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Abstract 
Although the roles of microbial and chemical processes are relatively well-studied in neutral-chloride 

hydrothermal systems, very few studies have addressed these processes in acid-sulfate hydrothermal 

systems. This study aims to survey the roles of chemical and microbial weathering in acid-sulfate 

hydrothermal systems in order to provide greater understanding of the geochemical processes operating in 

low pH (2-4) and relatively high temperature (43-90oC) enviroments. These data provide insight into both 

modern and ancient life in extreme environments, as well as which processes are abiotically controlled. 

Field microcosm experiments indicate initial dissolution in Las Pailas hydrothermal system, located on 

the southwest flank of Rincón de la Vieja, Costa Rica, is likely driven by microorganisms. These 

microorganisms increase the short-term volumetric weathering rate of anorthoclase containing Fe-oxide 

and apatite mineral inclusions by an order of magnitude relative to abiotic controls. However, weathering 

of other silicates by microorganisms appeared to be relatively similar to abiotic controls. These results 

indicate that microbially induced silicate dissolution facilitates phosphate solubulization  in acid-sulfate 

hydrothermal systems. These results are similar to previous research conducted in low temperature (T), 

circum-neutral pH systems, despite the higher reaction rates due to increased T and acid attack in this 

extreme environment. 

The net result of increased weathering is the mobilization of trace metals into solution. Hydrothermal 

fluid fluxes contain abundant trace metals, however, these metals preferentially partition into the 

sediments at Las Pailas. In other hydrothermal systems and acid mine drainage environments,  trace 

metals preferentially bind to iron oxides. Microorganisms in these systems typically facilitate the 

formation of Fe-oxides to which trace metals bind. In circum-neutral hydrothermal systems, associated 

with low-sulfidation epithermal ore deposits, microorganisms form shallow epithermal ore deposits. 

Sequential extraction of Las Pailas sediments indicates microorganisms also concentrated trace metals, 

particularly copper, gold and silver in the Las Pailas sediments, despite the acidic pH. However, 

microorganisms in this acid-sulfate system appear to sequester trace metals by binding them to microbial 

cell surfaces, exopolymeric substances, and iron oxides produced and entrained within biofilm. These 
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data suggest microorganisms may create shallow/surficial indicators of epithermal Au-Ag ore formation 

at depth. Moreover, the association of microbial biomarkers and influences on the isotopic record suggest 

microorganisms may play a role in ore formation that occurs below the limit for life (~121oC) and that 

microorganisms may have been involved in ore formation throughout geologic time. 

Not all processes in acid-sulfate hydrothermal systems, however, are microbially controlled. Weathering 

not only concerns itself with the dissolution of primary mineral phases, but also the formation of 

secondary mineral phases, particularly nontronite and kaolinite formation. Pailas de Agua I, one of the hot 

springs in the Las Pailas hydrothermal field, contains abundant clay minerals. To assess the influence of 

microorganisms on secondary mineral formation in Las Pailas, a model hydrothermal solution, based on 

the solution geochemisty of Pailas de Agua I, was created.  Experiments using this solution were 

performed at high (80oC) and low (25oC) temperatures, with and without the addition of fluoride and 

microbial surrogates to determine the influence of temperature, Al-complexation by fluoride and 

microbial processes on clay formation. Results indicate that high temperature experiments form 

nontronite and kaolinite regardless of experimental conditions. However, in low temperature solutions, 

fluoride plays a key role in Al-complexation and aids in authigenic nontronite precipitation. Microbial 

surrogates play little role in clay formation in acidic pH systems, in contrast to, clay mineral formation in 

many circum-neutral pH systems, which is microbially influenced. Acid-sulfate hydrothermal systems 

have been proposed as an analog for Mars because of mineralogical similarities between the two systems. 

These data indicate that while clay minerals on Mars may be good indicators of water in Mars’ history, 

they do not specifically indicate an environment of formation, nor should they be used as an indicator of 

past life on Mars. Moreover, these data suggest that the kickstarting of the “clay mineral factory” on early 

Earth may not be the result of microbial processes. 

These results indicate that many microbial processes, including microbially induced mineral dissolution 

and trace metal immobilization, may be ubiquitous in nature regardless of whether exceptional 

preservation of microbial structures occurs. However, the mechanisms that underpin these processes may 
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differ between environments. Most importantly, despite the common association between microorganisms 

and clay minerals in modern environments, authigenic clay formation may occur in the absence of 

microbial surrogates, if/when Al-complexing ligands are present in solution. Both abiotic and biological 

processes influence weathering in acid-sulfate hydrothermal systems and these processes may likely be 

differentiable in the rock record through examination of associations between biomarker associations  

with sediments, even in the absence of exceptional preservation.
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Chapter 1. A Brief Introduction to Hydrothermal Systems and Their Significance in 
Understanding Early Earth and Other Planets 

Introduction 
The discovery, in the late 1970s, of microorganisms living in and around deep-sea hydrothermal vents off 

of dark energy, or energy derived from chemical oxidation and reduction reactions that are not dependent 

on solar energy, touched off the search for life in extreme environments that were previously considered 

uninhabitable (Edwards et al., 2005 and references therein; Janasch et al., 1979; Rau et al., 1979). 

Hydrothermal systems possess steep geochemical gradients that chemoautotrophic microorganisms could 

exploit and microorganisms cultured from these environments tend to be more deeply branching, or more 

closely related to the earliest life on Earth (Karl et al., 1980). Together, these data suggested that 

microorganisms in hydrothermal systems might hold keys to understanding the evolution of early life on 

Earth (Edwards et al., 2005). 

 Early Earth’s history was dominated by volcanic and impact processes. Once the crust cooled and 

solidified, early volcanic processes, including island arc formation and seafloor spreading began. 

Volcanism allowed gases within the Earth’s mantle, including H2S, CO2, H2, CO, S0, and water to vent to 

the surface and into the atmosphere (Canfield, 2005; Holland, 2002). Cooler temperatures driven by a 

weaker sun and significant volcanic particulates allowed water to condense on the Earth’s surface 

(Feulner, 2012). Hydrothermal systems, including fumaroles, mud pits, and hot springs began to form 

from volatile escape and meteoric water circulation. These hot springs, therefore, provided warm, nutrient 

rich environments in which early life could evolve and thrive (Cady and  Noffke, 2009). Textural and 

chemical biomarkers of life have been sought in modern hydrothermal systems so that we might be able 

to establish the presence of microbial biosignatures in Earth’s rock record. 

While thirty years of research in hydrothermal systems has provided substantial insights into life on early 

Earth and other rocky planets, and previous  research has focused primarily on circum-neutral (pH 5-8) 

systems like Yellowstone. Circum-neutral hot spring systems provide strong evidence of microbial life, 
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because microbial cells are rapidly encased in siliceous sinters (Phoenix and Konhauser, 2003; 2008;  

Lalonde, et al., 2005). Microbial silicification is driven by the functional groups that comprise the cell’s 

surfaces, which are negatively charged above ~pH 2-3 (Fein et al., 1997). This excess charge allows 

positively charge ions, including Fe, to bind to the cell’s surface and create a “cation bridge” for 

negatively charged silica ions to bind (Konhauser et al., 2004).  Silicification is a rapid process, and 

confers benefits to the cells by acting as a UV shield, which would have been important as the weak sun 

became stronger and early Earth’s atmosphere allowed greater penetration of UV rays (Phoenix et al., 

2001). 

Circum-neutral pH hydrothermal systems comprise only a portion of the diversity of hydrothermal 

systems. Low pH (pH<4) or acidic hydrothermal systems  have remained largely unexamined. This is 

partially driven by their lack of obvious exceptional preservation textures, like microbial silicification. 

However, these systems may provide unique clues to the evolution of early Earth and other rocky planets, 

and geochemical and textural biomarkers that microorganisms may leave outside of exceptionally 

preserved systems. 

Study Significance 
This study focuses on the Las Pailas acid-sulfate hydrothermal system, present on the SW flank of the 

Rincon de la Vieja volcano, Costa Rica. The Las Pailas hydrothermal system consists of fumaroles (gas 

vents), mudpots (water limited springs, dominated by clay-rich muds), and four hot springs. Three of the 

four springs, Laguna Fumarolica, Pailas de Agua I, and Pailas de Agua II, are acidic (pH 2.4-4), with 

temperatures ranging from 43-79oC. Poza del Hongo, the fourth spring, is circum-neutral (pH 5.8) with a 

temperature of 96oC. This study examines the influence of chemical and microbial weathering processes 

in this modern spring system and determines what influence microorganisms have on weathering 

processes in acid-sulfate systems. Ultimately, these data may be applied to similar systems in Earth’s 

history and help us better discern the impact of microbial processes when obvious morphological 

indicators are not preserved. 
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Layout and Key Research Questions 
The research presented in this dissertation is divided into three research chapters, a conclusions chapter, 

and appendices. The appendices include data from supporting experiments, produced over the course of 

this work. This data is currently unpublished but will form the backbone of at least one additional paper. 

The main goal of this dissertation is to understand the contributions of microbial and chemical weathering 

in acid-sulfate hydrothermal systems. The research questions addressed include: 1) What role, if any, do 

microorganisms play in mineral dissolution at in acidic hot springs, where chemical reactions rates are 

predicted to be fast?, 2) What influence, if any, do microorganisms have on trace metal cycling in acid-

sulfate hydrothermal systems?, 3) What role do microorganisms play in epithermal ore formation 

associated with high-sulfidation systems? and 4) What role do microorganisms play in authigenic clay 

formation in acid-sulfate systems? 

The results of this dissertation have implications for both modern and ancient acid-pH settings. In 

particular, they suggest that although exceptional preservation of microbial morphologies may not exist, 

microbial influences on weathering and metals cycling may be detectable in the rock record. These 

geochemical indicators of life may be particularly important as we search for past indicators of life on 

Earth and other rocky planets. 

Chapter 2: Microbially Induced Dissolution 
Chapter 2 focuses on quantifying the rates of chemically- and microbially-induced dissolution of silicates 

in the various springs in the Las Pailas hydrothermal field. In modern, low temperature (T<25oC) circum-

neutral pH waters, microorganisms have been shown to increase silicate dissolution rate by ~10x over 

abiotic chemical weathering reaction rates (Roberts, 2004). Textural evidence from modern and ancient 

oceanic crust suggests that microorganisms may weather basalt, in deep ocean, hydrothermal 

environments.  In situ incubation studies and laboratory experiments have shown that microorganisms 

colonize silicates in hydrothermal systems; however it remains unclear what impact microorganisms have 

on dissolution of primary mineral phases (Templeton et al., 2009).  
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Chapter 3: Microbial Influences on Epithermal Ore Formation 
In circum-neutral hydrothermal systems, microorganisms concentrate trace metals including Au, Ag, and 

Cu (Landrum et al., 2009; McKenzie et al., 2001; Simmons and Brown, 2007). These shallow 

hydrothermal systems are often surficial indicators of epithermal ore deposits at depth. This study 

examines whether microorganisms concentrate Au, Ag, and Cu in acid-sulfate systems in a similar 

fashion as has been observed in neutral-chloride systems. The results of this study shed light on the 

processes that shape shallow epithermal ore formation, and have implications for the formation of low 

temperature aureole around ore bodies throughout geologic time. 

Chapter 4: Clay Mineral Formation in Acid-Sulfate Springs 
Chapter 4 focuses on the formation of secondary minerals, particularly clay minerals, in acid-sulfate 

springs. In circum-neutral pH hot springs, silicification is driven by microorganisms, resulting in the rapid 

formation of siliceous sinters. In acid-sulfate springs, the dominant sediment mineralogy is nontronite and 

kaolinite (Marcucci et al., 2013). These clays are believed to form from acid-leaching of country rock; 

however, clay minerals form authigenically under a variety of Earth system conditions. Field and 

experimental studies of clay mineral formation yield often contradictory results, indicating high 

temperatures (Tosca et al., 2008), microorganisms (Konhauser and Urrutia, 1999) or Metal:Al ratios 

(Dekov et al., 2008) may be the dominant factor controlling clay mineral formation. For example, Dekov 

et al. (2008)  suggested Mg:Al ratios control the type of clay mineral that forms in seafloor hydrothermal 

systems. In contrast, some experimental studies (Harder, 1976; 1978; Tosca et al., 2008) have shown that 

elevated temperature and reducing conditions are required to form nontronite and field-studies in low 

temperature, circum-neutral pH systems indicate that microbial processes appear to strongly influence 

clay mineral formation (Konhauser & Urrutia, 1999). Given these conflicting results, I examined the 

influence of temperature, an inorganic ligand (F-), and microbial surfaces on authigenic clay formation in 

a model hydrothermal solution whose chemistry was based on Pailas de Agua I. These data indicate that 

authigenic clays form in a variety of geochemical environments, which has important ramifications for 

our interpretation of clay minerals both in Earth’s, as well as Mars’ rock records.  
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Conclusion 
Together, these data presented in my dissertation provide a broad survey of the processes that influence 

weathering in acid-sulfate hydrothermal systems. Each chapter seeks to differentiate chemical and 

microbial influences on weathering in the Las Pailas hot spring system. In sum, my dissertation research 

suggests microorganisms may play important roles in mineral dissolution and trace element cycling in 

acid-sulfate systems. However, they may play little to no role in authigenic mineral formation within the 

springs. Secondary mineral formation, in contrast, may be largely controlled by complexation chemistry 

within these springs. 

In each chapter, I indicate the direct implications of my research on our interpretation of the rock record 

on Earth or Mars. In the conclusion, I discuss the importance of incorporating diverse data sets in order to 

best differentiate and interpret the roles and importance of chemical and microbial weathering in 

hydrothermal systems. This approach is particularly important as we search for analogs to early Earth and 

other planetary environments. 
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Chapter 2. Quantifying the Impact of Microbial Weathering in Acid-sulfate 
Hydrothermal Systems 
 

Published as a separate article: 
Phillips-Lander, C M, Fowle, D A, Taunton, A,  Hernandez, W, Mora, M, Moore, D, Shinogle, H and 

Roberts, J A. (2014) Silicate dissolution in Las Pailas Thermal Field: Implications for microbial 
weathering in acidic volcanic hydrothermal spring systems. Geomicrobiology Journal 31, 37-41. 

 

Abstract 
A longitudinal field microcosm study was conducted in the Las Pailas hot spring system located 

on the SW flank of Rincon de la Vieja, Costa Rica, in order to investigate initial microbial 

attachment and colonization, as well as chemical (abiotic) and biological silicate weathering 

under hydrothermal conditions.   Solution chemistry was pH=2.42-3.96, T=43-89.3oC, Si=4.45-

8.19 mmol L-1, Fe=1.50-6.95 mmol L-1 and PO4
3-=bdl-4.9 µmol L-1. Microcosms consisted of 

washed, sonicated primary silicate mineral samples in polycarbonate vessels. The vessels were 

enclosed either by mesh to observe water/rock/microbial interactions or by 0.2-0.45 µm filters to 

observe water/rock interactions. Microcosms were incubated for periods of six hours, 24 hours, 

or two months, fixed in the field, then analyzed in the laboratory. Scanning electron microscopy 

(SEM) analysis revealed that microbial attachment to mineral samples occurred in as little as six 

hours. Microbial colonization and the development of minor etch pits associated with 

microorganisms occurred within 24 hours. The most significant differences in chemical vs. 

biological weathering were observed after two months. SEM analysis of these incubated surfaces 

showed that volumetric losses to mineral samples were more than one order of magnitude greater 

for samples that had been colonized by microorganisms and thus weathered biologically. With 

time, preferential colonization of anorthoclase mineral samples with Fe-oxides and apatite 

inclusions occurred. Subsequent weathering, therefore, may be a metabolic strategy by 

microorganisms to access mineral-bound PO4
3-, which is otherwise scarce in solution.  Results 
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from this study suggest that microorganisms may play a significant role in weathering in some 

hydrothermal systems. 

Introduction 
Metabolically diverse microbial communities live in hydrothermal systems around the world (Dick and 

Tebo 2010; Vick et al. 2010; Jørgensen and Boetius 2007) with average cell counts of 105-106 cells cm-3 

(Santelli et al. 2008; Einen et al. 2008). Moreover, there is a consensus in the scientific community that 

microorganisms play a critical role in weathering in many near surface Earth environments (Banfield et 

al. 1999). However, quantifying the role of microorganisms in dissolution reactions in hydrothermal 

systems remains an open question. 

The earliest studies of microbial weathering in seafloor hydrothermal systems focused primarily on 

textural alteration evidence in basaltic glasses in association with mid-ocean ridge fluids that were pH <7 

with temperatures ranging from 2-100oC (Furnes et al. 1999; Fisk et al. 1998; Torsvik et al. 1998; 

Thorseth.et al. 1995). These studies incorporated petrography, electron microscopy, and geochemical and 

microbiological techniques to examine field collected samples of oceanic crust.  Using petrographic thin-

sections, Fisk et al. (1998) established the ubiquity of micron-sized inclusions and filamentous channels 

in basaltic glasses from the Atlantic, Pacific and Indian Oceans. Samples retrieved from 237 m below the 

top of the volcanic crust in ODP Hole 896A along the Costa Rica Rift contained spherulitic bodies in 

altered fractures within basaltic glass that fluoresced when stained with 4, 5-diamidino-2-phenylindol 

(DAPI; Thorseth et al. 1995), indicating the presence of DNA.  Subsequently, fluorescent in situ 

hybridization (FISH) was used on the same samples to show that both Archaea and Bacteria were present 

in altered basaltic glass (Torsvik et al. 1998). Furnes et al. (2001) inferred activity of methanogens and 

bacteria within fractures in altered basaltic glasses from the Costa Rica Rift based on carbon isotope 

fractionation signatures. Recently, McLoughlin et al. (2011) observed rounded and elongated pores 

approximately the size of microorganisms within palagonite crystals retrieved from weathered basaltic 

glasses at the Mohns Ridge. Energy dispersive X-ray spectroscopy showed that these pores were 
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associated with carbon and nitrogen enrichments (McLoughlin et al. 2011). Similar borings and 

filamentous structures with depleted carbon isotopic signatures and elevated carbon, nitrogen and 

phosphorous concentrations were similarly reported for the Ontong Java Plateau (Banerjee and 

Muhlenbachs 2003).  Despite the near ubiquity of these features in ophiolites and oceanic crust, 

microorganisms have been isolated from altered basaltic glasses in only a few instances (Templeton et al. 

2005) and there is little known about the initial colonization process from these investigations. 

In hot springs environments the influence of microorganisms on the lithology and geomorphology has 

been more clearly elucidated. For example, varied geomorphic features associated with hot springs in 

Yellowstone National Park have been associated with different microbial community structures using 

quantitative polymerase chain reaction (PCR; Havig et al. 2011; Martin et al. 2010). Integration of the 

observed aqueous chemistry and the phylogenetic surveys of microorganisms have been used to model 

the bioenergetics of some hot spring systems (Takai and Nakamura 2010; Spear et al. 2004). These 

studies demonstrate that potential energy resources are available to organisms in hydrothermal systems. 

As we become increasingly able to rapidly survey geologic systems to identify microbiology and potential 

metabolic impacts, weathering studies remain an important means of contextualizing the relationship 

between microorganisms and mineral surfaces.   

Studies of microorganisms in hydrothermal systems have employed a diverse array of microbiological 

and geochemical techniques, including field and laboratory incubation studies and stable isotopes 

analyses (Glynn et al. 2006; Severmann et al. 2006) to determine the nature of microbial colonization and 

microbial influence on mineral equilibria, including field and laboratory incubation experiments (Toner et 

al. 2009; Templeton et al. 2009; Daughney et al. 2004; Edwards et al. 2003; Phoenix et al. 2001). 

Microcosm incubations of sulfide minerals in hydrothermal vents at the Juan de Fuca ridge showed that 

microorganisms rapidly (2 months) dissolve sulfide minerals and form iron-oxide coatings on biofilms 

(Toner et al. 2009; Edwards et al. 2003).  This has been shown similarly through coupled geochemical 

and microbiological investigations of changes in sediment cores retrieved from the TAG (Trans-Atlantic 
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Geotraverse) hydrothermal vent field (Glynn et al. 2006; Severmann et al. 2006). Four month long 

laboratory experiments with Fe-oxidizing bacteria showed that microorganisms were involved in the off-

axis dissolution of basalt and the precipitation of Fe-oxides associated with microbial surfaces (Daughney 

et al. 2004). In contrast, Templeton et al. (2009) showed that microorganisms rapidly (1 year) colonized a 

basalt slab incubated in the hydrothermal fluids at the Loihi seamount and microbial surfaces were 

covered in Fe-oxides, however it is unknown whether the presence of microbial biofilms enhanced 

dissolution of the basalt as controls were not available. Phoenix et al. (2001) used laboratory experiments 

to show that cyanobacteria facilitate the growth of siliceous sinters for UV protection. Microorganisms 

have also been shown to influence the precipitation of secondary mineral phases, including calcite at 

Angel Terrace, Yellowstone National Park (Kandianis et al. 2008; Fouke et al. 2000), siliceous sinters at 

El Tatio geothermal field (Phoenix et al, 2006) and Fe-oxides and jarosite from acid-sulfate Orange 

springs in Waiotaupo geothermal area, New Zealand and an acid-sulfate spring in Kyushu, Japan (Jones 

and Renaut 2007; Kawano and Tomita 2001). The formation of clays, particularly nontronite, has been 

observed in off-axis deep sea hydrothermal systems. Usually, its formation is attributed to alteration of 

sulfides (Dekov et al. 2008), although Masuda (1995) and Alt (1988) observed nontronite coating 

filamentous organisms in low-T alteration zones.  

Chemical weathering processes are comprised of two components: dissolution of primary mineral phases 

and precipitation of mineral secondary phases. These processes have traditionally been treated separately 

in hydrothermal systems with most models presuming congruent dissolution of primary phases 

(Konhauser et al. 2002; Resing and Santone 2002). Using timed, in situ experiments in the Las Pailas 

hydrothermal system, this study seeks to characterize the initial attachment and colonization of 

microorganisms in an acidic volcanic hydrothermal system and determine the biological weathering 

effects on primary silicates  from shorter (6 hours) to longer (2 month) time scales. This includes 

characterizing the nature of microbe-mineral interactions, the effect of extracellular polymers (EPS) on 

mineral surfaces, and factors that affect the formation of secondary mineral phases.  
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Geologic Setting 
Rincón de la Vieja is an andesitic composite stratovolcano in northwestern Costa Rica formed by the 

subduction of the Cocos Plate beneath the Caribbean plate (Figure 1). The volcano last erupted in 

February 1998 (Kempter et al. 1995).  Tephra deposits, ignimbrites, welded tuffs, and hornblende biotite 

lavas comprise this andesitic volcanic complex (Kempter et al. 1995). Current geologic processes at the 

Las Pailas hydrothermal field of Rincón de la Vieja National Park include fumaroles and hot spring 

activity along the volcano’s southwestern flank.  Geochemistry was evaluated as part of this study and 

compared with previous work completed by Tassi et al. (2005) who focused on the water chemistry of the 

system and Gehring et al. (1999) who described the mineralogy of the alteration products. 

Las Pailas was chosen for the microbial metabolic guilds present at the site, including Euglena 

pailasensis (Sittenfeld et al. 2002), Cyanidium and Galderia-like algae, 15 different phylotypes of 

methanogenic Archaea, several strains of cyanobacteria (Finsinger et al. 2008) and the presence of 

Acidothiobacillus caldus, a moderately thermotolerant sulfur oxidizing bacterium (Semenez et al. 2002). 

 

Figure 1: The Las Palias hydrothermal vent field (grey area) is located on the southwest flank of Rincón 
de la Vieja. Image is after the Costa Rica Travel and Tourism Bureau’s Rincón de la Vieja National Park 
Map. Contour Interval ~250 m. 
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Methodology 

Field and Laboratory Methods 
Coupled field and laboratory methods were used to determine the degree of chemically and biologically 

induced weathering in the Las Pailas springs. Geochemical sampling of the Las Pailas area, along the 

southwest flank of the volcano was conducted in March 2009.  In order to characterize the geochemical 

conditions of the sites, sediment and fluid samples were collected from four hot spring sites: Pailas de 

Agua I, Pailas de Agua II, Laguna Fumarólica, Poza del Hongo.  

Spring pH and temperature were measured in the field. Because of the rapid cooling of water samples 

upon retrieval from the spring, temperatures were acquired using a Fisher Scientific Traceable Infrared 

thermometer. Water samples were filtered in the field using 0.45 µm polycarbonate filters, and samples 

for cation analysis were acidified with up to 2% high purity nitric acid. Major and trace cations were 

analyzed using inductively coupled plasma optical emission spectroscopy on a Perkin Elmer ICP-OES 

Optima 5300 DV at the University of Kansas.  Anions were analyzed using a Microdrill ion 

chromatograph at the University of Kansas.  Alkalinity was determined in the lab for Poza de Hongo, the 

only spring with a pH above 3. All samples were kept at kept at 4°C after collection and during transport 

to the laboratory.  Sediment samples were collected, kept at 4°C during transport, freeze-dried in the 

laboratory to prevent significant alteration of the mineralogy, and then powdered and analyzed using a 

Bruker SMART APEX II X-ray Diffractometer with a copper charge coupled detector (CCD) at the 

University of Kansas X-ray Diffraction Laboratory. 

Field Incubation Experiments 
Chemical weathering as well as microbial colonization patterns and associated biological weathering were 

examined using field microcosm experiments. In situ field microcosms, a modification of the buried slide 

technique (Engel et al. 2004; Rogers and Bennett 2004; Rogers et al. 1998; Heibert and Bennett 1992), 

were composed of clear polycarbonate tubes with mesh-covered ends into which fresh mineral samples 

were placed. Each microcosm was filled with 12 g of crushed, sieved (2 mm size fraction), washed, and 

sonicated minerals designed to represent the general mineralogy of andesitic volcanic rocks. This 
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included 4 g each of amphibole (hornblende, (Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2; Wards Scientific 

#46V0392), pyroxene (augite, (Ca,Na)(Mg,Fe,Al)(Si,Al)2O6; Wards Scientific #46V6472), and 

anorthoclase feldspar ((Na,K)AlSi3O8; Wards Scientific #46V0578) with Fe-oxide and apatite inclusions 

obtained from Ward’s Scientific. One aliquot of minerals was set aside as an unweathered control for 

comparison in order to address any effect on weathering rates caused by the dissolution of fines (e.g. 

Brantley et al. 2001).  One control microcosm and one experimental microcosm were deployed in each 

spring. In addition to mesh on both ends, control microcosms had additional 0.2 µm polycarbonate filters 

for short-term experiments and 0.45 µm polycarbonate filters for long-term experiments. These additional 

filters served to prevent microbial contamination and therefore recorded strictly water/rock interactions 

(i.e. chemical weathering).  

Microcosms were incubated in the hot springs for periods of six hours (6 h), 24 hours (24 h), and two 

months (2 mo). After each of these time frames, the microcosms were retrieved from the site and the 

contents were immediately placed into 15 mL falcon tubes with 2% glutaraldehyde solution to fix the 

samples while in the field to preserve fine-scale microbe-mineral surface interactions including pili and 

exopolymeric substances (EPS; Gorby et al. 2006). Details of experimental duration and retrieval for each 

hot spring are included in Table 1. Retrieved mineral samples were analyzed using scanning electron 

microscopy (SEM) to discern differences in colonization patterns and extracellular polymer development 

between minerals as well as differences in weathering textures observed for biological versus chemical 

incubations (Bennett et al. 2006). Thin sections and SEM images of the unreacted starting material were 

compared to weathered samples.  

Microscopy 
Microcosm samples were prepared for scanning electron microscope analysis using chemical fixation 

using glutaraldehyde and ethanol dehydration followed by critical point drying (e.g. Gorby et al. 2006). 

Mineral samples were then stub-mounted, gold-coated and analyzed on LEO 1550 field emission 

scanning electron microscope. Minerals from each time step were imaged to determine the differences in 

colonization by microorganisms, their association with primary and secondary mineral phases, and the 



 
15 

 

degree of weathering. Cell densities were determined by counting the number of microbial cells present 

using 5-10 fields of view with an area of 1000 µm2 on average for each mineral type in each spring. A 

total cell count was calculated and divided by the total area of all fields of view counted. 

 

 

*Polycarbonate degrades above pH 4 at T>50oC. 
 

Because of the extensive clay formation associated with the microcosm samples, simply measuring the 

change in weight of the samples pre- and post-incubation was insufficient to determine the degree of 

dissolution. Similarly, atomic force microscopy (AFM) was attempted but abandoned as a reasonable 

method for determining weathering induced changes to the mineral surfaces because the surface 

roughness of the samples damaged the AFM tips. 

In order to determine the volumetric losses caused by weathering, stereo images were captured, 

integrated, and analyzed to create digital elevation models (DEM) of mineral surfaces using MeX® 3-D 

image analysis software. These DEMs were used to determine the volume of etch pits resulting from 

weathering. An aliquot of samples were prepared for imaging using 10 minutes immersion in 5% Tween 

20 to remove any attached biota and low-power sonication to remove fine material attached to the surface. 

These cleaned samples were then ultra-fine coated with gold-palladium before imaging. Pit volumes were 

Table 1: Field Experiment Parameters 

Site Incubation 
Time  

Control Sample 
Filter Size (µm) Notes 

Poza del 
Hongo 6 h 0.2 

Filters designed for pH< 4. Filters 
ruptured upon exposure to the 
spring. All samples colonized.* 

Pailas de  
Agua II 6 h 0.2 

  
Pailas de  
Agua I  24 h 0.2 Long-term experiments lost. High T 

melted the anchor line. 

Laguna 
Fumarólica 

24 h 0.2 

   2 mo 0.45 
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statistically analyzed to determine the quantitative difference in weathering between chemical and 

biological weathering reactions.   

Results 

Site Geochemistry 
Field measurements revealed spring temperatures ranging from 43-90oC and pH ranging from 2.4-5.7 

(Table 2). With the exception of Poza del Hongo, the springs have high total iron and silica  

concentrations with a range of 1.50-6.95 mmol L-1 and 3.52-8.19 mmol L-1 respectively. Aluminum 

concentrations ranged from below detection limits in Poza del Hongo to 15.4 mmol L-1 in Pailas de Agua 

I. Sodium, calcium and magnesium concentrations were all lower than 1 mmol L-1 and potassium 

concentrations were below detection limits for all samples. Phosphate levels in the springs are low (below 

micromolar) with many springs containing no detectable phosphate and the highest value being 4.93 µmol 

L-1. The aqueous geochemistry of the hydrothermal pools broadly correlates with the data collected 

previously; however chlorine and potassium concentrations were 1-2 orders of magnitude lower between 

the two studies and aluminum concentrations were 1-2 orders of magnitude greater between the two 

studies (Tassi et al. 2005; Table 3). 

Previous studies of the Las Pailas vent field have shown that weathering products within the hydrothermal 

vents include kaolinite, quartz, α-cristobalite, anatase, rutile, hematite, and α-tridymite (Gehring et al. 

1999). XRD analysis of collected sediment samples from this study contained secondary phases such as 

smectite, kaolinite, α-cristobalite quartz, alunite, 2-line ferrihydrite, 6-line ferrihydrite and hematite 

(Figure 2). No primary mineral phases were detected. 

