Rn, then the affine hull of A is the

1



set1

aff(A) =

{
∑

i∈[k]
λixxxi

∣∣∣∣∣ xxxi ∈ A, λi ∈ R and ∑
i∈[k]

λi = 1

}
.

A set which is closed under taking affine combinations of its elements (that is, aff(A) = A) is

called an affine set. The intersection of a family of affine sets is again an affine set. Every affine

subset of Rn is a translation of a linear subspace of Rn. If A is an affine set, and L is a linear

subspace of Rn such that A = L+ bbb, then the dimension of A is dimA = dimL. For example:

dim∅=−1; dim{xxx}= 0; and dimaff{xxx,yyy}= 1 for xxx 6= yyy.

A set K ⊆ Rn is convex if for each xxx,yyy ∈ K the set {λxxx+(1−λ )yyy | 0≤ λ ≤ 1} ⊆ K. If

{xxx1,xxx2, . . . ,xxxk} ⊆ Rn, then a vector vvv is a convex combination of xxx1,xxx2, . . . ,xxxk if there are ele-

ments λi ∈ R such that vvv = ∑i∈[k]λixxxi, with λi ≥ 0 and ∑i∈[k]λi = 1. If A ⊆ Rn, then the convex

hull of A is the set

conv(A) =

{
∑

i∈[k]
λixxxi

∣∣∣∣∣ xxxi ∈ A, λi ≥ 0 and ∑
i∈[k]

λi = 1

}
.

If K is convex, then convK = K. For each set A, convA ⊆ affA. The intersection of a family of

convex sets is again a convex set. The dimension of a convex set K is the dimension of its affine

hull, dimK = dimaffK.

Both aff and conv are closure operators, that is:

• A⊆ affA and A⊆ convA;

• if A⊆ B, then affA⊆ affB and convA⊆ convB; and

• aff(affA) = affA and conv(convA) = convA.

Both affA and convA are minimal in the sense that affA is the intersection of all affine sets which

contain A, and convA is the intersection of all convex sets which contain A.

If H ⊆Rn is an affine set with dimH = n−1, then H is called a hyperplane, and there is a pair

(ξξξ , t) such that ξξξ ∈ Rn with 〈ξξξ ,ξξξ 〉 = 1 and t ∈ R with H = {xxx ∈ Rn | 〈ξξξ ,xxx〉= t} (here, ξξξ is not
1Note, in this definition (as well as that of the convex hull), A need not be a finite set.
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unique unless n = 0 (if n 6= 0, then there are exactly two such vectors, and the other one is −ξξξ )).

The pair (H,ξξξ ) is called an oriented hyperplane, and the positive and negative closed halfspaces of

H are defined by, respectively, H+ = {xxx ∈ Rn | 〈ξξξ ,xxx〉 ≥ t} and H− = {ξξξ ∈ Rn | 〈ξξξ ,xxx〉 ≤ t}. Thus

H = H+∩H−. The positive and negative open half-spaces H(+) and H(−) are defined by making

the defining inequalities strict. Alternatively, H(+) = H+ \H and H(−) = H− \H . A set of the

form H+ or H− is called a closed half-space.

1.2 Polytopes (not ‘Galeorhinus Galeus’)

In this section convex polytopes2 will be defined in two different ways. The proof of equivalence of

these two definitions can be found in Brøndsted (1983), Grünbaum (2003), McMullen & Shephard

(1971) or Ziegler (1995).

An H -polytope is a bounded set of the form P =
⋂

H where

H =
{

H+
1 ,H+

2 , . . . ,H+
k ,H−k+1,H

−
k+2, . . . ,H

−
`

}

is a finite collection of closed halfspaces. A V -polytope is the convex hull of a finite set of points

in some Euclidean space Rk. A set P is an H -polytope if and only if it is a V -polytope. Henceforth

the prefix will be omitted, and P shall be called a polytope. If P is a polytope, then the set vertP is

the (unique) minimal (under inclusion) set such that P = conv(vertP).

The dimension of a polytope is its dimension as a convex set. A polytope of dimension d is

called a d-polytope. If P is a d-polytope, then a hyperplane H is called a supporting hyperplane of

P if P∩H 6=∅ and either P⊆ H+ or P⊆ H−. A face of a polytope P is a subset F of P such that

one of the following holds:

1. F =∅; or

2. there is some supporting hyperplane H of P with F = H ∩P; or

2Throughout, all polytopes will be convex so the adjective “convex” shall be omitted.
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3. F = P.

If F is a face of a polytope P, then F is itself a polytope since F = conv(F ∩ vertP), further

vertF = F ∩ vertP. If dimF = r, then F is called an r-face of P. A face of a face of a polytope

is again a face of the polytope. A face of a polytope is called proper if it is neither empty, nor the

whole polytope. If P is a d-polytope, then a face of dimension

• 0 is called a vertex,

• 1 is called an edge,

• d−2 is called a ridge,

• d−1 is called a facet.

If P is a polytope, and {xxx} is a vertex of P, then no distinction is made between the vertex {xxx}

and the point xxx. If P is a polytope, then vertP = {xxx ∈ P | xxx is a vertex of P}. Each face is the

intersection of all facets which contain it.

When ordered by inclusion, the faces of a d-polytope P form a lattice of rank d +1, called the

face lattice of P and denoted F (P). The join of two faces is the minimal face containing both of

them, and the meet of two faces is their intersection. Two polytopes are said to be combinatorially

equivalent if their face lattices are isomorphic. Combinatorial equivalence is an equivalence rela-

tion on the class of all polytopes. The ith face number fi(P) of P is the number of faces F of P

with dimF = i. The f -vector of P is the vector fff (P) = ( f0(P), f1(P), . . . , fd−1(P)). The nonproper

faces correspond to the numbers f−1(P) = 1 = fd(P) .

If X ⊆ Rd , then the relative interior of X is the interior of X relative to the topological space

affX , that is,

relintX = {xxx ∈ X | there is some ε > 0 such that Bε (xxx)∩ aff(X)⊆ X} .

4



If P is a k-polytope in Rd such that 000 ∈ relintP, then the polar dual of P is the set

P

∇

= {xxx ∈ affP | 〈xxx,yyy〉 ≤ 1 for all yyy ∈ P} .

The polar dual of a polytope is again a polytope, and dimP

∇

= dimP. Thus any polytope which

is combinatorially equivalent to P

∇

is called a dual of P. Furthermore, (P

∇

)

∇

= P, and F (P

∇

)

is the dual (as a lattice) of F (P). Thus fi(P) = fd−i−1(P

∇

).

If P⊆ Rd , and xxx ∈ Rd , then

P+ xxx = {ppp+ xxx | ppp ∈ P}

is called the translation of P by xxx. Similarly, define P− xxx = P+(−xxx). Any translation of any

polytope is again a polytope, and is combinatorially equivalent to P. Furthermore, the equality

vert(P+ xxx) = vert(P)+ xxx holds. If P ∈ Rd is a k-polytope and 000 /∈ relintP with xxx ∈ relintP, then

a dual of P is any polytope which is combinatorially equivalent to (P− xxx)

∇

. This definition is

independent of the choice of xxx ∈ relintP.

1.3 Examples of Polytopes

1.3.1 Simplices

The standard d-simplex is

∆d = conv{eee1,eee2, . . . ,eeed+1}=
{

xxx ∈ Rd+1
∣∣∣ 〈xxx,111〉= 1, and 〈xxx,eeei〉 ≥ 0

}
.

A d-polytope which is combinatorially equivalent to the standard d-simplex is called a d-simplex.

All d-simplices have d + 1 vertices, and moreover any d-polytope with d + 1 vertices is a d-

simplex. The face lattice of a d-simplex is the Boolean lattice on d +1 elements. Equivalently, if

P is a simplex, then for any A ⊆ vertP, the set convA is a face of P. A 0-dimensional simplex is

a point; a 1-simplex is a line segment; a 2-simplex is a triangle; and a 3-simplex is a tetrahedron.

5



The f -vector of a d-simplex is given by

fk(∆d) =

(
d +1
k+1

)
.

Consequently, the dual of a d-simplex is also a d-simplex (since f0(∆

∇

d ) = fd−1(∆d) = d +1).

Figure 1.1: Simplices of dimensions 0, 1, 2, and 3.

1.3.2 Cubes

The standard d-cube is

Qd = conv
{
{−1,1}d

}
=
{

xxx ∈ Rd
∣∣∣ |〈xxx,eeei〉| ≤ 1

}
.

A d-polytope which is combinatorially equivalent to the standard d-cube is called a d-cube.

Any face of a cube is also a cube. A 0-cube is a point; a 1-cube is a line segment; and a 2-cube

is a convex quadrilateral. Every vertex of a d-cube lies in exactly d facets. The f -vector of a

d-cube is given by

fk(Qd) = 2d−k
(

d
k

)

for k ∈ [d]∪{0}.

6



Figure 1.2: Cubes of dimensions 0, 1, 2, and 3.

1.3.3 Crosspolytopes

The standard d-crosspolytope is

Xd = conv
(
{eeei | i ∈ [d]}∪{−eeei | i ∈ [d]}

)
=

{
xxx ∈ Rd

∣∣∣∣∣ ∑
i∈[d]
|〈xxx,eeei〉| ≤ 1

}
= Q

∇

d .

A d-polytope which is combinatorially equivalent to the standard d-crosspolytope is called a d-

crosspolytope.

Any proper face of a crosspolytope is a simplex. A 0-crosspolytope is a point; a 1-crosspolytope

is a line segment; a 2-crosspolytope is a convex quadrilateral, and a 3-crosspolytope is a polytope

which is combinatorially equivalent to a regular octahedron. The f -vector of a d-crosspolytope is

given by

fk(Xd) = 2k+1
(

d
k+1

)

for k ∈ [d−1]∪{−1,0}.

Figure 1.3: Crosspolytopes of dimensions 0, 1, 2, and 3.
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1.3.4 Simplicial and Simple Polytopes

A polytope is called simplicial if each of its proper faces is a simplex (equivalently, each facet is a

simplex). A polytope P is called simple if its dual P

∇

is simplicial.

In any simplicial polytope, a proper k-face has k+1 vertices; dually, in any simple polytope a

proper j-face is contained in exactly d− j facets. If a polytope is both simplicial and simple, then

it is either a 2-polytope or a simplex. Examples of simplicial polytopes are: all 2-polytopes; the

regular icosahedron; all simplices; and all crosspolytopes. Examples of simple polytopes are: all

2-polytopes; the regular dodecahedron; all simplices; and all cubes.

1.3.5 Cyclic and Gale Polytopes

Let Md be the curve in Rd which is defined parametrically by the equation

rrr(t) =




t

t2

...

td



,

for t ∈ R. If V is any set of n > d distinct points on Md , say V = {rrr(ti) | t1 < t2 < · · ·< tn},

then convV is a d-dimensional polytope with n vertices (that is, V = vert(convV )). All such

polytopes with n vertices in dimension d are combinatorially equivalent and any polytope which

is combinatorially equivalent to such a polytope will be denoted by Cd(n) and called a cyclic

polytope.

All cyclic polytopes are simplicial, and, for d ≥ 3, are simple if and only if n = d+1 (in which

case they are simplices). Since the combinatorial type of Cd(n) is independent of the choices for

the ti, the vertex rrr(ti) will be identified with the integer i (assuming that t1 < t2 < · · · < tn), and

the face conv{i1, i2, . . . , ik} with the set {i1, i2, . . . , ik} (with i1i2 . . . ik if there is no chance for any

confusion).
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Theorem 1 (Gale’s Evenness Condition). A subset S ⊆ [n] with |S| = d forms a facet of Cd(n) if

and only if

|{k | k ∈ S and i < k < j}| is even for all i < j, with{i, j}∩S =∅.

For a proof, see Grünbaum (2003), McMullen & Shephard (1971) or Ziegler (1995).

Example 2. Table 1.1 shows a method of visualizing Gale’s evenness condition for the polytope

C3(6). The facets are given by the rows of the table, and in each row, an asterisk in column i

denotes that i is in the facet, and a dash denotes an element of [6] that is not in the facet. Gale’s

evenness condition can then be interpreted as: between any two dashes there are an even number

of asterisks.

1

6

2 543

Figure 1.4: The polytope C3(6)

facet 1 2 3 4 5 6
123 ∗ ∗ ∗ - - -
126 ∗ ∗ - - - ∗
134 ∗ - ∗ ∗ - -
145 ∗ - - ∗ ∗ -
156 ∗ - - - ∗ ∗
236 - ∗ ∗ - - ∗
346 - - ∗ ∗ - ∗
456 - - - ∗ ∗ ∗

Table 1.1: A chart to determine
the facets of C3(6)

If P is a d-polytope and there is an ordering of vertP such that for each facet F of P, vertF

satisfies Gale’s evenness condition (other than the requirement |vertF |= d), then P is said to be a

Gale polytope. Gale polytopes will be developed more in Chapter 5.

For d > 3, a subset S ⊆ [n] with |S| ≤ d
2 forms a face of Cd(n). In particular, for d > 3, the

convex hull of any two vertices of Cd(n) forms an edge of Cd(n). The f -vector of Cd(n) is given

9



by

fk(C2d(n)) =
d

∑
j=1

n
n− j

(
n− j

j

)(
j

k+1− j

)
if k ∈ [2d−1]∪{0}

fk(C2d+1(n)) =
d

∑
j=0

k+2
n− j

(
n− j
j+1

)(
j+1

k+1− j

)
if k ∈ [2d]∪{0}

The following theorem shall not be used; it is included as an example of the usefulness of cyclic

polytopes. For a proof see either McMullen & Shephard (1971), or Ziegler (1995).

Upper Bound Theorem (McMullen 1971). If P is a d-polytope with n vertices, then

fk(P)≤ fk(Cd(n))

for each k ∈ [d]∪{−1,0}.

1.4 Neoteric Polytopes From Erstwhile Polytopes

1.4.1 Pyramids

If P ⊆ Rn is a d-polytope (assuming n > d), and vvv ∈ Rn \ affP, then conv(P∪{vvv}) is a (d + 1)-

polytope. This polytope is called a pyramid over P with apex vvv. If P⊆Rd , then P can be embedded

in Rd+1 by appending a −1 to the end of each point in P. Thus, one way of realizing pyr(P) is as:

conv











xxx

−1




∣∣∣∣∣∣∣
xxx ∈ P




∪








000d

1









 .

The faces of pyr(P) = conv(P∪{vvv}) are the copies of the faces of P (that are not P themselves),

as well as the pyramids over these faces with apex vvv (this includes vvv since vvv = pyr(∅)). Thus

fk(pyrP) = fk(P)+ fk−1(P)

10



where f j(P) = 0 if either j < −1 or j > d. As an example, a d-simplex is a pyramid over a

(d−1)-simplex.

It is possible, and often useful, to discuss the polytope that arises as a result of repeatedly

pyramiding over some polytope. Thus, define pyr1(P) = pyr(P), and for k ∈ N with k > 1, set

pyrk(P) = pyr(pyrk−1(P)). Then any polytope that is combinatorially equivalent to pyrk(P) is

called a k-fold pyramid over P.

1.4.2 Prisms

If P ⊆ Rn is a d-polytope, and P′ ⊆ Rn is a translation of P such that aff(P)∩ aff(P′) = ∅ (this

requires that n > d), then a prism with base P is a polytope prism(P) combinatorially equivalent to

the polytope conv(P∪P′). The proper faces of a prism are:

1. proper faces of either P or its translate; as well as

2. prisms over proper faces of P; as well as

3. the polytope P or the translate of P.

Hence

fk(prismP) =





1 if k ∈ {−1,d +1}

2 fk(P) if k = 0

2 fk(P)+ fk−1(P) if k ∈ [d]

are the face numbers of a prism over a d-polytope P. As an example, a d-cube is a prism over a

(d−1)-cube.

1.4.3 Bipyramids

If P⊆Rn is a d-polytope, and Q⊆Rn is a 1-polytope such that |relint(P)∩ relint(Q)|= 1, then any

(d + 1)-polytope that is combinatorially equivalent to the (d + 1)-polytope conv(P∪Q) is called

11



a bipyramid over P. If P ⊆ Rd is a d-polytope with 000 ∈ relintP, then a bipyramid over P can be

obtained in Rd+1 as

conv











xxx

0




∣∣∣∣∣∣∣
xxx ∈ P




∪








000d

1


 ,




000d

−1









 .

If P is a d-polytope, and Q = conv{aaa,bbb} is a 1-polytope such that B = conv(P∪Q) is a bipyra-

mid over P, then the proper faces of B are:

1. the vertices aaa or bbb; as well as

2. proper faces of P; as well as

3. pyramids over a proper face of P with apex either aaa or bbb.

Hence

fk(B) =





1 if k ∈ {−1,d +1}

2 fk−1(P)+ fk(P) if k ∈ [d−1]∪{0}

2 fk−1(P) if k = d

are the face numbers of a bipyramid B over a d-polytope P. As an example, a d-crosspolytope is a

bipyramid over a (d−1)-crosspolytope. An alternative definition could be that a bipyramid over a

polytope P is the dual of a prism over a dual of P, that is,
(

prism(P

∇

)
) ∇

.

1.4.4 Product

If P is a d1-polytope with vertP = {ppp1, ppp2, . . . , pppn} ⊆ Rd1 , and Q is a d2-polytope with vertQ =

{qqq1,qqq2, . . . ,qqqm} ⊆ Rd2 , then the (Cartesian) product of P and Q, denoted P×Q, is a (d1 + d2)-

polytope that is combinatorially equivalent to the polytope with vertex set

vert(P×Q) =








pppi

qqq j




∣∣∣∣∣∣∣
i ∈ [n] , j ∈ [m]




.
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The nonempty faces of a product P×Q are products of nonempty faces of P with nonempty

faces of Q. Hence

fi(P×Q) =





1 if i ∈ {−1,d1 +d2}

∑
j+k=i

j∈[d1]∪{0}
k∈[d2]∪{0}

f j(P) fk(Q) if i ∈ [d1 +d2−1]∪{0}

are the face numbers of a product of the d1-polytope P and the d2-polytope Q. In particular, if the

facets of P are F1,F2, . . . ,Fs, and the facets of Q are G1,G2, . . . ,Gt , then the facets of P×Q are

P×G1,P×G2, . . . ,P×Gt ,F1×Q,F2×Q, . . . ,Fs×Q.