Previous studies of the Las Pailas vent field have shown that weathering products within the hydrothermal 

vents include kaolinite, quartz, α-cristobalite, anatase, rutile, hematite, and α-tridymite (Gehring et al. 

1999). XRD analysis of collected sediment samples from this study contained secondary phases such as 

smectite, kaolinite, α-cristobalite quartz, alunite, 2-line ferrihydrite, 6-line ferrihydrite and hematite 

(Figure 2). No primary mineral phases were detected. 
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Table 2: Rincon de la Vieja Water Analyses Spring 2009  

Fi
el

d 
da

ta
 

Site Laguna 
Fumarolica 

Poza del 
Hongo 

Pailas de 
Aguas II Pailas de Aguas I  

Elevation (m) 759 756 727 749 
Sample Date March 17 March 17 March 18 March 17 

T  (° C) 43 90 83 80-89 

pH 2.42 5.75 2.77 2.60-3.96 

Ionic Strength 1.72E-01 2.10E-03 2.87E-01 4.69E-01 

Charge Balance 1.64E-01 -1.87E-03 2.70E-01 4.30E-01 

A
lk

al
in

ity
 

meq/L HCO3 bdl 2.19E+00 bdl bdl 

A
ni

on
s 

SO4 7.39E+00 1.72E-01 1.46E+01 3.84E+01 
F 1.76E-02 1.24E-02 2.00E-02 1.06E-01 
Cl 1.67E-01 8.70E-02 2.68E-02 5.35E-02 
Br bdl bdl bdl bdl 

NO2 bdl bdl bdl bdl 

NO3 1.67E-02 3.87E-03 4.03E-03 7.10E-03 

PO4 (µmol/l) 4.24E+00 4.93E+00 2.70E+00 bdl 

C
at

io
ns

  

Na 7.48E-01 1.32E-01 1.31E-01 3.91E-01 
K bdl bdl bdl bdl 
Ca 8.04E-01 1.69E-01 2.09E-01 6.88E-01 
Mg 5.60E-01 1.31E-01 1.85E-01 6.90E-01 
Sr 5.04E-04 1.50E-04 bdl 6.98E-04 
Ba 1.08E-04 1.49E-04 2.19E-04 2.87E-04 

FeT 1.50E+00 4.12E-04 2.48E+00 3.98E+00–6.95E+00 
Mn 1.29E-02 0.00E+00 4.34E-03 1.58E-02 

Ti bdl bdl bdl bdl 

Al 8.37E-01 bdl 2.58E+00 1.54E+01 

Si 4.45E+00 6.34E-01 4.29E+00 8.19E+00 

Zn 3.80E-04 bdl 5.72E-04 2.40E-03 

Pb bdl bdl bdl bdl 

Cd bdl bdl bdl 1.44E-04 

Co bdl bdl bdl 1.61E-04 

Cr 1.63E-03 bdl 3.40E-03 7.17E-03 

Cu 1.66E-03 2.58E-05 bdl 2.86E-03 

Ni bdl bdl bdl bdl 

V 2.43E-03 2.06E-05 1.20E-02 2.79E-02 
S 7.45E+00 2.12E-01 1.48E+01 3.94E+01 

 
 

* All values in mM unless otherwise noted. 
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*values in mmol/l unless otherwise noted 
** bdl=  below detection limits. Detection limits: Br=2.53x10-1 µmo/l, NO2 = 4.34x10-1 µmo/l;  

K= 2.56x10-2-2.56x10-3 µmo/l 

Field Incubation Experiments 
Before use in the microcosm experiments, unreacted, starting mineral samples were characterized in 

petrographic thin-section and imaged using scanning electron microscopy. Pyroxene samples contained 

Fe-Ti oxide inclusions overgrown by biotite and quartz (Figure 3A). Amphibole samples contained large 

quartz inclusions as well as fractures filled with biotite that crosscut the sample surface (Figure 3B). 

These fractures were also observed under SEM in some samples. Anorthoclase mineral samples were 

previously described by Rogers et al. (1998). Thin sections of anorthoclase revealed prevalent apatite 

Table 3: Spring Field Analyses compared to Tassi et. al. (2005) 
    This Study Tassi et. al. 

Fi
el

d 
da

ta
 

Site Palias de 
Agua II 

Palais de 
Agua I 

Palais de 
Agua 

Palais de 
Agua 

Elevation 
(m) 727 749 800 800 

Sample 
Date Mar-09 Mar-09 Feb-98 Mar-99 

 T (° C) 82.9 79.6 92.6 96 
pH 2.77 2.60 2.3 2.21 

A
ni

on
s 

SO4 1.46E+01 3.84E+01 1.11E+01 1.99E+01 
F 2.00E-02 1.06E-01 2.60E-01 2.50E-01 
Cl 2.68E-02 5.35E-02 6.00E+00 1.18E+02 
Br bdl bdl bdl 1.50E-01 

NO2 bdl bdl Not 
reported 

Not 
reported 

NO3 4.03E-03 7.10E-03 2.00E-02 bdl 

C
at

io
ns

 

Na 1.31E-01 3.91E-01 7.90E-02 1.22E-01 
K bdl bdl 4.00E-02 1.20E-01 
Ca 2.09E-01 6.88E-01 1.30E+00 2.74E-01 
Mg 1.85E-01 6.90E-01 2.00E-01 2.00E-01 
Mn 4.34E-03 1.58E-02 1.46E-03 bdl 
Al 2.58E+00 1.54E+01 bdl bdl 
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inclusions that were frequently associated with large Fe-Ti oxides and biotite (Figure 3C). Trace element 

analysis of anorthoclase yielded a concentration of 1050 µg g-1 phosphate (Rogers et al. 1998).  

Field incubations were conducted in four hydrothermal pools. Details regarding sample retrieval and 

timing are included in Table 1. Samples were imaged using scanning electron microscopy and analyzed to 

determine the nature and extent of chemical vs. biological weathering and microbial colonization. 

Polycarbonate filters manufactured by GE on microcosms incubated in Poza del Hongo ruptured due to 

pH conditions higher than 4 at temperatures greater than 50oC, resulting in the colonization of all samples. 

Because weathering encompasses both dissolution of primary minerals and precipitation of secondary 

minerals, reacted mineral suites were examined for examples of both weathering factors. Etch pits and 

selective leaching along cleavage planes and mineral defects were used as indicators of primary mineral 

dissolution. The presence of minerals not originally found in the starting material (e.g. clays and silica 

spherules) was used as evidence of secondary mineral precipitation. As stated earlier, microorganisms can 

participate in both dissolution and precipitation weathering reactions. Therefore microbial colonization, 

defined by the number and type of individual cells attached to mineral surfaces, and the extent of EPS 

coverage associated with dissolution features and secondary mineralization were documented as 

indicators of biological weathering.    

Starting Material 
In order to most accurately represent the starting material for the present study, one set of mineral samples 

was carried to and from the field without reaction. The starting material was then examined using SEM 

upon return to the laboratory. Pyroxene mineral surfaces displayed well-defined cleavage at 90o. Rarely, 

pyroxene mineral samples were cut by 1-2 µm wide fractures that were subparallel to cleavage planes 

(Figure 3D). Amphibole surfaces appeared fresh and unweathered and displayed characteristic pencil 

cleavage (Figure 3E). Anorthoclase samples appeared pristine with well-defined cleavage planes (Figure 

3F). Some apatite crystals were exposed on the anorthoclase surfaces due to crushing of the mineral 

during sample preparation (Figure 3D). These apatite crystals were hexagonal and euhedral making them  
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Figure 2: Mineralogy of the sediments collected from each hydrothermal pool were evaluated using XRD 
and show the presence of smectite, kaolinite, α-cristobalite quartz, alunite, 2-line ferrihydrite, 6-line 
ferrihydrite and hematite. The sample collected from Laguna Fumarólica displays only smectite and 
ferrihydrite. 
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Figure 3: All samples were crushed, sieved, sonicated and washed prior to experimentation. The 
unweathered control samples have some attached fines to them because of breakage during transportation 
to and from the field. Petrographic Images: (A) Pyroxene surfaces are largely are heavily fractured. (B) 
Amphiboles are fresh and unweathered with quartz inclusions. (C) Anorthoclase samples contain large 
Fe-oxide and biotite inclusions which are commonly co-located with hexagonal apatite crystals. Some 
apatite crystals are distributed as inclusions throughout the mineral.  SEM Analysis: (D) Pyroxenes are 
partially covered in fines and have 1-2 µm fractures that crisscross the surface in some locations. (E) 
Amphibole surfaces are euhedral and have characteristic pencil cleavage. (F) Anorthoclase samples are 
pristine with no obvious evidence of exsolution features. 
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easily definable features. Biotite/Fe-Ti oxide inclusions in anorthoclase were observed because they 

cross-cut the well-defined cleavage surfaces and had a blocky appearance. Some fines remained attached 

to mineral surfaces and were likely the result of mineral breakage while in transit to and from the field. 

Pyroxene 

Poza del Hongo (6h) 
Due to filter rupturing in the control samples, all microcosms from Poza del Hongo were colonized and 

thus a comparison of chemical to biological weathering could not be performed on this suite of 

experiments. After six hours of exposure, all pyroxene samples from Poza del Hongo displayed 

minimally etched cleavage planes (Figure 4A & B). Small etch pits, averaging 27.7 µm2, were observed 

(Table 4). Minor clay mineral attachment was observed (Figure 4B). Microbial attachment followed 

cleavage planes and surfaces (Figure 4A). The microorganisms within Poza del Hongo (6 h) had primarily 

a rod-shaped morphology (4.02x10-4 cells µm-2) though a few filamentous-shaped (7.54x10-5 cells µm-2) 

microorganisms were also observed. The average cell density after 6h was 4.78x10-4 cells µm-2 (Table 4). 

Control microcosms retrieved from Pailas de Agua II (6 h) displayed etching along cleavage planes, 

however, substantial sorbed clay minerals and (Fe, Al) oxides were observed (Figure 4C and D). Some 

silica spherules were also present on mineral surfaces (4C). Small (1-10 µm2) etch pits were observed 

(Table 4).  

In biologically weathered pyroxene samples from this spring, small 1-10 µm long etch pits were 

documented (Table 4; Figure 4D). Microbial cell density in biological samples was 1.55x10-4 cells µm-2 

(Table 4). Interestingly, the dominant feature observed in Pailas de Agua II (6 h) pyroxene samples,  

regardless of treatment, was the presence of substantial sorbed clays that almost completely coated the 

mineral surfaces (Figure 4D). 

Pailas de Agua I (24 h) 
Deeply etched cleavage planes were observed in all samples from Pailas de Agua I regardless of treatment 

(Figure 4E). Rod-shaped microorganisms were attached to pyroxene surfaces along cleavage planes and 
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Figure 4: Pyroxene weathering among treatments Poza del Hongo (6h) (A) Rod-shaped microorganisms 
attached parallel to cleavage planes; (B) Dissolution along cleavage planes, formation of nascent etch pits 
and clay formation; Pailas de Agua II (6 h) (C) Dissolution along cleavage planes, secondary silica 
spherules and clay minerals; (D) Dissolution along cleavage resulting in the formation of etch pits. 
Secondary clays and what appears to be ruptured Coccus; Pailas de Agua I (24 h) (E) Dissolution along 
cleavage planes, secondary clay minerals, (F) Attached secondary clay minerals, rod-shaped bacteria; 
Laguna Fumarólica (24h) (G) Etch pit developed along cleavage planes; (H) Rod-shaped microorganism 
near nascent etch pit; Laguna Fumarólica (2 mo) (I) Dissolution along cleavage planes; (J) Dissolution 
along cleavage planes leading to the development of etch pits, secondary clay minerals, cocci attached to 
nascent etch pits.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Mineral Colonized
Cell Density 

cells/µm2
Biofilm 

Coverage
Weathered Pit Area µm2

Control Pyroxene
Control 
Amphibole
Control 
Anorthoclase
Pyroxene + 4.78E-04 - + 2.77E+01
Amphibole ++ 7.20E-04 - + 1.98E+01
Anorthoclase ++ 2.76E-04 25% + 5.80E+02

Control Pyroxene - ++ 9.33E+02
Control 
Amphibole - ++ 2.08E+03

Control 
Anorthoclase - ++ 3.37E+03

Pyroxene + 2.11E-04 - ++ 1.79E+03
Amphibole ++ 4.13E-04 - + 2.13E+01
Anorthoclase ++ 4.08E-04 - ++ 3.99E+03

Control Pyroxene - ++ 1.03E+01

Control 
Amphibole - ++ 6.63E+01

Control 
Anorthoclase - ++

1.35E+02
Pyroxene + 1.55E-04 - ++ 2.50E+01
Amphibole + 1.88E-04 - ++ 1.10E+02
Anorthoclase ++ 4.83E-04 20% ++ 2.00E+02

Pailas de Aguas I

Reaction Time
Poza del Hongo*

Palais de Aquas II

6h

6h

24 h

Table 4:  Weathering and Colonization
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* + 
indicate relative intensity of weathering and colonization. – indicate no  
weathering or colonization was observed. 

 

were associated with secondary clays in experimental samples (Figure 4F). The average biomass density 

was 2.11x10-4 cells µm-2 (Table 4). Clay minerals and Fe-oxides appeared to be nucleating proximal to 

zones of intense dissolution on the mineral surface (Figure 4E and F). This is indicative of rapid 

authigenic clay mineral formation (Michalopoulos and Aller, 1995).  

Laguna Fumarólica (24 h) 
Laguna Fumarólica (24 h) control samples were characterized by largely unweathered surfaces with few 

<10-100 µm long etch pits (Figure 4G). Minimal secondary clays were observed sorbed to the surface. In 

Mineral Colonized
Cell Density 

cells/µm2
Biofilm 

Coverage
Weathered

Pit Area 
µm2

Control Pyroxene - ++ 4.44E+03

Control Amphibole - ++ 6.56E+02

Control 
Anorthoclase - + 3.27E+02

Pyroxene ++ 2.15E-04 40% ++ 2.82E+02
Amphibole + 2.66E-04 - - 4.22E+00
Anorthoclase ++ 2.87E-05 40% + 2.87E+02

Control Pyroxene - ++ 1.07E+03

Control Amphibole - ++ 6.56E+02

Control 
Anorthoclase - ++ 9.42E+02

Pyroxene +++ 2.69E-03 40% +++ 3.82E+02
Amphibole ++ 7.56E-04 40% ++ 8.23E+02
Anorthoclase +++ 2.26E-03 40% +++ 9.98E+03

 2 mo
Laguna Fumarolica

Laguna Fumarolica

Palais de Aquas II
6h

24 h

Reaction Time
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biologically weathered samples, nascent etch pits (1-2 µm2) were observed consistently associated with 

rod-shaped bacteria (Figure 4H; Table 4).  Experimental sample surfaces were heavily coated in 

secondary clays minerals (Figure 4H). This may be partially due to sorption of secondary minerals onto 

EPS that covered approximately 40% of the surfaces. Cocci- and rod-shaped microorganisms were 

observed with an average cell density is 2.15x10-4 cells µm-2. 

Laguna Fumarólica (2 mo) 
After two months, large etch pits (Table 4) were observed in all Laguna Fumarólica (2 mo) pyroxene 

samples. Etch pit areas were larger in experimental (LFB) samples than controls (LFC) (Figure 4 I & J; 

Table 4). Cocci and clay minerals were associated with etch pits in LFB samples. The average cell density 

for rod- and cocci-shaped microorganisms was 2.69x10-3 cells µm-2. As with Pailas de Agua II site, clay 

minerals may prevent additional dissolution of the pyroxene surface.  

Amphibole 

Poza del Hongo (6 h) 
Minimal clay minerals were observed associated with the surface (Figure 5A). Most amphibole surfaces 

displayed minimal dissolution features at this site including some small (19.98 µm2) etch pits (Table 4) 

and dissolution along cleavage planes (Figure 5A). Filamentous (3.37x10-4 cells µm-2) and rod-shaped 

(3.68x10-4 cells µm-2) microorganisms were observed. Rod-shaped microorganisms were attached parallel 

to the amphibole cleavage planes (Figure 5B). Few cocci (1.53x10-5 cells µm-2) were also observed.  The 

average cell density was 7.20x10-4 cells µm-2 (Table 4). 

Pailas de Agua II (6 h) 
Dissolution along amphibole cleavage planes was common, and minor 1-10 µm2 etch pits were observed 

in control samples from Pailas de Agua II (Table 4; Figure 5C). In experimental samples, amphibole 

mineral grains were extensively weathered with preferential dissolution along cleavage planes in all 

treatments (similar to Figure 5C), and several surfaces were completely altered to thick clay layers in 

experimental samples (Figure 5D). Although uncommon, small (82.3 µm2) etch pits were also observed in  
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experimental samples. Additionally, rod-shaped microorganisms (1.88x10-4 cells µm-2) were observed. 

Secondary clays, oxides and silica spherules were present on mineral surfaces regardless of treatment. 

Pailas de Agua I (24 h) 
In control samples, some amphibole surfaces were completely altered to thick clay layers (Figure 5E). 

Other amphibole control surfaces had a few etch pits that measured 10 µm by 5-10 µm (Table 4). Control 

and experimental samples retrieved from Pailas de Agua I (24 h) were dominated by etching along 

amphibole cleavage planes with minor sorption of clay minerals to the surface (Figure 5F).  Etch pits in 

experimental amphibole surfaces were smaller than controls (2.13x101 µm2 on average; Table 4). 

Microbial cell densities of 4.13x10-4 cells µm-2 were observed in the experimental samples.  

Laguna Fumarólica (24 h) 
In Laguna Fumarólica (24 h) control samples, minimal amphibole dissolution in the form of small etch 

pits (1-10 µm long by a few microns wide) was observed. Most surfaces remained unweathered with 

minor sorption of clays, silica spherules and oxides (Figure 5G). Experimental samples from this spring 

displayed small etch pits approximately 2 µm in diameter and minor sorbed clays and oxides (Figure 5H; 

Table 4).  Microbial cell density of experimental samples averaged 2.66x10-4 cells µm-2. 

Laguna Fumarólica (2 mo) 
After two months, experimental and control samples from Laguna Fumarólica displayed similar 

amphibole dissolution features to the 24 h control samples. Similar sized etch pits were observed in both 

control (6.56x102 µm2) and biological samples (8.23 x102 µm2) (Table 4). Minimally etched cleavage 

planes also were observed in both LFB (biological) and LFC (control) samples (Figure 5I). Secondary 

oxides and clays were observed in both LFB and LFC samples (Figure 5I). Discontinuous EPS covered 

approximately 40% of the LFB sample surfaces (Figure 5J).  Rod-shaped and cocci microorganisms with 

an average cell density of 7.56x10-4 cells µm-2 were observed. To determine whether EPS formation may 

have enhanced or retarded weathering, LFB (2 mo) amphibole samples were washed to remove EPS.  
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Figure 5: Amphibole weathering among treatments Poza del Hongo (6h) (A) Minor dissolution along 
cleavage planes, few attached clays; (B) Microorganisms attached parallel to cleavage. Pailas de Agua II 
(6h) (C) Attached clays and silica spherules with minor dissolution; (D) Conversion of amphibole to clay; 
no bacteria observed on rapidly dissolving surfaces. Pailas de Agua I (24 h) (E) Conversion of amphibole 
to clay in control sample. (F) Etch pit formation along cleavage and rod-shaped microorganism associated 
with Fe-oxide. Laguna Fumarólica (24 h) (G) Dissolution along cleavage; (H) Coccus-shaped 
microorganism near small etch pits and clay minerals; Laguna Fumarólica (2 mo) (I) Clay and Fe-oxide 
minerals; (J) Discontinuous EPS covers mineral surface. 
 
Observations of washed samples did not show significant differences from unwashed control samples that 

were not covered in EPS suggesting EPS formation did not substantially influence dissolution processes. 

Anorthoclase 

Poza del Hongo (6 h) 
Dissolution along cleavage planes and the formation of 1-2 µm diameter etch pits was observed in Poza 

del Hongo (6 h) anorthoclase samples (Figure 6A; Table 4). Nanoscale clay minerals were sorbed to 

anorthoclase surfaces (Figure 6A). Extensive biofilms developed over some surfaces, encapsulating up to 

40% of the mineral surface in polymer (Figure 6B). The average cell density was 2.76x10-4 cells µm-2.  

Pailas de Agua II (6 h) 
Pailas de Agua II (6 h) control and experimental anorthoclase samples were partially coated by secondary 

minerals, including clays and silica spherules that measured few hundred nanometers to 2 µm in size 

(similar to Figure 6C). Well-developed etch pits (~10 µm in diameter) covered in part by clay minerals 

were observed in control samples (Figure 6C; Table 4). The surfaces of the control samples were 

extensively covered by sorbed clay minerals. In the experimental samples, rods, filaments, and cocci were 

attached to mineral surfaces, leading to a cell density of 4.83x10-4 cells µm-2. EPS covered approximately 

20% of the mineral surface. The silica spherules, ranging from a few hundred nanometers to 2 µm in size, 

were typically associated with EPS on the surface (Figure 6D), whereas clays and oxides were associated 

with individual microorganisms (similar to Figure 4J). Etch pits in the experimental anorthoclase samples 

were more heterogeneous in their size distribution when compared to control samples. Most etch pits in 

the biological samples ranged from 5-10 µm in length, though several etch pits 10s of microns in length 
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by greater than 10 microns in width were also observed; however the average etch pit size was similar to 

control samples (2.00x102 µm2; Table 4).  

Pailas de Agua I (24 h) 
Both control and experimental anorthoclase samples retrieved from Pailas de Agua I (24 h) were heavily 

coated in oxides and nanoscale clay minerals (similar to Figure 6F) with few large (~30 µm in diameter) 

etch pits observed (similar to 6E). Minor dissolution associated with cleavage planes was also observed in 

both experimental and control samples. Experimental surfaces had significant quantities of inorganic 

debris, including clays and oxides that completely coated the mineral surfaces (Figure 6F). This may 

result from transport to the surface of the high suspended load in the spring, which was composed in part 

of clays and Fe-oxides (Figure 2). Rod-shaped, cocci, filaments, and helical polymers typically attributed  

to the iron-oxidizing microorganism Gallionella were present on biologically weathered surfaces (Figure 

6F). The average microbial cell density was 4.08x10-4 cells µm-2. 

Laguna Fumarólica (24 h) 
After 24 h exposure in Laguna Fumarólica (24 h), crystallographically controlled dissolution was evident 

in both control and experimental weathered anorthoclase samples (Similar to Figure 6G). Etch pits 

measuring 1- >20 µm in diameter as well as sorbed clays were present in both treatments as well (Figure 

6G; Table 4). Individual rods, cocci and  putative fungal filaments (>246 µm long) were observed 

associated with anorthoclase surfaces in biologically weathered samples (Figure 6H). The average cell 

density was 2.87x10-5 cells µm-2.  

 Laguna Fumarólica (2 mo)  
After two months, LFC (controls) were characterized by deeply weathered cleavage planes and etch pits 

(diameters ranging from 50 to >1000 µm) typically associated with secondary clays (Figure 6I). Etch pits 

were crystallographically controlled. Individual microorganisms or clusters of microorganisms were 

associated with large (100- 200 µm long by 50-100 µm wide) etch pits in the biologically weathered  
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Figure 6: Anorthoclase weathering among treatments Poza del Hongo (6 h) (A) Development of etch pits 
and conversion of anorthoclase to clay (B) Extensive EPS covers parts of anorthoclase surface. Pailas de 
Agua II (6 h) (C) Dissolution and formation of etch pits; (D) EPS with silica spherules. Pailas de Agua I 
(24 h) (E) Etch pit in anorthoclase; (F) Helical-shaped precipitate resembling Gallionella with 
nanoparticulates. Laguna Fumarólica (24 h) (G) Minor etch pit formation along cleavage; (H) Rod-shaped 
microorganisms and putative fungal hyphae attached to anorthoclase surface. Laguna Fumarólica (2 mo) 
(I) Etch pit with clay; (J) Large etch pit w/ microorganisms attached via pili and abundant clays. 
 
(LFB) anorthoclase samples. The average cell density was 2.26x10-3 cells µm-2 (Figure 6J; Table 4). The 

clusters of microorganisms were interconnected via pili and polymer within the large etch pits (Figure 6J). 

Many of these microorganisms were blanketed in nanoscale secondary clay minerals (Figure 6J). Small 

discontinuous EPS were observed covering approximately 40% of the surface (Table 4). Deep hexagonal  

 

Figure 7: Differential weathering of apatite: (A) Euhedral apatite crystal exposed on LFC anorthoclase 
surface after 2 mo. (B) Hexagonal etch pit approximately 5 µm in diameter that has weathered out of LFB 
an anorthoclase sample after 2 mo. 
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etch pits were present in biologically weathered (LFB) samples and likely represent the preferential 

dissolution of apatite from the anorthoclase samples (Figure 7).  This was not observed in the control 

experiments (Figure 7). 

Quantification of Weathering 
To quantify difference in etch pit size between the biological (LFB) and control (LFC) anorthoclase 

samples, three stereoimages were taken and integrated into a DEM using the MeX® software package. 

From the DEM, etch pit volumes were calculated. Results from this analysis are reported in Table 5. 

In anorthoclase samples exposed to fluids in Laguna Fumarólica for 24 h, dissolution was an order of 

magnitude greater in control samples (3.6x105 µm3) than in biological samples (4.6x104 µm3). These 

values could serve as proxies for initial weathering rates. After two months, microbially weathered 

anorthoclase samples displayed broad, deep etch pits which ranged from 10 to >200 µm in length and up 

to 100 µm in width (Figure 8). In experimental samples, anorthoclase etch pits fell into two populations: a 

population with volumes that ranged from 103-104 µm3 and one with volumes that ranged from 105-107 

µm3. Biologically weathered systems had significantly greater dissolution (4.7x106 µm3) than controls  

 

Figure 8: Digital elevation models of anorthoclase control and experimental samples retrieved from 
Laguna Fumarólica after 2 months. (A) Control samples consistently show etch pit volumes of 104-105 
µm3, similar to the DEM shown here. (B) Experimental sample etch pits are highly variable in size, shape, 
and depth, and range in volume from from 104-107 µm3. This is a weathered Fe-oxide inclusion. Some 
clays remained cemented to the surface which may mask the true depth of the pit and thus potentially 
underestimate the volume. 



 
34 

 

(5.0x105 µm3) (Table 5; Figure 9). Utilizing volumetric loss and experimental duration, we have 

calculated long-term weathering rates for these samples. Biological samples showed volume losses of 

7.8x104 µm3 day-1, which was an order of magnitude faster than controls (7.8x103 µm3 day-1) (Table 5). 

This is the opposite of short-term (24 h) weathering rates. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Quantification of etch pit volume with time and experimental treatment. Initially control 
samples are more significantly weathered than experimental samples; however, after 2 mo, experimental 
samples have etch pit volumes that are approximately an order of magnitude greater than control samples. 
Error represents the standard deviation from the average for all measurements.  
 

Table 5: Weathering Volumes and Rates  

Laguna Fumarólica Anorthoclase  

  Experimental Control 

Duration 24 h 2 mo 24 h 2 mo 

Volume (µm3) 4.63E+04 4.67E+06 3.53E+05 4.95E+05 

Standard 
Deviation 4.05E+04 8.68E+06 3.51E+05 2.57E+05 

Weathering Rate 
(µm3 day-1) 4.63E+04 7.71E+04 3.53E+05 7.48E+03 
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Discussion 
While many studies have investigated microorganisms in hydrothermal systems as well as their role in 

mineral alteration, this is the first study to document initial microbial attachment and colonization of 

silicate minerals in an acidic (pH 2.6-5) volcanic hydrothermal (T 43-80oC) system. These data give us 

insight into the factors that influence microbial weathering and secondary mineral formation in acid-

sulfate hydrothermal systems over short time scales and quantify the importance of microbial weathering 

in acidic hydrothermal systems.  

Mineral Dissolution 
Factors affecting mineral dissolution include pH, temperature, ionic strength, and microbial processes. 

For the short-term (6 h) biologically weathered experiments, both temperature (90°C vs. 83°C, Table 2) 

and ionic strength (0.210 vs. 0.281, Table 2) were similar for Poza del Hongo and Pailas de Agua II, 

respectively. Thus, these two factors were not likely responsible for differences in dissolution features in 

samples from the two springs. Additionally, microbial contributions to weathering could not be examined 

due to contamination of control samples. However, pH did seem to play a role in these short-term 

weathering reactions. Samples from Poza del Hongo (pH 5.8) appeared to show less dissolution along 

cleavage planes, fewer and less well-developed etch pits, and fewer sorbed secondary minerals than 

samples from Pailas de Agua II (pH 2.8). Chemical weathering studies at similar temperature ranges (25-

90oC) have shown that pyroxene, amphibole and feldspar dissolution rates increase with decreasing pH 

(Schott et al. 2009; Oelkers and Schott 2001; Chen and Brantley 1998; Frogner and Schweda 1998). As 

such, the present study suggests that pH played a primary role in mineral dissolution rates in hot spring 

systems over short time spans (e.g. 6-24 hours).  

When comparing spring characteristics of samples weathered over 24 hours, the temperature of the 

Laguna Fumarólica spring was substantially lower than the Pailas de Agua I spring (43oC vs. 80-89oC, 

Table 2). Additionally, the pH of Laguna Fumarólica was lower than that of Pailas de Agua I (2.42 vs. 

2.60-3.96, Table 2). Despite the temperature and pH differences, pyroxene dissolution features appeared 

similar between these springs’ control samples after 24 hours. Oelkers and Schott (2001) showed that 
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abiotic pyroxene dissolution was largely temperature independent over the range of 22-90oC. In contrast, 

anorthoclase dissolution in the control samples was greater at Pailas de Agua I than at Laguna 

Fumarólica, suggesting increased abiotic dissolution rates for anorthoclase at higher temperatures. Chen 

and Brantley (1997) observed that the complex nature of abiotic feldspar dissolution was linked to both 

pH and temperature, with increased dissolution observed at higher temperature. Ionic strengths of the two 

springs were similar (0.172 for Laguna Fumarólica vs. 0.470 for Pailas de Agua I, Table 2) and therefore 

not considered a factor when examining the differences between chemical and biological dissolution 

characteristics of the two springs. In experimental (biologically active) microcosms reacted over 24 hours, 

etch pits were much larger in amphibole samples from Pailas de Agua I than those from Laguna 

Fumarólica. It is possible that the presence of EPS development in Laguna Fumarólica (24 h) samples 

retarded mineral dissolution (e.g. Welch et al. 1999) and thus smaller and fewer dissolution features 

formed.   

Within as little as two months, the importance of microorganisms in silicate mineral dissolution becomes 

more evident. While all of the LFB experimental samples were colonized, dissolution did not appear to be 

significantly enhanced (Table 4) on pyroxene or amphibole surfaces. In contrast, dissolution was 

significantly enhanced by microorganisms on anorthoclase feldspar grains. Microorganisms may, 

therefore, preferentially enhance weathering of select silicate minerals in acid-sulfate hydrothermal 

systems. 

Microbe-Mineral Interactions 
SEM observations of Las Pailas acid-sulfate hot spring system samples indicated that microbial 

attachment to silicate mineral surfaces occurred rapidly. Microbial attachment to in situ microcosm 

samples occurred within as little as six hours of incubation. This may be due to van der Waals interactions 

between the mineral grains and the microorganisms at the low pHs observed in this system (Yee 2000). 

However, initial attachment is primarily crystallographically controlled due to high energy and unsatisfied 

charge of these sites and the formation of pili or other polymeric attachments between the bacteria and 
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mineral surface after contact in a high ionic strength solution (Lower et al. 2000). These interactions have 

been shown to be largely pH independent (Cail and Hochella 2005). Filaments, cocci, rods, and helical 

microorganisms as well as putative fungal hyphae were observed in biologically weathered samples 

within 24 hours. Fungal hyphae have been observed in other hydrothermal systems including the Lost 

City hydrothermal vent field (López-García et al. 2006). Development of EPS was also observed on Poza 

del Hongo and Pailas de Agua II experimental samples within six hours, and within Palias de Agua I and 

Laguna Fumarólica within 24 hours. These observations suggest that mineral and rock surfaces in 

volcanic systems may be colonized as soon as they cool below ~113oC (the upper limit for life; Kashefi 

and Lovely 2003).  

In all springs, microorganisms preferentially colonized anorthoclase samples as shown by the 

combination of cell count and EPS coverage data. Amphibole minerals were more heavily colonized than 

pyroxene samples.  All experimental (biologically weathered) samples were partially covered by sorbed 

minerals. Silica spherules and (Fe, Al) oxides were associated with EPS and mineral surfaces. Silica 

spherules were not observed sorbed to individual cells. In contrast, clay minerals were sorbed to mineral 

surfaces and cells, but not to EPS. The difference in secondary mineral sorption may be intrinsically 

related to charge characteristics of the minerals, microorganisms, and EPS present.  Both microbial cells 

zero point of charge (ZPC 1-4.5; Yee and Fein 2001; He and Tebo, 1998; Crist et al. 1992) and polymeric 

silica (ZPC 2-3; Dietrich, 1997) are neutrally to slightly negatively charged charged at the pH values of 

our study. This should result in minimal interaction between the cells and silica spherules in Pailas de 

Agua II (pH 2.77; Table 2) where silica spherules were observed. Interactions between EPS and silica are 

more difficult to predict due to the variability in ZPCs of organic acids; however, Konhauser and Ferris 

(1996) observed sorption of silica onto biofilms and microbial cells in acidic Krusívík hydrothermal pools 

in Iceland. In Krusívík, silica bound to cell surfaces included Fe that acted as a cation bridge between the 

cell surface and silicic acid in solution (Konhauser and Ferris, 1996). The variability in organic ZPCs may 

account for the sorption of silica onto mineral surfaces and EPS, however it is likely that dehydration 
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reactions may also account for this result. It is possible that the high concentrations of Al, Fe, and Si in 

the spring solutions resulted in the transformation of adsorbed silica to clay minerals on microbial cell 

surfaces upon aging (Kawano and Tomito, 2002; Konhauser and Uttria, 1999). 

In addition to sorption of minerals, authigenic clay formation was observed associated with etch pit 

formation in experimental and control samples. These clays were also associated with and potentially 

nucleating on microbial cell surfaces.  Kennedy et al. (2006) suggested that organic matter was critical to 

inception of the clay mineral factory in the Proterozoic, and microorganisms have been shown to mediate 

clay formation in natural systems (Michalopoulos and Aller 2004; Konhauser et al. 2002; Tazaki 1997).  

Microorganisms covered in nontronite are observed in the sediments of low-temperature alteration zones, 

though these clays were attributed to alteration of Fe-oxides sorbed to microbial surfaces (Masuda 1995; 

Alt, 1988). The association between clays and microbial surfaces in the present study raises interesting 

questions about the role of microorganisms in authigenic clay formation in hydrothermal systems.  It 

remains unclear whether microorganisms are directly implicated in clay formation in these systems, or if 

adsorption of clays to their cell surfaces. Pailas de Agua I and Pailas de Agua II are both oversaturated (SI 

of 3.92 for Pailas de Agua I and 3.73 for Pailas de Agua II) with respect to nontronite, however Laguna 

Fumarólica and Poza del Hongo are undersaturated with respect to nontronite (SI -0.73 for Laguna 

Fumarólica and -0.57 for Poza del Hongo). Despite this, in Laguna Fumarólica substantial clays are 

observed in the spring and clay minerals coat microbial cells. This suggests that microorganisms may play 

a role in clay formation in hydrothermal systems. 

Pyroxene samples experienced significant dissolution, which was predominantly crystallographically 

controlled.  Initial etch pit development was observed in all short-term (6 and 24 h) experiments 

regardless of treatment. After two months incubation in Laguna Fumarólica, microorganisms were 

attached to pits that appeared broadly similar in size, shape and frequency as etch pits in control samples 

indicating that microorganisms had no significant (less than an order of magnitude) effect on etch pit 

formation. Research has shown that pyroxene dissolution is only weakly affected by organic acids 
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(Golubev and Porovsky 2006; Grandstaff 1977), which may explain these results. Alternatively, the 

significant sorbed clays observed associated with mineral surfaces may provide a diffusive barrier to 

pyroxene dissolution. These results demonstrate that even significant microbial colonization of pyroxene 

minerals over two months may not affect pyroxene dissolution in acidic hot springs.   

Substantial dissolution of amphibole mineral samples and complete conversion of some amphiboles to 

clays were observed in Pailas de Agua II (6 h) biological and Pailas de Agua I (24h) control samples.  In 

contrast, the amphibole surfaces of Laguna Fumarólica and Poza del Hongo displayed EPS, which appear 

to protect parts of the surface from dissolution.  

A primary function of EPS is to protect microorganisms from hostile environmental conditions including 

high T and low pH, toxic metal concentration, and UV exposure (Decho 2000). EPS formation may either 

serve to enhance or inhibit dissolution of mineral surfaces (Welch et al. 1999; Welch and Vandevivere 

1994). By decreasing diffusion rates, EPS may concentrate nutrients required for growth and effectively 

protect the mineral surface from dissolution (Decho 2000). Additionally EPS may chelate metals, locally 

decrease  pH by up to 1 pH unit, and displays an adhesive effect that increases microbial contact time 

with the surface (Decho 2000; Liermann et al., 2000; Welch et al. 1999). Welch et al. (1999) 

experimentally showed that each of these processes may enhance microbial impacts on dissolution, even 

under acidic (pH~3) conditions when the solution was saturated with respect to Si and Al. 

Both the protective and destructive effects of EPS are observed in this study. Experimental samples 

retrieved from Laguna Fumarólica (24 h) were partially encapsulated by EPS and had smaller etch pit 

sizes than those measured in experimental samples retrieved from Pailas de Agua I (24 h) Additionally, 

amphibole mineral grain surfaces from Laguna Fumarólica (2 mo) were extensively covered with EPS 

after two months; however experimental amphibole surfaces from which EPS had been removed appeared 

similar to control samples, indicating that EPS effectively protect mineral surfaces in this spring. This 

compares well with Buss et al. (2007) in which hornblende surfaces showed no substantial weathering 

beneath the EPS surface. After two months exposure, LFB (2 mo) anorthoclase surfaces colonized by 
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microorganisms experienced an order of magnitude greater dissolution rate than control samples. 

Similarly, Barker et al.’s (1998) cross-sections through EPS covering weathered feldspar surfaces showed 

substantial etching beneath EPS.  Therefore the impact of EPS on weathering in Las Pailas is related to 

both the incubation time and mineralogy. 

After two months, apatite grains were preferentially dissolved from LFB (biological weathering) samples 

leaving hexagonal etch pits similar to those observed in Taunton et al. (2000a and b). In contrast, apatite 

crystals remained pristine in LFC (chemical weathering) samples. The PO4
3- concentration of this spring 

was 4.24 µmol -1, which is only slightly higher than the 3.2 µmol L-1 phosphate concentration reported in 

Wolfe-Simon et al. (2011) experiments with phosphate-limited microorganisms from Mono Lake. Apatite 

inclusions may act as a source for phosphate in this study’s phosphate-limited system. Mineral-bound 

phosphate, present as apatite inclusions, is an apparently available phosphate source that drives microbial 

colonization and subsequent dissolution of the anorthoclase mineral surface. Microorganisms have been 

shown to preferential colonize and weather minerals that contain phosphate grains and inclusions in 

minerals in a variety of circum-neutral to acidic pH systems (Mauck and Roberts 2007; Rogers and 

Bennett 2004; Bennett et al. 2001; Taunton et al. 2000a; Taunton et al. 2000b; Rogers et al. 1998).  

Moreover, Welch et al. (2002) experimentally showed that organic acids could increase the dissolution of 

apatite by up to an order of magnitude by decreasing the bulk pH of the system. Therefore, phosphate or 

other nutrient limitations may be an important driver for microbial weathering in hydrothermal systems. 

Chemical vs. Biological Weathering  
AFM has been previously used to define differences in biologically induced weathering (Gorbushima et 

al. 2011). However, AFM is unsuitable for the rough topography presented by most mineral surfaces in 

the environment, and this has limited our ability to quantify weathering in natural systems. The value of 

the MeX® software package is that it allows us to conduct 3-D analysis of large etch pits with variable 

topography, which may be beyond the scope of AFM. Volumetric analysis of etch pits in anorthoclase at 

two time steps indicates that initial dissolution is primarily the result of chemical interactions. In long-
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term (i.e. two month) incubations, this trend is reversed. After two months, microbial weathering results 

in an order of magnitude greater volumetric loss when compared with control samples. These results 

indicate that geochemical factors may control weathering in the short-term (6-24 h). However, 

microorganisms and specifically EPS play an important role in mineral dissolution over longer time 

scales (2 mo). This result was unexpected as microbial weathering at Iron Mountain, an AMD site (pH 3.5 

and T 18-50oC) did not show increased metal release (used as a proxy for sulfide mineral weathering) in 

association with microorganisms (Edwards et al. 2000). 

EPS in the short-term (i.e. < 2 mo) appears to retard weathering relative to control samples. 

Microorganisms may initially secrete EPS, which functions specifically to protect the cells from the 

surrounding environment. This has the effect of similarly protecting the mineral surface. However, the 

opposite trend is observed in LFB (2 mo) samples. This indicates that the nature of the EPS-mineral 

surface interface changes with time and may be a result of the changing chemical conditions within the 

EPS or the changing structure of the EPS with time. 

Weathering in acidic hydrothermal systems is the result of a complex interplay of geochemical and 

biological drivers. Microbial attachment and subsequent colonization occurs almost instantaneously 

within hydrothermal systems. Geochemically driven mineral dissolution reactions proceed quickly at high 

T and low pH in acid-sulfate hydrothermal systems and chemical weathering initially predominates over 

biological weathering. Despite this, the impact of microbial activity is evident even on short time (2 mo) 

scales. Preferential microbial colonization may initially serve to protect some mineral surfaces from 

dissolution. Nevertheless, the net effect of microbial activity in acidic volcanic hydrothermal systems is 

significant enhancement dissolution of mineral surfaces by approximately an order of magnitude. 

Microbially enhanced dissolution appears to be tied to metabolic requirements and nutrient limitation 

within the system.  This result may have important implications for microbial enhancement of elemental 

cycling in acid-sulfate hydrothermal systems.  
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facilitate shallow epithermal Au-Ag formation. (to be submitted to Applied Geochemistry). 
 

Abstract 
Epithermal ore deposits are classified into high- and low-sulfidation systems based on the mineralogy and 

geochemical characteristics of the hydrothermal fluids from which they form. In low-sulfidation, or 

circum-neutral pH (pH 5-8) hot springs, siliceous sinters and Fe-oxides dominate the mineralogy. 

Microbial metabolic processes are often associated with the formation of Fe-oxyhydroxides, which co-

precipitate and sorb Ag, Au, As, and Sb.  In sum, these processes have been implicated previously in 

epithermal Au and Ag ore formation, however, the influence of microorganisms in high-sulfidation 

systems has yet to be established. 

Here we assessed the role of microbial processes in trace metal partitioning in high-sulfidation systems, 

using sediments collected from two acid (pH=2.6-4) sulfate springs in Las Pailas, Costa Rica.  Sediments, 

that included visual evidence of microbial biofilms, were characterized for mineralogy, using 

transmission electron microscopy and x-ray diffraction, and trace metal concentration and distribution, 

using a modified Tessier sequential extraction.  With the exception of Au (1.4-2.3mg kg-1), which is 

exclusively associated with Fe-oxyhydroxides, Cu (3.6-563mg kg-1), Ni (2.4-7.4 mg kg-1), As (0.2-16 mg 

kg-1), and Ag (3.8-13 mg kg-1) preferentially adsorb to organic matter, comprised principally of 

exopolymeric substances (EPS), microbial cell surfaces, and Fe-oxides precipitated within EPS.  We 

hypothesize trace metal sorption is facilitated by the development of pH microenvironments. These 

microenvironments are observed in both low- (neutral-chloride) and high-sulfidation (acid-sulfate) 

hydrothermal systems and increase charge differentials between metals and surfaces within EPS, resulting 

in trace metal sequestration. Consequently, higher concentrations (~10x) of metals are captured by 

microbial processes in neutral chloride springs, owing to the increased charge differential between 

positively charged metal cations and negatively charged Fe-oxides and microbial surfaces. While acid-
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sulfate systems possess smaller charge differences, Au, Ag, and As concentrations in Las Pailas spring 

sediments are enriched by ~10x relative to average crustal abundances. Results from this study support a 

model in which microbial processes concentrate trace metals in both types of modern hydrothermal 

systems and may provide an indicator for actively forming epithermal Au-Ag-Cu deposits in stockwork 

veins at depth.  

Introduction 
Microorganisms, their metabolic processes and exudates are closely associated with the cycling of trace 

metals in both modern and ancient sedimentary environments (Kabata-Pendias, 2004).  Microorganisms 

influence element cycling by influencing solution pH and redox, which may result in the mobilization or 

mineral sequestration of trace metals depending on mineral equilibria (Konhauser, 2006). Depending on 

pH conditions, microbial cell- and biofilm- surfaces may adsorb metals, effectively removing them from 

solution and concentrating them in microbial biomass. Microorganisms have been specifically linked to 

trace metal enrichments in ancient ore deposits (e.g. Brocks et al., 2005; Rainbow et al., 2006; Nelson et 

al., 2007).  For example, the oldest well-preserved microbial biomarkers, indicative of  Chlorobiaceae, 

green sulfur bacteria, Chromitaceae, purple sulfur bacteria, and other biomarkers suggestive of a diverse 

microbial community, are found in association with the Proterozoic (1.6 Ga) MacArthur River HYC Cu-

Zn-Ag deposit (Brocks et al., 2005). Carbon, oxygen, and sulfur isotopes indicative of microbial 

metabolic processes further support the role of microorganisms in economic enrichment of trace metals, 

including Cu, Au, and Ag in ore deposits (Rainbow et al., 2006; Nelson et al., 2007). Ores collected from 

the Cenozoic Huinquintipa and Mina Sur porphyry copper deposits in the central Andes display 

isotopically light δ13C values < -47 %o in carbonates (Nelson et al., 2007), consistent with a depleted 

dissolved inorganic carbon (DIC) pool resulting from carbon cycling by methanogens and methanotrophs 

(Nelson et al., 2007). Because some methanotrophs require high concentrations of Cu to support enzyme 

activity (Semrau et al., 2010) methanotrophic metabolic activity may influence the cycling and 

concentration of Cu (Leslie et al., 2013).  
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Epithermal ore deposits also display biomarkers, which suggests microbial processes may be involved in 

trace metal accumulation. Rainbow et al.  (2006) examined the evolution of S- and O-isotopes up-section 

through the Miocene Pierina high-sulfidation epithermal Au-Ag deposit. The enrichment of S- and O-

isotopes in near-surface (<100 m depth) barite associated with the deposits is inferred to reflect the 

activity of sulfur oxidizing bacteria (SOB; Rainbow et al., 2006).  Epithermal ore deposits are enriched in 

Au, Ag, Pb, Zn, Cu, Sn, Sb, U, and Hg and typically sourced from two primary compositional end 

members: low- and high-sulfidation systems, which are classified by their aqueous geochemistry and 

mineralogy (Arribas, 1995; White and Hedenquist, 1995). Low-sulfidation spring systems are silica 

dominated, and connected to siliceous ore veins in the subsurface (Heald et al., 1987). Ore deposits 

associated with these systems are thought to form at low-temperatures (~100oC), in near-neutral pH (6-8) 

solutions with fluid compositions predominately composed of sodium chloride, bicarbonate and hydrogen 

sulfide (White and Poizat, 1995). In contrast, high-sulfidation systems are dominated by vuggy quartz and 

disseminated Au- and Cu-rich ore in the subsurface (Heald et al., 1987). High-sulfidation epithermal 

deposits are associated with high temperature (100-300oC), low pH (<1 to >3) solutions rich in 

hydrochloric and sulfuric acid (White and Poizat, 1995; White and Hedenquist, 1995). The major 

difference between these two end- member fluids may be the degree to which these fluids have 

equilibrated with the host rock (White and Poizat, 1995).  The presence of active microbial populations in 

modern epithermal environments paired with ancient evidence for their activity in these systems suggests 

microorganisms may be an additional variable that contributes to trace element distribution once 

hydrothermal fluids cool below the upper limit of life (~121oC, Kashefi et al., 2007).  

Modern hydrothermal systems provide surficial access to actively forming epithermal deposits and 

opportunities to identify and elucidate operative processes in ore formation. Simmons and Brown (2006) 

reported Ag and Au bearing hydrothermal fluids at Ladolam, Papua New Guinea, an actively forming 

gold low-sulfidation deposit.   Simmons and Brown (2006) reported similar Au-Ag rich hydrothermal 

fluids at depth in the Taupo Volcanic Zone, New Zealand. Siliceous sinters, precipitated from these low-
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sulfidation metal-rich waters are enriched in Ag, Au, and Cu  and are associated with microorganisms and 

microbial biofilms (Simmons and  Brown, 2007).  Low-sulfidation hydrothermal fluids in Yellowstone 

have also shown anomalously high Cu (16 mmol L-1) and As (13 mmol L-1) concentrations (Walker et al., 

2005) indicating potential ore formation at depth. Arsenic and Sb enrichments occur also in the El Tatio 

hydrothermal field in Chile (Landrum et al., 2009) and in the Champagne Pool in New Zealand (Simmons 

and Brown, 2007). 

Although microbial contributions to metal enrichment in low-sulfidation systems have been well-studied, 

less is known about microbial processes in high-sulfidation systems. Acid-sulfate-chloride springs in 

Yellowstone contain As-oxidizing microorganisms and microbial mats rich in Fe-oxides to which As 

adsorbs (Donahoe-Christiansen et al., 2004; Inskeep et al., 2004). One analog to high-sulfidation systems 

are low temperature (<25oC), low pH (typically <3) acid mine drainage systems, which also display trace 

metal enrichments  ( Torres and Auleda, 2013; Torres et al., 2013; Harris and Lottermoser, 2003). Despite 

differences in pH, Eh, and T conditions,  the similarity in metal partitioning between acid mine drainage 

(AMD) systems and neutral-chloride hydrothermal systems, suggests microorganisms may sequester trace 

metals (Zn, Ni, Cu, As) in acid-sulfate hydrothermal systems by binding them to Fe-oxide/-oxyhydroxide 

minerals, including ferrihydrite, goethite, lepidocrocite, and hematite.  In both cases, enrichments in Cu, 

Zn, Ni, As, and Sb are associated with the mineral oxide sediment fraction, operatively defined by 

different sequential extractions methods ( Torres and Auleda, 2013; Harris and Lottermoser, 2003; 

Tessier et al., 1979), and interpreted as trace metal adsorption onto or co-precipitation with goethite, 

lepidocrocite, and hematite within the sediments (Landrum et al., 2009). Partitioning of these metals into 

the oxide minerals is inferred to be a microbially-driven process, where iron oxidizing bacteria (IOB) 

mediate Fe-oxide precipitation, followed by trace metal adsorption to the mineral precipitates from spring 

solutions (Landrum et al., 2009).  

IOB including Acidothiobacillus ferrooxidans, can also form Fe-oxyhydroxysulfates such as jarosite and 

schwertmannite from AMD solutions (Egal et al., 2009), to which trace metals may sorb. Moreover, 
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sulfate reducing bacteria (SRB) reduce sulfate to sulfide, producing sulfide minerals that effectively 

remove trace metals including As, Cd, Cu, Fe2+, Pb, Ni, and Zn from solution (Leblanc et al., 1996). 

Because trace metal sorption is strongly pH dependent, the minerals precipitated from AMD solutions 

may not adsorb significant trace metals concentrations, except where EPS influences local pH (Egal et al., 

2009).  The purpose of this study is to evaluate the geochemical and biological factors that influence trace 

metal distributions (Cu, Zn, Ag, and Au) in acid-sulfate hydrothermal system sediments and to determine 

whether acid-sulfate hydrothermal systems provide valuable indicators of epithermal ore deposits.  

Geologic Setting 
Rincón de la Vieja is an active, andesitic stratovolcano in northwestern Costa Rica formed by the 

subduction of the Cocos Plate beneath the Caribbean Plate (Kempter et al., 1996). The southwest flank of 

the volcano includes the Las Pailas hydrothermal field consisting of the fumaroles (steam vents), mudpots 

(water limited, clay dominated springs), and hot springs of Rincón de la Vieja National Park.  Giggenbach 

and Soto (1992) demonstrated that spring waters in Las Pailas were derived from a single large 

hydrothermal reservoir that is variably mixed with meteoric fluids.  As a result, fluid composition within 

the springs remains relatively constant throughout the dry season as indicated by the similarity between 

our analyses  and  Giggenbach’s results (Phillips-Lander et al., 2014).  This report will focus on two of 

these springs, Pailas de Agua I and II, which are high temperature (80-89oC), low pH (2.6-4.0), sulfate- 

(15 -38mmol L-1) dominated hot springs (Phillips-Lander et al., 2014). While there is very little Mg 

present (0.1-0.7 mmol L-1), Fe (2.5-7.0 mmol L-1), Al (0.1-15 mmol L-1), and Si (3.5-8.2 mmol L-1) are 

abundant (Phillips-Lander et al., 2014).  

The Las Pailas system is microbially-active, with documentation of microorganisms and microbial 

metabolic guilds including Euglena pailasensis (Sittenfeld et al., 2006), Cyanidium,  Galderia-like algae, 

15 different phylotypes of methanogenic Archaea (Hernandez, 2012), several strains of cyanobacteria 

(Finsinger et al., 2008) and the presence of Acidothiobacillus caldus, a moderately thermotolerant sulfur 

oxidizing bacterium (Semenez et al., 2002). 
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Previous studies of Pailas de Barro, a mudpot within the Las Pailas vent field, have shown that 

weathering products include kaolinite, quartz, α-cristobalite, anatase, rutile, hematite, and α-tridymite 

(Gehring et al., 1999). Electron paramagnetic resonance spectroscopy of Pailas de Barro sediments 

indicated that Fe and V were found in association with Fe-oxides and clay minerals. Copper, in contrast, 

was observed to be structurally bound to opal-C (Gehring et al., 1999).   Previous reports of Cu and V in 

the spring sediments and previous characterization of some of the microbial ecology of Las Pailas makes 

this hydrothermal system ideal for investigating trace metal enrichment and potential microbial 

mechanisms involved in active epithermal systems. 

Methods 
Samples were collected from two springs, Pailas de Agua I  (PDA I) and Pailas de Agua II (PDA II) in 

March 2009.  Sediment samples were collected in sterile bags, from multiple locations within each hot 

spring, including evaporative crusts, as well as sediments associated with microbial biofilms and each 

spring basin and source. These samples were kept at 4°C during transport. Upon return to the laboratory, 

sediment subsamples were freeze-dried to prevent significant alteration of the mineralogy, powdered to 

clay-sized particles (0.0039 mm) and homogenized for all analyses.  Mineralogy was determined using a 

Bruker SMART APEX II X-ray Diffractometer with a copper charge coupled detector (CCD). 

Subsamples were epoxy impregnated and sectioned for transmission electron microscopy analysis using 

an FEI Tacnai F20 XT field emission transmission electron microscope (TEM) to determine the metals 

distribution and association with mineralogy within the sediments.  Additional subsamples of the freeze-

dried sediments were powdered, homogenized, and weighed into 100 mg aliquots. The concentrations and 

operationally-defined availability of trace metals in Las Pailas hydrothermal sediments were determined 

using a modified Tessier et al. (1979) sequential extraction. The selective extraction of the sediment was 

conducted as follows (Suppl. Table 1):  
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(a) Exchangable fraction (operationally defined as weakly-sorbed metal species, including ion 

exchange species and metals bound through weak electrostatic interactions)- 1 M Ammonia 

Acetate solution adjusted to pH 8.2 was reacted for 30 minutes at 25oC with continuous agitation; 

(b) Acid-soluble fraction (typically considered to be metals specifically bound to carbonates; 

however, Gleyzes et al. (2002) noted metals recovered in this fraction are specifically bound to 

minerals that are sensitive to pH changes, including clays, Fe-oxyhydroxides, some sulfide and 

sulfate minerals)- 1 ml of 4% Acetic acid (HAc) was reacted for 2 hours at 25oC;  

(c)  Fe/Mn-oxyhydroxide fraction (defined as metals specifically bound to redox sensitive minerals, 

including Fe-oxide and -oxyhydroxide minerals, though some sulfide minerals may also be 

included in this fraction (Peltier et al., 2005)- 0.04 M NH2OH-HCl in 25% v/v HAc  12 hours at 

96oC under constant agitation. Samples were then cooled for 1 hour before the supernatant was 

removed;  

(d) Organic fraction (metals are bound to fulvic and humic acids, living organisms, EPS, and 

possibly some carbohydrates, proteins, and amino acids; Gleyzes et al., 2002)- 0.02 M HNO3 and 

30% H2O2 adjusted to pH 2 followed by 3.2 M Ammonia Acetate in 20% v/v HNO3 for 5 hours at 

85oC and then 1 hour at room temperature; 

(e) Residual fraction (metals structurally bound in silicate minerals)- 1:1 HF and distilled HNO3 for 

24 hours at 85-95oC; 

Sediments were washed three times with distilled deionized water between each step and the supernatant 

was removed and added to the associated fraction. Each extract was resuspended in high purity, 

concentrated nitric acid and analyzed on Perkin Elmer ICP-OES Optima 5300 DV ICP-OES to determine 

major and trace metal concentrations bound in each operationally defined fraction. 

Results 

Mineralogy 
Sediment mineralogy and trace element geochemistry were characterized using XRD (Figures 1 and 2) 

and analyzed using ICP-OES (Table 1), respectively. Green biofilms exist beneath the surface of the  
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sediments in Pailas de Agua I (PDA I-1) mat sediments, as shown in the inset image (Figure 1A). These 

biofilm associated sediments were sampled by scraping away surficial sediments until the biofilm was 

visible (highlighted in the black box of Figure 1A).  PDA I samples 2-4 were collected from sediments 

associated with a series of closely spaced (~2-3 cm) tri-colored pools, which are distinguished in the field 

by their color (gray=PDA I-2, red=PDA I-3, and brown=PDA I-4 respectively; Figure 1B).  XRD analysis 

of samples collected from PDA I (1-4) indicates the mineralogy is dominantly smectite, kaolinite, 

ferrihydrite, jarosite, and quartz (Figure 1C and D).  The mat sediment in PDA I-1 also contains bandylite 

(a Cu-borate) and uvanite (a U-V hydrated oxide phase; Figure 1C), which are not present in the other 

sample locations. 

 

Figure 1A/B: Location and Mineralogy of Samples collected from Pailas de Agua I: (A) Sample location 
for PDA I mat sediments (PDA I-1) with a spatula for scale. Samples were taken from the green 
endolithic biofilm is present just below the surface (inset image; PDA I-1) and is highlighted by the black 
box (main image). Microbiology described for the Las Pailas system was largely cultured from this 
sample location, unless otherwise noted. (B) Tri-colored pools within Pailas de Agua I, representing 
samples PDA I-2-4. The red and brown pools are small (~0.5 m in diameter), while the gray pool is part 
of the main spring body and encompasses an area of ~10 m by 15m. 
 
In Pailas de Agua II (PDA II), samples were collected from sediment associated with a green biofilm near 

the edge of the spring (biofilm sediments= PDA II-1; Figure 2A) and from the sediment crusts present 

over the solution in the pool (mineral crust=PDA II-2; Figure 2B). Both samples collected from PDA II 
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Figure 1C/D: (C) XRD of PDA I-1 indicates the presence of bandylite and uvanite associated with the 
biofilm, in addition to mixed layer smectite, ferrihydrite, and jarosite. (D) X-ray diffraction analysis 
(XRD) of tri-colored pools (PDA I-2-4). Lines are color coded to match spring solutions. Despite changes 
in color, the mineralogy between the pools is similar.    
  

  

Figure 2A/B: Location and Mineralogy of Samples collected from Pailas de Agua II: (A) Green 
endolithic biofilm associated sediments sampled and recorded as PDA II-1. Red box indicates the 
sampling  location. (B) PDA II’s mineral crust, sample PDA II-1, were taken from the crusts that cover 
the edges of the pool.  
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contain mixed-layer smectites, kaolinite, and jarosite (Figure 2C and D). Schwertmannite is present in the 

biofilm sediments of PDA II-1(Figure 2C), while gypsum is present in PDA II-2 mineral crusts (Figure 

2D).  

 

Figure 2C/D:  Mineralogy of Samples collected from Pailas de Agua II: (C) XRD analysis of PDA II-1, 
showing a diversity of clay, sulfate and oxide minerals.  (D) XRD of PDA II-1 indicates the presence of 
clays and sulfate minerals. 

Metal Partitioning in Las Pailas 
Selected trace metal concentrations from PDA I and II sediments are summarized in Table 1. Sulfur 

concentrations in these sediments are 280-370 mmol kg-1 (S=8,800-12,000 mg kg-1). Although phosphate 

concentrations are below detection limits in PDA I and II spring waters, ample P is present in the 

sediments of PDA I and II, ranging from 3-4 mmol kg-1 (P=93-120 mg kg-1). Vanadium and Cu sediment 

concentrations range from 6.2-87 mg kg-1 and 3.6-38 mg kg-1, respectively. Arsenic and Sb sediment 

concentrations range from 0.2 mg kg-1 and Sb 1.7-3.0 mg kg-1, respectively (Table 1). Silver and gold are 

also present in low concentrations, ranging from 0-0.1 mmol kg-1 (Ag=0-13 mg kg-1) and 0-2.3 mg kg-1 

Au, respectively.   Bulk partition coefficients between the sediments and hydrothermal solutions in PDA I 

and II were calculated and trace metals, with the exception of Zn, preferentially partition from the 
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solution into the sediment at all sites (Figure 3). Copper tends to more strongly complex with organic 

matter than Zn, which may explain Zn’s weaker sorption (McBride and Blasiak, 1979).   