As an example, prisms are products of a polytope with a 1-polytope.

1.4.5 Join

In this and the following section, the fundamental definitions of the operations will be in terms of

point sets rather than polytopes.

If X = {ppp1, ppp2, . . . , pppn} ⊆ Rd1 and Y = {qqq1,qqq2, . . . ,qqqm} ⊆ Rd2 , then the join of X and Y is the

set

X ∨Y =








pppi

000d2

−1




∣∣∣∣∣∣∣∣∣∣

i ∈ [n]




∪








000d1

qqq j

1




∣∣∣∣∣∣∣∣∣∣

j ∈ [m]




⊆ Rd1+d2+1

If P and Q are polytopes of dimensions d1 and d2 respectively such that vertP = X and vertQ =Y ,

then define the join of P and Q to be a polytope combinatorially equivalent to P∨Q = conv(X∨Y ).

In this case, vert(P∨Q)=X∨Y and dim(P∨Q)= d1+d2+1. Intuitively, the join of two polytopes

is obtained by placing both polytopes in a high enough dimensional space so that they can be

arranged with their affine hulls nonintersecting, and then taking a convex hull.

The i-faces of P∨Q are joins of faces of P and faces of Q such that the sums of the dimensions
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of these faces is i−1. Hence

fi(P∨Q) = ∑
j+k+1=i

j∈[d1]∪{0,−1}
k∈[d2]∪{0,−1}

f j(P) fk(P)

are the face numbers of a join of the d1-polytope P and the d2-polytope Q. As an example, pyramids

are joins of a polytope with a 0-polytope. Moreover, the join of two simplices is again a simplex.

1.4.6 Direct Sum

If X = {ppp1, ppp2, . . . , pppn} ⊆ Rd1 and Y = {qqq1,qqq2, . . . ,qqqm} ⊆ Rd2 , then the direct sum of X and Y is

the set

X⊕Y =








pppi

000d2




∣∣∣∣∣∣∣
i ∈ [n]




∪








000d1

qqq j




∣∣∣∣∣∣∣
j ∈ [m]




⊆ Rd1+d2

If P and Q are polytopes of dimensions d1 and d2 respectively such that vertP = X and vertQ =Y ,

then define the direct sum of P and Q to be a polytope combinatorially equivalent to P⊕Q =

conv(X ⊕Y ). In this case, vert(P⊕Q) = X ⊕Y and dim(P⊕Q) = d1 + d2. Geometrically, the

direct sum of two polytopes is obtained by placing both polytopes in a high enough dimensional

space so that they can be arranged with their relative interiors intersecting in a single point, and

then taking the convex hull of their union.

The i-faces of P⊕Q are joins of faces of P and faces of Q (but not P or Q themselves) such

that the sums of the dimensions of these faces is i−1. Hence

fi(P⊕Q) = ∑
j+k+1=i

j∈[d1−1]∪{0,−1}
k∈[d2−1]∪{0,−1}

f j(P) fk(P)

are the face numbers of a direct sum of the d1-polytope P and the d2-polytope Q. As an example,

the bipyramid over a polytope P is the direct sum of P with a 1-polytope. Moreover, the direct sum

of two crosspolytopes is again a crosspolytope.
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1.4.7 Vertex Figures

Suppose P is a polytope, vvv is a vertex of P, and H = {xxx | 〈ξξξ ,xxx〉= t} is a supporting hyperplane of

vvv with P⊆ H+. Let m = min{〈ξξξ ,www〉 | www ∈ vert(P)\{vvv}}. This is a positive number since H is a

supporting hyperplane of the face vvv.

H

J

ξξξ

vvv

Figure 1.5: The hyperplane J.

Now set J =
{

xxx
∣∣ 〈ξξξ ,xxx〉= t + m

2

}
= H + m

2 ξξξ (see Figure 1.5). Then vvv ∈ J(−), and www ∈ J(+) for

every other vertex www of P. Furthermore, J∩P is a polytope since the intersection of a polytope and

a plane is again a polytope (this can be easily proved by using the H -polytope formulation of the

definition of a polytope). A vertex figure of P at vvv is any polytope combinatorially equivalent to

Pvvv = J∩P.

The face lattice of a vertex figure is isomorphic to the interval [vvv,P] in the face lattice of P.

Thus

fi(Pvvv) = |{F ∈F (P) | dimF = i+1 and vvv ∈ F}| .

Some examples of vertex figures are: vertex figures of simple polytopes are simplices of one

dimension lower; vertex figures of crosspolytopes are crosspolytopes of one dimension lower; a

vertex figure of a regular icosahedron is a pentagon; and a vertex figure of a pyramid at its apex is

the base of the pyramid.
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Figure 1.6: A vertex figure of a 3-cube is a triangle.

1.4.8 Kleetopes

Let P be a d-polytope in Rd , and for each facet F of P, let xxxF be the unit vector that is normal to

aff(F) such that 〈xxxF ,vvv〉 ≤ 0 for each vvv ∈ P. Let F0 be a fixed facet of P. Now choose a point xxx0

in the region of Rd where 〈xxxF0 ,vvv〉 > 0, and 〈xxxF ,vvv〉 < 0 for every other facet F . Then the stellar

subdivision K(P;F0) is any polytope that is combinatorially equivalent to conv(P∪ {xxx0}). The

combinatorial type of K(P;F0) is independent of the choice of xxx0. The vertex set of K(P;F0) is

vert(P)∪{xxx0}. Geometrically, K(P;F0) is P with a shallow pyramid over F0 “glued” to F0. Thus

fi(K(P;F0)) =





fi(P)+ fi−1(F0) if i ∈ [d−2]∪{0}

fd−1(P)+ fd−2(F0)−1 if i = d−1

1 if i ∈ {−1,d}

.

If F0,F1, . . . ,Fn is a sequence of distinct facets of P, and Φi is the subsequence of the first i+1

terms, then for i ∈ [n] \ {1}, define K(P;Φi) = K(K(P;Φi−1);Fi). The combinatorial type of the

polytope K(P;F0,F1, . . . ,Fn) is independent of the order of the sequence. Thus the sequence can

be considered to just be a set of facets Φ of P. If Φ is the set of all facets of P, then K(P;Φ) is

denoted PK , and called the Kleetope of P (named after Victor Klee). See Figure 1.7 for an example

(the original polytope is bolded in the Kleetope for clarity). Note that the Kleetope of a simplicial

polytope is a simplicial polytope, as is the Kleetope of any 3-polytope.

If P is a d-simplex, then the combinatorial type of K(P;Φ) is completely determined by k = |Φ|,
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and thus is denoted K(∆d;k) for k ≤ d +1.

(prism(∆2))
Kprism(∆2)

Figure 1.7: A prism over a triangle, and its Kleetope.
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Chapter 2

Graphs

This chapter will provide relevant background material in the theory of graphs.

If X is a set, and k ∈ N is a natural number (including zero), then
(X

k

)
= {A⊆ X | |A|= k} is

the set of unordered k-tuples of elements of X .

2.1 Definition and Examples

A graph is an ordered pair G= (V,E) where V is a finite set, and E ⊆
(V

2

)
is a set of unordered pairs

of elements of V . The elements of V = V (G) are called vertices, and the elements of E = E(G)

are called edges. Note that either V or E is allowed to be empty. If V = ∅, then E = ∅, and G is

called the empty graph. If e = {x,y} ∈ E and no confusion may arise, the edge e may be denoted

e = xy = yx = {x,y}. Two vertices v,w ∈ V are called neighbors, or adjacent if vw ∈ E. The

neighborhood of a vertex v is the set N(v) = {w ∈V | vw ∈ E} of all neighbors of v. The degree

of a vertex v is the number of edges on which v lies, that is, degv = |{e ∈ E | v ∈ e}|= |N(v)|.

Two graphs G=(V,E) and H =(W,F) are said to be isomorphic if a bijection φ : V →W exists

with the additional property: xy ∈ E if and only if φ(x)φ(y) ∈ F . If G and H are isomorphic, no

distinction will be made between them. It is often useful to draw a graph by depicting its vertices

as points in the plane, and its edges by continuous curves between vertices.
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Examples 3.

1. A discrete graph on n vertices is a graph isomorphic to Dn = ([n] ,∅).

2. A cycle of length n≥ 3 is a graph isomorphic to Cn where V (Cn) = [n] and

E(Cn) = {i j | i− j ≡ 1 (mod n)} .

C3

1 2

3

C4

1 2

34

C5

1 2

35

4

3

4

21

5

6

C6

Figure 2.1: Several cycle graphs.

3. A graph is complete if E =
(V

2

)
. If |V |= n, then G is denoted Kn.

K1 K2 K3 K4 K5

Figure 2.2: Several complete graphs.

4. A graph G is said to be bipartite if V (G) =V1∪V2 with V1 6=∅ 6=V2 and V1∩V2 =∅ such

that E(G)∩
(V1

2

)
= E(G)∩

(V2
2

)
=∅. If G is a bipartite graph satisfying

E(G) =

{
xy ∈

(
V
2

) ∣∣∣∣ x ∈V1 and y ∈V2

}
,
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then G is complete bipartite, and is denoted Kn,m where |V1| = n and |V2| = m. Note that a

complete bipartite graph must have at least one edge.

K2,3K2,2 K3,3

Figure 2.3: Several bipartite graphs. The first vertex set is colored white, and the second black.

5. More generally, a graph is n-partite if its vertex set can be written V (G) =
⋃

i∈[n]Vi such that:

(a) Vi 6=∅ for all i ∈ [n];

(b) Vi∩Vj =∅ for i 6= j; and

(c) E(G)∩
(Vi

2

)
=∅ for each i ∈ [n].

In this case, V (G) will be written as
⊔

i∈[n]Vi and the sets Vi are called color classes.

If, additionally, E(G) =
{

xy ∈
(V

2

) ∣∣∣ {x,y} 6⊆Vi for each i ∈ [n]
}

, then G is called complete

n-partite, and denoted Km1,m2,...,mn where |Vi|= mi for each i ∈ [n]. Note that for any permu-

tation σ of [n] the graphs Km1,m2,...,mn and Kmσ1,mσ2,...,mσn are isomorphic. Hence complete

n-partite graphs will be assumed to satisfy m1 ≤ m2 ≤ ·· · ≤ mn.

K1,2,2 K1,1,2K2,2,2 K1,2,3

Figure 2.4: Several complete 3-partite graphs.
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If G and H are graphs, then their join is the graph G∨H that is defined by

V (G∨H) =V (G)∪V (H)

E(G∨H) = E(G)∪E(H)∪{gh | g ∈V (G) and h ∈V (H)} .

If r,s are positive integers, then Kr,s = Dr∨Ds, and more generally,

Kr1,r2,...,,rt = Dr1 ∨Dr2 ∨·· ·∨Drt .

2.2 Subgraphs and Minors

If G = (V,E) is a graph, then a subgraph H of G is a graph of the form H = (W,F) with W ⊆ V ,

and F ⊆ E ∩
(W

2

)
. If, additionally, for all xy ∈ E(G) the containment {x,y} ⊆ V (H) implies the

containment xy ∈ E(H), that is, F = E ∩
(W

2

)
, then H is said to be an induced subgraph of G.

When working with graphs, subgraphs are not generally sufficient for dealing with statements of

theorems; the idea of a minor of a graph is also needed:

Definitions. Let G = (V,E) be a graph, and W ⊆V .

1. The restriction of G to W , denoted by G|W , is the graph defined by V (G|W ) = W , and

E(G|W ) = E ∩
(W

2

)
.

2. The deletion of W , denoted G\W , is the restriction of G to V \W , that is G|V\W .

3. If xy = e ∈ E, then the contraction of e, denoted by G/e, is the graph defined by V (G/e) =

(V \{x,y})∪{ẽ} and

E(G/e) = E(G|V\{x,y})∪{ẽz | xz ∈ E or yz ∈ E and z /∈ {x,y}}

4. If F ⊆ E, then the deletion of F , denoted G\F , is the graph with V (G\F) = V and E(G\

F) = E \F .
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5. A graph H is a minor of a graph G if H is isomorphic to a graph that is obtainable from G

through a sequence of deletions and contractions.

G

x

y

a

cz

b

e = xy

G|{a,c,x,y}

x

y

a

c

G\b

x

y

a

cz

a

cz

b

ẽ

G/e G\ e

x

y

a

cz

b

Figure 2.5: Examples of some minors of a graph G.

The word deletion is defined in two different ways above; however no confusion should arise

since one definition was in regards to a set of vertices, whereas the other refers to a set of edges.

Example 4. The graph K3,3 has a K4 minor. Let V (K3,3) = {a1,a2,a3}t{b1,b2,b3}. First contract

the edge a2b2, then contract the edge a3b3. See Figure 2.6.

a1 a2 a3

b1 b2 b3

a1 a3

b1 b3

Figure 2.6: K3,3 has a K4 minor.

If F = {e1,e2, . . . ,en} ⊆ E(G), then it can be shown that (· · ·((G/e1)/e2) · · ·)/en is isomorphic

to (· · ·((G/eσ1)/eσ2) · · ·)/eσn for any permutation σ of [n]. For details see Diestel (2010). This

graph is denoted G/F .
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2.3 Planarity and Connectivity

When drawing a graph G in the plane, a natural question to ask is, “Is it possible to draw G

such that no two edges intersect unless they share a vertex, and in that case only at the shared

vertex?” If the answer to this question is yes, then the graph is called planar. The following gives

a characterization of planarity that avoids topology. For a proof, see Wagner (1937) or Diestel

(2010).

Theorem 5 (Wagner 1937). A graph G is planar if and only if G has no minor isomorphic to either

K5 or K3,3.

As mentioned above, the statement of Theorem 5 must be in terms of minors; the Peterson

graph P (Figure 2.7) has neither a K5 nor K3,3 subgraph; however, it does contain each as a minor.

The graph K5 can be realized by contracting each of the edges viwi for i ∈ [5], while K3,3 can be

realized as (P\{w2w3,v5w5})/{w4w5,v2v5,w1w2,v3w3}.

v1

v3

v5

v4

v2

w3w4

w2w5

w1

Figure 2.7: The Peterson graph.

Whenever planarity is needed, the above conditions will be checked. Thus the above defini-

tion will be treated as the definition of planarity, and the previous discussion will be reserved for

geometric intuition.

A graph G is said to be connected if either |V | = 1, or for any pair x,y ∈ V there exists a

sequence of vertices x = x1,x2, . . . ,xr+1 = y such that xixi+1 ∈ E for i ∈ [r]. If, additionally, xi 6= x j

for i 6= j, then x1,x2, . . . ,xr+1 is called a path from x to y of length r with endpoints x and y. If

d ∈ N, then a graph G is said to be d-connected if |V |> d, and for W ⊆V with |W |< d the graph
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G\W is connected. Every non-empty graph is 0-connected, and the 1-connected graphs are exactly

the connected graphs with at least two vertices.

Two paths x1,x2, . . . ,xi and y1,y2, . . . ,y j are said to be disjoint if the only intersections of the

paths are at endpoints of each. The following theorem (equivalent to Menger’s Theorem, but first

stated in this form by Whitney) gives a characterization of d-connectedness in terms of disjoint

paths. For a proof, see either Whitney (1932) or Diestel (2010).

Theorem 6 (Whitney 1932). A graph G is d-connected if and only if for all a,b ∈ V with a 6= b

there exist d pairwise disjoint paths from a to b.

Example 7. The graph K2,2,2 is 4-connected. Let V (K2,2,2) =
{

a1,1,a2,1,a3,1,a1,2,a2,2,a3,2
}

, and

E(K2,2,2) =
{

ai, jak,l
∣∣ i 6= k

}
. Then a pair of vertices ai, jak,l is either adjacent, or not. In the latter

case assume, without loss of generality, that i = j = k = 1, and l = 2. The following are four

pairwise disjoint paths from a1,1 to a1,2:

a1,1,a2,1,a1,2 a1,1,a2,2,a1,2

a1,1,a3,1,a1,2 a1,1,a3,2,a1,2

If, on the other hand, i 6= k, then assume again that i = j = 1, and without loss of generality, assume

k = 3 and l = 2. Then the following are four pairwise disjoint paths from a1,1 to a3,2:

a1,1,a3,2 a1,1,a2,1,a3,2

a1,1,a2,2,a3,2 a1,1,a3,1,a1,2,a3,2.

If G is a graph, then the connectivity1 of G is κ (G) = max{k |G is k-connected}, and the

Hadwiger number of G is h(G) = max{n | Kn is a minor of G}.
1This is usually called the edge-connectivity of the graph. However no other types of connectivity will be consid-

ered, so no confusion should arise.
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a1,1

a3,1

a2,2

a2,1

a1,2

a3,2a1,1

a3,1

a2,2

a2,1

a1,2

a3,2

Figure 2.8: K2,2,2 is 4-connected.

2.4 Graphs of Polytopes

If P is a polytope, then the graph of P, denoted G (P), is the graph with V (G (P)) = vertP, and

E(G (P)) =
{

xxxyyy ∈
(vertP

2

) ∣∣∣ conv{xxx,yyy} is an edge of P
}

. The following theorem is a special case

of a more general theorem proven in Grünbaum (2003).

Theorem 8 (Grünbaum). If P is a d-polytope, then G (P) has a Kd+1 minor.

Proof. If dimP =−1, then G (P) is empty, i.e., K0. If dimP = 0, then G (P) has one vertex and no

edges , i.e., K1. If dimP = 1, then G (P) has two vertices and one edge , i.e., K2. The proof now

proceeds by induction on d.

Suppose for some d ≥ 2 that Kd is a minor of the graph of every (d−1)-polytope. Let P be a

d-polytope and F be a facet of P. By the induction hypothesis, F has a Kd minor. Fix one such

minor. Each vertex in this minor comes from a vertex of F . Let {vvv1,vvv2, . . . ,vvvn} be a set of vertices

of F such that each vvvi corresponds to a different vertex in the complete minor. Since dimP ≥ 2,

each vvvi is on an edge with another vertex wwwi ∈ vertP \ vertF (it is possible that {www1,www2, . . . ,wwwn}

has cardinality less than n). Now, in G (P) first perform a sequence of deletions and contractions

to obtain the chosen Kd minor of G (F), and then contract all edges in this new graph that are not

incident to any vertex in the copy of Kd . This leaves the Kd minor and one other vertex. This vertex

is adjacent to each vertex in the Kd minor. Thus a Kd+1 minor of G (P) has been constructed.