 
*values in mgkg-1   
*bdl= below detection limits; Detection limits for B= 1.0x10-1-1.0x10-2 mg kg-1; Au=1.0x10-2-1.0x10-3 mg 
kg-1; Zn= 1.0x10-1-1.0x10-2 mg kg-1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Trace Element Partitioning between Water and Sediments in PDA I and II: Trace elements, 
with the exception of Zn, partition into the sediment fraction. Dashed lines are data from PDA II. Solid 
lines are based on data from PDA I. 

B S V Fe P Au Cu Zn As Ni Ag Sb Pb

Sample 1 bdl 11687.57 86.66 940.71 123.06 bdl 10.51 5.91 15.62 2.77 4.41 2.64 27.10
Sample 2 0.11 10505.79 9.02 360.41 110.62 1.37 3.56 bdl 14.02 2.41 4.53 1.69 30.05

Sample 3 bdl 9594.74 6.22 2354.17 101.02 1.67 38.43 12.07 0.15 7.42 12.64 2.57 29.16
Sample 4 0.18 9413.90 35.05 1903.19 99.12 2.33 56.33 5.49 13.29 5.27 4.53 3.57 25.39
Sample 5 bdl 8791.77 21.95 507.18 92.57 bdl 44.97 bdl 10.92 3.55 3.87 2.65 25.49
Sample 6 bdl 11445.90 16.30 1346.78 120.51 bdl 18.24 3.12 14.41 3.15 3.84 2.98 26.53

Table 1: Total Metals in Sediment 

Pailas de Aguas II

Pailas de Aguas I
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Metal Distribution in Sediments 
Sequential extraction has been extensively used to quantify the mobility of trace metals within sediments. 

Traditionally sequential extraction techniques have been used to determine the mobility of toxic metals in 

environmentally contaminated soils (Tessier et al., 1979; Gleyzes, et al., 2002), however the application 

has been extended to understand the distribution of trace elements in AMD and hydrothermal systems 

(Gleyzes et al., 2002; Torres and Auleda, 2013). Sequential extraction results for PDA I and II are 

presented in Table 2.  

Major Element Distribution 
Sulfur and Fe are present in both the hot spring solutions and sediments in PDA I and II (Figure 2; 

Phillips-Lander et al., 2014) and therefore, may represent major components within the carbonate/sulfate 

and Fe-oxide sediment fractions. Therefore, the distribution of Fe and S in the sediments was 

characterized using sequential extraction. 

 

*Dectection limits for Fe<1x10-4 mg kg-1; S=1x10-2-1x10-3 mg kg -1  

Sulfur. Sulfur is abundant within Las Pailas spring system sediments. Sulfur is weakly adsorbed within 

the exchangeable fraction in the PDA I-2 (93%; 18,000 mg kg-1) and the PDA I-4 (54%; 1,300 mg kg-1) 

sediments (Table 2; Figure 4A). In PDA I-4, 29% (670 mg kg-1) of S is bound to organic matter and 21% 

(400 mg kg-1) is bound to sulfates. Organic matter binds the majority of S in PDA I-1 (81%; 12,000 mg 

kg-1) and PDA I-3 (96%; 700 mg kg-1). In PDA II (1-2), >90% of the total S in the sediments is sorbed to 

the exchangeable fraction (Table 2; Figure 4A). 

Exchangeable Carbonate Oxide Organic Residual Exchangeable Carbonate Oxide Organic Residual
Pailas de Aguas II

Sample 1 20.61 2.98 287.52 1.23 5.32 3609.47 7.01 317.19 88.83 0.64
Sample 2 62.88 7.28 1.97 0.18 0.00 12011.61 485.74 62.51 bdl 0.01

Pailas de Aguas I
Sample 3 21.74 7.19 12.86 455.74 1.91 2477.88 33.06 121.12 11536.55 2.29
Sample 4 119.38 8.09 11.64 15.31 0.24 18014.41 4.71 147.30 1074.31 63.37
Sample 5 9.34 7.42 65.21 27.30 4.12 bdl bdl 28.60 703.56 0.02
Sample 6 17.16 6.88 38.62 29.47 0.06 1248.80 399.35 bdl 674.22 0.05

Table 2: Sequential Extraction of Las Pailas Sediments (mg/kg)
Fe SSample
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Iron. Iron is found in all sediment fractions of PDA I and II (Table 2; Figure 4B). In PDA I-1, 91% (460 

mg kg-1) of the total Fe in the sediments is bound in the organic fraction (Table 2; Figure 4B). The 

remaining 9% is distributed between the exchangeable (4.4%; 22 mg kg-1), carbonate/sulfate (1.4%; 7.2 

mg kg-1), oxide (2.6%; 13 mg kg-1), and residual/silicate (0.4%; 1.9 mg kg-1) fractions. In contrast, 77% 

(120 mg kg-1) of the total Fe weakly sorbed to mineral surfaces in the PDA I-2 sediments (Table 2; Figure 

4B). Organic matter binds 10% (15 mg kg-1) and Fe-oxides/-oxyhydroxides bind 7.5% (12 mg kg-1). The 

remaining 0.5% of Fe in PDA I-2 is bound to sulfate minerals. Approximately half of the Fe in PDA I-3 

sediments (58%; 65 mg kg-1) is bound to Fe-oxides/oxyhydroxides and organic matter present binds 24% 

(27 mg kg-1) of the total Fe (Table 2; Figure 4B). In PDA I-2, ~8% (9.3 mg kg-1) is sorbed in the 

exchangeable fraction, 6.5% (6.9 mg kg-1) is bound to sulfates, and 3.5% (4.1 mg kg-1) is bound to 

silicates.  In PDA I-4, 42% (39 mg kg-1) is bound to Fe-oxides/-oxyhydroxides and 32% (30 mg kg-1) is 

bound to organic matter.  Of the remaining 26%, the majority of Fe is present in the exchangeable fraction 

(19%; 17 mg kg-1), while the remaining 7% (6.9 mg kg-1) is bound to sulfates.   

 In PDA II-1, Fe-oxides/-oxyhydroxides binds 91% (290 mg kg-1) of the total Fe (Table 2; Figure 4B). Of 

the remaining 9% Fe in PDA II-1sediments, 6% (21 mg kg-1) is weakly sorbed to the sediment 

exchangeable fraction, 2% (5.3 mg kg-1) is bound to silicates, and 1% (3.0  mg kg-1) is bound to sulfate 

minerals. Less than 1% of the Fe in PDA II-1 is bound in the organic fraction.  Ten percent (7.3 mg kg-1) 

of the Fe in PDA II-1 sediments is bound as Fe-oxides/-oxyhydroxides. In contrast, Fe in PDA II-1, 

partitions primarily into the exchangeable fraction (86%; 63 mg kg-1). The remaining Fe in PDA II-2 is 

bound to (3%; 2.0 mg kg-1) organic matter, and (7.2x10-4 mg kg-1) silicates (Table 2; Figure 4B).   

Weakly sorbed trace metals 
Zinc. The total concentration of Zn present in the springs is 3.1-12 mg kg-1 (Table 1). No Zn was detected 

in PDA I-3 and PDA II-2 (Table 3; Figure 5A). In contrast, nearly 100% (5.5 mg kg-1) of the total Zn 

present in PDA I-2 sediments was observed in the exchangeable fraction, with minor Zn   (5.3x10-2 mg 

kg-1) bound within the residual fraction. Similarly, 74% (2.3 mg kg-1) of the 3.1 mg kg-1 of Zn present in 
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PDA I-4 sediments partition into the exchangeable fraction, while 26% (0.8 mg kg-1) is bound to Fe-

oxides. In PDA I-1, the majority of Zn (86%; 11 mg kg-1) is bound to Fe-oxides, while 14% (1.7 mg kg-1) 

 
Figure 4: Elemental partitioning between fractions: (A) Sulfur primarily partitions into the exchangeable 
fraction, with the exception of PDA I mat sediments where sulfur is primarily present in the oxide and 
organic fractions. (B) Iron partitions primarily into the oxide fraction, with the exception of PDA I mat 
sediments, where iron is primarily in the organic fraction. 
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is weakly adsorbed within the exchangeable fraction. Less than 1% (1.3x10-3 mg kg-1) of Zn is 

structurally bound in silicates present in PDA I-1. In PDA II-1, nearly 100% (6.0 mg kg-1) of total Zn in 

the sediments is bound to Fe-oxides in the spring, with minor Zn (1.2x10-3 mg kg-1) bound within 

silicates.  

Trace metals bound to oxides 
Gold. In PDA I and II, Au concentrations range from bdl-2.4 mg kg-1 (Table 1). Gold is exclusively found 

in association with oxide minerals in these springs, where it is present (Table 3; Figure 5B).  

 
*Dectection limits for Zn detection limits=1x10-4-1x10-3 mg kg-1, Au detection limits=1x10-4-1x10-3 
mgkg-1. 

 
Figure 5A/B: Distribution of trace metals in Pailas de Agua fractions:  (A) Zinc primarily partitions into 
the exchangeable and oxide fractions. (B) Gold partitions into the oxide fraction.  

Trace metals bound within organic matter 
Copper. In PDA I and II’s sediments, Cu is observed in each fraction. The majority of Cu is present in the 

organic fraction and lesser concentrations are observed in the exchangeable, carbonate/sulfate, oxide, and 

residual fractions.  The majority (74%; 28 mg kg-1) of Cu present in PDA I-1 is bound in the organic 

matter. The remaining 26% is divided between Cu weakly adsorbed in the exchangeable fraction (15.5%; 

Exchangeable Carbonate Oxide Organic Residual Exchangeable Carbonate Oxide Organic Residual
Pailas de Aguas II

Sample 1 bdl bdl 5.94 bdl 0.00 bdl bdl bdl bdl bdl
Sample 2 bdl bdl bdl bdl bdl bdl bdl 1.37 bdl bdl

Pailas de Aguas I
Sample 3 1.69 bdl 10.46 bdl 0.00 bdl bdl 1.67 bdl bdl
Sample 4 5.47 bdl bdl bdl 0.05 bdl bdl 2.34 bdl bdl
Sample 5 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl
Sample 6 2.33 bdl 0.80 bdl bdl bdl bdl bdl bdl bdl

Zn AuSample

Table 3: Sequential Extraction of Las Pailas Sediments (mg/kg)
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6.0 mg kg-1) and Cu bound to Fe-oxides (11%; 4.0 mg kg-1). Less than 1% of Cu present in PDA I-1 

sediments is structurally bound to silicates in the residual fraction (Table 4; Figure 5C). A similar 

distribution of Cu is observed in PDA I-2 with 69% (39 mg kg-1) of the Cu bound to organic matter, 20% 

(11 mg kg-1) weakly adsorbed in the exchangeable fraction, and 12% (6.4 mg kg-1) bound to Fe-oxides/-

oxyhydroxides (Table 4; Figure 5C). The organic fraction of the red sediments of PDA I-3 sediments 

bound 69% (31 mg kg-1) of Cu, while 31% (14 mg kg-1) is bound to Fe-oxides/-oxyhydroxides (Table 4; 

Figure 5C). In PDA I-4 sediments, 79% (15 mg kg-1) of the Cu is bound to organic matter, 13% (2.4 mg 

kg-1) of the Cu is weakly adsorbed in the exchangeable fraction, and 12% (6.4 mg kg-1) of the Cu is bound 

to Fe-oxides/-oxyhydroxides.  

Copper is nearly evenly distributed between the exchangeable (2.2 mg kg-1; ~22% of total Cu), oxide (4.3 

mg kg-1; ~40% of total Cu), and organic fractions (4.0 mg kg-1; ~38% of total Cu) in PDA II-1 sediments 

(Table 4; Figure 5C).  In PDA II-2, 83% (3.0 mg kg-1) of the total Cu in the sediment is bound in the 

organics.  Copper weakly adsorbed in the PDA II-2 exchangeable fraction constitutes 12% (0.4 mg kg-1), 

while 4% (0.2 mg kg-1) is bound to Fe-oxides/-oxyhydroxides. 

*Detection limits for Cu=1x10-4-1x10-3 mg kg-1; As=1x10-3-1x10-2 mg kg-1 

 

Exchangeable Carbonate Oxide Organic Residual Exchangeable Carbonate Oxide Organic Residual
Pailas de Aguas II

Sample 1 2.24 bdl 4.29 3.96 0.02 bdl bdl 2.88 12.74 bdl
Sample 2 0.44 bdl 0.15 2.97 bdl bdl bdl bdl 14.02 bdl

Pailas de Aguas I
Sample 3 5.97 bdl 4.02 28.43 0.00 bdl bdl 0.15 bdl bdl
Sample 4 10.73 bdl 6.73 38.67 0.19 bdl bdl bdl 13.29 bdl
Sample 5 bdl bdl 13.88 31.09 0.00 bdl bdl bdl 10.92 bdl
Sample 6 2.36 1.04 0.37 14.48 0.00 bdl bdl 0.54 13.88 bdl

Table 4: Sequential Extraction of Las Pailas Sediments (mg/kg)

Sample Cu As
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Figure 5C/D: Distribution of trace metals in Pailas de Agua fractions:   (C) Cu is primarily distributed in 
the organic fraction of the sediments, although some Cu is present in oxide and exchangeable fractions. 
(D) In contrast, As is almost exclusively present in the organic fraction, with only minor As in the oxide 
fraction. 
Sectioned subsamples from PDA I-1 and PDA II-1 mat sediments were examined using TEM in order to 

observe associations between trace metals, minerals, and native biological materials in Las Pailas. These 

analyses revealed Cu bound to individual cells, as well as within heavily mineralized biofilms. Mat 

sediments from PDA I-2 show clay minerals and nanoscale Fe-oxides present (Figure 6A). EDS point 

spectra of the nanoscale Fe-oxides associated with the mineralized biofilm are composed of are Fe and Cu 

Figure 6: Transmission electron microscopy 
image of trace metals bound to Fe-oxides/-
oxyhydroxides within microbial EPS in PDA I 
mat sediments: (A) EPS associated with mixed-
layer smectites and iron, copper, and uranium 
oxides. Arrow indicates the location of the EDS 
point spectra obtained for the sample. (B) EDS 
point spectrum of A, showing the elemental 
distribution. 
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(Figure 6B). Microorganisms were observed as individual cells and filaments, associated with mineralized 

biofilms in PDA II-2 (Figure 7A). Copper concentrations are elevated in association with the coccus and 

filamentous microorganisms as shown by the bright areas in C (red) and Cu (blue) on X-ray dispersive 

spectra maps (Figure 7B). The copper concentration in the sample is 3.4% by weight after background 

and instrument corrections. Aluminum and Si are primarily associated with clay minerals present near the 

edges of the sample (Figure 7B).  

 

Figure 7:  Transmission electron microscopy image of microorganisms in PDAII. The white box 
indicates the location of EDS mapping of trace elements. Each image is background subtracted to help 
determine enrichment over background. Microorganisms bind trace metals to cellular surfaces in PDA II 
mat sediments. Microbial cells, in this case a filament and cocci, bind Cu in PDA II (A). The red box in A 
indicates the location of the EDS maps shown in (B), while the white box indicates the area selected for 
background subtraction from the obtained EDS spectra acquired. These maps (B) shows microbial cell 
surfaces and biofilms, indicated by C and N signals, binds 3.41% weight percent Cu. 
 

Arsenic. Total concentrations of As range from 0.2-16 mg kg-1 in PDA I and II (Table 1; Figure 5D).  

Arsenic is only present in the oxide and organic fractions of PDA I and II (Table 4). In PDA I-1, 100% of 

the total As (0.2 mg kg-1) is bound to Fe-oxides and –oxyhydroxides. In PDA I-4, ~4% (0.5 mg kg-1) of 

the total As is bound to Fe-oxides, while the majority (96%; 14 mg kg-1) of the total As is bound within 

the organic fraction. All As present in PDA I-2, I-3, and PDA II-1 sediments is bound to organic matter 

present in the sediments. In Pailas de Agua II-1, 17.5% (2.9 mg kg-1) of the 16 mg kg-1 total As is bound 
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to Fe-oxides and -oxyhydroxides, while the remaining 13 mg kg-1 (81.5%) is bound within the organic 

fraction.  (Table 4; Figure 5D). The remaining 82% (13 mg kg-1) is bound within the organic fraction.   

Silver. The concentration of Ag in PDA I and II ranges from 4-13 mg kg-1. The majority (>90%) of Ag in 

PDA I and II is bound to organic matter, with 100% of Ag in PDA I-1, -3 and -4 sediments and PDA II-1 

is bound to organic matter. In PDA I-2, 92% (4.18 mg kg-1) of Ag present in the sediment is bound to 

organic matter with ~8% (0.35 mg kg-1) of the total Ag bound to Fe-oxides/-oxyhydroxides and <1% 

(4.10x10-4 mg kg-1) of total Ag structurally bound within silicates (Table 2; Figure 5E). In PDA II-2 

minor concentrations (~5% of total Ag; 0.25 mg kg-1) are bound to Fe-oxide/-oxyhydroxide minerals and 

<1% (2.97x10-5 mg kg-1) are structurally bound within silicates (Table 2; Figure 5E); 95% (4.29 mg kg-1) 

are bound to organics.  

 

*Detection limits for Ag=1x10-4-1x10-3 mg kg-1 

 

Figure 5E/F: Distribution of trace metals in Pailas de Agua sediment fractions:  (E) Silver is almost 
exclusively present in the organic fraction.  Ag detection limits=1x10-3-1x10-2 mgkg-1 (F) The distribution 
of Ni is more variable. While the majority of Ni is present in the organic fraction, some Ni is also present 
in the exchangeable and carbonate/sulfate fractions. Ag detection limits=1x10-3-1x10-2 mgkg-1.  

Exchangeable Carbonate Oxide Organic Residual Exchangeable Carbonate Oxide Organic Residual
Pailas de Aguas II

Sample 1 bdl bdl bdl 4.41 bdl bdl bdl 0.33 2.43 bdl
Sample 2 bdl bdl 0.24 4.29 0.00 0.15 bdl 0.04 2.22 bdl

Pailas de Aguas I
Sample 3 bdl bdl bdl 12.64 bdl 1.61 bdl 0.11 5.70 bdl
Sample 4 bdl bdl 0.35 4.18 0.00 2.22 bdl 0.28 2.77 0.00
Sample 5 bdl bdl bdl 3.87 bdl 0.14 bdl 0.22 3.19 bdl
Sample 6 bdl bdl bdl 3.84 bdl 0.21 bdl 0.11 2.83 bdl

Sample Ag Ni
Table 5: Sequential Extraction of Las Pailas Sediments (mg/kg)
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Nickel. Nickel concentrations in the sediments of PDA I and II range from 2.4-7.4 mg kg-1 of sediment 

(Table 5). In PDA I-1, the majority of Ni (76%; 5.7 mg kg-1) is bound to organic matter, while 22% (1.6 

mg kg-1) is found in the exchangeable fraction and ~7% (0.1 mg kg-1) is bound to Fe-oxides/-

oxyhydroxides.  Nickel is nearly evenly distributed between the organic (52.4%; 2.8 mg kg-1) and 

exchangeable (42.3%; 2.2 mg kg-1) fractions in PDA I-2 sediments (Table 5; Figure 5F). Approximately 

5.3% (0.3 mg kg-1) of Ni is bound to Fe-oxides/-oxyhydroxides in PDA I-2, with less than 1% (4.0x10-3 

mg kg-1) Ni structurally bound to silicates. In PDA I-3 sediments, 90% (3.2 mg kg-1) of Ni partitions into 

the organic fraction (Table 5; Figure 5F). The remaining 10% is approximately evenly distributed 

between the exchangeable (4%; 0.1 mg kg-1) and oxide (6%; 0.2 mg kg-1) fractions. The distribution of Ni 

in PDA I-4 sediments is similar to PDA I-3. The majority (90%; 2.8 mg kg-1) of Ni is bound in the 

organic fraction; the remaining 10% is split between the exchangeable (7%; 0.2 mg kg-1) and oxide (3%; 

0.1 mg kg-1) fractions (Table 5; Figure 5F).  

 In PDAII (1-2), the majority of Ni in the sediments is bound within the organic fraction. Eighty-eight 

percent of the Ni in PDA II-1(2.4 mg kg-1) and 92% (2.2 mg kg-1) in PDA II-2 is bound in the organic 

fraction. Fe-oxides/oxyhydroxides present in PDA II-1 bind the remaining 12% (0.3 mg kg-1) of Ni in the 

sample. In PDA II-1, 6.3 % (0.2 mg kg-1) of the Ni is weakly adsorbed to the sediment exchangeable 

fraction and the remaining 1.7% (4.0x10-2 mg kg-1) is bound to Fe-oxides/-oxyhydroxides.   

Discussion 
Previous sequential extraction studies of sediments associated with circum-neutral hot spring sediments 

indicate trace metals, including Cu, Ni, Zn, As, Ag, Au, and Sb, primarily bind to Fe-oxides (Simmons 

and Brown, 2007; Landrum et al., 2009). Our sequential extraction results, in contrast, show microbial 

influences on trace metal enrichments including binding to microbial cells and EPS, and  potentially 

adsorption to microbially-mediated minerals in acid-sulfate hydrothermal systems. The partitioning of the 

majority of metals studied (As, Ni, Cu, and Ag) are influenced by microbial processes within the spring 

system.  
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Abiotic Influences on Spring Geochemistry and Mineralogy 
Magmatic and meteoric water mixing in Pailas de Agua I and Pailas de Agua II creates oxidizing spring 

waters dominated by sulfate (Giggenbach and Soto, 1992), that ascend to the surface to form spring pools. 

As these metal-rich waters reach the surface, steep geochemical gradients, boiling, and evaporation, 

facilitate the rapid precipitation of minerals from solution, leading to the preferential partitioning of trace 

metals into the sediment (Figure 3). Of the trace metals examined in this study, only Cu was detectable in 

solution in low concentrations (1.2x10-2-6.6x10-4 mM; Phillips-Lander et al., 2014). PhreeqC modeling of 

PDA I spring water chemistry indicates that Fe-, Al-, and Zn-oxides, elemental sulfur, pyrite, and clay 

minerals are supersaturated and should precipitate from solution, while barite, bornite, pyrite, elemental 

sulfur, amorphous silica, and iron oxides are supersaturated and should precipitate from PDA II spring 

solution. X-ray diffraction of the sediments from these locations confirms PDA I and II are dominated by 

clays, Fe-oxyhydroxides, Fe-hydroxysulfate minerals, accessory oxides, and sulfate minerals. PDA I 

sediments also contain bandylite and uvanite. Sequential extraction data indicates Fe and S are primarily 

found within the most chemically accessible fractions (exchangeable, carbonate/sulfate, and oxide), which 

is expected considering the oxidizing conditions present in the spring sediments and the mineralogy 

observed via XRD (Tessier et al., 1979; Giggenbach and Soto, 1992; Gehring et al., 1999; Gleyzes et al., 

2002).  

Sulfur is found primarily within the exchangeable fraction and may represent either sulfate or sulfide ions 

(as our analysis did not identify elemental speciation) weakly adsorbed to positive cations associated with 

the cation exchange capacity of clay minerals present in each of the springs (Gleyzes et al., 2002). 

However, previous work by Giggenbach and Soto (1992) and  Gehring et al. (1999) indicates that sulfur 

is mainly present as the sulfate species and some sulfate minerals, including gypsum and jarosite, are 

susceptible to acid attack (Gleyzes et al., 2002; Dold, 2003; Torres and Auleda, 2013). Therefore, some of 

the sulfur observed in the exchangeable and carbonate/sulfate fractions is likely related to dissolution of 

these minerals, particularly PDA II-2 (Table 2; Figure 4B). Sulfur sorption to Fe-oxide surfaces and the 
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formation of schwertmannite (Fe16O16(OH)12(SO4)2) likely account for sulfur present in the oxide fraction 

(Brady et al., 1986; Webster and Swedlund, 1998).  

While the adsorption of sulfur does not appear to be biologically influenced, the partitioning of Fe and Zn 

reflect both abiotic and biological influences. Zinc is primarily associated with the exchangeable fraction 

in PDA I.  This weak adsorption to mineral surfaces in the sediment is not expected to be biologically 

mediated. In contrast, Zn in PDA II-1 is structurally bound in oxide minerals. PhreeqC modeling of PDA-

I predicts the formation of Zn-oxides, which may account for Zn partitioning into the oxide fraction. 

However, the total concentration of Zn-oxides is expected to be low and these oxides may not have been 

present in the small sample analyzed via XRD. In PDA I-1 Zn is common in the oxide fraction and may 

be structurally bound to Fe-oxides, which could reflect the influence of biological processes. Overall Zn 

in spring sediments is 3.1-12.1 mg kg-1 reflects decreased adsorption to organic matter and depletion of 

Zn in the sediment relative to average crustal abundance (79 mg kg-1; McBride and Blasiak, 1979).   

Biological Influences on Metal Partitioning 
PDA I and II sediments, Au, As, Cu, Ni, and Ag preferentially partition into the organic fraction of the 

sediments.  This organic fraction is comprised of cells, organic acids that make up biofilm, and minerals 

precipitated within the biofilm. Each of these components has the capacity to adsorb trace metals and 

together these components account for the distribution of trace metals within the organic fraction. 

In PDA I and II, Fe is primarily bound to Fe-oxides, although minor adsorption within the exchangeable 

(representing cation exchange capacity), sulfate (representing jarosite) and silicate fraction occurs. Fe-

oxides/-oxyhydroxides are common minerals in both acid-sulfate springs and acid-mine drainage (Harris 

and Lottermoser, 2003; Donahoe-Christiansen et al., 2004; Inskeep et al., 2004; Torres and Auleda, 2013; 

Torres et al., 2013).  PhreeqC modeling of PDA I and II solutions and experimental work (data presented 

in Chapter 4) indicates that Fe-oxides precipitate abiotically from these acid-sulfate waters and these Fe-

oxides represent Fe bound within the oxide fractions of these sediments. With the exception of PDA II-1, 

oxides do not bind the majority of Fe in the sediments. Instead, Fe is primarily found within the organic 
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fraction. This Fe may represent microbial metabolic processes, adsorption to microbial cell surfaces and 

EPS, or to Fe-oxides precipitates within the biofilms. Metabolic activities of IOB, including Galderia-like 

algae present in the spring, may enhance Fe-oxidation and Fe-oxide/-oxyhydroxide formation in PDA I 

and II (Hernandez, 2012; Phillips-Lander et al., 2014).  

Microbial metabolic processes and organic acids have been implicated in the concentration of Au in a 

number of ore deposits, including the Ladolam epithermal deposit, Papua New Guinea (Dexter-Dyer et 

al., 1984; Lengke and Southam, 2006). SRBs often drive Au bioaccumulation by reducing Au-thiosulfate 

complexes producing Fe-sulfides and elemental gold (Lengke and Southam, 2006). This elemental gold is 

released from microbial cells upon cell death (Lengke and Southam, 2006). However, gold produced by 

microbial processes is indistinguishable from gold produced by inorganic processes, making it unclear 

what role, if any, microorganisms play in the concentration and distribution of Au in hydrothermal 

sediments. 

Biofilm mediated trace metal partitioning 
In addition to metabolic effects, microorganisms may passively adsorb metals to cell walls and sheaths. 

For example, Thiobacillus sp.  have been implicated in As immobilization by co-precipitation with Fe3+ 

onto microbial sheaths and within biofilms in AMD sediments (Leblanc et al., 1996). However, total 

metal adsorption to cellular surfaces within acidic pH springs is expected to be minimal as most 

microorganisms’ functional groups are positively charged below their zero point of charge (zpc= 1-4.5; 

Yee and Fein 2001; He and Tebo, 1998; Crist et al. 1992). Therefore, trace metal adsorption to cellular 

surfaces in Pailas de Agua I and II should be minimized due to prevailing low pH (2.4-2.6). Despite PDA 

I and II’s acidic pH, Ni, As, Cu, Ag preferentially partition into the sediment organic fraction. 

The presence of microbial EPS can limit diffusion and create pH microenvironments, which can influence 

pH by +1 pH unit (Decho, 2000; Liermann et al., 2000).  Localized pH increase could facilitate the 

adsorption of metals on cellular surfaces. In PDA II, Cu preferentially binds to cell surfaces within 

biofilms (Figure7).  Ultimately, increased metal sorption would facilitate the formation of nanoscale 
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minerals, including Fe-oxides/-oxyhydroxides within the biofilm (Chan et al., 2004) and account for high 

Fe concentrations within the organic fraction of the sediments. 

Organic acids within EPS deprotonate at variable pH, which may enhance metal adsorption and Fe-oxide 

formation within the organic fraction. In circum-neutral pH systems, including neutral-chloride 

hydrothermal systems, trace metals (As, Sb, Au, Ag, Cu, Zn) bind to Fe-oxides forming within microbial 

biofilms (Landrum et al., 2009; Simmons and Brown, 2007; Tan, 2011); however metal adsorption to Fe-

oxides/-oxyhydroxides is pH dependent and relatively minor below minerals’ zpc  (5-8; Cornell and 

Schwertmann, 2003; Roberts, 2004; Tan, 2011; McKenzie et al., 2001). In PDA II, Cu preferentially 

adsorbs to microbial cells and Fe-oxides within mineralized biofilms (Figure 6).   

In PDA I and II As preferentially partitions into the organic fraction. Arsenic speciation influences it’s 

cycling in hydrothermal systems and this speciation is influenced by pH, microbial metabolisms, and 

biofilms (Handley et al., 2013). In microcosm experiments at circum-neutral pH and T=20-40oC, iron 

oxidation and sulfate reduction metabolisms were shown to facilitate As adsorption to ferrihydrite 

(Handley et al., 2013). Arsenic has been shown to bind Fe-oxides in the hydrothermal discharge at El 

Tatio’s thermal field (Landrum et al., 2009). In PDA I and II, the dominant species of As is expected to be 

arsenate, as H2AsO4
- , based on modelling by Lafferty and Loeppert (2005). Arsenate adsorption to Fe-

oxides should be greatest between pH 3.5-5.5, which is within 1 pH unit of  PDA I and II’s solution pH 

(pH 2.6-2.8).  

In PDA I and II Ag is bound within the organic matter (Table 2; Figure 5). Silver adsorption to Fe-

oxides/-oxyhydroxides is pH dependent and relatively minor below pH 7, however, below pH 4 Ag 

adsorption may increase as a result of bridging by thiosulfate ions sorbed to ferrihydrite (Cornell and 

Schwertmann, 2003). Thiosulfate was not detected in PDA I and II waters, however, sulfate concentration 

(14-38 mM) may have obscured the presence of thiosulfate. Moreover, S is primarily present in the oxide 

and organic fractions of PDA I-1, making it unlikely that thiosulfate bridges account for Ag in all Las 

Pailas springs.  
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Depending on the composition of the EPS, trace metals binding to organic matter may outcompete Fe-

oxides (Scheinost et al., 2001), resulting in direct metal binding to microbial cell surfaces and EPS. In low 

T (8-15oC), acidic (pH 3.1) environments, microorganisms bind metals to organic acids within the biofilm 

that deprotonate at variable pH (Ferris et al., 1989; Drever, 1997). Fulvic acids have higher affinities for 

Cu and Pb than ferrihydrite at low pH (<5; Scheinost et al., 2001) and humic acids concentrations in 

excess of 50 mg L-1 reduce the net surface charge of Fe-oxides negatively influencing metal adsorption to 

the Fe-oxide surface (Baalousha, 2009). Organic acids may bind to and effectively passivate the Fe-oxide 

surface, making them inaccessible to trace metals like Ag (Cornell and Schwertmann, 2003). EPS 

passivation of Fe-oxides and the development of localized higher pH microenvironments likely facilitate 

direct binding of trace metals to EPS and microbial cell surfaces, as observed in Figure 7 and may 

account for the concentration of Ni, Cu, and Ag in PDA I and II. More likely than not, a combination of 

direct adsorption to microbial cells, EPS, and Fe-oxides bound within the EPS account for the 

preferentially partitioning of these metals in the organic fraction of PDA I and II sediments.  

Biofilms are designed to protect microbial cells from changes in environmental conditions (Decho, 2000). 

EPS, while potentially influencing Fe-oxide ability to sorb metals, may also protect oxide surfaces. Trace 

metals, like Cu, bound to Fe-oxides (Figure 6) entrained within biofilm may remain largely inaccessible 

to acid attack until the organic matter associated with them is combusted (Dong et al., 2000). 

Trace Metal Toxicity 
In PDA I and II, acidic pH waters solubilize potentially toxic trace metals including Ni and Cu (Doelman 

and Haanstra, 1984). Because microorganisms acquire nutrients through osmosis, the removal of toxic 

trace metals from solution is necessary to protect microbial populations. In hydrothermal systems where 

high temperatures, UV radiation, high metal concentrations and fluctuating geochemical conditions can 

create cellular distress, EPS provides a semi-permeable protective membrane for microbial communities 

(Ferris et al., 1989; Phoenix et al., 2001; Sutherland, 2001; Teitzel and Parsek, 2003; Hunter and 
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Beveridge, 2005; Phoenix and Konhauser, 2008;  Beech and Sunner, 2004; Madigan et al., 2009). Trace 

metal partitioning into the organic fraction may reflect microbial detoxification processes. 

In order to better determine the role and function of microbially induced metal sequestration in the Las 

Pailas hydrothermal pools, we compared the As, Ni, Cu, Zn, Au, and Ag concentrations in the springs 

(Table 3-5) to published toxic concentrations for microbial populations. These concentrations required to 

induce toxicity were adjusted to the estimated population size in Pailas de Agua I (106 cells, Phillips-

Lander et al., 2014) in order to compare the total concentrations of metals measured in the spring to 

expected metals requirements.  Neither Zn nor Au preferentially partition into the organic fraction within 

Las Pailas spring sediments and notably no toxic concentration is established for either metal. However, 

Zn, Cu, and Ni may act synergistically to enhance Ni and Cu toxicity (Babich and Stotzky, 1983a; Babich 

and Stotzky, 1983). 

Nickel concentrations (2.4- 7.4 mg kg-1) in PDA I and II overlap with toxic concentrations for a similar 

sized microbial population (5-50 mg kg-1;  Table 3; Laskin et al., 1983; Babich and Stotzky, 1982a; 

Babich and Stotzky, 1982b; Babich and Stotzky, 1982c; Babich and Stotzky, 1983).  Copper 

concentrations in PDA I exceed microbial nutrition requirements by several orders of magnitude (1.3x10-7 

mg kg-1; Konhauser et al., 2002). Microbial toxicity may be induced at low Cu concentrations (5.0x10-2-

0.5 mg kg-1; Table 3); however, toxicity is dependent on Cu’s accessibility. Copper adsorption to Fe-

oxides has been shown in circum-neutral pH systems to reduce Cu toxicity (Babich and Stotzky, 1983a; 

Babich and Stotzky, 1983). Therefore, adsorption to Fe-oxides and microbial cell surfaces within 

mineralized biofilms may reduce Cu toxicity in acid-sulfate systems (Figure 6 and 7). While Ni is not 

observed directly bound to Fe-oxides, it’s presence within the organic fraction suggests biofilm binds and 

sequesters Ni to overcome microbial toxicity.  

While some metals, like As are toxic to microorganisms in very low concentrations (5 µg L-1; Diorio et 

al., 1995; Páez-Espino et al., 2009; Bachate et al., 2009; Mukhopadhyay and Rosen, 2002), Ag toxicity is  
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*Las Pailas values represent the range of values presented for PDAI 1-4 and PDAII 1-2. 
**values tabulated from published data and mathematically adjusted to the estimated population size for PDAI. 

 

strongly dependent on speciation. Silver exhaled in rising hot spring waters rapidly oxidizes as the 

solutions degas (Drummond and Ohmoto, 1985). These oxidative processes have been shown 

experimentally to result in the formation of Ag+ and AgClOH- as dominant Ag species below 

temperatures of 100oC and between pH 3.7 to 12 (Stefánsson and Seward, 2003). The net of these 

processes result is an increase in Ag toxicity. Silver (Ag+)  toxicity may be induced between <2.0x10-4 mg 

kg-1 to 25% biomass dry weight (Table 3; Silver, 2003; Panáček et al., 2006; Xiu et al., 2012). Both As 

and Au concentrations in PDA I and II exceed toxic concentrations for these metals (Table 3) and these 

metals are bound and sequestered within the biofilms present in the springs. While Ni, Cu, As, and Ag in 

Las Pailas exceed toxic concentrations for the microbial population in the springs, sequestration of these 

metals in the sediment reduces the concentration of these metals in solution to below toxic concentrations. 

This inhibits microbial toxicity by limiting diffusion of these metals into microbial cells. Microorganisms 

use biofilm’s protective effects to limit toxicity induced created by acid pH conditions. 

Microorganisms as Near-Surface Indicators of Epithermal Ore Formation 
In circum-neutral hydrothermal systems, trace metal enrichment has been linked with shallow epithermal 

ore formation. Epithermal Au- Ag deposits have been observed in  Ladolam, Papua New Guinea  and in 

the Taupo Volcanic Zone, New Zealand (Simmons and  Brown, 2006; 2007). Siliceous sinters, 

0.05 μg/l Diorio et al (1995)
58 mg/kg in As -resistant 

bacteria
Bachate et al. (2009)

Ni 3-9 5-50 Babich and Stotzky (1982; 1983); 
Laskin et al. (2003)

Au 1.7-2.3 none established
Ag 4-13 >0.0002 Silver (2003); Xiu et al. (2012)
Cu 4-56 0.05-0.5 Babich and Stotzky (1983)
Zn 3-12 none established

Toxic Concentration Reference

Table 6: Nutritional and Toxicity Concentrations

Las Pailas 
(mg/kg) Toxicity * (mg/kg)/106 cells

As 0.15-16

Metal
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precipitated from these low-sulfidation metal-rich waters are enriched in Ag, Au, and Cu  and are 

associated with microorganisms and microbial biofilms (Simmons and  Brown, 2006; 2007).  

Hydrothermal fluids in Yellowstone have also shown anomalously high Cu (16 mmol L-1) and As (13 

mmol L-1) concentrations (Walker et al., 2005) indicating potential ore formation at depth. Arsenic and Sb 

enrichments occur also in the El Tatio hydrothermal field in Chile (Landrum et al., 2009). 

While As enrichment is common in hydrothermal systems, the total As concentrations (11-16 mg kg-1) in 

PDA I and II are lower than other studied hydrothermal systems. For example, As concentrations in El 

Tatio’s hydrothermal field in Chile range from 260-21,000 mg kg-1 (Landrum et al., 2009) and sediments 

from the Taupo Volcanic Zone, NZ have As concentrations that range from 0-1,600 mg kg-1 (McKenzie et 

al., 2001).  Nevertheless, As concentrations in PDA I and II exceed  average crustal abundances (2.1 mg 

kg-1) in all samples except PDA I-1 (As= 0.2 mg kg-1). Nickel (2.4- 7.4 mg kg-1) and copper (3.7- 56 mg 

kg-1) concentrations in PDA I and II sediments are  depleted relative to average crustal abundances (90 

mg kg-1 and 68 mg kg-1 respectively.  However, Cu concentrations within the MacArthur River H-Y-C 

range from 2-80 mg kg-1 (Large et al., 2000) and are similar to PDA I and II.  

Hot spring Ag concentrations are commonly enriched relative to average crustal abundances   (0.08 mg 

kg-1). Silver concentrations in Taupo Volcanic Zone range from 2.0 µg kg-1 to 2.4 mg kg-1 (Simmons and 

Brown, 2007) and are considered to represent an actively forming shallow epithermal ore deposit.   Silver 

concentrations observed in the Las Pailas sediments (3.8-12 mg kg-1) exceed those present in the Taupo 

Volcanic Zone. Pailas de Agua I and II gold concentrations (1.4-2.3 mg kg-1) also exceed Taupo’s Au 

concentrations  (<0.1-23 µg kg-1; Simmons and Brown, 2007). Where detectable within Las Pailas’ 

sediments, Au exceeds the cutoff grade (0.00001 wt. %) for determining an economic deposit, indicating 

the formation of shallow high-sulfidation epithermal systems.  

Both acid-sulfate and neutral-chloride hydrothermal systems are the surficial expression of water-rock 

interactions occurring at depth. When Simmons and Brown (2006) sampled deep magmatic geothermal 

brines, they found these waters were enriched in Au (<0.1-16 µg kg-1) and Ag (<1-6 µg kg-1). They 
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calculated that at these concentrations, an epithermal ore deposit could form within ~55 Ky.  Therefore, 

both acid-sulfate and neutral-chloride spring systems represent surficial expressions of epithermal Au-Ag 

deposits forming at depth. Microbial processes, including the binding of trace metals to biofilms and 

biofilm associated Fe-oxides, capture trace metals from solution and   likely serve as shallow indicators of 

ore formation at depth. 

Conclusions and Implications 
Hydrothermal systems associated with actively forming epithermal deposits are differentiated by 

geochemistry and mineralogy into low- and high-sulfidation systems. Despite these differentiations, 

microbial processes are responsible for trace metal sequestration in both end members once solutions cool 

below ~121oC (Kashefi et al., 2007). In circum-neutral pH, low-sulfidation systems, microbial metabolic 

processes influence the redox chemistry and facilitate the binding of trace metals to Fe-oxides and 

siliceous sinters associated with microbial biofilms (Simmons and Brown, 2007; Landrum et al., 2009). In 

high-sulfidation (acid-sulfate) systems like Las Pailas microbial EPS influences the distribution of trace 

metals by: 1) regulation of the internal pH of the biofilm to drive the precipitation of nano- to micro-scale 

Fe-oxides/-oxyhydroxides,  which in turn adsorb trace metals and  2)  direct binding of trace metals to 

microbial cell surfaces and EPS. Organic acids may passivate some Fe-oxide surfaces, which enhances 

adsorption of trace metals to organic acids within the EPS. Microorganisms sequester trace metals within 

their biofilms as a detoxification process. 

The magnitude of trace metal enrichment in acid-sulfate systems falls within the low end of enrichments 

reported for neutral-chloride hydrothermal systems for Cu and Zn, however, Au and Ag in Las Pailas 

sediments are enriched relative to neutral chloride systems. Therefore, microbial processes not only play a 

ubiquitous role in concentrating trace metals in shallow hydrothermal systems, but they may also provide 

indicators of  the actively forming epithermal deposits from which their fluids are sourced. The 

preservation of microbial biosignatures in ancient ore deposits like MacArthur River HYC and 

Huinquintipa and Mina Sur porphyry copper deposits suggests microbial processes have influenced 
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shallow ore deposition throughout geologic time, as long as the conditions for life are met. While main 

epithermal ore bodies form at T>121oC,  the data from ancient and modern high- and low- sulfidation 

systems strongly suggest that metal enriched halos surrounding the higher temperature core of epithermal 

ore deposits may result from microbially enhanced sequestration of Au, Ag, and possibly Cu to overcome 

metal toxicity.  
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Supplementary Table 

Suppl. Table 1: Sequential Extraction Protocol 

Fraction Reagent 
Reagent Volume 

(ml) T(oC) 
Reaction 

Time  
Continuous 
Agitation 

Exchangeable 

Ammonia Acetate 
(buffered to pH 

8.2) 

1.00 25 15 min Yes 

0.75 25 15 min Yes 
DI 1.00 25 30 sec Yes 

Carbonate/ Sulfate 
4% Acetic Acid 

0.15 25 1 hr No 
  25 10 min Yes 
  25 15 min Centrifuge 

DI 1.00 25 1 hr No 
  25 15 min Centrifuge 

Oxide 

0.04 M NH2OH 
·HCl in 25% v/v 

Acetic Acid 

1.00 96+3 6 hr Yes 
  25 1hr No 
  25 15 min Centrifuge 

1.00 96+3 6 hr Yes 
  25 1hr No 
  25 15 min Centrifuge 

1.00 25 30 sec Yes 
  25 1 hr No 
  25 15 min Centrifuge 

1.00 25 30 sec Yes 
  25 1 hr No 
  25 15 min Centrifuge 

DI 
1.00 25 30 sec Yes 

  25 15 min Centrifuge 

Organic 

0.02 M HNO3 and 
30% v/v H2O2 

adjusted to pH 2 

0.80 85+2 2 hr Yes 
  25 1 hr No 

0.50 85+2 3 hr Yes 
3.2 M Ammonia 

Acetate in 20% v/v 
HNO3 

1.50 25 1 hr No 

  25 30 min Centrifuge 

DI 2.00 25 1 hr Centrifuge 

Residual 

DI 2.00 105 1-4 hr No 
~7N  HNO3  6.00 

85-95 24 hr No 
HF 2.00 

    25 2-4 hr No 
~7N  HNO3  6.00 80 12 hr No 

    25 2-4 hr No 
DI 10.00 80 1 hr No 

ICP-OES Internal 
Standard 2.00     No 

DI       No 

DI dilute to1500x 
mass     No 
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Chapter 4. Early smectite nucleation in acid-sulfate systems: Implications for clay 
formation on Mars 
 

To be submitted as a separate article: 
 Phillips-Lander, C. M., Roberts, J. A., Zhao, L., Dong, H. and Fowle, D. A., Early smectite nucleation in 

acid-sulfate systems: Implications for clay formation on Mars (to be submitted to Earth and Planetary 
Science Letters) 

Abstract 
Models of clay mineral formation on Mars suggest clays form through hydrothermal processes in shallow, 

neutral-alkaline reservoirs, because models indicate nontronite is only stable at pH>4. Mixed-layer clays, 

including nontronite, are abundant in acid-sulfate hydrothermal systems on Earth, which contradicts these 

models. Here we examine the nature of clay mineral formation in acid-sulfate systems, by varying 

temperature, ligand concentration, and proxies for microbial surfaces that serve as nucleation sites in a 

model hydrothermal solution based on the dry-season aqueous geochemistry of Las Pailas hot springs (pH 

2.6, T=80oC, [SO4
2-]=38 mM, [Fe2+]=22-38 mM,  [Al3+]=0.1-15 mM, [F-]=0-0.1 mM, and [Ca2+]= 0-0.1 

mM), Costa Rica, which are known for their clay rich hot springs, mud pots, and fumaroles. X-ray 

diffraction analysis of precipitates shows authigenic mixed-layer smectites, nontronite, illite, 

kaolinite/halloysite, and Fe-oxides form within 7 days under all experimental parameters.  

Replicates of experiments at 25oC indicate Al-complexation by fluoride, a ligand with high affinity for 

Al, enhances authigenic clay formation. Geochemical modeling of aqueous data from experiments  

indicate the activity of the fluoride ion in solution expands the stability field of nontronite to pH 2, and 

therefore, fluoride mediates the formation of authigenic clay minerals through Al-complexation.  

Surrogates for microbial surfaces, which are covered by carboxyl functional groups, were also added to 

one half of experimental solutions. While their presence exhibited little influence on authigenic clay 

formation in 80oC experiments, their presence exerted a weak effect on nontronite formation in 25oC 

experiments. Microbial influence, therefore, is likely limited in low pH systems because carboxyl groups 

are largely protonated below pH 4.5. 



 
94 

 

These data are particularly important for our understanding of Mars’ evolution because they indicate 

nontronite and kaolinite form under a broad diversity of geochemical conditions, and are therefore not 

specifically indicative of neutral-alkaline pH environments. Moreover, Al activity plays an important role 

in authigenic clay formation and Al activity is directly related to the anion composition of the fluid. 

Introduction 
Orbital and rover observations of the Martian surface have confirmed the presence of phyllosilicate 

minerals, principally Fe/Mg-smectites, with montmorillonite and kaolinite overlying these clays (Bishop 

et al., 2008). The presence of clay minerals indicates liquid water was present at or near the Martian 

surface and involved in the chemical weathering of basaltic crust during the Noachian (4.1-3.7 Ga; 

Ehlmann and Edwards, 2014). The nature of clay mineral formation on Mars, however, has been a topic 

of debate due to significant geochemical unknowns, including the amount of liquid water present, the 

temperature, pH, and geochemical composition of these fluids, and the composition of the atmosphere, all 

of which influence the interpretation of the Martian geochemistry during the Noachian (Madden et al., 

2004; Ehlmann et al., 2008; Ehlmann et al., 2011; Fairen et al., 2011). Geomorphological features appear 

to indicate the presence of fluvial and lacustrine environments; however the geochemical nature of the 

solutions remains unresolved. For example, Yellowknife Bay (Gale Crater) has been interpreted as 

originating in a fluvial/lacustrine environment based on the presence of bedding and cross-stratification of 

sandstones, and erosional scouring contacts at the base of beds, and the presence of mudstones observed 

in images obtained from the Curiosity Rover (Grotzinger, 2014).  

One interpretation of Mars’ mineralogy to infer geochemistry is that Fe/Mg-smectites may have formed 

from anoxic, alkaline, hydrothermal groundwater circulation, while the majority of the Martian surface 

remained cold and arid (Ehlmann et al 2011; Fairen et al., 2011). Brown et al. (2010), however, argued 

that shallow hydrothermal alteration of the Martian surface could drive the formation of Mg-rich clay 

minerals in the present in the clay-rich Nili Fossae region. Chevrier et al. (2007) modeled stability 

relationships between Fe-oxides and nontronite (Na0.3Fe2(Si,Al)4O10(OH)2•n(H2O)) based on a theoretical 

solution derived from weathered basalt. Based on this model, Chevrier et al. (2007) suggested 
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hydrothermal weathering on Mars was driven by weakly acidic-alkaline hydrothermal alteration, because 

nontronite was only stable above pH 4 in the mixed Fe-oxide-nontronite system.  

Authigenic clay formation on Earth 
Under most Earth surface conditions, clay minerals are expected to form as the result of incongruent 

dissolution of feldspar (Drever, 1997). Conversion of feldspar to clay minerals depends on acid leaching 

of cations into solution. The net addition of metals to solution may then aid homogenous authigenic clay 

nucleation (La Inglesia et al., 1976), making it difficult to differentiate clays formed from proton-

promoted dissolution at the surface and those formed from solution supersaturation. Furthermore, organic 

matter, such as microbial cell surfaces may bind metals and lower the energy required to form critical 

nuclei required for clay mineral formation (Konhauser and Urrutia, 1999).  Microbial surfaces and 

organic acids, whose functional groups chelate metals and provide a template for mineral formation, have 

been implicated in authigenic clay formation in a variety of Earth’s environments including lakes, rivers, 

and oceans (Alt and Mata, 2000; Konhauser and Urrutia, 1999; Tazaki, 1997; Fortin et al., 1988; Ueshima 

and Tazaki, 2001; Loucaides et al., 2010). Additionally, microorganisms encrusted in clay minerals, 

particularly nontronite, have been observed in a number of seafloor hydrothermal systems and off-axis 

diffuse vents below 100oC (Alt, 1988; Juniper and Fouquet, 1988; Hekinian et al., 1993; Köhler et al., 

1994; Bogdanov et al., 1997; Fortin et. al., 1998; Masuda, 2005; Dekov et al., 2007; Kyle and Schroder, 

2007). 

Dekov et al. (2007) suggested that the same process that occurs in low temperature systems, i.e. 

precipitation of iron oxides and silica onto microbial cells surfaces, results in microbial encrustation by 

clay minerals in hydrothermal systems. The generalized model for clay biomineralization by 

microorganisms in low temperature systems includes cation sorption on the cell surface as the first step. 

Adsorption of Fe to the cell surface creates excess positive charge that attracts and facilitates the binding 

of silica polymers, as has been shown during silicification (Konhauser and Urrutia, 1999; Lalonde et al., 

2007). This process is the similar for the initiation of clay formation in circum-neutral pH systems 
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(Konhauser and Urrutia, 1999). Konhauser and Urrutia (1999) summarized the basic characteristics of 

clays produced in association with microorganisms as amorphous to poorly ordered, < 1 µm though many 

are <0.1 µm typically dominated by iron, aluminum and silicon with some potassium.  

However, Dekov et al. (2008) indicated not all hydrothermal clays were microbially associated. In high 

temperature systems (150->250oC) outside the known range for microbial life, authigenic clay formation 

is governed by the behavior of Al in solution (Dekov et al., 2008). Aluminum activity in solution is 

governed by pH, temperature, and Al-complexation, which increases Al solubility (Plankey et al., 1986; 

Stumm and Morgan, 1996; Dekov et al., 2008). The role of pH in clay formation has been primarily 

modeled by Chevrier et al. (2007) for theoretical geochemical models of Mars and most laboratory studies 

have focused on clay formation in circum-neutral pH systems. However, economic geologists have noted 

the association between acid-sulfate solutions and clay minerals in hydrothermal systems on Earth (White 

and Poizat, 1995; White and Hedenquist, 1995). Authigenic clay formation was shown to occur in 

laboratory experiments conducted at T>60oC (Tosca et al., 2008). Despite this, authigenic smectites, 

nontronite, and montmorillonite have been produced from across a wide variety of temperature conditions 

(<3-80oC) circum-neutral pH solutions under reducing conditions (Harder, 1972; 1976). Aluminum 

complexation has been studied in high and low temperature systems, however, low temperature systems 

have focused primarily on organic ligands and high temperature systems have focused on the influence of 

fluoride, where F- is an abundant ligand in solution (Thomas et al., 1977). 

Organic acids, which can occur in many sedimentary environments but are most concentrated in soil 

environments, influence Al activity by forming Al-organic complexes which react to form clay minerals. 

Laboratory studies have shown that kaolinite has been experimentally produced from solution at pH 2-9 

when organic acids, including oxalate and fulvic acids, were added (Linares and Huerta, 1971; Hem and 

Lind, 1974; Fiore et al. 2011). Fulvic acids have also facilitated the production of mixed-layer smectites 

at circum-neutral pH (Linares and Huertas, 1971; La Inglesia et al., 1976). While organic acids accelerate 

authigenic clay formation in some systems, organic acids may also shield mineral surfaces from chemical 
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attack by reducing diffusion of released cations away from the mineral surface (Banfield et al., 1999). 

Therefore, organic matter may either accelerate or limit the degree of chemical weathering and authigenic 

clay formation in a given location. 

Examination of hydrothermal clays indicates fluoride often substitutes for hydroxyl groups in the mineral 

structure (Chipera and Bish, 2002; Labouriau et al., 1995). Experimental studies have synthesized 

montmorillonite from high temperature (220oC), circum-neutral pH (pH 5-8.5), fluoride (0.5M fluoride) 

solutions within 36-288 h (1.5-12 d; Reinholdt et al., 2001; Reinholdt et al., 2005). Decarreau et al. 

(1987) showed fluoride positively influenced the thermal stability of experimentally produced mixed-

layer smectites at temperatures 75-150oC, however, this study indicated the formation of these clays was 

not dependent upon Al-complexation by F-. Caullet et al. (2005) showed fluoride can form structures that 

act as a template for early alumino-silicate formation in high temperature experimental systems. 

Therefore it is unclear what role fluoride plays in clay authigenesis. 

Clay mineral formation in hydrothermal systems 
Clay mineral formation has been observed in a variety of hydrothermal systems and both inorganic and 

organic processes have been implicated in authigenic clay nucleation, including microbially-induced clay 

nucleation, and Al-complexation. The association of microbial cell surfaces and clays does not 

necessarily implicate them in clay authigenesis, as pre-formed clay minerals may sorb onto microbial 

surfaces and the role of fluoride in clay formation is inconclusive because it has only been studied in high 

temperature systems. It remains unclear what factors specifically control authigenic clay formation, 

particularly in acid-sulfate hydrothermal systems where clay minerals, including mixed-layer smectites, 

nontronite, and kaolinite/halloysite, are expected to be abundant (Marcucci et al., 2013; White and Poizat, 

1995; White and Hedenquist, 1995; Phillips-Lander et al., 2014). As we seek to understand the 

geochemical evolution of exoplanets, including Mars, it becomes increasingly important to understand 

what the presence of clay minerals indicates for past environmental conditions and define the 

geochemical factors that specifically influence authigenic clay formation. To do this, we require a 
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comprehensive research lexicon that defines the underlying geochemical controls on clay mineral 

formation across the pH spectrum. 

Here, we examine the influence of an inorganic ligand, microbial surfaces, and temperature on authigenic 

clay formation. In order to determine the main influences on clay formation, we developed a model 

hydrothermal solution, based on acidic (pH 2.6-4), sulfate (SO4
2-= 38 mM) waters collected from the 

Pailas de Agua I hot (T=80-89oC) spring, whose mineralogy includes mixed-layered smectite, nontronite, 

kaolinite, ferrihydrite, goethite, jarosite and quartz (Phillips-Lander et al., 2014; Phillips-Lander 

unpublished data). These solutions contain high Fe (4.0-7.0 mM), Al (15 mM), and Si (8.2 mM) 

concentrations. Concentrations of other cations are relatively low (Ca=0.7 mM, Na=0.4 mM, Mg=0.7 

mM) and anion concentrations, other than sulfate, show similar trends (F-= 0.1 mM, Cl=0.05; Phillips-

Lander et al., 2014). These data will then be used to determine the controls on authigenic clay formation 

in acid-sulfate systems specifically, and in conjunction with other geochemical data to determine the role 

of these processes more broadly in clay formation. 

Methods 

Experimental Design 
Using the data derived from the field sampling of PDA I, an acid (pH 2.6-4) -sulfate (SO4

2-= 38 mM), hot 

(T=80-89oC) spring, the geochemistry of the system was modeled using PhreeqC, a geochemical 

modeling software (Parkhurst and Appello, 2008). PDA I spring solutions contain high concentrations of 

Fe (4.0-7.0 mM), Al (15 mM), and Si (8.2 mM). Concentrations of other cations are relatively low 

(Ca=0.7 mM, Na=0.4 mM, Mg=0.7 mM) and anion concentrations, other than sulfate, show similar 

trends (F-= 0.1 mM, Cl=0.05; Phillips-Lander et al., 2014). The solution chemistry of PDA I was used to 

create our experimental solutions (Table 1). Specifically, this solution was used to test the influences of 

temperature, an inorganic ligand (F-), and microbial surfaces on clay mineral formation in acid-sulfate 

systems. The solution pH was adjusted using hydrochloric acid to a starting pH of 2.6. A water bath was 

heated to 25 or 80oC, depending on experimental conditions, to which 1L reactor vessels containing 

model hydrothermal solutions were added. Solutions were constantly mixed using magnetic stir bars. 
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Silicon was added as hydrous sodium metasilicate (Na2SiO3·5H2O). Aluminum was added as aluminum 

hydroxide (AlOH3). In order to determine the influence of sulfate on clay mineral formation, different 

iron salts were added to the experiments. For sulfate experiments, iron and sulfate were added as iron 

sulfate heptahydrate (FeSO4·7H2O).  

Table 1: Solution chemistry is based on Pailas de Agua I, Rincon de la Vieja. Full solution chemistry for 
this spring can be viewed in Phillips-Lander et al. (2014). All values are in mM. 

Table 1: Initial Solution Chemistry 
Parameter Concentration 

Temperature (oC) 25 and 80 
pH 2.6 
SO4 38 
Fe 38 
Al 15 
Si 8.2 
Cl 0.054 
Ca 0.69 
Na 16 
F 0,0.055 

 

To model the influence of inorganic ligands on clay formation, fluoride, as calcium fluoride, was added to 

half of the reactor vessels in concentrations of 0.1 mM (Table 1). To one half of the reactor vessels in 

each experiment, 1 µm diameter polycarbonate microspheres with carboxyl functional groups were added 

at a concentration of 106 spheres· ml-1, which is the approximate concentration of cells in Pailas de Agua I 

(Phillips-Lander et al., 2014) to model the effect of microbial surfaces on clay mineral nucleation without 

the influence of metabolism.  

Data Collection 
Reactor vessels were sampled (pH, T, solution, and precipitate) at 24 h intervals for the 14 day 

experiment. In order to correct pH for temperature effects, a sample of  pH calibration solution was 

measured at 80oC and used to calculate the deviance of measured pH using the following equation, (pH1-

pH2)*(T1-T2)-1=pH correction factor. This correction factor was then applied to the measured pH of 

experimental samples. Water samples were filtered using 0.45 μm polycarbonate filters, and samples for 

cation analysis were acidified with  2% high purity nitric acid to pH 2. All samples were kept at 4°C after 



 
100 

 

collection. Major cations were analyzed using inductively coupled plasma optical emission spectroscopy 

on a Perkin Elmer ICP-OES Optima 5300 DV. Mineral precipitates were collected and freeze-dried in the 

laboratory and then powdered and analyzed using a Bruker SMART APEX II X-ray Diffractometer 

(XRD) with a copper charge coupled detector (CCD).  Samples from days 7 and 15 of the experiment 

were freeze-dried and split for further analyses. One split was reacted with glycol vapor in a sealed 

container at 60oC for 24 h. Glycolated clay samples were then examined using XRD to determine basal 

spacing and clay mineral type. A second split from 80oC was suspended in deionized water and mounted 

on lacey carbon grids using grid on drop mounting technique. These samples were analyzed using a JOEL 

JEM-2100 TEM/STEM High Resolution Transmission Electron Microscope in order to determine the 

relationship between reaction products and microspheres (microbial proxies). 

Results 

High Temperature (80oC) Experiments 
Over the course of the experiment, temperature remained constant once the solution reached experimental 

temperature (80oC), while pH varied up to one pH unit (Table 2A). pH initially increased from 2.6 to 3-

3.5 within 24h and remained constant after 24h, regardless of the presence or absence of fluoride or 

microbial proxies (Table 2A).  In the first 24 h, Al concentrations in solution increased ~5% in solutions 

to which F- was added and 20-40% to solutions without F-. 