Example 9. Let P be the triangular prism whose graph is shown in Figure 2.9 and F be the facet

conv{v1,v2,v3,v4}. Note that F has a K3 minor that is obtained by contracting v3v4. The first

arrow indicates forming that K3 minor by contracting the edge v3v4 in G (P). Now the only edge
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with no vertices corresponding to any of v1,v2,v3 is e. The second arrow indicates the contraction

of e. This results in a K4 minor.

v3

v2

v4

v1

e

Figure 2.9: Example of Theorem 8.

The following theorem about the connectivity of graphs of d-polytopes was proved in Balinski

(1961) using linear programming techniques.

Theorem 10 (Balinski 1961). If P is a d-polytope, then G (P) is d-connected.

The converse is not true. The 3-dimensional crosspolytope has graph K2,2,2, and is 4-connected

(see Example 7). It is also planar, and therefore does not contain a K5 minor. Thus it is not the

graph of any 4-dimensional polytope.

Theorems 8 and 10 imply:

Corollary 1. If G is the graph of a d-polytope, then

d ≤min{h(G)−1,κ (G)} .

This bound will be important in Chapter 7. Notice that these two numbers are, in general,

incomparable. Let F be any facet of C4(6), and P = K(C4(6);F). Then h(P) = 6, and κ (P) = 4.

On the other hand, if R is the regular icosahedron, then h(R) = 4, and κ (R) = 5.

The following theorem can be found in Ziegler (1995), albeit without a proof.

Theorem 11. If F is a face of a polytope P, then G (F) is an induced subgraph of G (P).

Proof. If F = ∅, then G (F) is the empty graph which is an induced subgraph of every graph. If

F = P, then G (F) = G (P) and any graph is an induced subgraph of itself.
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Thus, suppose F is a proper face of P, and write

∅ 6= vertF = {vvv1,vvv2, . . . ,vvvn} vertP

If vvvivvv j ∈ E(G (P)), then there is a hyperplane H such that P∩H = conv
{

vvvi,vvv j
}

and P ⊆ H+.

Hence,

conv
{

vvvi,vvv j
}
= conv

{
vvvi,vvv j

}
∩H

⊆ conv{vvv1,vvv2, . . . ,vvvn}∩H

= F ∩H

⊆ P∩H

= conv
{

vvvi,vvv j
}

where the first equality follows since conv
{

vvvi,vvv j
}
⊆ H. Therefore equality holds throughout.

Hence F ∩H = conv
{

vvvi,vvv j
}

, whence H is a supporting hyperplane of the face conv
{

vvvi,vvv j
}

of F .

Thence vvvivvv j ∈ E(G (F)).

If G is a graph, and P a d-polytope with G (P) = G, then G is said to be d-realizable. A

major open problem in the theory of polytopes is to give a complete characterization of the graphs

that are d-realizable for a fixed d. One can similarly ask, for a fixed graph G, for which d is G

d-realizable? The cyclic polytopes provide examples of graphs that are d-realizable for multiple

values of d. Grünbaum asks in Grünbaum (2003) a question, that in the case of graphs becomes:

if G is both d-realizable and d′-realizable, then is it d′′-realizable for every d′′ between d and d′?

The following theorem gives a complete characterization of the graphs that are 3-realizable.

Proofs can be found in Steinitz (1922), Steinitz & Rademacher (1976), Grünbaum (2003), or

Ziegler (1995).

Theorem 12 (Steinitz 1922). A graph G is the graph of a 3-polytope if and only if G is both planar

and 3-connected.

27



Corollary 1. If G is a 3-connected graph, then G has a K4 minor.

Proof. If G is planar, then it is 3-realizable, and thus by Theorem 8 it has a K4 minor.

On the other hand, if G is not planar, then it has either a K3,3 or a K5 minor. In the former case,

Example 4 shows that G has a K4 minor. In the latter, Km is a minor of Kn if and only if m≤ n, so

that K4 is a minor of K5.

A complete characterization of the graphs of polytopes with dimension less than or equal to

three can be found in Table 2.1.

Dimension Characterization of Graph

−1 The only (−1)-dimensional polytope is the empty polytope, and it has the

empty graph.

0 The only combinatorial type of 0-dimensional polytope is a single vertex.

This has graph K1.

1 The only combinatorial type of 1-dimensional polytope is a closed line

segment. This has graph K2.

2 The 2-polytopes are exactly the convex n-gons lying in a plane, and there-

fore have graphs that are cycle graphs. Further, every cycle graph is the

graph of a 2-polytope.

3 Theorem 12 gives a complete characterization of the graphs of 3-polytopes

as the planar 3-connected graphs.

Table 2.1: Characterizations of graphs of d-polytopes for d ≤ 3.
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Chapter 3

Gale Transformations and Diagrams

A Gale transformation is a method of encoding the set of all of the affine dependencies of a d-

dimensional set of points with cardinality n ≥ d + 1 into a space of dimension n− d− 1. This

is exceptionally useful if n is not much larger than d. Usually this process is only applied to the

vertex set of a polytope.

3.1 Definition of Gale Transformation

Let P be a d-polytope in Rd with vertP = V = {vvv1,vvv2, . . . ,vvvn} and consider the set of affine de-

pendencies of V , that is,

depV =

{
(λ1,λ2, . . . ,λn) ∈ Rn

∣∣∣∣∣ ∑
i∈[n]

λivvvi = 0 and ∑
i∈[n]

λi = 0

}
.

Note that depV is an (n− d− 1)-dimensional vector space. Let {aaa1,aaa2, . . . ,aaan−d−1} be a basis

of depV , and write aaai = (αi,1,αi,2, . . . ,αi,n) for i ∈ [n−d−1]. Now, let A be the (n− d− 1)× n
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matrix whose ith row is aaai for i ∈ [n−d−1], and let vvv j be the jth column of A for j ∈ [n], that is,

A =




aaa1

aaa2

...

aaan−d−1



=

[
vvv1 vvv2 · · · vvvn

]
.

Then the (multi)set V = {vvv1,vvv2, . . . ,vvvn} ⊆ Rn−d−1 is a Gale transformation of V with vvvi corre-

sponding to vvvi. Define as well, for a subset X ⊆V the (multi)set X =
{

vvv ∈V
∣∣ vvv ∈ X

}
.

Note that there is not a unique Gale transformation for a given vertex set since a choice of basis

was necessary. This does nothing to detract from the usefulness of the construction. Also, note

that the definition did not require that the points vvv1,vvv2, . . . ,vvvn be the vertex set of a polytope. It

was only necessary that dimaffV = d. Thus Gale diagrams can be defined for point sets satisfying

this condition.

3.1.1 Computing a Gale Transformation

One method for actually computing a Gale transformation is as follows:

Let P be a d-polytope in Rd with vertP = {vvv1,vvv2, . . . ,vvvn} ordered such that vvv1, . . . ,vvvd+1 are

affinely independent. Then

rref




1 1 · · · 1

vvv1 vvv2 · · · vvvn


=

[
Id+1 N

]

where N is some (d +1)× (n−d−1) matrix. Setting

[
−NT In−d−1

]
=

[
vvv1 vvv2 · · · vvvn

]
,

yields a Gale transformation of vertP, that is, the ordered (multi)set {vvv1,vvv2, . . . ,vvvn}.
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3.2 A Preliminary Result

The following theorem will be crucial in the proof of Theorem 15, which provides the answer to

the question, "Why should I care about Gale transformations?". The proof closely follows that in

Thomas (2006).

Theorem 13. If P is a d-polytope with V = vert(P) = {vvv1,vvv2, . . . ,vvvn}⊆Rd and F ⊆V , then convF

is a face of P if and only if conv(V \F)∩ aff(F) =∅.

Proof. Suppose, without loss of generality, F = {vvv1,vvv2, . . . ,vvvk} and conv(F) is a face of P. Further,

let H be a supporting hyperplane of F (so that aff(F) ⊆ H), say, H = {www | 〈ξξξ ,www〉= t} with P ⊆

H+. Then the inclusions vvv j ∈ P∩
(
Rd \H

)
for all j > k imply that

〈
ξξξ ,vvv j

〉
> t for j > k. Let

xxx ∈ conv(V \F) with

xxx = ∑
j∈[n]\[k]

α jvvv j, ∑
j∈[n]\[k]

α j = 1, α j ≥ 0 for all j ∈ [n]\ [k] .

Then

〈ξξξ ,xxx〉= ∑
j∈[n]\[k]

α j
〈
ξξξ ,vvv j

〉
> ∑

j∈[n]\[k]
α jt = t.

Thus xxx ∈ H(+) = H+ \H. Therefore, the inclusion aff(F)⊆ H implies conv(V \F)∩ aff(F) =∅.

On the other hand, suppose conv(V \F)∩ aff(F) =∅, and let yyy0 ∈ conv(V \F). Then

inf
xxx∈aff(F)

‖xxx− yyy0‖

is attained at xxx0 when aff{xxx0,yyy0} is perpendicular to aff(F). Let H be the hyperplane through xxx0

normal to xxx0− yyy0. Then

1. conv(V \F)∩H =∅ and

2. aff(F)⊆ H.
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Thus H ∩P = convF is a face of P.

Example 14. In Figure 3.1, the set conv{xxx1,xxx4} is not a face of conv{xxx1,xxx2,xxx3,xxx4,xxx5} since

conv{xxx2,xxx3,xxx5}∩ aff{xxx1,xxx4} 6=∅.

xxx1 xxx4

xxx5

xxx2 xxx3

Figure 3.1: Example of Theorem 13.

3.3 What is it good for?

It turns out that it is more convenient to phrase the main theorem about Gale transformations in

terms of the complement of a face of a polytope than the face itself. This section follows McMullen

& Shephard (1971).

Definition. Let P be a polytope with vertex set V . A subset X of the vertices is called a coface if

conv(V \X) is a face of P. If conv(V \X) is a facet of P, then X is called a cofacet.

Definition. Let X be a set of points in Rd , and xxx be any point of Rd . Then X is said to capture xxx if

xxx ∈ relintconvX , that is, xxx is in the relative interior of the convex hull of X .

The following theorem gives a characterization, in terms of a Gale transformation, of the co-

faces of a polytope. A proof of only one implication of the equivalence is given here. The proof of

the other implication can be found in Grünbaum (2003), McMullen & Shephard (1971), or Thomas

(2006).1

1The proof of the implication given here is not explicitly given in any of these sources.
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Theorem 15. Let P be a polytope, X ⊆V = vertP, and V be a Gale transformation of V . Then X

is a coface of P if and only if either X captures the origin or X =∅.

Proof. Let P be a d-polytope with V = vertP = {vvv1,vvv2, . . . ,vvvn} ⊆ Rd .

If X =∅, then vert(P)\X = vertP, and P = convvertP is a face of P. Thus, suppose X 6=∅.

Let I = {i1, i2, . . . , ir} ⊆ [n], J = [n]\ I, and X = {vvvi | i ∈ I}. Also, let




vvv1

vvv2

...

vvvn



=

[
www1 www2 · · · wwwn−d−1

]

where the vvvi’s are regarded as row vectors, and the wwwi’s are regarded as column vectors.

Suppose 000 /∈ relintconvX . Then there is some hyperplane H = {yyy | 〈ξξξ ,yyy〉= 0} ⊆Rn−d−1 with

vvvi ∈H+ for each i∈ I and there is some i0 ∈ I with vvvi0 ∈H(+). Write ξξξ =

[
ξ1 ξ2 · · · ξn−d−1

]T

.

For each i ∈ [n], let αi = 〈ξξξ ,vvvi〉 and S = ∑i∈I αi. The inequalities 〈ξξξ ,vvvi〉 ≥ 0 for i ∈ I and

〈ξξξ ,vvvi0〉 > 0 imply that S > 0. Therefore, let λi = αi/S, and λλλ =

[
λ1 λ2 · · · λn

]T

∈ Rn. Note

that λλλ ∈ span{www1,www2, . . . ,wwwn−d−1}= dep(V ); indeed:

λλλ =




λ1

λ2

...

λn



=

1
S




〈ξξξ ,vvv1〉

〈ξξξ ,vvv2〉
...

〈ξξξ ,vvvn〉



=

1
S




vvv1

vvv2

...

vvvn







ξ1

ξ2

...

ξn−d−1



=

1
S

[
www1 www2 · · · wwwn−d−1

]




ξ1

ξ2

...

ξn−d−1




=
1
S ∑

i∈[n−d−1]
ξiwwwi.

Ergo, ∑i∈[n]λivvvi = 000 and ∑i∈[n]λi = 0. Set

zzz = ∑
i∈I

λivvvi = ∑
i∈J

(−λi)vvvi
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and note that

∑
i∈I

λi = ∑
i∈I

αi

S
= 1

and λi ≥ 0 for i ∈ I. Hence, zzz ∈ convX . Further, ∑i∈J(−λi) = 1, whence zzz ∈ aff(V \X). Thence,

aff(V \X)∩ conv(X) 6=∅. Therefore, by Theorem 13, X is not a coface of P.

If P is a d-simplex in Rd , then |vertP| = d + 1, and thus a Gale transformation of vertP is a

subset of R0 = {0}. Thus the only Gale transformation of a d-simplex is the multiset {0,0, . . . ,0}

of d +1 equal points.

Corollary 1. Let P⊆Rd be a d-polytope with vertex set V = vertP of cardinality n > d+1. Also,

let V be a Gale transformation of P, and H be a hyperplane in Rn−d−1 with 000 ∈ H. Then

∣∣∣V ∩H(+)
∣∣∣≥ 2.

Proof. Let P be a d-polytope in Rd that is not a simplex, and V = vertP = {vvv1,vvv2, . . . ,vvvn} be its

vertex set. Then each vvvi is a face of P, so that Vi =V \{vvvi} is a coface of P. Hence, V i captures the

origin. If there were some hyperplane H containing 000 such that V ∩H(+) = {vvvi}, then this could

not happen.

If P is a polytope with vertex set V = {vvv1,vvv2, . . . ,vvvn}, then a pair of vertices vvvi,vvv j is a nonedge

of P if conv
{

vvvi,vvv j
}

is not a face of P.

Corollary 2. If V is a Gale transformation of the vertices V = vertP of a d-polytope P⊆Rd , then

a pair of vertices vvvi,vvv j forms a nonedge of P if and only if there is some hyperplane H such that

V ∩H(+) =
{

vvvi,vvv j
}

.

Proof. Let Q = conv(V \
{

vvvi,vvv j
}
).

If there is some hyperplane H containing the origin such that V ∩H(+) =
{

vvvi,vvv j
}

, then the set

V \
{

vvvi,vvv j
}

must have at least two points in H(−), and none in H(+) and therefore cannot capture

the origin.
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The set conv
{

vvvi,vvv j
}

is a nonedge of P if and only if the set V \
{

vvvi,vvv j
}

does not capture the

origin. Since Q is a convex set, it does not capture the origin if and only if there is some hyperplane

H containing the origin with Q⊆H−. Notice that H(+) must contain at least two points of V since

V is a Gale transformation. However, H(+) ∩Q = ∅, and therefore these two points must be
{

vvvi,vvv j
}

.

The next theorem gives two conditions that, together, guarantee that a set of n points in Rn−d−1

is a Gale transformation of the vertex set of some polytope. The proof given closely follows that

in McMullen & Shephard (1971).

Theorem 16. Let X = {xxx1,xxx2, . . . ,xxxn} be a set of points in Rk such that

1. ∑i∈[n] xxxi = 000 and

2. for all hyperplanes H containing 000 each open half-space contains at least two points of X.

Then X is a Gale transformation of the vertex set of some d-polytope.

Proof. Let X = {xxx1,xxx2, . . . ,xxxn} be a set of points in Rk satisfying the two conditions. Also, let

A =

[
xxx1 xxx2 · · · xxxn

]

be the matrix whose ith column is xxxi.

The second condition guarantees that X cannot be contained in any hyperplane containing the

origin. Thus dimspanX = k, and therefore by the Rank-Nullity Theorem of Linear Algebra the

dimension of the kernel of A is dimkerA = n− k.

Note that by the first condition 111n ∈ kerA, and hence the set {111n} can be extended to a basis of
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kerA, say
{

111n, ỹyy1, ỹyy2, . . . , ỹyyn−k−1
}

. Let

B =

[
111n ỹyy1 ỹyy2 · · · ỹyyn−k−1

]
=




x̃xx1

x̃xx2

...

x̃xxn



.

That is, the vectors x̃xxi are the rows of the matrix B whose columns are 111n, ỹyy1, ỹyy2, . . . , ỹyyn−k−1. Then,

by definition, {xxx1,xxx2, . . . ,xxxn} is a Gale transformation of the set X̃ = {x̃xx1, x̃xx2, . . . , x̃xxn}. Now, by the

second condition, and the previous theorem each x̃xxi is a vertex of conv X̃ , and therefore X̃ is the

vertex set of some polytope.

Example 17. Let X = {1, t,−t,−1} where t > 0, and note that X satisfies the hypotheses of The-

orem 16. Following the proof, set

B =




1 −t t

1 1 0

1 0 1

1 0 0



.

Then X is a Gale transformation of the quadrilateral with vertices



−t

t


 ,




1

0


 ,




0

1


 ,




0

0


.

3.4 Gale Diagrams

If V is a Gale transformation of the vertex set V of some polytope, and only the face lattice of

the polytope is being considered, then the condition ∑vvv∈V vvv = 000 is superfluous. The following

definitions are made in light of this.

Definition. Suppose the multisets X = {xxx1,xxx2, . . . ,xxxn} ⊆ Rk and Y = {yyy1,yyy2, . . . ,yyyn} ⊆ Rk both

capture 000. Then X and Y are called consubstantial if for each J ⊆ [n] the sets
{

xxx j
∣∣ j ∈ J

}
and

{
yyy j
∣∣ j ∈ J

}
either both capture, or both do not capture 000.
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Consubstantiality is an equivalence relation, and for a fixed polytope P the Gale transformations

of vertP all lie in the same equivalence class. However, if P is not a simplex, then there are multi-

sets consubstantial to a Gale transformation of vertP that are not themselves Gale transformations.

For example, in R, the multiset {1,1,−1,−2} is consubstantial to the multiset {1,1,−1,−1}. The

former is not a Gale transformation of a polytope since 1+ 1− 1− 2 6= 0. However, the latter is

(see Example 17).

Definition. Suppose P ⊆ Rd is a d-polytope with n vertices, and V is a Gale transformation of

V = vertP. If Γ⊆ Rn−d−1 and V are consubstantial, then Γ is called a Gale diagram of P, and the

equivalence class of all Gale diagrams of P is denoted gale(P).

The following theorem shows the usefulness of Gale diagrams.

Theorem 18. Two polytopes P,Q are combinatorially equivalent if and only if gale(P) = gale(Q).

Proof. Suppose P and Q are combinatorially equivalent, that is, there is an isomorphism ϕ of face

lattices ϕ : F (P)→F (Q) (and therefore |vertP|= |vertQ|). Write vertP = {ppp1, ppp2, . . . , pppn} and

vertQ = {qqq1,qqq2, . . . ,qqqn} ordered such that ϕ(pppi) = qqqi for each i ∈ [n].

The set Γ = {ggg1,ggg2, . . . ,gggn} ∈ gale(P) is a Gale diagram of P if and only if for each I ⊆ [n]

such that {gggi | i ∈ I} captures the 000 the set {pppi | i ∈ I} is a coface of P. This happens if and only

if {qqqi | i ∈ I} is a coface of Q (via the isomorphism ϕ). This is equivalent to G ∈ gale(Q). Thus

gale(Q) = gale(P).

On the other hand, suppose that gale(P) = gale(Q) (and therefore that |vertP| = |vertQ|).

Also, let G = {ggg1,ggg2, . . . ,gggn} ∈ gale(P) = gale(Q), and order the sets vertP = {ppp1, ppp2, . . . , pppn}

and vertQ = {qqq1,qqq2, . . . ,qqqn} such that gggi corresponds to both pppi and qqqi for each i ∈ [n].

Define ϑ : 2vertP → 2vertQ (where 2X denotes the power set of the set X) by, for i ⊆ [n],

ϑ({pppi | i ∈ I}) = {qqqi | i ∈ I}. Then {pppi | i ∈ I} is a face of P if and only if {gggi | i ∈ [n]\ I} captures

000. This happens if and only if ϑ({pppi | i ∈ I}) = {qqqi | i ∈ I} is a face of Q. Hence ϑ is an invertible

map that sends faces of P to faces of Q. Furthermore,
{

ppp j
∣∣ j ∈ J

}
⊆ {pppi | i ∈ I} if and only if
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J ⊆ I if and only if

ϑ(
{

ppp j
∣∣ j ∈ J

}
) =

{
qqq j
∣∣ j ∈ J

}
⊆ {qqqi | i ∈ I}= ϑ({pppi | i ∈ I}),

whence ϑ is order preserving. Thence, ϑ induces an isomorphism η : F (P)→F (Q).

The following theorem follows immediately from Theorem 16 and can be found in McMullen

& Shephard (1971). It is the condition that the program in Appendix A uses to check whether or

not a set of points is a Gale diagram of some polytope.

Theorem 19. Suppose n ≥ 0 and d ≥ −1 are integers such that n ≥ d + 1. Then a set of points

Γ = {ggg1,ggg2, . . . ,gggn} ⊆ Rn−d−1 is a Gale diagram of some d-polytope P with |vertP| = n if and

only if for each hyperplane H ⊆ Rn−d−1 with 000 ∈ H the cardinality
∣∣∣G∩H(+)

∣∣∣≥ 2.

In practice, one “only” needs to check the hyperplanes through the origin that are the span of

n− d− 2 points in G, that is, at most
( n

n−d−2

)
=
( n

d+2

)
distinct hyperplanes. Further, since both

orientations of a hyperplane need to be checked, after computing
∣∣∣G∩H(+)

∣∣∣, one can immediately

compute
∣∣∣G∩H(−)

∣∣∣.

The following theorem gives a characterization of apices of pyramids and can be found in

McMullen & Shephard (1971).

Theorem 20. If Γ ∈ gale(P), then P is a pyramid with apex xxx if and only if xxx = 000.

Proof. The point xxx = 000 if and only if relintconv{xxx} = {000} if and only if conv(vert(P)\{xxx}) is a

face of P. Hence P is a pyramid with apex xxx.

Suppose {xxx1,xxx2, . . . ,xxxn} is a Gale transformation of a d-polytope P ⊆ Rd with vertex set

{xxx1,xxx2, . . . ,xxxn} and {α1,α2, . . . ,αn} ⊆ R is a set of positive real numbers. Then the (multi)set

{α1xxx1,α2xxx2, . . . ,αnxxxn} is a Gale diagram of P. Similarly, if {ggg1,ggg2, . . . ,gggn} is a Gale diagram

of P, then there are positive real numbers β1,β2, . . . ,βn such that ∑i∈[n]βigggi = 000. Therefore,

{β1ggg1,β2ggg2, . . . ,βngggn} ∈ gale(P) is a Gale transformation of P. Hence one can easily move be-

tween Gale transformations and Gale diagrams if necessary.
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3.5 Standard Gale Diagrams

Gale diagrams (like most things) are easier to work with when they lie in a nice subset of the

ambient space2. Points corresponding to apices of pyramids cannot be moved in a Gale diagram

(Theorem 20), however each other point in a Gale diagram can be moved along the ray from the

origin passing through that point (and possibly through a larger set), thus a natural construction is

to performing the rescaling

gggi 7−→





000 if gggi = 000

gggi/‖gggi‖ if gggi 6= 000

which places all points corresponding to non-apices on the unit sphere Sn−d−2 ⊆ Rn−d−1. A Gale

diagram that is a subset of Sn−d−2∪{000} is called a standard Gale diagram.

3.6 Examples

3.6.1 Crosspolytopes

Let eeei be the ith unit basis vector in Rd and consider Xd = conv{±eee1,±eee2, . . . ,±eeed}, the standard

d-crosspolytope. Computing a Gale transformation of Xd requires finding a basis for the kernel of

the matrix 


1 1 · · · 1 1 1 1 · · · 1

eee1 eee2 · · · eeed−1 eeed −eeed −eeed−1 · · · −eee1


 .

First, note that this is a (d + 1)× (2d) matrix with rank d + 1. Thus, the kernel has dimension

d − 1. The set {eeei + eee2d+1−i− eee1− eee2d | i ∈ [d]\{1}} of d− 1 vectors in R2d is linearly inde-

pendent, and is a subset of the kernel. Thus this set forms a basis. Forming the matrix that

has these vectors for its columns, and extracting the row vectors yields the Gale transformation

{−111,eee1,eee2, . . . ,eeed−2,eeed−1,eeed−1,eeed−2, . . . ,eee2,eee1,−111} ⊆ Rd−1. See Figure 3.2 for an illustration

of the 3-dimensional case.
2Here, ‘nice’ has the completely circular meaning of a subset that makes a Gale diagram easy to work with.
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eee1

eee2−eee1−eee2

−eee3

eee3
−eee3 = eee3

−eee2 = eee2

−eee1 = eee1

Figure 3.2: The polytope X3 and a Gale transformation of its vertices.

eee1

eee2−eee2

−eee3

eee3− eee1eee3
eee1 = eee3− eee1

−eee2 = eee2−eee3

eee3

Figure 3.3: A 3-dimensional crosspolytope and a Gale transformation of its vertices.

Thus a Gale diagram of the d-dimensional crosspolytope can be given by the vertices of a (d−

1)-simplex with the origin in its relative interior where each point occurs twice and corresponds

to a pair of vertices that are not joined by an edge. These are not all of the Gale diagrams of

crosspolytopes; any doubled point can be split into two points as long as the two points are not

moved “too far” apart 3 (compare Figures 3.2 and 3.3).

3.6.2 Prisms over Simplices

A prism over a d-simplex is a (d + 1)-dimensional polytope with 2d + 2 vertices. It thus has a

d-dimensional Gale diagram.

3Here, “too far” has nothing to do with distance. It is entirely possible that one point can be moved freely within
an unbounded region if all other points are held fixed, e.g., in Figure 3.3 the point eee3 could be moved anywhere within
the open third quadrant without changing the combinatorial type of the polytope.
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Let P be the prism over a d-simplex with vertices




eee1

1


 ,




eee2

1


 , . . .




eeed

1


 ,



−111

1


 ,



−111

−1


 ,




eeed

−1


 ,




eeed−1

−1


 , . . .




eee1

−1


 ,

where eeei is the ith standard basis vector in Rd .

Then the vectors




−eeei

1

−1

eeei




form a basis for the kernel of the matrix




1 1 1 1 1 1 1 1 1 1

eee1 eee2 · · · eeed −111 −111 eeed eeed−1 · · · eee1

1 1 1 1 1 −1 −1 −1 −1 −1




so that the set

{−eee1,−eee2, . . . ,111,−111,eeed,eeed−1, . . . ,eee1} ⊆ Rd

is a Gale transformation of P.

In general a Gale diagram of P is given by the vertices of a simplex with the origin in its relative

interior, along with the negatives of these points. The pairs of points that are antipodal are points

of the polytope that correspond to the same point in the original simplex.
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xxx3 =



−1
−1
1




xxx1 =




1
0
1


 xxx3

xxx5

xxx1

xxx4 xxx2

xxx6
xxx4 =



−1
−1
−1




xxx6 =




1
0
−1




xxx5 =




0
1
−1




xxx2 =




0
1
1




Figure 3.4: The polytope prism∆2 and a Gale transformation of its vertices.

3.7 Oriented Matroids

This section will focus mainly on oriented matroids that arise from point configurations in a Eu-

clidean space. Such oriented matroids are called realizable. The definition of a general oriented

matroid will be given in the penultimate subsection, though it is not necessary for the rest of the

narrative.

This section will closely follow Ziegler (1995) and Björner et al. (1999).

3.7.1 Sign Vectors and Orthogonality

If n ∈ N, then a sign vector of length n is an element of the set {−,0,+}n. If vvv ∈ Rn, then the sign

vector of vvv, denoted SIGN vvv, is the sign vector of length n with coordinates

(SIGN vvv)i =





− if vi < 0

0 if vi = 0

+ if vi > 0.
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Define, also, − SIGN vvv by

(− SIGN vvv)i =





+ if vi < 0

0 if vi = 0

− if vi > 0.

The sign vector with all coordinates 0 is denoted 000, that is, 000 = SIGN 000. No confusion should arise

from this slight abuse of notation. If V ⊆ Rn, then set SIGNV = {SIGN vvv | vvv ∈V}. The support of

an n-dimensional sign vector vvv is the set suppvvv = {i ∈ [n] | vvvi 6= 0}. If S is a set of sign vectors,

then suppS = ∪sss∈S suppsss. A sign vector sss ∈ S is said to be of minimal support if for each ttt ∈ S the

inclusion supp ttt ⊆ suppsss implies supp ttt = suppsss.

Definition. If sss and ttt are two sign vectors of length n, then they are said to be orthogonal if either:

1. for all i ∈ [n] either si = 0, or ti = 0; or

2. there is a pair i, j ∈ [n] with si = ti 6= 0 and s j =−t j 6= 0.

This definition of orthogonality is reasonable, since two sign vectors sss, ttt of length n are or-

thogonal if and only if there are two vectors vvv,www ∈ Rn with sss = SIGN vvv and ttt = SIGN www such that

〈vvv,www〉= 0.

The notation sss ⊥ ttt signifies that sss is orthogonal to ttt. Notice that sss ⊥ sss if and only if sss is the

vector that is 0 in each coordinate. Orthogonality is also a symmetric relationship, i.e., sss⊥ ttt if and

only if ttt ⊥ sss. Orthogonality of sign vectors is not transitive, just as orthogonality of vectors in Rn

is not transitive.

If S is a set of sign vectors of length n, then the dual of S is the set

S⊥ = {ttt ∈ {−,0,+}n | ttt ⊥ sss for all sss ∈ S} .

Notice that 000 ∈ S⊥ so that S⊥ 6=∅.
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3.7.2 Realizable Oriented Matroids

Let X = {xxx1,xxx2, . . . ,xxxn} ⊆ Rd , and suppose that affX = Rd . Denote by [X ] the matrix whose ith

column is xxxi. Consider the set of affine dependencies of X , that is:

depX =

{
λλλ = (λ1,λ2, . . . ,λn) ∈ Rn

∣∣∣∣∣ [X ]λλλ = 000 and ∑
i∈[n]

λi = 0

}
.

The set of vectors of X is the set V (X) = SIGN(depX) of sign vectors of the points in depX .4

A sign vector sss ∈ V (X) of minimal support is called a circuit of X . The set of all circuits of X

is denoted

C (X) = {sss ∈ V (X) | sss is of minimal support} .

The set of covectors of X is the set V (X)⊥, and the set of cocircuits is the set of covectors of

minimal support.

C (X)⊥ =
{

sss ∈ V (X)⊥
∣∣∣ sss is of minimal support

}
.

Any one of the sets V (X),V (X)⊥,C (X),C (X)⊥ can be used to define a realizable oriented

matroid, in the same way that a topology on a set can be defined by either open or closed sets. That

is, any one of these sets can be obtained from each of the others. For details, see (Ziegler, 1995,

section 6.3).

3.7.2.1 Geometric Interpretation of V (X)

Every λλλ ∈ depX \{000} corresponds to a point λ̃λλ that lies in convX in the following way:

Let λλλ ∈ dep(X)\{000}. Define the positive and negative parts of λλλ to be the sets of coordinates

such that λλλ is positive or negative respectively:

P(λλλ ) = {i | λi > 0} N(λλλ ) = {i | λi < 0} .
4The elements of X are themselves vectors in that they are elements of a vector space. They are not, regrettably,

the vectors of X . This terminology, however unfortunate it may be, is standard in the study of oriented matroids.
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Now define λ+ = ∑i∈P(λλλ )λi and λ− = ∑i∈N(λλλ )λi. The equality ∑λi = 0 implies λ+ = −λ−;

further, λλλ 6= 000 implies λ+ 6= 0. Finally, the equality [X ]λλλ = 000 yields that

∑
i∈P(λλλ )

λi

λ+
xxxi =− ∑

i∈N(λλλ )

λi

λ+
xxxi.

Call this point λ̃λλ . The previous paragraph shows that

λ̃λλ ∈ conv{xxxi | i ∈ P(λλλ )}∩ conv{xxxi | i ∈ N(λλλ )} .

Conversely each of the points in the above intersections corresponds to at least one affine depen-

dence of X . Furthermore, every point in a particular intersection of the type above has the same

sign vector.

3.7.2.2 Geometric Interpretation of V ⊥(X)

Intuitively, a sign vector in V ⊥(X) keeps track of which side of some hyperplane each point of X

lies on (or if it lies on the hyperplane itself).

To this end, let H = {xxx | 〈ξξξ ,xxx〉= t} be some hyperplane in Rd , and define the sign vector sss(H)

as follows:

(sss(H))i =





+ if 〈ξξξ ,xxxi〉> t

0 if 〈ξξξ ,xxxi〉= t

− if 〈ξξξ ,xxxi〉< t.

Then this sign vector encodes which side of H each point of X lies on. Notice that

sss(H) = SIGN
(
[X ]Tξξξ − t111

)
.
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Therefore

V ⊥(X) =
{

SIGN
(
[X ]Tξξξ − t111

) ∣∣∣ ξξξ ∈ Rd and t ∈ R
}
.

Example 21. Let X = {xxx1,xxx2,xxx3,xxx4,xxx5} ⊆ R2 where

xxx1 =



−1

1


 , xxx2 =



−1

0


 , xxx3 =




1

0


 , xxx4 =




1

2


 , xxx5 =




0

2




and consider the affine dependence λλλ = (4,−1,−1,4,−6)T. In this case, P(λλλ ) = {1,4}, N(λλλ ) =

{2,3,5} and λ+ = 8. Hence

λ̃λλ =
λ1x1 +λ4x4

λ+
=




0

3/2




which is a point along the line segment from xxx1 to xxx4 as well as a point inside the triangle with

vertices xxx2, xxx3, xxx5.

xxx1

xxx2 xxx3

xxx4xxx5

λ̃λλ

Further: sss = SIGN λλλ =

[
+ − − + −

]T

∈ V (X); |V (X)|= 21; and

C (X) =

{
±
[

0 + − + −
]T

,±
[
+ − 0 + −

]T

,±
[
+ − + − 0

]T

,

±
[
+ − + 0 −

]T

,±
[
+ 0 − + −

]T
}
.

Note that sss /∈ C (X) since ttt =
[
+ − 0 + −

]T

∈ V (X) and supp ttt  suppsss. As for the dual
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sets,
∣∣V ⊥(X)

∣∣= 83, and

C⊥(X) =

{
±
[

0 0 + + +

]T

,±
[

0 + 0 − −
]T

,±
[

0 + + 0 −
]T

,

±
[

0 + + + 0

]T

,±
[
+ 0 − − 0

]T

,±
[
+ 0 − 0 +

]T

,

±
[
+ 0 0 + +

]T

,±
[
+ + 0 − 0

]T

,±
[
+ + 0 0 +

]T

,

±
[
+ + + 0 0

]T
}
.

3.7.3 General Oriented Matroids

This section closely follows (Ziegler, 1995, section 7.4). Before giving the definition of a general

oriented matroid, three more definitions are needed for collections of sign vectors.

Definition. Let sss, ttt,uuu be sign vectors of length n.

1. The composition of sss and ttt is the sign vector sss◦ ttt with coordinates

(sss◦ ttt)i =





si , si 6= 0

ti , si = 0.

2. The separation set of sss and ttt is the set

sep(sss, ttt) = {i ∈ [n] | si =−ti 6= 0} .

3. If j ∈ sep(sss, ttt), then uuu eliminates j between sss and ttt if u j = 0 and for every i /∈ sep(sss, ttt), the

equality ui = (sss◦ ttt)i holds.

Notice that sep(sss, ttt) = sep(ttt,sss) and composition is not a commutative operation (Example 22).
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It is an associative operation since

(sss◦ (ttt ◦uuu))i = ((sss◦ ttt)◦uuu)i =





si , si 6= 0

ti , si = 0 6= ti

ui , si = 0 = ti

.

Example 22. Let sss =
[
+ + + 0 −

]T

, and ttt =
[
+ − 0 + +

]T

. Then

• sss◦ ttt =
[
+ + + + −

]T

,

• sep(sss, ttt) = {2,5}, and

• uuu eliminates 2 between sss and ttt if and only if uuu is of the form
[
+ 0 + + α

]T

for

α ∈ {−,0,+}.