Influence of Fluoride 
Although the general trend in Al concentration is similar to pH, fluoride directly influenced the 

concentration of Al in solution. In fact, fluoride influences major cation chemistry in all 80oC 

experimental trials. In experiments where F- is present, Al concentrations (Al=6.0-6.5 mM) are 

approximately six-fold greater than in experiments where F- is absent (Al=1.2-1.3 mM; Table 3A). Fe 

concentrations are nearly double in experiments containing F- (Fe=1.7x10+1 mM) than those in which F- 

was absent (Fe=7.2-7.3 mM; Table 3A). Silicic acid concentrations, in contrast, increase by only 15% in 

the presence of F- (Si with fluoride=7.9-8.0 mM v. Si without fluoride=7.0-7.2 mM; Table 3A). 
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Table 2A: Temperature and pH of 80oC fluoride experiments. MS=Microbial Surrogates 

Table 2A: Temperature and pH of fluoride experiments (80oC) 
  

[F-]  0.11 mM 0 mM 

Day T (oC) -MS +MS -MS +MS 
pH pH pH pH 

0 25 2.6 2.6 2.6 2.6 
1 80 3.5 3.5 3.3 3.4 
2 80 3.2 3.3 3.2 3.2 
3 80 3.7 3.6 3.5 3.6 
4 80 3.6 3.6 3.5 3.4 
5 80 3.4 3.2 1.8 3.1 
6 80 3.4 3.2 1.8 3.1 
7 80 3.4 3.4 3.2 3.1 

11 80 4.9 2.9 2.8 2.8 
15 80 2.9 3.0 2.9 3.1 

Influence of Microbial Surrogates 
The presence of microbial surrogates in 80oC experiments exerts a small effect on the aqueous 

geochemistry in solution. When fluoride is present in solution, the presence of microbial surrogates in 

solution reduces the total concentration of Al by ~1% (Al with surrogates=6.0 mM, Al without surrogates=6.5 mM; 

Table 3A). In contrast, the concentration of Fe and Si are approximately the same between  experiments 

with fluoride regardless of whether or not microbial surrogates were added to solution (Fe=1.7x10+1 mM; 

Si=7.9-8.0 mM; Table 3A).  

When fluoride is not present in solution, microbial surrogates increase the aqueous concentration of 

aluminum in solution by 1% (Al with surrogates=1.3 mM, Al without surrogates=1.2 mM; Table 3A). This is the 

opposite effect observed when fluoride is present in solution. The presence of microbial surrogates also 

slightly decreases Fe (~1%; Fe with surrogates=7.2 mM, Fe without surrogates=7.3 mM) and Si (~4%; Si with 

surrogates=6.9 mM, Si without surrogates=7.2 mM) concentration (Table 3A). 

Authigenic Mineral Formation 
Amorphous precipitates form in all 80oC experimental trials within the first 24 hours of the experiment. 

After 7 days, samples display broadly similar mineralogy between all experimental trials, including 

amorphous silica, jarosite, illite and mixed-layer smectite (Figure 1A). The presence of fluoride in 
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solution does not appear to influence the clay mineralogy; however it does influence the formation Fe-

oxides/Fe-oxyhydroxylsulfates (Figure 1A). When fluoride is present, goethite is the dominant oxide 

phase (black lines; Figure 1A), however, when fluoride is absent, both goethite and schwertmannite form 

(grey lines; Figure 1A). Microbial surrogates did not exert influence on the mineralogy, however when 

microbial surrogates are present kaolinite peaks are obvious in unglycolated samples (solid lines) 

indicating a more crystalline character for these clay minerals (Figure 1A).  

Table 3A:  80oC Aqueous Data 
Day 
 

0.1 mM  
-Microbial Surrogates +Microbial Surrogates 

Al Fe Si Al Fe Si 
0 2.4E-02 2.6E+01 7.4E+00 3.6E-02 2.5E+01 8.0E+00 
1 6.4E-01 2.8E+01 7.3E+00 7.5E-01 2.6E+01 7.9E+00 
2 1.4E+00 2.7E+01 7.9E+00 1.4E+00 2.7E+01 8.3E+00 
3 1.9E+00 2.6E+01 7.9E+00 1.8E+00 2.6E+01 8.3E+00 
4 2.4E+00 2.5E+01 7.9E+00 2.3E+00 2.5E+01 8.4E+00 
5 2.3E+00 2.0E+01 6.5E+00 2.7E+00 2.4E+01 8.3E+00 
6 2.9E+00 2.2E+01 7.3E+00 2.5E+00 2.0E+01 7.0E+00 
7 3.6E+00 2.2E+01 8.0E+00 3.3E+00 2.1E+01 8.2E+00 
11 5.5E+00 1.9E+01 7.9E+00 5.1E+00 1.8E+01 8.1E+00 
15 6.5E+00 1.7E+01 7.9E+00 6.0E+00 1.7E+01 8.0E+00 
Day 
 

0 mM  
-Microbial Surrogates +Microbial Surrogates 

Al Fe Si Al Fe Si 
0 8.4E-03 7.9E+00 7.0E+00 2.0E-02 8.0E+00 7.2E+00 
1 4.0E-02 7.9E+00 7.0E+00 4.7E-02 7.9E+00 6.8E+00 
2 8.5E-02 7.9E+00 7.0E+00 9.0E-02 7.8E+00 6.8E+00 
3 1.4E-01 7.8E+00 7.0E+00 1.5E-01 7.8E+00 6.8E+00 
4 2.0E-01 7.8E+00 7.0E+00 2.2E-01 7.7E+00 6.8E+00 
5 2.7E-01 7.6E+00 6.6E+00 2.7E-01 7.6E+00 6.3E+00 
6 3.2E-01 7.7E+00 7.0E+00 3.5E-01 7.6E+00 6.8E+00 
7 4.1E-01 7.6E+00 6.9E+00 4.2E-01 7.5E+00 6.4E+00 
11 8.2E-01 7.3E+00 6.9E+00 9.1E-01 7.3E+00 6.8E+00 
15 1.2E+00 7.3E+00 7.2E+00 1.3E+00 7.2E+00 6.9E+00 

*Error is +/-0.1 mM for all samples 
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Figure 1: (A) XRD spectra of freeze-dried precipitates collected from experiments conducted at 80oC. 
Samples from experiments without fluoride precipitate schwertmannite in addition to the smectite, and 
goethite present in all experimental precipitates.  Kaolinite forms only in experiments to which microbial 
surrogates were added. (B) XRD spectra of ethylene glycol treated precipitates from experiments 
conducted at 80oC. Samples with microbial surrogates are identical to each other and indicate a 50% 
mixture of smectite/illite. Samples without microbial surrogates tend to be less crystalline. (C) 
Experiments at 25oC show the influence of fluoride on mineralogy and degree of crystallinity. The 
addition of fluoride results in nontronite and Fe-oxide formation, while microbial surrogates have no 
effect on oxide formation. 
 
Precipitates from 80oC experiments were glycolated in order to determine the type of clay minerals 

formed. Mixed-layer smectites are composed of a ~50% illite/nontronite mixture (Figure 1B). The 

presence of kaolinite was confirmed after glycolation (solid lines; Figure 1B) for samples containing 

microbial surrogates. Samples from experimental trials without microbial surrogates do not have 

detectable kaolinite peaks (dashed lines; Figure 1B). The presence of amorphous silica is more 

pronounced in experimental trials that contain neither fluoride, nor microbial surrogates (Figure 1B).  
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Transmission Electron Microscopy 
Solid phase material from 80oC experiments was analyzed using TEM in order to determine the size, 

distribution and ordering of clay minerals in the precipitated phase. Mixed-layer smectite (1.45 nm/layer) 

was observed in 80oC samples collected from experimental trials containing fluoride and microbial 

surrogates (Figure 2A). Sample thickness makes clay mineral observations difficult; however, Fe-oxides 

are abundant only in samples with fluoride but without microbial surrogates (Figure 2B).  

Low Temperature (25oC) Experiments 
Experimental trials at 25oC displayed approximately constant pH and temperature over the course of the 

21 day experiment (pH 2.3-2.6; Table 2B). Fluoride was added to half of the experimental trials ([F-]= 0.1 

mM; Table 3B). Initial amorphous precipitates were detected after 7 days in experiments containing 

microbial surrogates and 11 days in samples without microbial surrogates. After 17 days, precipitates 

were more crystalline when F- was present in solution. 

Table 2B: Temperature and pH of 80oC fluoride experiments. MS=Microbial Surrogates 
 

Table 2B: Temperature and pH of fluoride experiments (25oC) 
[F-] 0.055 mM 0 mM 

Day T (oC) -MS +MS -MS +MS 
pH pH pH pH 

0 25 2.7 2.7 2.6 2.7 
3 25 2.8 2.8 2.9 3.0 
7 25 2.8 2.8 2.9 3.0 
10 25 2.6 2.6 2.8 2.9 
14 25 2.7 2.7 2.7 2.8 
17 25 2.7 2.7 2.6 2.8 
21 25 2.6 2.6 2.6 2.7 

 

Influence of Fluoride 
The addition of fluoride to solution exerts significant influence on the Al solution concentration.  In trials 

where microbial surrogates are absent, the addition of fluoride increases the Al concentration by an order 

of magnitude (Al with fluoride=4.6x10-2 mM v. Al without fluoride=3.3x10-3 mM; Table 3B). When microbial  
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surrogates are present, the same general trend is observed (Al with fluoride=1.9x10-2 mM v. Al without 

fluoride=2.5x10-3 mM; Table 3B). In contrast, the Fe concentration in solution displays a five-fold decrease 

when fluoride is present in solution (Fe with fluoride=5.1-6.4 mM v. Fe without fluoride=25-26 mM; Table 3B). 

Silicic acid concentrations follow the same trend as Fe, with a ten-fold decrease in solutions containing 

fluoride (Si with fluoride=0.5-0.6 mM v. Si without fluoride=5.7-6.0 mM; Table 3B). 

Figure 2 : Transmission electron 
microscopy images of clay minerals 
formed. (A) Experiments with fluoride and 
microbial surrogates after 11 days. Layer 
spacing indicates this clay mineral is a 
mixed-layer clay mineral, likely nontronite. 
These clays occur within a matrix of 
pseudomorphous Fe, Al, and Si (B) Fe-
oxide clusters appear to be goethite needles 
in experiments with fluoride and no 
microbial surrogates after 11 days aging. 
They appear to overgrow the boundaries of 
precursor phases. 
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Influence of Microbial Surrogates 
The presence of microbial surrogates in 25oC experiments exerts a small effect on the behavior of Fe and 

Si in solution. When fluoride is not present in solution, microbial surrogates do not significantly influence 

the aqueous Al concentration (Al with surrogates=2.5x10-3 mM, Al without surrogates=3.3x10-3 mM; Table 3B).   

However, in experiments to which fluoride has been added, the presence of microbial surrogates in 

solution reduces the total concentration of Al by half (Al with surrogates=1.9x10-2 mM, Al without 

surrogates=4.6x10-2 mM; Table 3B).   

Table 3B: 25oC Aqueous Data 

Day 
0.1 mM 

-Microbial Surogates +Microbial Surogates 
Al Fe Si Al Fe Si 

0 4.1E-02 6.2E+00 5.2E-01 1.8E-02 6.0E+00 4.3E-01 
4 2.8E-02 6.2E+00 5.1E-01 2.4E-02 6.4E+00 4.7E-01 
7 3.8E-02 7.0E+00 5.9E-01 3.4E-02 6.8E+00 4.9E-01 

11 3.7E-02 6.4E+00 5.3E-01 4.1E-02 6.6E+00 4.7E-01 
14 3.8E-02 6.1E+00 5.0E-01 3.4E-02 5.3E+00 3.6E-01 
17 5.4E-01 6.7E+00 5.5E-01 4.1E-02 6.3E+00 4.3E-01 
21 4.6E-02 6.4E+00 5.2E-01 1.9E-02 5.0E+00 6.6E-01 

Day 
0 mM 

-Microbial Surogates +Microbial Surogates 
Al Fe Si Al Fe Si 

0 2.1E-03 3.6E+01 8.7E+00 1.6E-03 3.1E+01 7.9E+00 
4 9.5E-04 3.0E+01 7.1E+00 bdl 2.4E+01 5.6E+00 
7 2.7E-03 3.3E+01 6.8E+00 2.4E-03 2.8E+01 6.0E+00 

11 4.0E-05 2.6E+01 6.1E+00 2.0E-03 2.6E+01 5.5E+00 
14 1.0E-03 2.6E+01 6.1E+00 8.8E-04 2.4E+01 5.6E+00 
17 1.4E-03 2.7E+01 6.2E+00 3.2E-03 2.6E+01 5.8E+00 
21 3.3E-03 2.6E+01 6.0E+00 2.5E-03 2.5E+01 5.7E+00 

  *Maximum error: +/-0.1 mM for all samples 

Authigenic Mineral Formation 
The presence of fluoride in solution influences the precipitates mineralogy and degree of crystallinity in 

25°C experiments. When fluoride is present in solution, precipitates’ mineralogy is similar regardless of 

the presence/absence of microbial surrogates (Figure 1C). Fluoride facilitates the formation of mixed-

layer smectites, nontronite, jarosite, goethite, Al(OH)3, and amorphous silica. When fluoride is absent 

samples are mostly amorphous, with small peaks for Al(OH)3 and smectite (Figure 1C).  
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Discussion 
This study investigates the rapid formation of authigenic clay minerals in acidic (pH 2.6-3) oxidizing 

systems at 80oC and 25oC. Initial solution geochemistry was based on the fluids in Pailas de Agua I, an 

acid-sulfate spring within the Las Pailas hydrothermal vent field, Costa Rica, which is characterized by 

mixed layer smectites, nontronite, and kaolinite/halloysite clay mineralogy, and a diverse microbial 

population (Table 1; Phillips-Lander et al., 2014). The data from this study at 80oC approximately 

replicates the mineralogy present in Pailas de Agua I. One of the most intriguing findings of these 

experiments is that nontronite synthesis detected in acid-sulfate springs may occur under oxidizing 

conditions, which contrasts with previous work by Harder (1978) who indicated reducing conditions are 

necessary for nontronite formation. These data additionally demonstrate microbial surfaces influence the 

degree of crystallinity in early precipitates in experiments at 80oC over geologically instantaneous 

timescales (t=7 days). Moreover, both fluoride and microbial surrogates influence clay mineral nucleation 

in 25oC systems by reducing the activation energy required to form critical nuclei, although fluoride plays 

a greater role in authigenic clay nucleation. 

Influence of Temperature and pH 
While T and pH influence the dissolved Al concentration, in most natural waters (pH =5-8), Al is 

primarily found in the solid phase (Hitch et al., 2008). Elevated aqueous aluminum concentrations 

typically occur in acidic pH (<4) solutions (Plankey et al., 1986; Von Damm et al., 1985 a; however pH is 

not the dominant factor influencing the aqueous Al concentration in our experiments. Between 80oC and 

25oC experimental trials, there is ~0.3 pH  unit difference (Table 2A, B), and yet  aqueous Al 

concentrations in 25oC systems were 2-3 orders of magnitude less than in 80oC experiments. The higher 

Al concentration in 80oC experiments serves to increase effective collisions between Al and Si ions in 

solution, resulting in increased reaction rates and authigenic clay mineral formation (Stumm and Morgan, 

1996; Figure 1).    

Increased Al solubility at higher T may partially explain why Tosca et al. (2008) observed that nontronite 

does not precipitate from circum-neutral pH solutions at T<60oC. Temperature impact on Al activity may 
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explain why acid mine drainage is dominated by Fe-oxides and Fe- and Al-hydroxysulfates (McCarty et 

al., 1998; Bingham and Nordstrom, 2000) in Earth systems and why previous geochemical models place 

the lower pH limit for nontronite formation at pH<4 (Chevrier et al., 2007). Despite these observations, 

our data indicates lower pH systems may form clay minerals in the presence of a complexing ligand or 

microbial surfaces. 

Influence of Ligands 
Ligands complex metal ions, including Fe and Al, and form coordination complexes which increase the 

total dissolved metal concentrations in solution. This process allows metals to exist in solution at higher 

concentrations than would otherwise be present (Drever, 1997). 

Organic Ligand Effects 
In many natural waters, organic acids effectively complex Al, facilitating the formation of Al-Si gels, 

which subsequently ripen to clay minerals (Fiore et al., 2011; Linares and Huerta., 1971). However, the 

type and concentration of organic acid present in solution influences the mineral formation (Huang and 

Violante, 1986; Blake and Walter, 1999; Gallup, 1998).  Fulvic and humic acids, which are common in 

soils, have been implicated in authigenic clay formation across a wide pH range (pH 2-9; Linares and 

Huerta, 1971). Ueshima and Tazaki (2001) experimentally showed that polysaccharides in circum-neutral 

pH systems facilitate the formation of nontronite.  

The influence of shorter-chain organic acids including oxalate, EDTA, and citric acid on clay formation is 

pH dependent. For example, in circum-neutral pH systems, oxalate forms strong complexes with Al (β 1= 

7.26, β2=13, β3=16.3; Ding et al. 2003) and appears to facilitates kaolinite and mixed-layer smectite 

formation (Ding et al., 2003; Blake and Walter, 1999); however the degree of crystallinity of these clays 

are governed by temperature. In contrast, Gallup found clay mineral formation was retarded in the 

presence of oxalate, Na-EDTA, and citric acid below pH 5.  Oxalic acid may only weakly complex Al at 

acid pH because the pKa2=4.27; therefore the organic ligand is at least partially protonated at low pH. 
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In acid-sulfate hydrothermal systems, the presence of 0-0.1 mM oxalate does not appear to effectively 

complex Al in solution (Suppl. Table 1B). Oxalate may preferentially bind with iron in our model 

hydrothermal solution (β1=7.58, β2=13.81, β3=18.60; Dellien, 1977). Primarily Fe-oxides including 

ferrihydrite and goethite were produced from these 80oC experiments. Carboxyl functional groups present 

on microbial surrogate surfaces appear to facilitate the formation of goethite needles (Suppl. Figure 2). It 

is possible longer-chain organic acids may have a greater effect on Al-Si gel formation because these 

acids have more potential binding sites that deprotonate at variable pH and chelate metals; however, 

modeling the interaction between Al and organic acids is difficult due to the broad pH range over which 

binding sites deprotonate (Vance et al., 1996). Additional research is required to more fully establish the 

influences of organic acids and microbial biofilms in acidic pH hydrothermal systems. 

Inorganic Ligand Effects 
Inorganic ligands, including F- and SO4

2-, also complex Al, increasing the total aqueous concentration. 

Fluoride strongly complexes Al in acidic (pH 3-5) systems (Plankey et al., 1986; β1=7.0, β2=12.7, 

β3=16.8, β4=19.4, β5=20.6, β6=20.6) outcompeting sulfate for binding sites (β5=3.5, β2=5.6; Nordstrom 

and May, 1986). PhreeqC model results indicate that Al in our model hydrothermal solutions is present 

primarily as AlSO4
+, Al(SO4)2

-, and AlF2+ complexes. Sulfate may complex more Al because of its high 

concentration (38 mM) in solution. Despite this, the addition of fluoride to solution increased the Al 

concentration approximately six–fold from 1.2 mM to 6.5 mM in 80oC experiments (Table 3A). Al 

complexation may not, however, strongly influence nontronite formation in 80oC experiments, because 

total Al in solution is relatively high compared to other natural waters where clays are known to form 

(Table 3A; Schlesinger, 1997).  

The importance of Al complexation by F- is demonstrated in 25oC experiments, where Al concentrations 

increased by approximately an order of magnitude when F- was present. Al concentrations, in the 

presence of F-, are approximately an order of magnitude greater than standard mean river water (Table 

3B; Schlesinger, 1997), indicating F- plays an important role in Al solubility at low temperatures.  
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Fluoride can form structures that act as a template for early alumino-silicate formation (Caullet et al., 

2005); therefore, net results of Al complexation by F- in our experiments are (1) increased degree of 

crystallinity of precipitates and (2) changes in the mineralogy, specifically the formation of nontronite, 

schwertmannite, jarosite, and 6-line ferrihydrite vs. pseudomorphous phases (Figure 1C).  

Experiments performed at 25oC indicate that in low temperature solutions Al-complexation is critical to 

clay mineral formation and F- is commonly abundant hydrothermal solutions in similar concentrations to 

those measured in our hot springs (Thomas et al., 1977; Phillips-Lander et al., 2014). However, F- 

abundances in seawater are also similar to our model hydrothermal solution, indicating that F- may play a 

role in the Al-activity in seawater and in clay formation as Dekov et al. (2008) proposed. In contrast, 

fluvial and lacustrine systems F- concentrations are strongly governed by the geochemistry of the 

watershed’s country rock. Therefore, F may not represent the primary ligand responsible for Al-

complexation in all systems and sulfate, phosphate and other inorganic ligands may also aid in Al-Si gel 

sol formation and authigenic clay precipitation. Al complexation by phosphate in natural lake systems is 

dependent on a variety of factors including the Si concentration and organic matter (de Vicente et al., 

2008).  Si outcompetes phosphate for Al in solutions where the phosphate concentration is low, and 

organic matter often adsorbs phosphate from solution (de Vicente et al., 2008). The role of sulfate in Al-

complexation in natural systems has been poorly studied and will be the subject of future research. The 

role of inorganic ligands in Al complexation is of great importance when considering authigenic clay 

formation in the absence of life as organic matter plays a significant role in clay formation in the most 

low temperature Earth systems (Konhauser and Urrutia, 1999). 

The Influence of Microbial Surfaces 
Microbial cell surfaces have been shown to influence clay mineral formation in a variety of Earth’s 

environments, including lakes, rivers and hydrothermal systems (Alt and Mata, 2000; Konhauser and 

Urrutia, 1999; Tazaki, 1997; Fortin et al., 1998; Ueshima and Tazaki, 2001; Loucaides et al., 2010). 

Polystyrene microspheres coated in carboxyl groups have been used to approximate microbial cell 
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surfaces in experimental systems to model the role of microbes in mineral precipitation without the 

influence of metabolism (Roberts et al., 2013). In this study, microbial surrogates were used to examine 

how microbial surfaces and organic matter influence clay mineral authigenesis in half of the experimental 

trials. The overall degree of crystallinity is greater when microbial surrogates are present in 80oC 

experiments (Figure 1B). Microbial cell surfaces adsorb metals (in this case Fe or Al), which lowers the 

interfacial energy required for critical nuclei formation (Konhauser, 2006). In our 25oC experimental 

solutions, samples with microbial surrogates record early (t- 7-17 days) Al(OH)3 and smectite nucleation, 

though these phases are poorly crystalline (Figure 1C). It should be noted that when fluoride is also 

present, 25oC precipitates are mineralogically similar to those from the 80oC experiments, indicating that 

fluoride plays a more important role in clay formation in low pH systems. 

At low pH (1-4.5), carboxyl groups associated with microbial surrogate surfaces carry an net neutral to 

slightly positive surface charge (Yee and Fein 2001; He and Tebo, 1998; Crist et al. 1992); therefore total 

cation adsorption should be relatively low and the microbial impact on clay formation in acidic pH 

systems should be minimal. In order for positively charged carboxyl groups on the microbial surrogate 

surfaces to bond with positively charged ions and complexes, electrostatic repulsion must be overcome. 

The relatively high ionic strength of the solution (I=0.47; Phillips-Lander et al., 2014), in this case, would 

aid electric double layer compression, resulting in more effective collisions than might be otherwise 

expected (Wightman and Fein, 2005).  

XRD analysis of 25oC precipitates shows ferrihydrite precipitates and then sorbs Si from solution in 

experiments (Figure 1C). Silicic acid rapidly adsorbs to ferrihydrite across broad temperature (25-91oC) 

and pH (3-12.5) ranges, resulting in the progressive transformation of ferrihydrite to goethite with time 

(t< 1 week; Vempati and Loeppert, 1989; Phillips-Lander, unpublished data). Si adsorption to ferrihydrite 

present in 25oC experiments likely leads to the formation of goethite in 80oC experiments. Progressive 

binding of Al to Si onto goethite’s surface has been shown to result in authigenic nontronite precipitation 

in other low temperature systems on Earth (Konhauser and Urrutia, 1999). However, the transformation 
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of goethite to mixed-layer smectites, including nontronite, is dependent on the availability of Al in 

solution. While microbial surfaces may stabilize early authigenic precipitates and lower the activation 

energy required for critical nuclei to form, the increased Al solubility associated with complexation 

appears to be a key parameter in clay formation in our 25oC experiments. 

Clay Authigenesis in Acidic Systems 
Solution chemistry was modeled in PhreeqC (Parkhurst and Appello, 2008) for 80oC experiments at t=0 

and 7 days to determine the stability field of nontronite under the experimental conditions operating at 

these time slices. All experimental solutions are at or near equilibrium at the time of sampling and XRD 

analysis (7 days for 80oC; 17 days for 25oC).  All models of experimental data resulted in nontronite and 

kaolinite precipitation. Total molar ratios were the same between experimental trials at the same 

temperature, therefore for simplicity, Table 4A presents the PhreeqC model for 80oC experiments and 

Table 4B for 25oC experiments regardless of conditions. PhreeqC effectively models the nontronite and 

goethite precipitation from solution; however, it does not predict the formation of kaolinite and 

schwertmannite from 80oC solutions (Table 4A). In contrast, PhreeqC indicates Fe-oxides, nontronite, and 

amorphous silica are present at saturation in both samples with and without fluoride (Table 4B). Despite 

this, our experimental results indicate the early onset of clay formation from solutions only when 

microbial surrogates and fluoride are present and complex Al in solution.  

While the model may be limited, comparison of our 80oC experimental Pourbaix diagram with data from 

Chevrier et al.’s (2007) low temperature diagram for hypothetical Martian surface waters (Figure 3) 

denotes a broadening of the nontronite stability field in higher ionic strength solutions. Higher ionic 

strength solutions, such as used in this study (Ithis study=0.4; IChevrier= 1x10-3), increases the effective 

collisions, aiding critical nuclei growth. Additional examination of the Pourbaix diagrams indicates Al 

activity in solution influences nontronite’s stability field (Figure 3). In our experiments, the addition of 

fluoride increases the concentration, and therefore activity of the Al ion in solution.   
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Table 4: PhreeqC models were generated using the Lawrence Livermore National Laboratories database 
(llnl.dat) 

Table 4A: PhreeqC model of solution chemistry (80oC) 
Mineral SI 

(t=0) 
Moles 
produced 

SI (t=7) Moles 
produced 

Nontronite 0.0 2.1x 10-3 0.0 2.6x 10-3 
Kaolinite -4.9 Not predicted 

to form 
-5.9 Not predicted 

to form 
Goethite 0.0 1.8x 10-2 -0.0 1.8x 10-2 
Schwertmannite/GreenRust -17 Not predicted 

to form 
-15 Not predicted 

to form 
 

Table 4B: PhreeqC model of solution chemistry (25oC) 
Mineral SI 

(t=0) 
Moles 
produced 

SI (t=7) Moles 
produced 

Nontronite -0.00 2.1x 10-3 -0.00 1.5x 10-3 
Kaolinite -11.03 Not predicted 

to form 
-42.64 Not predicted 

to form 
Goethite 0.00 1.4x10-3 0.00 1.3x 10-2 
Schwertmannite/GreenRust -17 Not predicted 

to form 
-17 Not predicted 

to form 

Factors that Control Authigenic Clay Formation  
Clay minerals are nearly ubiquitous in Earth’s environments and form in a variety of pH and redox 

environments.  Temperature plays a key role in clay mineral formation, with reaction kinetics dominating 

solutions at high temperatures (T<60oC; Tosca et al., 2008). Mixed-layer clays, nontronite, and kaolinite 

form in 80oC experiments.  Despite this, clay minerals have been show to form in a variety of low 

temperature environments. Microbial surfaces act as a nucleation sites for Fe-oxide precipitation, however 

this process is most effective in circum-neutral pH systems where Fe-adsorption to cellular surfaces is 

most significant (Yee and Fein, 2001).  

Authigenic nontronite formed in our experiments at lower pH than previously documented (pH 2.6-3). 

Previous research indicates clay mineralogy is strongly dependent on the total Al concentration in 

solution (Dekov et al., 2008) and the presence of microorganisms (Dekov et al., 2008; Konhauser and 

Urrutia, 1999). Our 25oC experiments indicate nontronite precipitation at low pH is related to Al activity 

in solution. In the absence of fluoride, Al activity decreases by an order of magnitude relative to when 

fluoride is present in solution. Our modeling has shown Al-complexation by F- positively influences 
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nontronite stability at low pH; however, fluoride is not a common ion in solution. Therefore, it is possible 

that the tendency of acid-mine drainage (AMD) systems to form Fe-oxides instead of clay minerals 

(Peretyazhko et al., 2009; Knorr and Blodau, 2007; Kumpulainen et al., 2007) may be related to the 

anionic chemistry of AMD solutions. In circum-neutral pH systems, Al solubility is expected to be low; 

however, Al-complexation by organic acids has already been shown to increase Al activity in solution and 

aid authigenic clay formation. Based on these associations, we may infer that Al-complexation is a key to 

authigenic clay formation across a broad diversity of geochemical systems. 

 
Figure 3: Stability field of nontronite, based on solution chemisty data from t=7 days. Nontronite is 
predicted to be stable above pH 2 for 80oC experiments (large dashed line). The small dashed line 
represents the stability field based on data from 25oC experiments, which contracts at lower temperature. 
Both dashed lines overlap on the y-axis. These data are plotted against Chevrier et al. (2007) model of 
nontronite stability for Mars (colored boxes). Aluminum activity in solution influences the stability of 
nontronite in solution. Holding all other data except Al constant, a plot of nontronite stability with lower 
Al concentration decreases the low pH bounaryof Al stability by 1 pH unit (smaller dashed line). 
Decreasing temperature contracts the stability field as well (not shown). 
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Implications for Mars 
 While most researchers postulate that clay mineral formation on Mars during the Noachian occurred in 

hydrothermal waters (Ehlmann et al., 2011; Ehlmann et al., 2008; Fairen et al., 2011; Brown et al., 2010), 

the exact temperature and pH of these solutions remains unknown. In Earth systems, clay minerals 

represent only a minor component of the mineralogy in circum-neutral hydrothermal systems (White and 

Poizat, 1995; White and Hedenquist, 1995); however mixed-layer smectites, nontronite, and kaolinite are 

a dominant mineralogical characteristic in acid-sulfate systems. Our experimental results, therefore, 

support Marcucci et al.’s (2013) observation that acid-sulfate hydrothermal systems produce similar 

mineralogy to the Martian surface. While our research expands the range of geochemical conditions 

which may have been present on Mars, it should also be noted that our data set the lower limit for 

nontronite formation in acidic pH systems is ~pH 2. Therefore, extremely acidic environments are likely 

not appropriate analogs for Mars. 