On the other hand

• ttt ◦ sss =
[
+ − + + +

]T

and

• uuu eliminates 2 between ttt and sss if and only if uuu is of the form =

[
+ 0 + + β

]T

for

β ∈ {−,0,+}.

Definition. A set V ⊥ ⊆ {−,0,+}n is the set of covectors of an oriented matroid if it satisfies the

following:

1. 000 ∈ V ⊥;

2. if sss ∈ V ⊥, then −sss ∈ V ⊥;

3. if sss, ttt ∈ V ⊥, then sss◦ ttt ∈ V ⊥

4. if sss, ttt ∈ V ⊥ and j ∈ sep(sss, ttt), then there is some uuu ∈ V ⊥ such that uuu eliminates j between sss

and ttt.
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Covectors as described in section 3.7.2 satisfy the properties above, and therefore do form the

set of covectors of an oriented matroid.

3.7.4 The Dual of an Oriented Matroid

For proofs of the results in this subsection, see either Ziegler (1995) or Björner et al. (1999).

Recall that the definition of orthogonality and dual were in terms of sign vectors. Thus it

makes sense to apply these operations to the covectors in a general oriented matroid. In general,

(S⊥)⊥= S. Thus taking duals of a set leads to at most two distinct sets. For V ⊥ the set of covectors

of a general oriented matroid, define the set of vectors to be V = (V ⊥)⊥. One can define circuits

and cocircuits analogously. Similar to the case of realizable oriented matroids, any of these four

sets can be used to determine the others.

A nontrivial result of oriented matroid theory is that the set of vectors of an oriented matroid is

also the set of covectors of a different5 oriented matroid. This oriented matroid is called the dual

of the original oriented matroid.

In the case of a realizable oriented matroid (realized by the set of points V ), the dual is also

realizable, and is realized by a Gale diagram Γ ∈ galeV .

5As long as V 6= {000}. This follows since V ∩V ⊥ = {000}.
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Chapter 4

Modifying Gale Diagrams

This chapter explores certain operations on Gale diagrams and how these operations affect the

polytopes.

4.1 Joins and Direct Sums

Recall, from Sections 1.4.5 and 1.4.6, the definitions of join and direct sum for point sets. If

X = {ppp1, ppp2, . . . , pppn} ⊆ Rd1 and Y = {qqq1,qqq2, . . . ,qqqm} ⊆ Rd2 , then

X ∨Y =








pppi

000d2

−1




∣∣∣∣∣∣∣∣∣∣

i ∈ [n]




∪








000d1

qqq j

1




∣∣∣∣∣∣∣∣∣∣

j ∈ [m]




⊆ Rd1+d2+1

and

X⊕Y =








pppi

000d2




∣∣∣∣∣∣∣
i ∈ [n]




∪








000d1

qqq j




∣∣∣∣∣∣∣
j ∈ [m]




⊆ Rd1+d2.

Since these operations are defined for general point sets, it makes sense to ask what happens if you

perform them on two Gale diagrams.
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Theorem 23. If P and Q are polytopes, Γ ∈ gale(P), and Λ ∈ gale(Q), then

Γ⊕Λ ∈ gale(P∨Q)

and

Γ∨Λ ∈ gale(P⊕Q).

Proof. Suppose the following:

dimP = d1; dimQ = d2;

P⊆ Rd1; Q⊆ Rd2 ;

vertP = {vvv1,vvv2, . . . ,vvvn} ; vertQ = {www1,www2, . . . ,wwwm} ;

000d1 ∈ relintP; 000d2 ∈ relintQ;

dimaff
{

vvv1,vvv2, . . . ,vvvd1+1
}
= d1; dimaff

{
www1,www2, . . . ,wwwd2+1

}
= d2;

and

rref




1 1 · · · 1

vvv1 vvv2 · · · vvvn


=

[
Id1+1 A

]
; rref




1 1 · · · 1

www1 www2 · · · wwwm


=

[
Id2+1 B

]
.

Then order the vertices of P∨Q as follows:








vvv1

000d2

−1



, . . . ,




vvvd1+1

000d2

−1



,




000d1

www1

1



, . . . ,




000d1

wwwd2+1

1



,




vvvd1+2

000d2

−1



, . . . ,




vvvn

000d2

−1



,




000d1

wwwd2+2

1



, . . . ,




000d1

wwwm

1







.

Here, the first d1 +d2 +2 = dim(P∨Q)+1 vertices are affinely independent. Now, use the tech-
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niques of Section 3.1.1 to compute a Gale transformation of P∨Q as follows: Form the matrix

Z =




1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1

vvv1 · · · vvvd1+1 000d1 · · · 000d1 vvvd1+2 · · · vvvn 000d1 · · · 000d1

000d2 · · · 000d2 www1 · · · wwwd2+1 000d2 · · · 000d2 wwwd2+1 · · · wwwm

−1 · · · −1 1 · · · 1 −1 · · · −1 1 · · · 1



.

First, add the first row to the last row, and then perform, in the first d1 +1 rows, the operations

that transformation the matrix




1 1 · · · 1

vvv1 vvv2 · · · vvvn


 into

[
Id1+1 A

]
. Note that in the 1,2 and 1,4

blocks each column will be the same. Call this common (d1 + 1)-dimensional vector vvv. Further,

denote an r× s matrix with all entries 0 by [0]r
s
. That is,

M = rrefZ = rref




Id1+1 vvv · · · vvv A vvv · · · vvv

[0]d2+1
d1+1

www1 · · · wwwd2+1

2 · · · 2
[0] d2+1

n−d1+1

wwwd2+2 · · · wwwm

2 · · · 2



.

Next, use the bottom row of the matrix to turn the 1,2 and 1,4 blocks into all zeros. Then move

the bottom row to the (d1+2)th row, divide it by 2 and shift each of the remaining rows down, that

is:

M = rref




Id1+1 [0]d1+1
d2+1

A [0] d1+1
m−d2−1

[0]d2+1
d1+1

1 · · · 1

www1 · · · wwwd2+1

[0] d2+1
n−d1+1

1 · · · 1

wwwd2+2 · · · wwwm



.

Now, in the bottom d2 + 1 rows, perform the row operations that transformation the matrix
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


1 1 · · · 1

www1 www2 · · · wwwm


 into

[
Id2+1 B

]
. Thus

M =


 Id1+d2+2

A [0]

[0] B




and so a Gale transformation of P∨Q is given by the multiset of the columns of the matrix



−AT [0] I [0]

[0] −BT [0] I


 .

These are exactly the elements of Γ⊕Λ.

The second result holds by oriented matroid duality.

4.1.1 d-Polytopes with d +2 Vertices

As an application of Theorem 23, all d-polytopes with d + 2 vertices are classified. This section

follows the discussion found in McMullen & Shephard (1971).

Let P be a d-polytope with d + 2 vertices, and let Γ be a standard Gale diagram of P. Since

S0 = {−1,1} ⊆ R, as a set {−1,1} ⊆ Γ⊆ {−1,0,1}. Because Γ is a Gale diagram,

p = |{xxx ∈ Γ | xxx =−1}| ≥ 2

q = |{xxx ∈ Γ | xxx = 1}| ≥ 2.

This leaves a = d +2− p−q points in Γ, and they must all be at the origin. A point at the origin

in a Gale diagram corresponds to the apex of a pyramid in the polytope (Theorem 20). Thus P is

an a-fold pyramid over a polytope Q whose Gale diagram Λ has p ≥ 2 points on one side of the

origin, and q≥ 2 points on the other.

The Gale diagram Λ is the join of the Gale diagrams of a (p−1)-simplex and a (q−1)-simplex.
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Hence, by Theorem 23, P is combinatorially equivalent to the polytope

pyra
(
∆p−1⊕∆q−1

)
.

where a+ p+q = d +2 and p,q≥ 2.

Note that the combinatorial type of each d-polytope with d+2 vertices can be specified by the

unordered pair (p,q). So to count the number of combinatorial types of these polytopes, one only

needs to count the number of such pairs. Assume, without loss of generality, that p≤ q. The pairs

are then of the following form:

(2,q), 2≤ q≤ d

(3,q), 3≤ q≤ d−1

...
(⌊

d
2

⌋
,q
)
,

⌊
d
2

⌋
≤ q≤

⌈
d
2

⌉
.

Thus, if d is odd, then there are

2+4+ · · ·+(d−1) = 2
(

1+2+ · · ·+ d−1
2

)
=

d2

4
− 1

4
=

⌊
d2

4

⌋

combinatorial types of these polytopes. If d is even, then there are

1+3+ · · ·+(d−1) = 2+4+ · · ·+d− d
2
=

d2

4
=

⌊
d2

4

⌋

types of these polytopes.

In McMullen & Shephard (1971), the following lemma is proved.

Lemma 24. Let Γ be a Gale diagram of a d-polytope P with n vertices. Then P is a simplicial
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polytope if and only if for every hyperplane H ∈ Rn−d−1 containing 000 the following holds:

000 /∈ relintconv(Γ∩H).

Combining this with the above discussion yields:

Theorem 25. There are
⌊
d2/4

⌋
combinatorial types of d-polytopes with d + 2 vertices. Further-

more, each of these polytopes is of the form pyra
(
∆p−1⊕∆q−1

)
where a+ p+ q = d + 2 and

p,q≥ 2. Moreover, bd/2c of these polytopes are simplicial.

4.2 Adding Points to Gale Diagrams

The first thing one should do in a section entitled “Adding Points to Gale Diagrams" is discuss

under what conditions adding a point to a Gale diagram yields a Gale diagram. Thus, suppose

Γ ∈ gale(P) is a Gale diagram of some d-polytope P with n vertices, and let xxx ∈ Rn−d−1 be any

point. Then Γ∪{xxx} is a Gale diagram of some (d + 1)-polytope with n+ 1 vertices. This is true

since every hyperplane still has at least two points in both of its open half-spaces. It should be clear

that the location of the new point does matter in determining the new polytope. Adding a point to

a Gale diagram increases the number of points by 1, but not the dimension of the space in which

the Gale diagram lies. Thus the dimension of the new polytope is 1 greater than the dimension of

the old polytope.

Points can be added to Gale diagrams in many ways. Unfortunately, it is possible given two

Gale diagrams Γ,Λ∈ gale(P) to add a point to both Γ and Λ in the same way (such as adding a point

antipodal to the point corresponding to a particular vertex), yet not have the two new polytopes be

combinatorially equivalent.
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23
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Figure 4.1: Two Gale diagrams of X3.

1 6

23
54

1′
54

32
6

1

1′

Figure 4.2: Adding an antipode 1′ to the point 1 in a Gale diagram of X3. (cf. Figure 4.3)

1′

6

1

3
4

5
2

1

1′

6

4

3

5
2

Figure 4.3: Adding an antipode 1′ to the point 1 in a Gale diagram of X3. (cf. Figure 4.2)
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4.2.1 Adding an Antipode to a Gale Diagram

As an example; consider the crosspolytope X3. Figure 4.1 shows two consubstantial standard Gale

diagrams for X3. If a point 1′ is added that is antipodal to 1 in each of these Gale diagrams, then

Figures 4.2 and 4.3 show the graphs of the polytopes with each of these Gale diagrams. Let P

be a polytope with the Gale diagram in Figure 4.2, and Q be a polytope with the Gale diagram in

Figure 4.3. Note that conv{2,5} is not an edge in P, whereas in Q it is. Hence, P and Q cannot be

combinatorially equivalent.

The facets of P are the 3-dimensional pyramids 23456 and 12345 each with base 2345, as well

as the following 3-simplices.

11′45 11′35 11′24 11′23

1′456 1′356 1′246 1′236

The facets of Q are the triangular bipyramid 23456 with base 256, as well as the following 3-

simplices.

11′45 11′35 11′24 11′23

1′456 1′356 1′246 1′236

1245 1235

4.2.2 Duplicating a Point in a Gale Diagram

On the other hand, an operation that is well defined is that of adding a duplicate of an existing point

to a Gale diagram. Let P be a d-polytope with vertex set vertP = {vvv1,vvv2, . . . ,vvvn}. Let Γ be a Gale

diagram of P, and let Q be a (d+1)-polytope with vertex set vertQ = {www1′,www1,www2, . . . ,wwwn} whose

Gale diagram Λ satisfies www1′ = vvv1 and wwwi = vvvi otherwise.

Let Y be a cofacet of Q, that is, a minimal coface and consider the following four cases:

57



1. ({www1,www1′} ⊆ Y ) This case cannot happen since the set Y \ {www1} captures the origin, and

Y \{www1} Y .

2. (www1 ∈ Y and www1′ /∈ Y ) For this case, let X = {vvvi | wwwi ∈ Y}. Then since Y = X , the set Y is a

cofacet if and only if X is a cofacet.

3. (www1 /∈ Y and www1′ ∈ Y ) Here, set X = {vvvi | wwwi ∈ Y or i = 1}. In this case, Y = X again, and so

Y is a cofacet if and only if X is a cofacet.

4. ({www1,www1′}∩Y = ∅) For the final case, again set X = {vvvi | wwwi ∈ Y}. Once more, Y = X , so

that Y is a cofacet if and only if X is a cofacet.

Thus the cofacets (and hence the facets) of Q are determined by the cofacets (and hence the co-

facets) of P and vice versa. Geometrically, Q is combinatorially equivalent to a polytope with the

following vertices:

www1 =




vvv1

1


 www1′ =




vvv1

−1


 www j =




vvv j

0


 , j ∈ [n]\{1}

Conceptually, first place P inRd+1. Then the vertex vvv1 is replaced by a line segment whose relative

interior passes through vvv1, and whose affine hull intersects that of the original polytope at precisely

the point vvv1.

If P is a 2-polytope with n vertices, then performing this operation at any vertex yields a

polytope that is combinatorially equivalent to performing the operation at any other vertex. The

resulting polytope is combinatorially equivalent to the cyclic polytope C3(n+ 1). See Figure 4.4

for an example. This process is called a simplicial wedge in Ayzenberg (2013).
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5

Figure 4.4: Duplicating the point1 in a Gale diagram of C5(2).
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Chapter 5

Gale Polytopes

Recall Gale’s evenness condition, which exactly describes the facets of the cyclic polytope Cd(n)

of dimension d with n vertices.

Gale’s Evenness Condition. A subset S⊆ [n] with |S|= d forms a facet of Cd(n) if and only if

|{k | k ∈ S and i < k < j}| is even for all i < j, {i, j}∩S =∅

It is reasonable to ask if a noncyclic polytope satisfies a weakened form of Gale’s evenness

condition, namely:

Definition. A d-polytope P with vertex set vert(P) = {vvv1,vvv2, . . . ,vvvn} is called a Gale polytope if

there is an ordering of vert(P) such that each facet satisfies the following property:

If S⊆ [n] and F is a facet of P with vert(F) = {vvvs | s ∈ S}, then

|{k | k ∈ S and i < k < j}| is even for all i < j, {i, j}∩S =∅.

An equivalent characterization is as follows:

Let P be a polytope, vvv1,vvv2, . . . ,vvvn be an ordering of vert(P) and S = {vvvi1,vvvi2, . . . ,vvvik} ⊆ vert(P)

be such that i1 < i2 < · · ·< ik. Then a block of S is a subset C of S such that if t =min
{

i j
∣∣ vvvi j ∈C

}
,
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then there is some r ∈ N such that C = {vvvt ,vvvt+1, . . . ,vvvt+r−1} and vvvt+r /∈ S. In this case, the length

of a block is |C|= r.

Definition. A polytope P is Gale if there is an ordering of vert(P) such that if F is a facet of P,

then for each block G of vertF one of the following holds:

1. the length of G is even; or

2. vvv1 ∈ G; or

3. vvvn ∈ G.

Such an ordering of the vertices is called a Gale ordering. A block which contains vvv1 is called an

initial block. A block which contains vvvn is called a terminal block. A block which is neither initial,

nor terminal is called internal.

In terms of blocks, a polytope is Gale if and only if there is an ordering of the vertices such that

in each facet the only blocks of odd length are either initial, or terminal. Note that a facet need not

have either an initial block, or a terminal block.

An immediate consequence of either definition is: If P is a Gale polytope with n vertices, and

vvv1,vvv2, . . . ,vvvn is a Gale ordering of vert(P), then so is vvvn,vvvn−1, . . . ,vvv1. Note that all cyclic polytopes

are Gale, and therefore all polytopes of dimension less than or equal to 2 are Gale.

Theorem 26. If P is a Gale polytope, then so is pyr(P), a pyramid over P.

Proof. Let vvv1,vvv2, . . . ,vvvn be a Gale ordering of vert(P) and www1,www2, . . . ,wwwn+1 be the ordering of

vert(pyr(P)) with wwwi corresponding to vvvi for i ∈ [n], and with wwwn+1 as the apex of the pyramid.

Let F be a face of pyr(P). Then either vert(F) = {www1,www2, . . . ,wwwn}, or wwwn+1 ∈ vert(F). In the

first case, F contains only an initial block.

In the second case, write vert(F) = {wwwi1,wwwi2, . . . ,wwwik ,wwwn+1} with i1 < i2 < · · · < ik < n+ 1.

Then either ik = n, or ik < n. If ik = n, then each block C of {wwwi1,wwwi2, . . . ,wwwik} satisfies at least

one of the following: C is internal of even length; C is initial; or wwwn ∈ C. Thus, after adding in
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wwwn+1, each block C′ satisfies one of the following respectively: C′ is internal of even length; C′ is

initial; or C′ is terminal. In the case that ik < n, each block of {wwwi1,wwwi2, . . . ,wwwik} is either initial, or

is of even length. Ergo, when wwwn+1 is added the only change is that a terminal block of length 1 is

added.

Theorem 27. Suppose P is a Gale polytope, and let X be a collection of pairwise disjoint facets

that each have an odd number of vertices. Then |X | ≤ 2 .

Proof. Let P be a Gale polytope, and F be a facet of P which has an odd number of vertices.

Consider the blocks of F . since F has an odd number of vertices, it must have either an initial

or terminal block. If this were not the case, then there would be an internal block with an odd

number of vertices.

Example 28. The above theorem shows that both the regular dodecahedron and regular icosahe-

dron are not Gale polytopes. The shaded facets in Figure 5.1 are all disjoint with an odd number

of vertices, and there are more than two in each polytope.

Figure 5.1: The regular dodecahedron and icosahedron are not Gale polytopes.