Geomorphological evidence of the past existence of fluvial and lacustrine deposits on Mars’ surface, 

suggests the potential for a well-developed hydrologic system during the Noachian (Ehlmann and 

Edwards, 2014), which may represent a broad diversity of potential geochemical environments. The 

current state of knowledge sheds no light on whether life evolved on Mars. In the absence of life, Al-

complexation by inorganic ligands, as demonstrated in this study therefore, would play a key role in clay 

mineral formation. Additional research is required to determine the anionic chemistry required to foment 

authigenic clay formation on Mars in the absence of life. At the same time, if a record of life is found in 

the Martian rock record, we propose this life played an important role in the Noachian evolution of Mars’ 

surface by facilitating authigenic clay mineral formation, as has been shown on Earth. 
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Supplementary Information 
 
Suppl Table 1: Aqueous chemistry of experimental solutions at 80oC in the presence of Ca-oxalate 

Table 1: Temperature and pH of oxalate experiments 
  [Oxalate] 0.11 mM 

Day T (oC) -MS +MS 
pH pH 

0 25 2.5 2.5 
1 83 3.3 3.3 
2 79 3.2 3.2 
3 80 3.0 3.1 
4 80 3.3 3.0 
5 80 3.0 2.8 
6 80 2.8 2.7 

11 80 2.8 2.7 
15 80 1.7 1.8 
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Table 2:  80oC Aqueous Data Oxalate Experiments 

Day 
0.1 mM 

-Microbial Surrogates +Microbial Surrogates 
Al Fe Si Al Fe Si 

0 
      1 4.9E-2 2.0E+1 6.8E+0 8.6E-2 2.0E+1 6.7E+0 

2 7.6E-2 2.0E+1 6.9E+0 1.1E-1 2.0E+1 7.3E+0 
3 1.1E-1 2.1E+1 7.4E+0 2.1E-1 2.0E+1 7.3E+0 
4 1.5E-1 1.9E+1 7.0E+0 2.4E-1 2.0E+1 7.7E+0 
5 2.1E-1 1.8E+1 7.4E+0 4.1E-1 2.0E+1 7.8E+0 
6 2.8E-1 1.8E+1 7.3E+0 5.2E-1 2.0E+1 7.8E+0 
7 

      11 8.3E-1 1.7E+1 7.7E+0 1.2E+0 1.82E+1 8.2E+0 
15 1.4E+0 1.5E+1 7.8E+0 1.8E+0 1.68E+1 7.9E+0 

Day 
0 mM 

-Microbial Surrogates +Microbial Surrogates 
Al Fe Si Al Fe Si 

0 
      1 7.2E-2 2.0E+1 6.9E+0 8.6E-2 2.0E+1 6.7E+0 

2 1.4E-1 2.1E+1 7.2E+0 1.1E-1 2.0E+1 7.3E+0 
3 1.5E-1 1.8E+1 6.5E+0 2.1E-1 2.0E+1 7.3E+0 
4 3.8E-1 2.0E+1 7.4E+0 2.4E-1 2.0E+1 7.7E+0 
5 3.3E-1 2.0E+1 7.9E+0 4.1E-1 2.0E+1 7.8E+0 
6 4.0E-1 1.8E+1 7.4E+0 5.2E-1 2.0E+1 7.8E+0 
7 

      11 9.4E-1 1.8E+1 7.9E+0 1.2E+0 1.8E+1 8.2E+0 
15 1.4E+0 1.6E+1 7.8E+0 1.8E+0 1.7E+1 7.9E+0 
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Suppl. Figure 3: XRD spectra of 80oC experiments to which Ca-Oxalate was added, shows primarily Fe-
oxide/-oxyhydroxide formation.  When microbial surrogates are present, precipitated ferrihydrite converts 
to goethite.  The presence of oxalate (0.1 mM) in solution may inhibit clay mineral formation because the 
pKa2 oxalic acid=4.27 which is outside our experimental pH range and therefore, it may not effectively 
complex Al in solution. 

 
Suppl. Figure 4: Low magnification TEM images of 80oC experiments to which Ca-Oxalate and 
microbial surrogates were added shows the formation of (A) goethite and (B) amorphous silica spherules.  
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Chapter 5.  Conclusions and Implications 
 
Previous research has focused on circum-neutral pH hydrothermal systems in order to guide our 

understanding of microbial processes on early Earth because the geochemistry of these systems facilitates 

exceptional preservation of microbial structures (Kandianis et al., 2008; Phoenix and Konhauser, 2008). 

These previous studies have indicated that microorganisms have played a role in the alteration  of Earth’s 

environments, since the evolution of microbial life on Earth (t>3.0 Ga; Wacey, 2012) and have helped 

develop the parameters by which we look for life on other planets.  

Microbially enhanced dissolution and element cycling 
Because acid-sulfate systems have been largely ignored, this study may essentially be considered a 

reconnaissance study of the influences of microbial and chemical weathering processes in acid-sulfate 

systems. My results from field colonization experiments indicate microorganisms do more than simply 

live in these extreme environments, they also modify them by similar means to what has been observed in 

neutral-chloride hydrothermal systems. In these systems, microbially-induced dissolution of phosphate-

doped anorthoclase is enhanced by an order of magnitude relative to abiotic rates. Similar trends were not 

detected for amphibole and pyroxene, indicating dissolution is dependent on nutrient limitation within the 

community. In sum, these results demonstrate that quantifying microbially-induced dissolution has 

important ramifications for major and trace element cycling in acid-sulfate systems. 

Rates calculated for anorthoclase weathering represent initial dissolution rates (t=24 h; 2 mo) and no 

long-term studies were performed. While initial microbial colonization of the surface, including biofilm 

production that covers mineral surfaces, enhances short-term weathering and dissolution rates, this does 

not mean long-term weathering will be enhanced in microbial systems (e.g. Welch et al., 1999). Long-

term weathering and mineral dissolution rates are governed by geochemical controls including: pH, 

mineralogy, and the types of organic functional groups present. The combination of these processes may 

either enhance or retard long-term dissolution and major and trace element mobilization in hydrothermal 

systems (Banfield et al., 1999). For example, in a year-long study by Templeton et al (2009), basalt 
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dissolution in neutral-chloride hydrothermal waters at the Loihi seamount was minimal. No such 

complimentary research has been done in acid-sulfate hydrothermal systems. Therefore, it remains 

unclear what long-term impact microorganisms have on mineral dissolution in acid-sulfate springs. 

Phosphate-limitation in microbial communities 
Microorganisms in Las Pailas enhance mineral dissolution to overcome phosphate limitation, in much the 

same way as microorganisms mine minerals to overcome nutrient limitation in low temperature systems 

(Roberts, 2004). Analysis of element partitioning in Las Pailas further indicates that while dissolved  

phosphate is low (bdl-0.03 mM; Chapter 2), abundant phosphate is present in Las Pailas sediments, with 

the highest concentrations (bdl-120 mg kg-1) observed to weakly adsorbed in the exchangeable fraction 

(Appendix A). These results suggest a holistic approach is required to define nutrient limitation within 

microbial communities, as P may be present within the sediment where it may be “mined” by 

microorganisms.  Understanding the total available P-concentration has important ramifications for 

interpreting microbial endemism, which has been linked to P-limitation (Souza et al., 2008). Microbial 

community shifts in response to P-limitations may simply measure community shifts toward 

microorganisms that are better adapted to acquire mineral-bound phosphate. If so, it is possible that there 

are specific genes that govern which microorganisms are best adapted to low phosphate conditions or to 

solubilizing phosphate bound within the sediment.  Alternatively, additional research may indicate the 

development of microbial endemism is related to something other than the apparent P-limitations 

measured. Understanding what constitutes P-limitation in microbial communities is particularly important 

within astrobiological contexts. As we search for life on other planets, we must first understand the 

requirements for life on Earth. Failure to fully capture the resources available to microbial communities 

may potentially mislead our interpretations regarding the “habitability of other worlds.” 

Microbial trace element cycling and ore formation 
Because apatite present in apatite-bearing anorthoclase occurred in association with Fe-oxide inclusions, 

the acquisition of P/Fe from these minerals by microorganisms could have important ramifications for the 

liberation of other metals into solution, as many trace metals typically adsorb to Fe-oxides, including Fe, 
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Cu, Ni, among others. These metals, in low concentrations, may be micronutrients for microorganisms 

and therefore have established nutritional requirements (Chapter 3, Table 4). However, as the research in 

Chapter 3 demonstrates, Las Pailas spring sediments contain toxic concentrations of these metals. 

Therefore, any microbially-induced dissolution of the sediments to obtain phosphate may also liberate 

toxic metals into solution. In examining Las Pailas sequential extraction data, we found that 

microorganisms sequester these toxic trace metals within the organic fraction of the sediments through 

adsorption of the metals to cellular surfaces, Fe-oxides within the biofilm, and possibly to the biofilm 

itself. I postulate that this occurred as a result of internal regulation of biofilm pH, however, we were 

unable to directly establish this based on the bulk samples we examined. In order to test the establishment 

of pH microenvironments within the biofilms present, which could positively influence adsorption of 

trace metals to Fe-oxides and cellular surfaces, we would need to use pH microelectrodes to record 

internal in situ biofilm pH.  We could also more systematically examine the structure of the biofilm by 

doing biofilm extractions to identify the organic compounds present and their ability to chelate metals to 

determine how much and what type of trace metals may actually be bound to organic acids within these 

biofilms. 

Even without this knowledge, I showed that microorganisms form shallow epithermal Au-Ag deposits. 

Though their limited extent makes them relatively uneconomic, microbially-induced ore formation at the 

surface is linked to deeper hydrothermal circulation and may act as an indicator of active epithermal ore 

deposition at depth. Because microbially-induced ore formation appears to occur in hydrothermal systems 

regardless of pH, I hypothesize trace metal sequestration and associated ore formation may be a common 

biogeochemical process which would be observed in the rock record. Some Cenozoic epithermal ore 

deposits display variations in carbon isotopes that may be indicative of microbial processes and the 

association between biomarkers and ore deposition in the MacArthur River H-Y-C sedex deposit also 

suggest microorganisms play an intimate role in ore formation. Together these studies suggest that 

microorganisms may be involved in low temperature (<121oC, Kashefi and Lovely, 2001) ore formation, 
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regardless of ore deposit type. In order to establish whether microorganisms are intimately related to 

shallow ore deposition throughout geologic time, a systematic survey of low temperature ore deposits for 

indicators of microbial processes would be required. More broadly, these findings suggest that microbial 

processes may be distinguishable in the rock record even when exceptional preservation of microbial 

morphologies is absent.  

Clay mineral formation is abiotic 
Not all weathering processes occurring in Las Pailas springs system are microbially-influenced. While 

microorganisms aid in silicification and the formation of Fe-oxides in neutral-chloride hydrothermal 

systems (Phoenix and Konhauser, 2003; Lalonde et al., 2005; Yee et al., 2003; Konhauser et al., 2004), 

bulk mineral formation in acid-sulfate hydrothermal systems appears to be governed by abiotic processes. 

PhreeqC modeling of the hydrothermal solution in PDA I indicates nontronite and kaolinite should form 

authigenically within the spring and experimental work conducted supports these models. Clay minerals, 

including mixed-layer smectites, nontronite, and kaolinite, form in our model hydrothermal solutions 

within 7 days, which is geologically instantaneous. In these high (80oC) temperature conditions, clay 

minerals form regardless of the presence or absence of microorganisms. In low temperature (25oC) 

experiments, microorganisms aid in initial critical nuclei formation, however, even low concentrations of 

fluoride (0.1 mM) increase the degree of crystallinity in low temperature experiments, resulting in 

detectable nontronite peaks within 17 days.  These results are particularly important because they suggest 

that while the presence of clay minerals in sediment may indicate the liquid water was present in the past, 

these clays may have formed under a variety of geochemical conditions. Therefore we cannot extrapolate 

from mineralogy to past environmental conditions without additional supporting evidence. In the case of 

Mars, additional atmospheric and sediment geochemical data, and understanding of modern weathering 

on the surface will be required in order to determine the environmental conditions which produced 

nontronite and kaolinite during the Noachian. 
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Hot spring clay formation is dependent on sulfate 
Clay minerals rapidly form from acid-sulfate solutions in almost all cases and previous descriptions of 

epithermal ore bodies note the development of dominant clay mineralogy as an indicator of high-

sulfidation type deposits (White and Poizat, 1995; White and Hedenquist, 1995). Low-sulfidation 

deposits, in contrast, have been linked to silicification (White and Poizat, 1995; White and Hedenquist, 

1995). This raised the question of whether the presence of the sulfate ion in solution is a controlling factor 

in clay formation. While sulfate is not the strongest complexing ligand in solution, sulfate complexed 

more Al and Fe than F- because of its concentration in solution (Appendix B). To determine whether 

sulfate plays a role in clay mineral precipitation, I repeated these experiments with chloride substituted for 

sulfate in solution. These data are presented in Appendix B.  

Chloride, like fluoride, is a halogen group element and should behave similarly in solution. In addition 

chloride is more common in natural waters (19,000 mg kg-1 mean seawater; 5.8 mg kg-1mean river water) 

than fluoride (1.3 mg kg-1 mean seawater; 0.10 mg kg-1 mean river water; Schlesinger, 1997). XRD 

results indicate after 7 days, clay minerals form abiotically, regardless of the presence or absence of 

additional fluoride in solution (Appendix B, Figures 1-4). Moreover, clays produced in acid-chloride 

waters are more crystalline than their acid-sulfate counterparts. These data suggest chloride, like fluoride, 

may facilitate the organization of early proto-clays. Evidence of this process in natural systems would be 

based on (1) evolution of chloride from the clay structure (Chipera and Bish., 2002), (2) NMR  analyses 

of chloride within the clay mineral (Labouriau et al., 1995).  

Initial visual comparison of samples collected from low temperature (25oC) chloride and sulfate 

experiments appears to indicate that while acid-sulfate precipitates are less crystalline, they are more 

abundant. I allowed low temperature chloride and sulfate experiments to run for ~2 years to evaluate the 

long-term crystallization of clay minerals from these solutions and to determine whether the total weight 

of clays produced from solution are equivalent. These samples are presently being dried in order to weigh 

them and examine them with XRD for mineralogical changes.  
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I anticipate the total amount of clays produced from the acid-sulfate solutions will be greater than those 

produced from acid-chloride solutions. While clays form in neutral-chloride solutions, the mineralogy is 

dominated by siliceous sinters. Kyle and Schroeder (2007) showed that precipitation of smectites in 

neutral-chloride hot springs precedes the onset of sinter formation. They argued sinter formation occurred 

as a result of alteration of feldspar to clay, which should raise pH and increase the silica concentration in 

solution. My results, however, indicate that interactions between the anions in solution and aluminum 

may influence the formation of clay minerals. If this is true, then neutral-chloride and acid-sulfate spring 

mineralogy reflect not the total water flux through springs (Ehlmann et al., 2011), nor strictly the 

influence of microorganisms (Konhauser and Urrutia, 1999). Instead the types of anions in solution may 

how much clay precipitates.  

A better understanding of the geochemical factors influencing abiotic authigenic clay formation may be 

the most important result gleaned from this dissertation, simply because so little is known about clay 

formation, despite its broad treatment in the literature. The presence of abundant clays on Mars has raised 

interesting questions about the nature and evolution of the Martian surface and Mars’ hydrologic cycle. 

The mineralogical and geomorphological diversity present on the Martian surface indicates that both 

acidic and circum-neutral pH waters were present in some context, though the total water content and 

composition on Mars remains unclear. Ehlmann and Edwards (2014) indicated the next great frontier in 

Mars research is a solid understanding of the potential anions present in waters on Mars. Currently, the 

sulfate concentration in Martian soils (1-1.7 wt.% ; 980-1,700 mM; Smith et al., 2014)  is several orders 

of magnitude greater than the total sulfate in our springs (38 mM) and the ocean (84 mM; Schlesinger, 

1997). If sulfate is intimately related to clay formation, then the voluminous clays present on Mars’ 

surface may be related to the activity of the sulfate ion when liquid water was present on Mars. The 

current MAVEN mission may shed light on the evolution of Mars’ atmosphere and therefore its 

hydrologic cycle. This treatment of clay mineral formation, may therefore, provide important clues to 

understanding the evolution of Mars brines. 
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Conclusion 
Taken together, the data presented in this dissertation provide a broad geochemical overview of acid-

sulfate hydrothermal systems and the contributions of chemical and microbial aluminosilicate mineral 

weathering in these systems. These data indicate exceptional preservation is not the only indication of 

microbial processes and that trace metal cycling may be used as an indicator of microbial processes 

throughout geologic time, regardless of system pH. Moreover, microorganisms may play a key role in 

low temperature ore formation throughout geologic time. 

While microbial processes are important in acid-sulfate hydrothermal systems, clay mineral formation is 

driven by abiotic processes and may be linked to the activity of the sulfate ion in solution. Fluoride, 

which is often incorporated into clay minerals, aids in rapid nucleation of clay minerals and increases 

their degree of crystallinity. Chloride may play a similar role to fluoride, however, even when present in 

solution, it may result in less clay formation than sulfate. Therefore, abiotic clay formation may be 

dependent on the anion chemistry in solution and these data have important ramifications for our 

understanding of clay mineral formation on Mars. 
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Appendix A: Elemental Distribution in Las Pailas Hot Spring Sediments 

Major Element Distribution in Las Pailas Sediments 
 

Major Elements (weight percent by fraction) 
Exchangeable Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 
Standard 1.1E+00 1.1E+01 6.5E-01 bdl 7.5E-01 1.0E-01 bdl bdl 
Yellowstone Paint 
Pots 

1.4E-04 1.2E-03 3.2E-05 4.3E+01 bdl bdl bdl bdl 

Laguna 
Fumarolica 

1.5E-04 3.9E-04 3.4E-03 5.2E+01 bdl bdl 2.4E-03 bdl 

Poza de Hongo  2.8E-03 bdl 1.6E-03 saturated 9.4E-03 bdl 4.4E-03 bdl 
Pailas de Agua II         
RVCR4-09 1.6E-02 1.1E-03 1.4E-02 bdl bdl bdl 3.3E-03 bdl 
RVCR8-09 2.3E+00 2.9E-01 2.3E+01 4.1E+01 2.5E-02 bdl 7.0E-01 bdl 
RVCR12-09 2.1E+00 6.6E-02 2.0E+00 bdl 5.6E-02 1.1E-03 1.4E+00 5.3E-02 
RVCR13-09 2.8E-02 2.5E-02 1.8E-02 saturated 1.1E-03 bdl 8.4E-03 bdl 
RVCR14-09 2.0E-03 3.0E-04 1.4E-03 7.3E+01 bdl bdl 2.0E-03 bdl 
RVCR65-09 1.0E+01 3.0E-01 6.1E+00 3.2E-01 5.3E-01 1.7E-02 6.0E-01 bdl 
Pailas de Agua I         
RVCR1-09  1.5E-05 bdl bdl 1.1E+02 bdl bdl 2.1E-03 bdl 
RVCR9-09 2.6E+00 2.7E-02 2.3E+00 bdl 8.0E-02 3.1E-03 bdl 3.3E-02 
RVCR17g-09 1.6E+01 1.1E+00 1.2E+01 7.2E-02 6.5E-01 3.7E-02 5.0E-02 1.0E-01 
RVCR17r-09 2.9E-01 4.9E-02 9.4E-01 bdl 3.6E-02 2.2E-03 1.1E-01 1.1E-01 
RVCR17b-09 1.1E-01 2.5E-02 1.7E+00 bdl 4.7E-02 1.9E-03 1.3E+00 2.6E-02 
Pailas de Barro         
RVCR6-09 4.4E-03 bdl 1.1E-04 saturated 3.3E-03 bdl 2.9E-03 bdl 
RVCR7-09 9.4E-02 2.1E-01 bdl bdl 5.0E-02 2.1E-04 1.3E+00 2.0E-02 
RVCR23-09 1.4E-03 9.2E-03 4.7E-05 8.0E+01 bdl bdl 2.3E-03 bdl 
Hornillas bdl bdl bdl 6.4E+01 bdl bdl bdl bdl 
 
*bdl=below detection limits 
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Major Elements (weight percent by fraction) 

Carbonate  Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 
Standard 3.3E-01 1.1E-01 6.2E-02 bdl bdl bdl 1.0E-02 bdl 
Yellowstone Paint 
Pots 

1.5E-02 bdl 1.7E-03 bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

2.1E-02 8.4E-03 2.2E-01 bdl bdl bdl 1.4E-03 2.9E+00 

Poza de Hongo  2.2E-01 4.0E-02 1.5E-01 bdl bdl bdl bdl bdl 
Pailas de Agua II         
RVCR4-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR8-09 3.9E-01 3.0E-03 1.4E+00 bdl bdl bdl bdl bdl 
RVCR12-09 3.4E-01 5.7E-03 1.5E-01 bdl bdl 1.8E-04 bdl bdl 
RVCR13-09 5.1E-01 3.4E-02 3.6E-01 bdl bdl bdl 1.3E-02 bdl 
RVCR14-09 5.3E-01 8.8E-03 3.3E-01 bdl bdl bdl bdl bdl 
RVCR65-09 1.2E+00 1.8E-02 3.8E-01 5.9E-03 3.1E-03 3.3E-04 9.9E-01 bdl 
Pailas de Agua I         
RVCR1-09 2.3E-02 3.2E-03 bdl bdl bdl bdl 3.1E-02 bdl 
RVCR9-09 3.3E-01 1.9E-03 3.6E-01 bdl bdl 3.2E-04 1.4E-02 bdl 
RVCR17g-09 1.3E+00 2.6E-02 4.1E-01 bdl 4.2E-03 5.6E-04 2.4E-02 3.5E-02 
RVCR17r-09 2.9E-01 4.9E-02 9.4E-01 bdl 3.6E-02 2.2E-03 1.1E-01 1.1E-01 
RVCR17b-09 1.8E-01 1.2E-02 3.4E-01 bdl bdl 2.9E-04 1.4E-02 bdl 
Pailas de Barro         
RVCR6-09 2.5E-01 1.2E-02 3.2E-02 bdl bdl bdl bdl bdl 
RVCR7-09 6.6E-02 2.3E-02 2.6E-02 bdl 2.1E-03 2.6E-04 1.3E-02 bdl 
RVCR23-09 1.1E+01 5.1E-03 1.5E-02 bdl bdl bdl 8.5E-03 bdl 
Hornillas 7.6E-02 3.6E-03 4.2E-02 bdl bdl bdl 4.9E-03 2.0E+00 
*bdl=below detection limits  
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Major Elements (weight percent by fraction) 
Oxide Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 
Standard 1.9E+00 8.3E-01 2.6E+00 bdl 4.0E-01 bdl 1.7E-01 bdl 
Yellowstone Paint 
Pots 

4.9E-01 6.3E-02 3.5E-01 bdl bdl bdl 6.1E-02 bdl 

Laguna Fumarolica Bdl bdl 1.9E+01 bdl bdl bdl bdl bdl 
Poza de Hongo  3.6E+00 3.9E-01 2.2E+00 bdl 1.6E-01 bdl 1.1E-01 bdl 
Pailas de Agua II         
RVCR4-09 5.6E-01 2.8E-02 1.2E+01 bdl bdl bdl 8.1E-02 bdl 
RVCR8-09 1.7E-01 4.7E-02 3.9E+00 bdl bdl bdl 1.3E-01 bdl 
RVCR12-09 2.6E+00 bdl 2.9E+01 6.5E-01 bdl 1.7E-02 6.7E-02 2.8E-01 
RVCR13-09 6.8E-01 6.0E-02 4.0E+00 bdl bdl bdl 7.3E-02 bdl 
RVCR14-09 1.1E+00 6.0E-02 1.3E+01 3.3E-01 bdl bdl 2.8E-01 bdl 
RVCR65-09 2.2E-01 7.7E-03 2.0E-01 6.2E-04 7.1E-03 3.8E-04 1.9E-01 5.1E-02 
Pailas de Agua I         
RVCR1-09 1.2E+00 1.9E-02 2.3E+00 bdl bdl bdl 6.8E-02 6.9E-01 
RVCR9-09 5.3E-01 bdl 1.3E+00 4.6E-02 4.1E-03 8.4E-04 bdl 3.9E-02 
RVCR17g-09 2.0E+00 2.0E-02 1.2E+00 1.5E-02 1.3E-02 2.0E-03 1.6E-01 4.8E-02 
RVCR17r-09 1.8E+00 bdl 6.8E+00 3.4E-02 8.9E-03 4.9E-03 bdl 5.3E-02 
RVCR17b-09 5.7E-01 2.3E-02 4.0E+00 8.5E-03 2.6E-03 2.3E-03 bdl 3.4E-02 
Pailas de Barro         
RVCR6-09 Bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 4.1E+00 2.9E-01 1.6E+01 1.8E-03 1.3E-01 3.0E-02 8.9E+00 4.1E+00 
RVCR23-09 9.4E-01 7.4E-02 5.0E+00 bdl bdl bdl 9.2E-02 bdl 
Hornillas 1.0E+00 6.2E-02 4.3E+00 bdl bdl bdl 2.0E-01 bdl 
*bdl=below detection limits  
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Major Elements (weight percent by fraction) 

Organic Fraction Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 

Standard 1.5E-03 2.3E-03 2.7E-04 bdl bdl bdl 1.1E-03 3.0E-02 
Yellowstone Paint 
Pots 

Bdl bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

1.6E-04 6.5E-04 bdl bdl bdl bdl 4.1E-04 9.9E-02 

Poza de Hongo  Bdl bdl bdl bdl bdl bdl bdl 7.1E-04 
Pailas de Agua II         
RVCR4-09 4.9E-04 4.1E-04 7.6E-04 bdl bdl bdl 2.7E-04 5.5E-02 
RVCR8-09 1.2E-04 6.9E-04 bdl bdl bdl bdl 3.4E-04 9.4E-03 
RVCR12-09 1.6E-01 9.1E-03 7.8E-02 bdl 1.1E-03 bdl bdl 2.9E-01 
RVCR13-09 2.3E-04 bdl 9.6E-04 bdl bdl bdl 7.4E-05 1.9E-02 
RVCR14-09 4.2E-04 3.8E-04 bdl bdl bdl bdl 3.7E-04 2.9E-02 
RVCR65-09 Bdl bdl 1.2E-02 bdl bdl bdl bdl bdl 
Pailas de Agua I         
RVCR1-09 8.1E-04 1.7E-04 bdl bdl bdl bdl 4.9E-04 1.5E-02 
RVCR9-09 1.4E-01 2.6E-02 3.1E+01 bdl bdl 2.1E-02 bdl 2.7E-01 
RVCR17g-09 4.1E-01 7.1E-02 9.9E-01 bdl 5.8E-03 bdl bdl 7.5E-01 
RVCR17r-09 4.5E-01 9.2E-02 1.9E+00 bdl 4.1E-03 3.0E-04 bdl 3.0E-01 
RVCR17b-09 1.1E-01 7.7E-02 1.8E+00 bdl 1.6E-03 3.0E-04 bdl 2.7E-01 
Pailas de Barro         
RVCR6-09 3.3E-04 2.2E-04 bdl bdl bdl bdl bdl 8.5E-03 
RVCR7-09 5.5E-01 1.2E-01 2.4E-01 7.9E-03 5.6E-03 3.1E-04 1.7E-02 5.0E-01 
RVCR23-09 1.0E-01 2.0E-02 9.3E-02 6.4E-02 8.8E-04 bdl 1.0E-01 2.4E+00 
Hornillas 1.7E-03 9.4E-04 bdl bdl bdl bdl 2.4E-04 1.0E-01 
*bdl=below detection limits 
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Major Elements (weight percent by fraction) 

Residual Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 
Standard sample lost 
Yellowstone Paint 
Pots 

1.3E-01 5.9E+00 bdl 1.3E-03 2.2E-04 2.1E-05 1.5E-03 1.9E-04 

Laguna Fumarolica 6.5E-03 2.6E+00 7.9E-02 7.6E-04 1.4E-05 4.2E-05 1.5E-04 3.1E-04 
Poza de Hongo  2.2E-01 6.8E+01 1.9E-02 3.3E-03 6.5E-03 1.2E-04 2.7E-03 7.3E-04 
Pailas de Agua II         
RVCR4-09 4.1E-02 9.8E+00 8.6E-02 3.5E-03 3.3E-04 6.5E-05 1.8E-03 2.3E-04 
RVCR8-09 sample lost 
RVCR12-09 1.3E-01 2.5E+01 1.1E-01 7.6E-03 5.9E-04 7.2E-05 2.6E-03 1.0E-03 
RVCR13-09 8.7E-02 2.4E+01 3.9E-02 1.1E-02 9.2E-04 4.9E-05 4.4E-03 bdl 
RVCR14-09 9.9E-02 2.3E+01 2.7E-02 5.5E-03 5.3E-04 3.0E-05 2.2E-03 5.9E-04 
RVCR65-09 2.3E-04 6.5E+00 1.4E-05 3.0E-05 1.7E-05 bdl 6.2E-04 bdl 
Pailas de Agua I         
RVCR1-09 6.2E-02 2.8E+01 2.4E-03 8.8E-03 3.3E-04 1.5E-05 3.5E-03 2.1E-04 
RVCR9-09 5.7E-02 4.3E+01 3.8E-02 8.5E-03 1.0E-03 7.8E-05 4.3E-03 bdl 
RVCR17g-09 2.0E-01 3.2E+01 5.5E-03 6.2E-03 1.7E-03 4.0E-05 3.3E-03 8.8E-04 
RVCR17r-09 2.0E-01 2.5E+01 8.2E-02 1.3E-02 1.0E-03 1.1E-04 7.1E-03 9.8E-04 
RVCR17b-09 1.5E-02 6.4E-01 2.7E-03 5.3E-04 1.3E-04 bdl 2.8E-04 bdl 
Pailas de Barro         
RVCR6-09 2.6E-01 3.4E+01 7.2E-03 4.0E-03 6.5E-04 2.1E-05 2.5E-03 1.2E-04 
RVCR7-09 8.5E-02 4.9E+00 bdl 2.4E-03 3.1E-04 bdl 1.6E-03 3.6E-04 
RVCR23-09 2.7E-01 2.7E+01 5.7E-03 4.2E-03 7.0E-04 2.0E-05 2.6E-03 9.8E-04 
Hornillas 9.2E-02 3.1E+00 3.8E-03 6.9E-04 2.9E-04 1.0E-05 5.2E-04 2.4E-04 
*bdl=below detection limits 
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Exchangeable Fraction Distribution in Las Pailas Sediments 
 

Trace Metals  
Exchangeable Ag As Au Ba Be Cd Co Cr 
Standard 1.4E+00 3.4E-01 bdl bdl 7.0E-02 1.7E+00 7.3E-01 1.7E-01 
Yellowstone Paint 
Pots 

Bdl bdl bdl 6.4E-03 bdl bdl bdl 4.5E-02 

Laguna Fumarolica 4.4E-02 bdl bdl 2.2E-02 bdl 1.8E-03 bdl 2.4E-02 
Poza de Hongo  Bdl bdl bdl 4.4E-01 bdl 1.7E-03 bdl 2.3E-02 
Pailas de Agua II         
RVCR4-09 Bdl bdl bdl 1.2E-02 bdl 2.7E-03 3.6E-03 5.1E-02 
RVCR8-09 Bdl bdl bdl 2.1E-01 4.5E-03 3.1E-02 1.9E-02 2.1E-01 
RVCR12-09 Bdl bdl bdl bdl 4.2E-03 bdl 5.7E-03 bdl 
RVCR13-09 Bdl bdl bdl 1.0E-01 7.0E-05 1.1E-03 7.6E-03 4.5E-02 
RVCR14-09 Bdl bdl bdl bdl bdl bdl 1.0E-03 1.9E-02 
RVCR65-09 Bdl bdl bdl bdl 1.4E-03 bdl 1.6E-02 4.3E-02 
Pailas de Agua I         
RVCR1-09 Bdl bdl bdl 5.9E-04 bdl 5.0E-04 bdl 2.1E-02 
RVCR9-09 Bdl bdl bdl bdl 7.9E-04 bdl 7.4E-02 6.0E-04 
RVCR17g-09 Bdl bdl bdl bdl 8.2E-03 1.1E-02 8.3E-02 9.3E-02 
RVCR17r-09 Bdl bdl bdl bdl bdl bdl 1.5E-02 bdl 
RVCR17b-09 Bdl bdl bdl bdl 1.9E-03 bdl 4.4E-02 bdl 
Pailas de Barro         
RVCR6-09 Bdl bdl bdl bdl bdl 1.6E-03 1.3E-02 2.8E-02 
RVCR7-09 Bdl bdl bdl bdl 7.3E-04 bdl 1.5E-03 bdl 
RVCR23-09 Bdl bdl bdl 6.8E-03 bdl 1.9E-03 bdl 2.0E-02 
Hornillas Bdl 3.2E-03 bdl bdl bdl bdl bdl bdl 
values reported in mg/l 
*bdl=below detection limits  
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Trace Metals 