If P is a 3-polytope with five or fewer vertices then it is combinatorially equivalent to one of

∆3, pyr(C4(2)), or C5(3) each of which is Gale. However, there is a 3-polytope with six vertices

which is not Gale. In order to demonstrate this, we will use Theorem 30 which is a consequence

of Lemma 29. For a proof, see Klee & Minty (1972).

Lemma 29 (Klee, Minty 1972). Let X and Y be polytopes having the same number m of vertices,

the vertices of X being xxx1,xxx2, . . . ,xxxm and those of Y being yyy1,yyy2, . . . ,yyym. Suppose that for each
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index set I ⊆ [m],

conv{xxxi | i ∈ I} is a facet of X implies conv{yyyi | i ∈ I} is a facet of Y.

Then the reverse implications hold, whence X and Y are combinatorially equivalent.

The following theorem is found in Bayer & Bisztriczky (2007).

Theorem 30. If P is a simplicial Gale polytope, then P is a cyclic polytope.

Proof. First, recall that if vert(Cd(n)) = {vvv1,vvv2, . . . ,vvvn}, then the set facets of Cd(n) is

X =
{

conv
{

vvvi1,vvvi2, . . . ,vvvid+1

} ∣∣ {vvvi1 ,vvvi2, . . . ,vvvid+1

}
satisfies Gale’s evenness condition

}
.

Let P be a simplicial Gale polytope of dimension d with |vertP| = n. Then there is some

ordering www1,www2, . . . ,wwwn of vertP such that if conv{www1,www2, . . . ,wwwid} is a facet of P, then the set

conv{vvvi1,vvvi2, . . . ,vvvid} is a facet of Cd(n) since the set of facets of Cd(n) is X .

Thus P and Cd(n) satisfy the hypothesis of Lemma 29. Hence P is combinatorially equivalent

to Cd(n).

Thus, for example, X3 is not a Gale polytope since each vertex of X3 lies on four edges, whereas

C6(3) has two vertices which each lie on only three edges.

Since simplices are cyclic polytopes, and cyclic polytopes are simplicial, each facet of a cyclic

polytope satisfies Gale’s evenness condition. However, this need not happen for a general Gale

polytope. The following is an example of a Gale polytope with a facet which is not Gale.

Example 31. Consider the 5-dimensional cyclic polytope with vertices xxx1,xxx2,xxx3,xxx4,xxx5,xxx6,xxx7. Let

P be a vertex figure of C5(7) at xxx4. Then P is a 4-dimensional simplicial polytope with 6 vertices

zzz1,zzz2,zzz3,zzz5,zzz6,zzz7 (where zzzi corresponds to the edge xxx4xxxi).
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The facets of P are the convex hulls of the following sets:

{zzz1,zzz2,zzz3,zzz5} {zzz1,zzz2,zzz3,zzz7} {zzz1,zzz2,zzz5,zzz7} {zzz1,zzz3,zzz5,zzz6}

{zzz1,zzz3,zzz6,zzz7} {zzz1,zzz5,zzz6,zzz7} {zzz2,zzz3,zzz5,zzz7} {zzz3,zzz5,zzz6,zzz7}.

Let Q be a pyramid over P with apex aaa. Then Q is a Gale polytope with Gale ordering

zzz1,zzz2,zzz3,aaa,zzz5,zzz6,zzz7.

However, P (which is the base of the pyramid Q, and therefore also a facet of Q) is not Gale since

it is a simplicial 4-polytope whose graph is not complete (it is missing the edge conv{zzz2,zzz6}) and

therefore P is not cyclic.

Notice that this construction generalizes to give infinitely many polytopes with this property.

Consider the cyclic polytope Cd(2n+1) (of dimension at least 4) with an odd number of vertices.

Let P be a vertex figure of Cd(2n+1) at the vertex n+1, and Q be a pyramid over Q.

Theorem 32. If P is a Gale d-polytope, and Q is a Gale d′-polytope, then P×Q is a Gale (d+d′)-

polytope.

Proof. Suppose vvv1,vvv2, . . . ,vvvn is a Gale ordering of vert(P), and www0,www1, . . . ,wwwm is a Gale ordering

of vertQ. Then define an ordering of vert(P×Q) as follows:

Let (V1,wwwi) and (V−1,wwwi) respectively be the sequences:

(vvv1,wwwi),(vvv2,wwwi), . . . ,(vvvn,wwwi)

(vvvn,wwwi),(vvvn−1,wwwi), . . . ,(vvv1,wwwi).

Define similarly, (B1,wwwi) and (B−1,wwwi) for B a set of vertices of P.

Claim: (V1,www0),(V−1,www1), . . . ,(V(−1)m,wwwm) is a Gale ordering of P×Q.

First, consider the facets of P×Q of the form P×G where G is a facet of Q. The vertex www j is a
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vertex of G if and only if (vvvi,www j) is a vertex of the facet P×G for each vvvi ∈ vert(P). In particular,

the sequence (V(−1) j ,www j) is part of a block of P×G.

If n is even, then each of these parts is of even length, and hence every block of P×G is even.

If n is odd, then consider the blocks of G. If G has an initial block www0,www1, . . . ,wwwt , then P×G

has initial block (V1,www0),(V−1,www1), . . . ,(V(−1)t ,wwwt) (since (vvv1,wwwt+1) is not a vertex of P×G). A

similar statement applies for terminal blocks.

Suppose that G has an internal block vvvk,vvvk+1, . . . ,vvvk+s−1. Since this is an internal block, s must

be even. Thus the sequence (V(−1)k ,wwwk),(V(−1)k+1,wwwk+1), . . . ,(V(−1)k+s−1 ,wwwk+s−1) is an internal

block of P×G of length |vert(P)| · s (this is an even number). This follows since each element of

the above sequence is a vertex of P×G, and none of the vertices

(vvv1,wwwk−1),(vvvn,wwwk−1),(vvvn,wwwk+s),(vvv1,wwwk+s)

is a vertex of P×G.

Now, consider the facets of P×Q of the form F ×Q with F a facet of P. In this case,

similar to above, vvvi ∈ F if and only if (vvvi,www j) ∈ F ×Q for each j ∈ [m]∪ {0}. The sequence

B = vvvi,vvvi+1, . . . ,vvvi+k−1 is part of a block of F if and only if





(B1,www j) = (vvvi,www j),(vvvi+1,w j), . . . ,(vvvi+k−1,www j) , j even

(B−1,www j) = (vvvi+k−1,www j),(vvvi+k−2,w j), . . . ,(vvvi,www j) , j odd

is part of a block of F ×Q. If B is an internal block of F , then the above are internal blocks of

F×Q.

Suppose that B is an initial block of F (in particular, i = 1, and B has length k). Then:

• (B1,www1) is an initial block of F×Q;

• if m is odd, then (B−1,wwwm) is a terminal block of F×Q;

• if m is even, then (B−1,wwwm−1),(B1,wwwm) is an internal block of length 2k.
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Further, (B−1,www2`−1),(B1,www2`) is an internal block of length 2k for ` ∈ [bm/2c].

The case that B is a terminal block is handled similarly.
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Chapter 6

Anticliques in Graphs of Polytopes

Let G = (V,E) be a graph. An anticlique is a subset A of V (of cardinality at least 2) such that

E ∩
(A

2

)
=∅. If |A|= k, then A is said to be a k-anticlique. A 2-anticlique is simply a nonedge.

Recall that if G is the graph of a d-polytope P with n vertices, and Γ ∈ gale(P) is a Gale

diagram of P, then
{

vvvi,vvv j
}

is a nonedge of P if and only if there is some hyperplane Hi, j ⊆Rn−d−1

containing 000 such that H(+)
i, j ∩Γ =

{
vvvi,vvv j

}
. Such a hyperplane is called a separating hyperplane.

The normal vector to Hi, j which has positive inner product with vvvi,vvv j and norm 1 is denoted xxxi, j.

If P is a d-polytope with d+k vertices, then Theorem 10 in Section 2.4 implies that each vertex

of G (P) must have degree at least d. If a graph H with d+k vertices has a (k+1)-anticlique, then

each vertex in the anticlique has degree at most d−1, and hence H is not d-realizable. However,

the graph
(
[d + k] ,

([d+k]
2

)
\
([k]

2

))
is d-connected, and furthermore has a Kd+1 minor (the induced

subgraph on the vertex set {k,k+1, . . . ,k+d} is complete) and thus could be the graph of a d-

polytope. It will be shown that this cannot happen. More precisely for k ≥ 2, let

f (d,k) = max{n | there is some d-polytope P with d + k vertices and an n-anticlique} .

Then the goal is to show that f (d,k)< k for k > 2.
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6.1 An Upper Bound on f

First note that f is weakly increasing in both arguments.

Theorem 33.

1. f (d,k)≤ f (d +1,k)

2. f (d,k)≤ f (d,k+1)

Proof. Let P be a d-polytope with d + k vertices, and an f (d,k)-anticlique.

1. The (d+1)-polytope pyr(P) has (d+k)+1 = (d+1)+k vertices and an f (d,k)-anticlique.

2. Let F be any facet of P. The d-polytope K(P;F) (defined in section 1.4.8) has d +(k+ 1)

vertices and an f (d,k)-anticlique.

Recall that a standard Gale diagram is one in which each point is either on the unit sphere,

or at the origin. Further if a point in the Gale diagram is at the origin, then the polytope is a

pyramid with apex the corresponding point. Since the main question is concerned with sizes of

anticliques, and the anticliques of a pyramid are exactly those of its base, nothing is lost or gained

in the assumption that a polytope is not a pyramid.

Theorem 34. Let P be a d-polytope with vertex set {vvv1,vvv2, . . . ,vvvn}; A = {i1, i2, . . . , ik} ⊆ [n];

{vvvi | i ∈ A} be an anticlique; Γ be a standard Gale diagram of P; and {i, j} ⊆ A. Then

1. vvvi 6= 000.

2. vvvi 6=−vvv j.

Furthermore if k ≥ 3, then

3. if vvvi = vvv j , then i = j.

Proof.
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1. If vvvi = 000, then conv{vvvi,vvvt} is a face of P for each t ∈ [n]\{i}. In particular, conv
{

vvvi,vvv j
}

is

an edge of G(P).

2. If vvvi =−vvv j,and Hi, j is a separating hyperplane for vvvi,vvv j with normal vector xxxi, j, then

0 <
〈
xxxi, j,vvvi

〉
=−

〈
xxxi, j,vvv j

〉
< 0.

3. Let Ha,b be a separating hyperplane for vvva,vvvb with normal xxxa,b for each pair a,b∈A. Suppose

vvvi = vvv j with i 6= j. Then for r ∈ A\{i, j},

0 <
〈
xxx j,r,vvv j

〉
=
〈
xxx j,r,vvvi

〉
≤ 0.

Hence i = j.

Theorem 35. f (d,2) = 2

Proof. If P is a d-polytope with d +2 vertices, then P has a 1-dimensional Gale diagram. Since a

nonedge requires that there be a separating hyperplane, and in this case there is only one possible

hyperplane (namely the origin), each vertex can have at most one nonneighbor. This implies that

f (d,2)≤ 2. The polytope pyrd−2(X2) is d-dimensional with d+2 vertices and a 2-anticlique. Thus

f (d,2) = 2.

Theorem 36. f (d,3)< 3

Proof. Let P be a d-polytope with d + 3 vertices, and let Γ be a standard Gale diagram of P.

Suppose that P has a 3-anticlique {vvv1,vvv2,vvv3}, and let vvv4 be any other vertex of P. Note that since

Γ⊆ S1 (assuming again that P is not a pyramid), by writing each vvvi ∈ Γ in polar coordinates only

the angle ϕi ∈ [0,2π) is necessary to specify vvvi. By Theorem 34 part 3, none of ϕ1,ϕ2,ϕ3 are

equal, so assume ϕ1 < ϕ2 < ϕ3. Further, if ϕ1 > 0, then rotating each point in Γ clockwise by an

angle of ϕ1 produces a consubstantial standard Gale diagram, so assume

0 = ϕ1 < ϕ2 < ϕ3 < 2π.
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vvv1

vvv2

vvv3

ϕ2
ϕ3

Since vvv1vvv2 is not an edge of P, there is some hyperplane H3 through the origin such that

H(+)
3 ∩Γ = {vvv1,vvv2}. Therefore, ϕ4 /∈ [0,ϕ2]. Similarly, ϕ4 /∈ [ϕ2,ϕ3], and ϕ4 /∈ [ϕ3,2π). Since Γ

is a standard Gale diagram, this means that vvv4 = 000. But this contradicts the assumption that P is

not a pyramid.

Lemma 37. If

• P is a d-polytope with vertex set V ∪Y of cardinality d + k,

• |V |= d and |Y |= k,

• Y is an anticlique of G (P), and

• vvv ∈V , then

vvvyyy is an edge of G (P) for each y ∈ Y .

Proof. Let vvv ∈V , yyy ∈ Y . Since P is a d-polytope, it is d-connected, therefore each vertex of G(P)

is adjacent to at least d other vertices. But since Y is an anticlique, yyy is adjacent to at most d other

vertices. Hence yyy is adjacent to exactly d other vertices, and since none of these other vertices is

in Y , vvvyyy is an edge of G(P).

The following is a general fact about polytopes. A proof is included for completeness, but
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Lemma 38. Let P be a d-polytope, yyy ∈ vertP with degyyy = d, and V = N(yyy) = {vvv1,vvv2, . . . ,vvvd}.

Then for each subset X of V with cardinality d−1 there is a unique facet F of P with X ⊆ vertF.

Proof. Each vertex of P lies in at least d facets since P is a d-polytope. Let F be a facet containing

yyy. Since F is a (d−1)-polytope, each vertex of G(F) has degree at least d−1. Thus yyy must have

either d−1 or d neighbors in F . If yyy had each of its d neighbors in F , then yyy would only lie in one

facet. Thus each facet in which yyy lies contains exactly d−1 neighbors of yyy. Further, each element

of
( V

d−1

)
determines a unique facet of P since yyy lies in at least d facets.

Notice that this argument also shows that the set V above is affinely independent, and that V is

not contained in any proper face of P.

Theorem 39. If k > 2, then f (d,k)< k.

Proof. Proceed by induction on d. For the base case: the graph of a 2-polytope with n vertices is a

cycle of length n, so a maximal anticlique can be obtained by taking every other vertex. Therefore

f (2,k) = 1+ bk/2c< k. Thus, suppose for some d that f (d−1,k)< k for all k > 2. The proof of

the contrapositive will be shown, that is, if f (d,k) = k, then k = 2.

Let P be a d-polytope with d + k vertices and, without loss of generality, suppose that P is

not a pyramid. Suppose further, that P has a k-anticlique Y = {yyy1,yyy2, . . . ,yyyk}. Write vert(P) =

{vvv1,vvv2, . . . ,vvvd}∪Y , let V = {vvv1,vvv2, . . . ,vvvd}, and Vi =V \{vvvi} for i ∈ [d]. Fix some i ∈ [d], and for

each j ∈ [k], let Fi, j be the facet of P which contains Vi∪
{

yyy j
}

(Lemmata 37 and 38), and Gi be the

smallest face of P which contains Vi.

Notice that Gi ⊆ Fi, j for each j ∈ [k], and that Gi is either a facet or a ridge since V is an affinely

independent set.

1. (Gi is a facet.) In this case, for each j ∈ [k], Gi = Fi, j = conv(Y ∪Vi). Thus P is a pyramid

over Gi with apex vvvi. This is a contradiction.

2. (Gi is a ridge.) Let F1,F2 be the facets containing Gi. In this case, Y can be partitioned into
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two nonempty sets

Y1 =
{

yyya1
,yyya2

, . . . ,yyyar

}
Y2 =

{
yyyb1

,yyyb2
, . . . ,yyybs

}

such that

Y1 ⊆ Fi,a1 = F1 Y2 ⊆ Fi,b1 = F2.

If |Y1| = 2, then F1 is a (d− 1)-polytope with (d− 1)+ 2 vertices and Gi is a facet of F1.

Thus a Gale diagram of F1 is one dimensional with d +1 vertices, and both yyya1
and yyya2

are

on the same side of the origin. However, 000 ∈ relintconv
(

vert(F1)\Y1

)
. Similarly, |Y2| 6= 2.

If |Y1| ≥ 3, then Fi,a1 is a (d−1)-polytope with (d−1)+ |Y1| vertices, and a |Y1|-anticlique,

that is, f (d−1, |Y1|)≥ |Y1|. This contradicts the inductive hypothesis.

Hence |Y1| = |Y2| = 1, whence P is a d-polytope with d + 2 vertices and a 2-anticlique.

Thence k = 2.

6.2 A Lower Bound on f

Lemma 40. If

• P is a d-polytope with d + k vertices,

• vvv is a vertex of P such that each facet containing vvv is a simplex, and

• vvv is contained in a q-anticlique of P, then

f (d,k+ i)≥ q+ i−1 for i ∈ [d].
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For example, such a vertex exists when P is a simplex (in which case each vertex has this

property) or if P is of the form P = K(P′;F) where F is a facet of P′ which is a simplex, so the

Lemma is not vacuous.

Proof. Let F1,F2, . . . ,Fd be facets of P containing vvv, and set

P0(vvv) = P

Pi(vvv) = K(P;F1,F2, . . . ,Fi)

{vvvi}= vert(Pi(vvv))\vert(Pi−1(vvv)).

Further, let A′ be a q-anticlique of P which contains vvv, and set A = A′ \{vvv}.

For a fixed i∈ [d], the inclusion N(vvvi)⊆N(vvv)∪{vvv} in G (Pi(vvv)) implies that A∪{vvv1,vvv2, . . . ,vvvi}

is a (q− i−1)-anticlique in G (Pi(vvv)).

Theorem 41. If k,d > 2, then k−1−
⌊

k−3
d

⌋
≤ f (d,k)≤ k−1.

Proof. Fix d > 2 and set t = b(k−3)/dc and let Q0 = K(∆d;F) for some facet F of ∆d . Let vvv0

be a vertex of Q0 and F0,1,F0,2, . . . ,F0,d be the facets of Q0 which contain vvv0. Then for k ∈ [d], the

polytope K(Q0;F0,1,F0,2, . . . ,F0,k) is a d-polytope with d +2+ k vertices and a (k+1)-anticlique.

Now, inductively define, for n ∈ N\{0}, the polytope

Qn = K(Qn−1;Fn−1,1,Fn−1,2, . . . ,Fn−1,d)

where
{

Fn−1,1,Fn−1,2, . . . ,Fn−1,d
}

is the set of facets that contain some fixed vertex in a maximal

anticlique of Qn−1.

Finally, for k ∈ [d] the polytope K(Qn;Fn,1,Fn,2, . . . ,Fn,k) is a d-polytope with d +(nd +2+ k)

vertices and an anticlique of cardinality nd +2+ k−n−1.

Notice that if b(k−3)/dc= 0 (that is, k≤ d+2), then the upper and lower bounds on f agree.
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6.3 The Value of f in Dimension 3

If d = 3, then Theorem 41 says that k−1−b(k−3)/3c ≤ f (3,k) ≤ k−1. In this case, the lower

bound can be rewritten as k−1−b(k−3)/3c= d2k/3e.

6.3.1 Euler’s Theorem

Euler’s Theorem states that the f -vector of a d-polytope lies on a certain hyperplane in Rd . For

a proof, see Grünbaum (2003), McMullen & Shephard (1971), or Ziegler (1995). All that will be

needed is the d = 3 case:

Theorem 42 (Euler). If P is a 3-polytope, then f0(P)− f1(P)+ f2(P) = 2.

Euler’s Theorem can be proven for planar graphs in general; in this case f2 counts the number

of regions into which the graph divides the plane.

Since each region of a planar graph is bounded by at least 3 edges, and each edge lies on at most

2 facets, 3R ≤ 2 |E(G)| where R is the number of regions into which the graph divides the plane.

If G is the graph of a polytope P, then R = f2(P). If the number of edges bounding a region is at

least 4, then this inequality becomes 4R≤ 2 |E(G)|, i.e., 2R≤ |E(G)|. Combining this with Euler’s

Theorem yields |E(G)| ≤ 3 |V (G)|−6 for a general planar graph, and |E(G)| ≤ 2 |V (G)|−4 for a

planar graph with no 3-cycles. In particular, if G is bipartite, then it has no 3-cycles.

6.3.2 Bipartite Graphs Induced by Anticliques

If P is a 3-polytope and A is an anticlique of G = G (P), then A induces a bipartite graph GA whose

vertex set is that of G, and whose edge set is the set of edges in G which contain a vertex of the

anticlique A. That is:

V (GA) =V (G)

E(GA) = {ax | a ∈ A}∩E(G).
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Note that GA is planar since G is planar, and GA is a subgraph of G.

Theorem 43. f (3,k) = d2k/3e

Proof. Suppose that P is a 3-polytope with 3+ k vertices and a (d2k/3e+ 1)-anticlique A. Let

G = G (P) and a ∈ A. Since each edge of G on which a lies is also an edge of GA, and a lies on at

least 3 edges of G, it follows that

|E(GA)| ≥ 3(d2k/3e+1)≥ 3(2k/3+1) = 2k+3

On the other hand, GA is a bipartite planar graph with 3+ k vertices. It therefore has at most

2(3+ k)−4 = 2k+2 edges.

@
@
@d
k

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9
3 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11
4 2 2 3 4 5 5 6 7 8 8 9 10 11 11 12
5 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13
6 2 2 3 4 5 6 7 7 8 9 10 11 12 12 13
7 2 2 3 4 5 6 7 8 8 9 10 11 12 13 14
8 2 2 3 4 5 6 7 8 9 9 10 11 12 13 14
9 2 2 3 4 5 6 7 8 9 10 10 11 12 13 14

10 2 2 3 4 5 6 7 8 9 10 11 11 12 13 14
11 2 2 3 4 5 6 7 8 9 10 11 12 12 13 14

Table 6.1: Values of f (d,k). Numbers in bold are lower bounds.
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Chapter 7

Realizability of Complete Multipartite

Graphs

The aim of this chapter is to answer the question, "When is a complete multipartite graph real-

izable?". A complete answer will not be given, but progress will be made toward an answer. In

particular, a complete multipartite graph is the graph of a polytope if and only if if is either K1,1 or

K2,2. A characterization of all of the possible 2- and 3-faces will also be given.

7.1 Hereditary Classes of Graphs

A class of graphs G called a hereditary if G ∈ G, and H is an induced subgraph of G implies

H ∈G.

Example 44. Throughout these examples, 0 /∈ N.

1. Let q ∈ N. The class of discrete graphs with at most q vertices is hereditary, and is denoted

Dq = {Dn | n≤ q}.

2. The class of all discrete graphs is hereditary, and is denoted D= {Dn | n ∈ N}.

3. The class of all complete graphs is hereditary, and is denoted K= {Kn | n ∈ N}.
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4. The class of all complete bipartite graphs (along with the discrete graphs) is hereditary, and

is denoted K2 = {Kn,m | n,m ∈ N}∪D.

5. Let 3 ≤ q ∈ N. The class of all complete multipartite graphs with fewer than q parts (along

with the discrete graphs) is hereditary, and is denoted

Kq =
{

Kn1,...,nq

∣∣ ni ∈ N for each i ∈ [q]
}
∪Kq−1.

6. Let a1 ≤ a2 ≤ ·· · ≤ am be a sequence of natural numbers. Then the class

K[a1,a2, . . . ,am] = {Kn1,n2,...,nm | ni ≤ ai}∪Km−1

is hereditary.

7. Let a1 ≤ a2 ≤ ·· · ≤ am be a sequence of natural numbers. Then the class

K(a1,a2, . . . ,am) =
{

Kn1,n2,...,nq

∣∣ q≤ m and ∃i1 < i2 < · · ·< iq ≤ m with ni j ≤ a j
}
∪Dam

is hereditary. More over it is exactly the set of induced subgraphs of the complete multipartite

graph Ka1,a2,...,am .

Theorem 45. Suppose G is a hereditary class of graphs and there is some d ∈ N such that no

G ∈G is d-realizable. Then for every d′ > d there is no G ∈G which is d′-realizable.

Proof. Suppose G is a hereditary class of graphs and there is some d ∈ N such that no G ∈ G is

d-realizable. Suppose further that there is some d′ > d and a G ∈G such that G is d′-realizable.

Let P be any d′-polytope whose graph is G, and let F be any d-face of P. By Theorem 11,

the graph of F is an induced subgraph of G. Since G ∈ G and G is hereditary, the graph of F

must also be an element of G. However this contradicts the assumption that no graph in G is

d-realizable.
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7.2 Complete Bipartite Graphs

This section will answer the question "For which values of n,m,d is the graph Kn,m d-realizable?".

First, recall the convention that a complete multipartite graph Kn1,n2,...,nt is written such that n1 ≤

n2 ≤ ·· · ≤ nt . Then it will be shown that the answer to the above question is, "only if n = m =

d ∈ {1,2}". These are the graphs of ∆1 and X2. Recall that the connectivity of a graph κ (G) is the

largest q such that G is q-connected.

Lemma 46. κ (Kn,m) = n.

Proof. Write V (Kn,m) = P∪Q with P = {p1, p2, . . . , pn}, Q = {q1,q2, . . . ,qm} and E(Kn,m) =
{

piq j
∣∣ pi ∈ P and q j ∈ Q

}
. Then deg(q j) = n for every j ∈ [m] and deg(pi) = m for every i ∈ [n].

Thus the minimum degree of a vertex of Kn,m is n = min{n,m}. Hence κ (Kn,m)≤ n.

To show that κ (Kn,m)≥ n, a set of n disjoint paths will be constructed for each pair of vertices

of Kn,m. There are three cases: a pair of vertices from P; a pair of vertices from Q; and a pair with

one vertex in P and the other in Q.

In the case that both vertices of the pair are in P, say pi, p j, the paths

pi,qt , p j t ∈ [n]

are disjoint, and there are n of them.

In the case that both vertices of the pair are in Q, say qi,q j, the paths

qi, pt ,q j t ∈ [n]

are disjoint, and there are n of them.

For the case that the pair of vertices is of the form pi,q j with pi ∈ P and q j ∈ Q, assume,

without loss of generality, that i = j = n. Then the paths

pn,qt , pt ,qn t ∈ [n−1]
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are disjoint, and there are n−1 of them. These paths, together with the path pn,qn form n disjoint

paths.

Theorem 47. Kn,m is d-realizable if and only if n = m = d ∈ {1,2}.

Proof. Since |V (Kn,m)| ≥ 2, Kn,m is not (−1)-, or 0-realizable.

Suppose n = 1. Then κ (K1,m) = 1, and thus K1,m is realizable only if d = 1. There is only one

combinatorial type of 1-polytope, and it has graph K1,1.

Suppose n = 2. Then κ (K2,m) = 2, and thus K2,m is realizable only if d ≤ 2. However, K2,n is

never 1-realizable, so if K2,m is to be d-realizable, then d = 2. Each 2-polytope has a graph which

is a cycle, and thus each vertex has degree 2. The only complete bipartite graph for which each

vertex has degree 2 is K2,2, and it is the graph of X2, the 2-crosspolytope.

Suppose n≥ 3. Then Kn,m is at least 3-connected. Suppose that Kn,m is 3-realizable. Steinitz’s

Theorem (Theorem 12) thus implies that Kn,m must be planar. However this is not possible since

Kn,m has an induced K3,3 for n≥ 3 (and therefore a K3,3 minor). Thus Kn,m is never 3-realizable.

Ergo, by Theorem 45, Kn,m is not d-realizable for d ≥ 3.

7.3 Complete 3-partite Graphs

The proof of the following lemma is similar to that of lemma 46.

Lemma 48. κ (K1,n,m) = n+1

Theorem 49. K1,n,m is d-realizable if and only if Kn,m is (d−1)-realizable.

Proof. Suppose that n = 1. Then κ (K1,1,m) = 2, and K1,1,m is only a cycle if m = 1. In which case

it is the graph of ∆2, the 2-simplex.

Suppose that n = 2. The graph K1,2,2 is the graph of pyrX2. If m≥ 3, then K1,2,m cannot be the

graph of a 3-polytope since it would then be a 3-polytope with 3+m vertices and an m-anticlique

(see Theorem 39). The graph K1,2,m also cannot be d-realizable for d > 3 since κ (K1,2,m) = 3.
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Suppose that n = 3. The graph K1,3,m then has an induced K3,3, and therefore cannot be planar

(hence is not 3-realizable). Furthermore, K1,3,m cannot be the graph of a 4-polytope since it has

1+3+m = 4+m vertices and an m-anticlique.

Suppose that n≥ 4, and write

V (K1,n,m) = {a}∪{bi | i ∈ [n]}∪{ci | i ∈ [m]} .

where each set in the union above is one of the sets of vertices in the definition of a complete

bipartite graph. Here again, K1,n,m has an induced K3,3, and is therefore not 3-realizable. Suppose

that K1,n,m is the graph of a 4-polytope P. Then the set of induced subgraphs of K1,n,m is K(1,n,m)

which is hereditary. The only graph in K(1,n,m) that is 3-realizable is K1,2,2, and therefore each

facet of P must be a pyramid over a quadrilateral. In order to obtain an induced K1,2,2 from K1,n,m,

the set of vertices must be of the form
{

a,bi1,bi2,c j1,c j2
}

. However this forces the vertex a to be

in each facet, and this is impossible.

Thus no graph of the form K1,n,m is 4-realizable, and therefore no graph K1,n,m is d-realizable

for d ≥ 4.

The graphs K2,2,m are not 4-realizable since they would then have 2+ 2+m = 4+m vertices

and an m-anticlique. More generally, K2,n,m is not (2+n)-realizable.

The K2,n,m case is more difficult. First, note that a graph of this form is only planar if n=m= 2,

and in this case is the graph of X3, the 3-crosspolytope.

Suppose that K2,n,m is the graph of some polytope P. Working with the hereditary class of

graphs K(2,n,m) (this is the set of induced subgraphs of K2,n,m) shows that the 2-faces of P must

be either 2-simplices, or 2-crosspolytopes. Similarly, the 3-faces of P can only be pyramids over

quadrilaterals, or 3-crosspolytopes. Further, P has at most one facet that is combinatorially equiv-

alent to X3 since each X3 facet must contain both vertices in the color class of cardinality 2. This

restriction of the allowable facets does not show that there is no such polytope. A proof of the

following theorem can be found in Perles & Shephard (1967).
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Theorem 50 (Perles, Shephard). If P is a d-polytope with d +2 or fewer vertices, then there is a

(d +1)-polytope all of whose facets are combinatorially equivalent to P.

The authors also prove, in the same paper, that for d ≥ 6 there is no (d + 1)-polytope all of

whose facets are combinatorially equivalent to Xd .

Suppose P is a 4-polytope with graph K2,3,3 and that P has a facet combinatorially equivalent

to X3. Then by a careful consideration of the possible ridges, it can be shown that there must be a

ridge that is contained in only one facet. Therefore there is no 4-polytope with graph K2,3,3, and

hence no polytope with graph K2,3,3. Alternatively, the two papers Altshuler & Steinberg (1984)

and Altshuler & Steinberg (1985) provide a complete list of all 4-polytopes with 8 vertices. These

papers show that any such polytope is either quasisimplicial (all of its facets are simplicial), or has

a facet that is a simplex. Since a realization of K2,3,3 could satisfy neither of these properties, there

can be no such polytope.

7.3.1 Complete k-partite Graphs (k > 3)

In general, if P is a realization of a complete multipartite graph, then every one of its 2-faces must

be combinatorially equivalent to either ∆2 or X2 since these are the only complete multipartite

graphs that are cycles. Similarly, every one of its 3-faces must be combinatorially equivalent to

one of the following:

• a 3-simplex, or

• a pyramid over X2, or

• a bipyramid over a 2-simplex, or

• a 3-crosspolytope

since these are the only planar, 3-connected complete multipartite graphs.

A direct consequence of Theorem 39 is that if Kn1,n2,...,nt is d-realizable, then d < ∑i∈[t−1] ni. If

Kn1,n2,...,nt is d-realizable as a polytope P, then K1,n1,n2,...,nt is d+1-realizable as a pyramid over P.
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The converse is, unfortunately, not true since K1,1,1,2 is the graph of C3(5) (i.e., a bipyramid over

a 2-simplex) but K1,1,2 is not the graph of any polytope. Similarly, Kn1,n2,...,nt ,2 is realizable as a

bipyramid over P.

Thus, if (as a set) {n1,n2, . . . ,nt} ⊆ {1,2}, then Kn1,n2,...,nt is the graph of a polytope if and only

if (as a multiset) {n1,n2, . . . ,nt} is not equal to either {1,2} or {1,1,2}.

Conjecture. If Kn1,n2,...,nt is the graph of a polytope, then {n1,n2, . . . ,nt} ⊆ {1,2} as sets,.

Note that the conjecture does not make mention of the dimension of the polytope. This is

because the graphs of higher-dimensional crosspolytopes can be realized in multiple dimensions.

7.4 Graphs of Crosspolytopes

Throughout this section, let Gn denote the graph of the n-dimensional crosspolytope for n≥ 2, that

is

Gn = G (Xn) = K2,2, . . . ,2︸ ︷︷ ︸
n

.

The goal of this section will be to establish for which d the graph Gn is d-realizable.

The graphs G2 and G3 are realizable only in dimensions 2 and 3 respectively. Thus assume

throughout that n≥ 4. The first thing to do is establish an upper bound on the values d such that Gn

is d-realizable. Recall the Hadwiger number of a graph G is h(G) = max{n | Kn is a minor of G}.

Theorem 8 then implies:

Corollary. If a graph G is d-realizable, then d ≤ h(G)−1.

Thus a natural question to ask is "What is h(Gn)?". This question was answered in Halin

(1966).

Theorem 51 (Halin 1966).

h(Gn) =

⌊
3n
2

⌋
.
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The following gives, for each n, an explicit construction of a maximal complete minor of Gn.

Write V (Gn) = V1 ∪V2 where V1 =
{

v1
1,v

1
2, . . . ,v

1
n
}

and V2 =
{

v2
1,v

2
2, . . . ,v

2
n
}

are disjoint sets

such that

E(Gn) =
{

vi
jv

k
l

∣∣∣ i,k ∈ [2] , j, l ∈ [n] , and if i 6= k, then j 6= l
}

=

(
V (Gn)

2

)
\
{

v1
jv

2
j
∣∣ j ∈ [n]

}
.

Set

D =
{

vi
jv

2
k
∣∣ i ∈ [2] , j,k > bn/2c

}
∪
{

vi
jv

2
k
∣∣ i ∈ [2] , j ≤ bn/2c and k > bn/2c with j+ k 6= n+1

}

and

C =
{

v2
i v2

j
∣∣ i+ j = n+1

}
.

Then (Gn \D)/C is a complete graph with b3n/2c vertices. The paths

v1
i v1

j i, j ∈ [n]

v2
i v2

j i, j ≤ bn/2c

v1
i v2

j i ∈ [n] , j ≤ bn/2c with i 6= j

v1
i v2

n+1−iv
2
i i≤ bn/2c

contract to form the edges in the complete graph. Thus h(Gn) ≥ b3n/2c. This construction is

included here because Halin (1966) does not give an explicit construction of a maximal complete

minor. See Figures 7.1 and 7.2 for examples of these constructions.
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v1
1 v1

2 v1
3 v1

4

v2
1 v2

2 v2
3 v2

4

Figure 7.1: G4, edges in the deletion set are dotted, and those in the contraction set are dashed.

v1
1 v1

2 v1
3 v1

4 v1
5

v2
1 v2

2 v2
3 v2

4 v2
5

Figure 7.2: G5, edges in the deletion set are dotted, and those in the contraction set are dashed.

7.4.1 High Dimensional Realizations

The graph Gn could thus be realizable in each dimension from 4 to b3n/2c− 1. Before giving

explicit constructions of d-polytopes with graph Gn for n≤ d < b3n/2c, notice that if pi ∈ N with

pi ≥ 2 and ∑i∈[m] pi = q, then

G (Xp1 ∨Xp2 ∨·· ·∨Xpm) = Gq
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and

dim(Xp1 ∨Xp2 ∨·· ·∨Xpm) = ∑
i∈[m]

pi +m−1.

In particular, let Xk
2 be the join of k copies of X2, so that G (Xk

2 )=G2k and dimXk
2 = 3k−1. Thus the

polytope X3n−2d ∨Xd−n
2 is a d-polytope with graph Gn. These polytopes are by no means unique

with these properties. Others can be constructed by similar means by taking joins of crosspolytopes

(or even polytopes with these graphs) and forcing the joins to have the required number of vertices

and be of the required dimension. That is:

Theorem 52. The graph Gn is d-realizable for n≤ d <

⌊
3n
2

⌋
.

This settles the question of d-realizability of Gn for d ≥ n. However, the number of combi-

natorial types of d-polytopes with graph Gn and d ≥ n is not known. These constructions merely

provide a lower bound for that number.

The following is a Corollary to Theorems 39 and 51.

Corollary. Let P be a simple d-polytope that is not a simplex. If G (P) = Kn1,n2,...,ns , then P = X2.

Proof. If P is simple, then degvvv = d for every vvv ∈ vertP. Therefore ∑ j∈[s]\{i} n j = d for every

i ∈ [s]. Hence n1 = n2 = · · ·= ns = k. Since P is not a simplex, k 6= 1. Notice that P is a d-polytope

with d+k vertices whose graph has a k-anticlique. Thus k = 2. Now, P is a 2(s−1)-polytope with

graph Gs. Therefore

2(s−1)≤
⌊

3s
2

⌋
−1≤ 3s

2
−1.

Solving for s yields s≤ 2. Hence s = 2, whence G (P) = G2. Thence P = X2.

7.4.2 Low Dimensional Realizations

In Grünbaum (2003), a construction of a 4-polytope Z with graph G5 is given. Repeated bipyramids

over this polytope yield (n−1)-realizations of Gn for n≥ 5. Note that Z∨X2 is a 7-polytope with

graph G7 and is not X7. Thus, in general, the graph Gn is not the graph of a unique n-polytope.
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The polytope Z has an additional property that will be useful in talking about low dimensional

realizations of Gn.

Definition. A polytope P is called centrally symmetric if there is a point ppp ∈ P such that xxx ∈ P− ppp

implies −xxx ∈ P− ppp.

It will be assumed throughout that ppp = 000. The 4-realization Z of G5 is centrally symmetric and

much of the work on low-dimensional realizations of Gn concerns centrally symmetric realizations.

In Grünbaum (2003) it is shown that if G6 is 4-realizable by a polytope P, then P cannot be centrally

symmetric.

Let P be a centrally symmetric d-polytope with graph Gn with n < d. The polytope P∨X2 is a

(d +3)-polytope with graph Gn+2. However, P∨X2 is not centrally symmetric.

It is shown in Barvinok & Novik (2008) that if P is a centrally symmetric d-polytope with N

vertices, then

f1(P)≤
N2

2
(1−2−d).

In the case that G (P) = Gn, this implies that lbn≤ d where lbn is the binary logarithm log2 n.

Let m ∈N. The paper Barvinok et al. (2013a) gives an explicit construction of a d-dimensional

centrally symmetric polytope with graph Gn where

d = 4m+6

n = 2 ·3m+1.

This construction, in the case m = 0, yields that the polytope X6 has graph G6. Setting m = 1

gives a centrally symmetric 10-polytope with graph G18. By considering bipyramids over these

polytopes, one obtains centrally symmetric polytopes of dimension 4m+ 7 with graph Gn where

n = 2 · 3m+1 + 1. Furthermore, taking a join with X2 yields a polytope of dimension 4m+ 11 and

with graph Gn where n = 2 ·3m+1 +2.
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Chapter 8

Conclusion

The first chapter with original work in it was Chapter 4. It was shown that the join of polytopes

has Gale diagram the direct sum of the Gale diagrams of the polytopes. This was then used to

give a quick classification of the combinatorial types of d-polytopes with d +2 vertices (this was

already in the literature in McMullen & Shephard (1971)). Next, the question, “What happens if

you duplicate a vertex in a Gale diagram?” was answered.

In Chapter 5 the idea of a Gale polytope was discussed (these were first introduced in Bayer &

Bisztriczky (2007)), and several properties were examined: a reversal of a Gale ordering is still a

Gale ordering; no Gale polytope has more than two disjoint facets with an odd number of vertices;

and the product of Gale polytopes is again a Gale polytope, and a pyramid over a Gale polytope is

again Gale. This last property leads to the following question.

Question. Is the join of two Gale polytopes a Gale polytope?

Chapter 6 attempts to answer the question, “How big can an anticlique in the graph of a poly-

tope be?”. To answer this, first there was an exploration of what properties points in an anticlique

have in a Gale diagram. These properties were then used to show that the graph of a d-polytope

with d + k vertices can have an anticlique with at most k−1 vertices. A sequence of d-polytopes

with anticliques that are “large” is then described, and it is conjectured that these polytopes do in

fact have anticliques with largest possible cardinality. Recall the function f (d,k), defined as the
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largest size of an anticlique for a d-polytope with d + k vertices then the conjecture states that:

Conjecture. f (d,k) = k−1−b(k−3)/dc.

An alternative approach that was abandoned (but could still yield useful results) is as follows.

Assume that P is a d-polytope with d+k vertices, and a standard Gale diagram Γ⊆ Sk−1∪{000}. If

two points are in an anticlique, then there must be a hyperplane through the origin that separates

them from all other points in Γ. This introduces a “forbidden” zone in Sk−2. How many of these

forbidden zones are necessary to cover all of Sk−2? Whatever this number is, it gives an upper

bound on the size of an anticlique. Part of this approach was an attempt to prove the following:

Conjecture. Let P be a d-polytope with d + k vertices an anticlique A, and a Gale diagram Γ.

Then for each B ⊆ A with 2 ≤ |B| ≤ |A|− 1, there is a hyperplane H through the origin in Rk−1

such that H(+)∩Γ = B.

Chapter 7 is the chapter that motivated everything before it. The original motivating question

was the following, found in Grünbaum (2003).

Conjecture (Grünbaum). If the k-complex C is the k-skeleton of both a d-polytope and a d′′

polytope, where d≤ d′′, then C is the k-skeleton of a d′-polytope for every d′ satisfying d≤ d′≤ d′′.

Rather than attempt to attack the problem for all k, the simplest case k = 1 was considered.

The field of search was then narrowed even further to simply asking for the dimensions in which

the graph of a d-crosspolytope can be realized. It is shown in Halin (1966) that the graph Gd of a

d-crosspolytope cannot be the graph of a polytope of dimension b3d/2c or greater. In Chapter 7

polytopes of dimension k are exhibited with graph Gd for every d ≤ k ≤ b3d/2c−1. This leaves

the question of k-realizability for 4≤ k ≤ d−1. A survey of the state of current research into this

question is then given.

This search into realizability of graphs of crosspolytopes naturally turned into a question of the

realizability of the graphs of all complete multipartite graphs. The case of complete bipartite graphs

is easily handled, and it is shown that only K1,1 and K2,2 are graphs of polytopes. Next, complete
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3-partite graphs are considered, and several steps are taken toward completing the classification of

realizable complete 3-partite graphs. The following conjecture is made regarding realizability of

complete multipartite graphs:

Conjecture. Kn1,n2,...,ns is the graph of a polytope if and only if, as sets, {n1,n2, . . . ,ns} ⊆ {1,2}

and, as multisets, {n1,n2, . . . ,ns} is not equal to either {1,2} or {n1,n2, . . . ,ns} 6= {1,1,2}.

89



References

Altshuler, A. & Steinberg, L. (1984). Enumeration of the quasisimplicial 3-spheres and 4-polytopes

with eight vertices. Pacific J. Math., 113(2), 269–288.

Altshuler, A. & Steinberg, L. (1985). The complete enumeration of the 4-polytopes and 3-spheres

with eight vertices. Pacific J. Math., 117(1), 1–16.

Ayzenberg, A. (2013). Simplicial complexes Alexander dual to boundaries of polytopes. ArXiv

e-prints.

Balinski, M. L. (1961). On the graph structure of convex polyhedra in n-space. Pacific J. Math.,

11, 431–434.

Barvinok, A., Lee, S. J., & Novik, I. (2013a). Centrally symmetric polytopes with many faces.

Israel J. Math., 195(1), 457–472.

Barvinok, A., Lee, S. J., & Novik, I. (2013b). Explicit constructions of centrally symmetric k-

neighborly polytopes and large strictly antipodal sets. Discrete Comput. Geom., 49(3), 429–443.

Barvinok, A., Lee, S. J., & Novik, I. (2013c). Neighborliness of the symmetric moment curve.

Mathematika, 59(1), 223–249.

Barvinok, A. & Novik, I. (2008). A centrally symmetric version of the cyclic polytope. Discrete

Comput. Geom., 39(1-3), 76–99.

Bayer, M. M. & Bisztriczky, T. (2007). On Gale and braxial polytopes. Arch. Math. (Basel), 89(4),

373–384.

90



Bayer, M. M. & Lee, C. W. (1993). Combinatorial aspects of convex polytopes. In Handbook of

convex geometry, Vol. A, B (pp. 485–534). North-Holland, Amsterdam.

Björner, A., Las Vergnas, M., Sturmfels, B., White, N., & Ziegler, G. M. (1999). Oriented ma-

troids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge

University Press, second edition.

Brøndsted, A. (1983). An introduction to convex polytopes, volume 90 of Graduate Texts in Math-

ematics. New York: Springer-Verlag.

Diestel, R. (2010). Graph theory, volume 173 of Graduate Texts in Mathematics. Heidelberg:

Springer, fourth edition.

Ewald, G. (1996). Combinatorial convexity and algebraic geometry, volume 168 of Graduate

Texts in Mathematics. Springer-Verlag, New York.

Grünbaum, B. (2003). Convex polytopes, volume 221 of Graduate Texts in Mathematics. New

York: Springer-Verlag, second edition. Prepared and with a preface by Volker Kaibel, Victor

Klee and Günter M. Ziegler.

Halin, R. (1966). Zu einem Problem von B. Grünbaum. Arch. Math. (Basel), 17, 566–568.

Henk, M., Richter-Gebert, J., & Ziegler, G. M. (1997). Basic properties of convex polytopes. In

Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl. (pp.

243–270). Boca Raton, FL: CRC.

Hibi, T. (1992). Algebraic Combinatorics on Convex Polytopes. Glebe, N.S.W., Australia: Carslaw

Publications.

Kalai, G. (1988). A simple way to tell a simple polytope from its graph. J. Combin. Theory Ser. A,

49(2), 381–383.

91



Klee, V. & Minty, G. J. (1972). How good is the simplex algorithm? In Inequalities, III (Proc. Third

Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S.

Motzkin) (pp. 159–175). Academic Press, New York.

McMullen, P. & Shephard, G. C. (1971). Convex polytopes and the upper bound conjecture.

London: Cambridge University Press. Prepared in collaboration with J. E. Reeve and A. A.

Ball, London Mathematical Society Lecture Note Series, 3.

Perles, M. A. & Shephard, G. C. (1967). Facets and nonfacets of convex polytopes. Acta Math.,

119, 113–145.

Stanley, R. P. (1999). Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in

Advanced Mathematics. Cambridge: Cambridge University Press. With a foreword by Gian-

Carlo Rota and appendix 1 by Sergey Fomin.

Stanley, R. P. (2012). Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in

Advanced Mathematics. Cambridge: Cambridge University Press, second edition.

Steinitz, E. (1922). Polyeder und raumeinteilungen. Enzykl. math. Wiss., 3, 1–139.

Steinitz, E. & Rademacher, H. (1976). Vorlesungen über die Theorie der Polyeder unter Einschluss

der Elemente der Topologie. Berlin: Springer-Verlag. Reprint der 1934 Auflage, Grundlehren

der Mathematischen Wissenschaften, No. 41.

Thomas, R. R. (2006). Lectures in geometric combinatorics, volume 33 of Student Mathemat-

ical Library. Providence, RI: American Mathematical Society. IAS/Park City Mathematical

Subseries.

Wagner, K. (1937). Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1), 570–590.

West, D. B. (1996). Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall Inc.

Whitney, H. (1932). Congruent Graphs and the Connectivity of Graphs. Amer. J. Math., 54(1),

150–168.

92



Ziegler, G. M. (1995). Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. New

York: Springer-Verlag.

93



Appendix A

Python Code to Determine Whether or not

a Point Configuration is a Gale Diagram

This program was written in Python version 2.7.2.

# ################################################################

## ##

## T h i s program c h e c k s whe ther or n o t a p o i n t c o n f i g u r a t i o n ##

## i s t h e Gale diagram o f some p o l y t o p e . ##

## ##

## That i s , whe ther f o r each h y p e r p l a n e p a s s s i n g t h r o u g h t h e ##

## o r i g i n t h e r e are a t l e a s t two p o i n t s on e i t h e r s i d e o f i t . ##

## ##

# ################################################################

from sympy import ∗

from f r a c t i o n s import F r a c t i o n

from i t e r t o o l s import ∗

from s y s import e x i t
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# ####

# T h i s f u n c t i o n c h e c k s some t r i v i a l c a s e s

# t o s e e i f i t i s p o s s i b l e f o r t h e p o i n t

# c o n f i g u r a t i o n t o be a Gale diagram .

# ####

def dim_check ( v , g ) :

i f min ( [ v , g ] ) <0: # I f e i t h e r v , or g i s n e g a t i v e ,

re turn 0 # t h e n r e t u r n a command t o k i l l

# t h e program .

e l s e :

i f v in s e t ( [ 1 , 2 , 3 ] ) : # A l l p o l y t o p e s w i t h 1 , 2 , or 3

i f g ==0: # v e r t i c e s are s i m p l i c e s , and

re turn 1 # t h e r e f o r e have a Gale diagram

e l s e : # o f d i m e n s i o n 0 .

re turn 0

e l s e :

i f v−g−1>=2: # In a g e n e r a l p o l y t o p e P ,

re turn 1 # dim ( P )=v−g−1. A l r e a d y checked

e l s e : # i f i t i s a 0− or 1−p o l y t o p e ,

re turn 0 # so t h i s must be >=2.

# ####

# T h i s f u n c t i o n g e t s t h e v e c t o r s i n t h e

# c o n f i g u r a t i o n and p u t s them i n a

# ( g ) x ( v ) m a t r i x .

# ####

def g e t _ m a t r i x ( h e i g h t , w id th ) :
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M= Ma t r ix ( h e i g h t , width , lambda i , j : 0 )

f o r j in r a n g e ( wid th ) :

p r i n t " P l e a s e i n p u t t h e c o o r d i n a t e s o f p o i n t %s : " % ( j

+1)

f o r i in r a n g e ( h e i g h t ) :

M[ i , j ]= F r a c t i o n ( r a w _ i n p u t ( " E n t r y %s : " % ( i +1) ) )

re turn M

# ####

# T h i s f u n c t i o n c h e c k s whe ther or n o t a

# m a t r i x M has rank rnk .

# ####

def rank_ok ( rnk , N) :

re turn l e n (N. r r e f ( ) [ 1 ] ) == rnk

# #########################

# #########################

### S t a r t t h e program . ###

# #########################

# #########################

# Get t h e d i m e n s i o n o f t h e p o i n t c o n f u g u r a t i o n

g = i n t ( r a w _ i n p u t ( " Dimension of p o i n t c o n f i g u r a t i o n : " ) )

# Get t h e number o f p o i n t s i n t h e c o n f i g u r a t i o n

v = i n t ( r a w _ i n p u t ( " Number o f p o i n t s i n t h e c o n f i g u r a t i o n : " ) )
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i f dim_check ( v , g ) ==0:

i f v ==1:

p r i n t ( " There i s no Gale Diagram wi th 1 p o i n t i n a %s

d i m e n s i o n a l s p a c e . " % ( g ) )

q u i t

e l s e :

p r i n t ( " There i s no Gale Diagram wi th %s p o i n t s i n a %s

d i m e n s i o n a l s p a c e . " % ( v , g ) )

q u i t

e l s e :

M= g e t _ m a t r i x ( g , v )

p r i n t M

# p r i n t M[ 1 , 2 ]

i f r a w _ i n p u t ( " I s t h i s m a t r i x c o r r e c t ? ( y / n ) " ) != " y " :

q u i t

e l s e :

i f l e n (M. r r e f ( ) [ 1 ] ) != g :

p r i n t " A l l o f your p o i n t s l i e i n a h y p e r p l a n e . "

e l s e :

i f g ==1: # In t h e g=1 case ,

pos=neg =0 # j u s t need 2 p o i n t s

f o r i in r a n g e ( v ) : # on e i t h e r s i d e o f

i f M[ i ] >0 : # t h e o r i g i n .

pos +=1

e l i f M[ i ] <0 :

neg +=1

i f pos >=2 and neg >=2:
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p r i n t ( ’ Th i s i s t h e Gale d iagram of a p o l y t o p e

o f ’

’ d imens ion %s . ’ % ( v−g−1) )

q u i t

e l s e :

p r i n t ( ’ Th i s i s n o t t h e Gale d iagram of a

p o l y t o p e . ’ )

q u i t

e l s e :

N= M at r i x ( g , g−1, lambda i , j : 0 )

f o r comb in c o m b i n a t i o n s ( r a n g e ( v ) , g−1) :

f o r j in comb :

f o r i in r a n g e ( g ) :

N[ i , comb . i n d e x ( j ) ]=M[ i , j ]

i f l e n (N. r r e f ( ) [ 1 ] ) != g−1:

c o n t in u e

e l s e :

nml= M at r i x ( g , 1 , lambda i , j : 0 )

f o r d in r a n g e ( g ) :

P=N. T

P . c o l _ d e l ( d )

nml [ d ]=(−1) ∗∗d∗P . d e t ( )

pos=neg =0

f o r k in r a n g e ( v ) :

i p =0

f o r b in r a n g e ( g ) :

i p +=nml [ b ]∗M[ b , k ]
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i f ip >0 :

pos +=1

e l i f ip <0:

neg +=1

i f pos <2:

p r i n t " The h y p e r p l a n e p e r p e n d i c u l a r

t o "

p r i n t nml ,

p r i n t " has an open h a l f s p a c e wi th " ,

pos ,

p r i n t " p o i n t ( s ) c o n t a i n e d i n i t . "

e x i t

e l i f neg <2:

p r i n t " The h y p e r p l a n e p e r p e n d i c u l a r

t o "

p r i n t nml ,

p r i n t " has an open h a l f s p a c e wi th " ,

neg ,

p r i n t " p o i n t ( s ) c o n t a i n e d i n i t . "

e x i t

p r i n t " Th i s i s t h e Gale d iagram of a p o l y t o p e o f

d imens ion " ,

p r i n t v−g−1
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