Exchangeable Cu Li Mo Ni P Pb S Sb 
Standard Bdl bdl bdl 9.8E-01 1.9E+01 3.9E-02 bdl bdl 
Yellowstone Paint 
Pots 

Bdl bdl bdl bdl 1.8E+01 bdl 5.9E+00 bdl 

Laguna Fumarolica Bdl bdl bdl bdl 2.0E+01 bdl 5.2E+01 bdl 
Poza de Hongo  Bdl bdl bdl bdl 2.6E+01 bdl 5.3E+00 bdl 
Pailas de Agua II         
RVCR4-09 Bdl bdl bdl bdl 3.3E+01 bdl 1.0E+02 bdl 
RVCR8-09 Bdl bdl bdl bdl 2.3E+01 bdl 2.3E+02 bdl 
RVCR12-09 3.5E-02 bdl bdl bdl 1.2E+02 bdl 1.1E+02 bdl 
RVCR13-09 Bdl bdl bdl bdl 2.7E+01 bdl 1.2E+02 bdl 
RVCR14-09 Bdl bdl bdl bdl 1.9E+01 bdl 5.2E+01 bdl 
RVCR65-09 6.9E-03 4.2E+00 bdl 2.6E-03 9.5E+01 bdl 3.7E+02 bdl 
Pailas de Agua I         
RVCR1-09 Bdl bdl bdl bdl 2.0E+01 bdl 1.3E+01 bdl 
RVCR9-09 9.4E-02 2.5E-02 bdl 2.7E-02 1.0E+02 bdl 7.7E+01 bdl 
RVCR17g-09 1.7E-01 bdl bdl 3.8E-02 9.8E+01 bdl 5.6E+02 5.4E-03 
RVCR17r-09 Bdl 4.4E+00 bdl 2.3E-03 8.9E+01 bdl bdl bdl 
RVCR17b-09 3.7E-02 9.5E-03 bdl 3.6E-03 1.2E+02 bdl 3.9E+01 bdl 
Pailas de Barro         
RVCR6-09 Bdl bdl bdl bdl 2.6E+01 bdl 7.1E+01 bdl 
RVCR7-09 4.4E-02 2.4E-02 bdl bdl 1.2E+02 bdl 8.6E+00 bdl 
RVCR23-09 Bdl bdl bdl bdl 1.8E+01 bdl 5.2E+00 bdl 
Hornillas Bdl bdl bdl bdl bdl bdl bdl bdl 
values reported in mg/l 
*bdl=below detection limits 
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Trace Metals 

Exchangeable Se Sr Ti Tl V Zn 
Standard bdl 5.8E-01 bdl bdl bdl 1.6E+00 
Yellowstone Paint 
Pots 

bdl bdl bdl bdl bdl bdl 

Laguna Fumarolica bdl bdl bdl bdl bdl bdl 
Poza de Hongo  bdl 2.2E-01 bdl bdl bdl 8.5E-01 
Pailas de Agua II       
RVCR4-09 bdl bdl bdl bdl bdl 9.1E-02 
RVCR8-09 bdl bdl 6.4E-01 bdl bdl bdl 
RVCR12-09 bdl 1.9E-01 1.8E-02 bdl 7.5E-02 bdl 
RVCR13-09 bdl 2.0E-02 bdl bdl bdl 9.2E-02 
RVCR14-09 bdl bdl bdl bdl bdl bdl 
RVCR65-09 bdl 6.3E+00 1.4E-01 bdl 1.5E-01 bdl 
Pailas de Agua I       
RVCR1-09 bdl bdl bdl bdl bdl bdl 
RVCR9-09 1.5E-02 1.3E-01 3.0E-02 bdl 4.2E-02 2.6E-02 
RVCR17g-09 bdl 1.5E+00 8.3E-02 bdl 4.6E-01 8.4E-02 
RVCR17r-09 3.6E-04 1.0E-01 4.4E-02 bdl bdl bdl 
RVCR17b-09 bdl 7.5E-02 1.6E-02 bdl 2.8E-02 3.6E-02 
Pailas de Barro       
RVCR6-09 bdl bdl bdl bdl bdl 5.8E-01 
RVCR7-09 2.7E-02 6.4E-02 1.2E-02 bdl bdl 1.6E-02 
RVCR23-09 bdl bdl bdl bdl bdl bdl 
Hornillas bdl bdl bdl bdl bdl bdl 
values reported in mg/l 
*bdl=below detection limits  
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Carbonate Fraction Distribution in Las Pailas Sediments 
 

Trace Metals 
Carbonate Ag As Au Ba B Be Cd Co 
Standard 2.6E-01 8.2E-01 bdl 6.8E-01 bdl 3.7E-01 1.7E-01 2.4E-01 
Yellowstone 
Paint Pots 

Bdl bdl bdl 2.0E-03 bdl 6.1E-04 5.7E-04 bdl 

Laguna 
Fumarolica 

Bdl bdl bdl 1.1E-02 bdl 8.9E-04 2.2E-03 7.6E-03 

Poza de 
Hongo  

Bdl bdl bdl 4.0E-02 bdl 1.2E-03 1.6E-03 4.2E-03 

Pailas de Agua II 

RVCR4-09 Bdl 1.7E-03 bdl bdl bdl bdl bdl bdl 
RVCR8-09 Bdl bdl bdl 8.4E-02 bdl 7.3E-04 3.8E-03 9.6E-04 
RVCR12-09 1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 3.4E-04 2.1E-04 1.0E-03 
RVCR13-09 1.4E-03 2.0E-03 bdl 6.5E-02 bdl 7.9E-04 1.1E-03 1.2E-03 
RVCR14-09 Bdl bdl bdl 9.6E-03 1.5E-01 1.1E-03 1.2E-03 1.3E-03 
RVCR65-09 1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 1.0E-04 1.0E-04 1.0E-03 
Pailas de Agua I 
RVCR1-09 Bdl 3.0E-03 0.0E+00 2.1E-03 bdl 8.3E-04 5.9E-04 bdl 
RVCR9-09 1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 1.0E-04 1.0E-04 1.0E-03 
RVCR17g-
09 

1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 1.0E-04 1.0E-04 1.0E-03 

RVCR17r-
09 

1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 1.0E-04 1.0E-04 1.0E-03 

RVCR17b-
09 

1.0E-03 1.0E-02 1.0E-03 1.0E-04 bdl 1.0E-04 1.0E-04 1.0E-03 

Pailas de Barro 
RVCR6-09 bdl 1.1E-03 0.0E+00 1.5E-03 bdl 9.7E-04 5.2E-04 1.1E-02 
RVCR7-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR23-09 1.2E-01 bdl bdl 3.7E-03 bdl 8.1E-04 1.4E-03 bdl 
Hornillas bdl bdl bdl 2.3E-02 bdl 6.5E-04 1.8E-03 bdl 
values reported in mg/l 
*bdl=below detection limits 
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Trace Metals 

Carbonate Cr Cu Li Mo Ni P Pb S 
Standard 4.8E-01 bdl bdl bdl 8.2E-02 2.7E-01 7.2E-02 bdl 
Yellowstone 
Paint Pots 

6.7E-03 bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

2.3E-02 bdl bdl bdl bdl 6.5E-01 bdl bdl 

Poza de 
Hongo  

1.8E-02 bdl bdl bdl bdl bdl bdl bdl 

Pailas de Agua II 
RVCR4-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR8-09 4.0E-02 bdl bdl bdl bdl 2.4E-01 bdl bdl 
RVCR12-09 1.0E-03 1.0E-03 1.0E-04 1.0E-03 1.0E-03 1.0E-02 1.0E-02 2.2E-01 
RVCR13-09 2.7E-02 bdl bdl bdl bdl 8.3E-01 bdl bdl 
RVCR14-09 1.7E-02 bdl bdl bdl bdl bdl bdl 1.4E-01 
RVCR65-09 1.0E-03 1.0E-03 1.0E-04 1.8E-03 1.0E-03 1.5E+01 1.0E-02 1.5E+01 
Pailas de Agua I 
RVCR1-09 9.2E-03 bdl bdl Bdl bdl bdl bdl bdl 
RVCR9-09 1.0E-03 1.0E-03 1.0E-04 1.0E-03 1.0E-03 1.0E-02 1.0E-02 1.0E+00 
RVCR17g-09 1.0E-03 1.0E-03 1.0E-04 1.0E-03 1.0E-03 1.0E-02 1.0E-02 1.5E-01 
RVCR17r-09 1.0E-03 1.0E-03 1.0E-04 1.0E-03 1.0E-03 1.0E-02 1.0E-02 1.0E-02 
RVCR17b-09 1.0E-03 1.6E-02 1.0E-04 2.4E-03 1.0E-03 1.0E-02 1.0E-02 1.2E+01 
Pailas de Barro 
RVCR6-09 7.8E-03 bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 bdl bdl bdl 4.3E-04 bdl bdl bdl 1.6E-01 
RVCR23-09 2.1E-02 bdl bdl bdl bdl 3.1E+00 bdl bdl 
Hornillas 1.9E-02 bdl bdl bdl bdl 1.7E+00 bdl bdl 
values reported in mg/l 
*bdl=below detection limits  
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Trace Metals 
Carbonate Sb Se Sr Ti Tl V Zn 
Standard 2.1E-01 bdl bdl bdl bdl bdl 5.5E-01 
Yellowstone Paint 
Pots 

bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

bdl bdl bdl bdl bdl bdl bdl 

Poza de Hongo  bdl bdl bdl bdl bdl bdl bdl 
Pailas de Agua II        
RVCR4-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR8-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR12-09 1.0E-02 1.3E-02 1.0E-04 8.8E-04 1.0E-02 4.6E-03 1.0E-03 
RVCR13-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR14-09 bdl bdl bdl 4.4E-03 bdl 3.3E-03 bdl 
RVCR65-09 1.0E-02 1.7E-02 4.9E-03 7.5E-03 1.0E-02 6.6E-03 1.0E-03 
Pailas de Agua I        
RVCR1-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR9-09 1.0E-02 1.0E-02 1.0E-04 4.8E-03 1.0E-02 1.0E-03 1.0E-03 
RVCR17g-09 1.0E-02 1.3E-02 2.9E-02 9.5E-03 1.0E-02 4.8E-03 1.0E-03 
RVCR17r-09 1.0E-02 1.0E-02 1.0E-04 1.0E-03 1.0E-02 1.0E-03 1.0E-03 
RVCR17b-09 1.0E-02 1.2E-03 9.5E-02 5.2E-02 1.0E-02 2.9E-02 1.0E-03 
Pailas de Barro        
RVCR6-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 bdl 2.7E-03 2.4E-02 3.3E-03 bdl 2.9E-03 bdl 
RVCR23-09 bdl bdl bdl bdl bdl bdl bdl 
Hornillas bdl bdl bdl bdl bdl bdl bdl 
values reported in mg/l 
*bdl=below detection limits 
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Oxide Fraction Distribution in Las Pailas Sediments 
 

Trace Metals 
Oxide Ag As Au Ba B Be Cd 
Standard bdl 1.4E+00 bdl bdl bdl 2.6E-01 1.3E-01 
Yellowstone Paint Pots 1.9E-02 1.9E-03 bdl bdl bdl bdl 9.7E-04 
Laguna Fumarolica bdl 1.9E-03 bdl bdl bdl bdl bdl 
Poza de Hongo  3.4E-01 bdl bdl 1.9E-01 bdl 7.8E-03 3.7E-03 
Pailas de Agua II        
RVCR4-09 1.2E-02 bdl bdl 1.8E-02 bdl 5.9E-04 2.5E-02 
RVCR8-09 1.7E-03 bdl bdl 1.5E-01 bdl 7.2E-04 7.5E-03 
RVCR13-09 bdl bdl bdl 1.1E-01 bdl 1.5E-03 3.9E-03 
RVCR14-09 bdl bdl bdl 4.3E-02 bdl 5.9E-03 2.5E-02 
RVCR65-09 2.3E-03 bdl 7.0E-03 2.6E-01 bdl 1.6E-03 1.6E-03 
Pailas de Agua I         
RVCR1-09 2.6E-02 3.8E-03 bdl 8.2E-02 bdl 3.0E-04 3.2E-03 
RVCR9-09 bdl 2.0E-03 8.5E-03 1.6E-01 bdl 5.7E-04 2.4E-03 
RVCR12-09 bdl 3.8E-02 bdl bdl bdl 1.3E-02 2.7E-02 
RVCR17g-09 3.2E-03 bdl 1.2E-02 bdl 1.8E-01 1.6E-03 2.0E-03 
RVCR17r-09 bdl bdl bdl bdl bdl 4.9E-03 1.3E-02 
RVCR17b-09 bdl 7.2E-03 bdl bdl bdl 2.7E-03 5.8E-03 
Pailas de Barro        
RVCR6-09 bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 bdl 1.3E-03 bdl bdl bdl bdl bdl 
RVCR23-09 bdl bdl bdl 5.2E-02 bdl 6.7E-03 5.0E-03 
Hornillas 5.7E-04 bdl bdl 1.5E-01 bdl bdl 8.2E-03 
values reported in mg/l 
*bdl=below detection limits 
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Trace Metals 

Oxide Co Cr Cu Li Mo Ni P Pb 
Standard 2.8E-01 8.7E-01 bdl 1.7E-02 bdl 1.8E-01 2.3E+01 6.5E-01 
Yellowstone 
Paint Pots 

bdl 3.5E-02 bdl bdl bdl bdl 2.5E+01 bdl 

Laguna 
Fumarolica 

bdl bdl bdl bdl bdl bdl bdl bdl 

Poza de 
Hongo  

2.7E-02 7.6E-02 bdl bdl bdl bdl 2.7E+01 bdl 

Pailas de Agua II 
RVCR4-09 bdl 1.6E-01 bdl bdl bdl bdl 8.7E+00 bdl 
RVCR8-09 6.7E-04 6.8E-02 bdl bdl bdl bdl bdl bdl 
RVCR13-09 1.6E-03 7.3E-02 bdl bdl bdl bdl 2.4E+01 bdl 
RVCR14-09 3.5E-03 1.8E-01 bdl bdl bdl bdl 2.3E+01 bdl 
RVCR65-09 9.4E-04 2.8E-03 2.4E-03 3.5E-03 bdl 6.3E-04 bdl 2.1E-02 
Pailas de Agua I  
RVCR1-09 bdl 4.7E-02 bdl bdl bdl 0.0E+00 2.6E+01 bdl 
RVCR9-09 3.0E-03 1.1E-02 6.3E-02 bdl bdl 1.8E-03 bdl 2.5E-03 
RVCR12-09 2.7E-03 8.7E-02 6.7E-02 bdl bdl 5.7E-03 4.2E-01 1.1E-02 
RVCR17g-
09 

1.7E-03 1.6E-02 1.1E-01 bdl bdl 4.8E-03 7.7E-01 9.3E-04 

RVCR17r-
09 

3.3E-03 6.4E-02 2.2E-01 bdl bdl 3.8E-03 1.0E+00 1.4E-03 

RVCR17b-
09 

2.7E-03 5.8E-03 5.8E-03 1.0E-02 bdl 1.9E-03 bdl 2.0E-03 

Pailas de Barro 
RVCR6-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR23-09 3.4E-03 8.0E-02 bdl bdl bdl bdl 1.6E+01 bdl 
Hornillas 7.7E-04 8.2E-02 bdl bdl bdl bdl 2.6E+01 bdl 
values reported in mg/l 
*bdl=below detection limits  
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Trace Metals  

Oxide S Sb Se Sr Ti Tl V Zn 
Standard bdl bdl bdl 1.7E-02 bdl bdl bdl 5.7E-01 
Yellowstone 
Paint Pots 

bdl bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

bdl bdl bdl bdl bdl bdl bdl bdl 

Poza de 
Hongo  

6.1E+00 bdl bdl bdl bdl bdl bdl 1.8E-01 

Pailas de Agua II 
RVCR4-09 3.7E+01 bdl bdl bdl bdl bdl bdl bdl 
RVCR8-09 7.0E+00 bdl bdl bdl bdl bdl bdl bdl 
RVCR13-09 4.1E+00 bdl bdl bdl bdl bdl bdl bdl 
RVCR14-09 2.0E+01 bdl bdl bdl bdl bdl bdl bdl 
RVCR65-09 1.9E+00 1.4E-02 2.6E-02 3.6E-02 1.6E-02 6.0E-03 1.8E-02 bdl 
Pailas de Agua I  
RVCR1-09 1.2E+00 bdl bdl bdl bdl bdl bdl bdl 
RVCR9-09 3.8E+00 1.4E-02 bdl 2.1E-01 2.4E-02 1.0E-02 3.8E-02 1.6E-01 
RVCR12-09 9.9E+00 1.6E-02 bdl 1.7E-01 1.9E-02 7.3E-03 1.2E+00 9.1E-02 
RVCR17g-09 4.6E+00 2.3E-02 3.0E-02 1.8E-01 2.1E-02 1.0E-02 2.0E-01 bdl 
RVCR17r-09 8.9E-01 1.2E-02 bdl 4.3E-01 5.3E-02 bdl 3.8E-01 bdl 
RVCR17b-09 bdl 2.4E-02 3.9E-02 1.4E-01 9.2E-03 bdl 2.5E-01 1.2E-02 
Pailas de Barro 
RVCR6-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR23-09 4.7E-01 bdl bdl bdl bdl bdl bdl bdl 
Hornillas 6.6E+00 bdl bdl bdl bdl bdl bdl bdl 
values reported in mg/l 
*bdl=below detection limits  
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Organic Fraction Distribution in Las Pailas Sediments 
 

Trace Metals 
Organic Ag As Au Ba B Be Cd 
Standard 7.3E-02 1.9E-01 bdl 4.0E-02 bdl 9.4E-04 3.1E-03 
Yellowstone Paint 
Pots 

bdl 2.1E-03 bdl bdl bdl bdl bdl 

Laguna Fumarolica 1.2E-03 bdl bdl 1.5E-01 bdl 9.7E-04 1.5E-03 
Poza de Hongo  bdl bdl bdl bdl bdl bdl 1.4E-04 
Pailas de Agua II        
RVCR4-09 1.6E-03 0.0E+00 bdl bdl bdl 2.5E-03 7.8E-04 
RVCR8-09 3.3E-05 0.0E+00 bdl 4.0E-01 bdl bdl 2.3E-04 
RVCR12-09 4.1E-02 1.7E-01 bdl bdl bdl 3.7E-03 2.0E-02 
RVCR13-09 bdl bdl bdl 8.2E-02 bdl bdl 2.7E-04 
RVCR14-09 1.5E-03 0.0E+00 bdl 1.9E-02 bdl 1.1E-03 7.9E-04 
RVCR65-09 4.0E-02 1.9E-01 bdl 2.1E-02 bdl bdl 2.0E-02 
Pailas de Agua I         
RVCR1-09 3.5E-03 0.0E+00 bdl 4.3E-02 bdl 1.1E-04 3.1E-04 
RVCR9-09 1.2E-01 0.0E+00 bdl bdl bdl bdl 6.8E-02 
RVCR17g-09 3.9E-02 1.8E-01 bdl bdl bdl bdl 2.1E-02 
RVCR17r-09 3.6E-02 1.5E-01 bdl bdl bdl bdl 2.2E-02 
RVCR17b-09 3.6E-02 1.9E-01 bdl bdl bdl bdl 2.2E-02 
Pailas de Barro        
RVCR6-09 1.2E-02 bdl bdl bdl bdl 1.3E-04 2.5E-04 
RVCR7-09 bdl bdl bdl bdl bdl 2.0E-03 bdl 
RVCR23-09 3.2E-03 bdl bdl 8.4E-03 bdl 1.5E-03 9.3E-04 
Hornillas 5.3E-03 bdl bdl 2.2E-01 bdl 4.3E-04 1.4E-03 
values reported in mg/l 
*bdl=below detection limits  
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Trace Metals 

Organic Co Cr Cu Li Mo Ni P Pb 
Standard 2.9E-03 5.3E-02 bdl bdl bdl bdl 1.8E+00 bdl 
Yellowstone 
Paint Pots 

bdl bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

bdl bdl bdl bdl bdl bdl bdl bdl 

Poza de Hongo  bdl bdl bdl bdl bdl bdl bdl bdl 
Pailas de Agua II 
RVCR4-09 bdl 7.2E-03 bdl bdl bdl 3.8E-03 bdl bdl 
RVCR8-09 bdl 5.8E-04 bdl bdl bdl bdl 1.7E+00 bdl 
RVCR12-09 1.5E-02 7.0E-03 6.2E-02 1.6E-02 2.6E-03 4.1E-02 4.0E-01 1.2E-01 
RVCR13-09 3.7E-03 4.5E-03 bdl bdl bdl bdl bdl bdl 
RVCR14-09 bdl 2.1E-03 bdl bdl bdl bdl 4.2E-02 bdl 
RVCR65-09 1.5E-02 bdl 4.7E-02 1.8E-02 bdl 3.8E-02 8.5E-01 1.2E-01 
Pailas de Agua I  
RVCR1-09 3.9E-04 5.9E-03 bdl bdl bdl bdl 4.9E+00 bdl 
RVCR9-09 9.5E-02 2.2E-01 4.5E-01 1.5E-02 bdl 9.7E-02 1.5E+00 1.4E-01 
RVCR17g-09 3.0E-02 1.2E-02 6.1E-01 1.3E-02 bdl 4.7E-02 3.1E-01 1.2E-01 
RVCR17r-09 3.3E-02 2.7E-02 4.9E-01 4.3E-03 5.2E-03 5.4E-02 2.1E+00 1.2E-01 
RVCR17b-09 2.7E-02 1.3E-02 2.3E-01 1.2E-02 1.4E-03 4.8E-02 5.1E-01 1.3E-01 
Pailas de Barro 
RVCR6-09 2.7E-04 bdl bdl bdl bdl bdl 6.8E-01 bdl 
RVCR7-09 bdl 6.8E-03 6.0E-02 bdl 9.7E-03 bdl 1.2E+00 bdl 
RVCR23-09 1.2E-03 5.5E-03 bdl bdl bdl 2.1E-03 2.0E+00 bdl 
Hornillas bdl 2.6E-03 bdl bdl bdl bdl 4.2E-01 bdl 
values reported in mg/l 
*bdl=below detection limits  
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Trace Metals 

Organic S Sb Se Sr Ti Tl V Zn 
Standard bdl bdl bdl bdl bdl bdl bdl bdl 
Yellowstone 
Paint Pots 

bdl bdl bdl bdl bdl bdl bdl bdl 

Laguna 
Fumarolica 

1.5E+01 bdl bdl bdl bdl bdl bdl bdl 

Poza de Hongo  bdl bdl bdl bdl bdl bdl bdl bdl 
Pailas de Agua II 
RVCR4-09 6.2E+00 bdl bdl bdl bdl bdl bdl 2.5E-02 
RVCR8-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR12-09 2.8E+00 5.2E-03 2.9E-02 3.1E-01 2.3E-02 4.5E-02 3.8E-01 bdl 
RVCR13-09 2.2E+01 bdl bdl bdl bdl bdl bdl bdl 
RVCR14-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR65-09 bdl bdl bdl 1.2E-01 bdl bdl bdl bdl 
Pailas de Agua I  
RVCR1-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR9-09 3.6E+02 6.9E-03 bdl 2.3E-01 9.0E-02 4.4E-02 4.2E-02 bdl 
RVCR17g-09 3.4E+01 1.1E-03 9.5E-04 2.5E-01 1.7E-02 2.5E-02 1.8E-02 bdl 
RVCR17r-09 2.2E+01 1.0E-02 4.0E-02 2.5E-01 1.8E-02 6.5E-02 4.9E-02 bdl 
RVCR17b-09 2.1E+01 bdl bdl 1.7E-01 6.7E-03 3.2E-02 1.8E-02 bdl 
Pailas de Barro 
RVCR6-09 bdl bdl bdl bdl bdl bdl bdl bdl 
RVCR7-09 3.8E+00 7.1E-03 4.5E-02 5.9E-01 1.5E-01 3.4E-02 7.0E-02 bdl 
RVCR23-09 1.4E+00 bdl bdl bdl bdl bdl bdl 1.0E-01 
Hornillas 1.3E-01 bdl bdl bdl bdl bdl bdl 5.4E-02 
values reported in mg/l 
*bdl=below detection limits 
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Residual Fraction Distribution in Las Pailas Sediments 
 

Residual Fraction 

Residual Ag As Au Ba Be Cd Co 
Standard exploded 
Yellowstone Paint Pots 2.4E-07 8.1E-06 5.6E-06 bdl 1.8E-05 bdl bdl 
Laguna Fumarolica bdl bdl bdl bdl 2.4E-05 5.8E-05 6.3E-06 
Poza de Hongo  bdl bdl bdl bdl 1.2E-04 bdl 1.8E-06 
Pailas de Agua II               
RVCR4-09 bdl bdl bdl bdl 2.3E-04 bdl 7.1E-06 
RVCR8-09 not yet analyzed 
RVCR13-09 1.4E-06 bdl bdl bdl 1.3E-03 bdl 3.6E-06 
RVCR14-09 bdl 5.0E-07 bdl bdl 2.8E-04 bdl 2.2E-06 
RVCR65-09 2.8E-07 bdl bdl bdl 2.9E-03 bdl 3.2E-07 
Pailas de Agua I               
RVCR1-09 6.2E-07 bdl bdl bdl 4.7E-04 bdl 5.6E-07 
RVCR9-09 bdl bdl bdl bdl 4.7E-04 bdl 3.9E-06 
RVCR12-09 bdl bdl bdl bdl 4.3E-04 bdl 1.1E-05 
RVCR17g-09 4.1E-06 bdl bdl bdl 1.7E-02 bdl 3.0E-05 
RVCR17r-09 bdl bdl bdl bdl 1.2E-05 bdl 1.7E-07 
RVCR17b-09 bdl bdl bdl bdl 2.5E-05 bdl 2.3E-07 
Pailas de Barro               
RVCR6-09 bdl bdl bdl bdl 4.0E-04 bdl 5.0E-07 
RVCR7-09 2.1E-07 bdl bdl bdl 1.7E-04 bdl 5.2E-07 
RVCR23-09 bdl 1.2E-06 bdl bdl 3.8E-04 bdl 1.3E-06 
Hornillas bdl bdl bdl bdl 1.1E-04 bdl 3.7E-07 

values reported in mg/l 
*bdl=below detection limits 
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Residual Fraction 

Residual Cr Cu Li Mo Ni P Pb S 
Standard exploded 
Yellowstone 
Paint Pots 6.6E-07 9.2E-06 4.2E-05 6.3E-07 bdl 1.7E-04 1.6E-05 1.5E-04 

Laguna 
Fumarolica 2.2E-06 9.2E-05 6.5E-07 bdl 1.5E-06 5.8E-04 1.0E-06 6.7E-03 
Poza de 
Hongo  1.5E-05 9.0E-05 9.7E-05 3.2E-07 4.3E-06 3.9E-04 bdl 5.3E-03 
Pailas de Agua II 
RVCR4-09 1.2E-05 2.7E-05 3.0E-06 bdl 3.1E-06 7.8E-04 3.3E-06 2.3E-02 
RVCR8-09 not yet analyzed 
RVCR13-09 4.2E-05 3.9E-04 4.2E-06 2.0E-06 1.5E-06 3.6E-03 6.1E-06 3.1E-01 
RVCR14-09 8.9E-06 6.2E-05 4.1E-06 bdl 7.2E-07 7.3E-04 7.0E-07 1.4E-02 
RVCR65-09 bdl 3.2E-06 bdl bdl 1.4E-06 bdl bdl 4.1E-04 
Pailas de Agua I 
RVCR1-09 1.5E-05 1.4E-05 4.3E-06 1.1E-06 6.2E-07 6.4E-04 2.4E-06 2.1E-02 
RVCR9-09 1.8E-05 6.5E-05 1.7E-05 6.2E-07 1.9E-06 7.1E-04 5.4E-06 7.1E-02 
RVCR12-09 1.6E-05 3.5E-04 4.5E-06 bdl 5.8E-06 1.0E-03 2.3E-06 2.0E-02 
RVCR17g-09 8.0E-04 3.0E-03 3.4E-04 8.0E-05 6.9E-05 2.6E-02 2.2E-05 2.0E+00 
RVCR17r-09 1.2E-06 4.4E-06 3.2E-07 1.3E-07 1.7E-07 4.8E-05 1.7E-07 7.8E-04 
RVCR17b-09 2.5E-06 8.5E-06 1.1E-06 1.6E-06 1.5E-07 9.9E-05 1.8E-07 1.7E-03 
Pailas de Barro 
RVCR6-09 1.6E-05 2.5E-05 8.8E-06 bdl 9.8E-07 8.5E-04 bdl 1.1E-02 
RVCR7-09 1.4E-05 1.9E-05 1.0E-05 7.1E-07 1.0E-06 9.0E-04 1.5E-06 8.6E-03 
RVCR23-09 1.5E-05 3.2E-05 1.3E-05 4.9E-07 1.0E-06 8.2E-04 bdl 9.8E-03 
Hornillas 4.1E-06 1.5E-05 1.3E-06 1.6E-07 1.2E-06 2.3E-04 bdl 1.5E-03 

values reported in mg/l 
*bdl=below detection limits 
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Residual  Fraction 

Residual Sb Se Sr Ti Tl V Zn 
Standard exploded 

Yellowstone Paint 
Pots 7.9E-07 2.2E-06 bdl 9.2E-04 bdl 8.1E-06 5.9E-05 

Laguna 
Fumarolica bdl bdl 1.2E-07 8.4E-04 bdl 1.0E-03 1.5E-05 

Poza de Hongo  3.6E-06 0.0E+00 8.0E-07 7.4E-03 bdl 3.4E-04 7.7E-05 
Pailas de Agua II  

RVCR4-09 3.9E-06 bdl 7.7E-07 6.5E-03 bdl 5.0E-04 1.1E-05 
RVCR8-09 not yet analyzed 

RVCR13-09 1.5E-05 bdl 2.7E-06 2.5E-02 bdl 5.4E-04 4.3E-05 
RVCR14-09 2.8E-06 bdl 2.1E-06 5.2E-03 bdl 2.8E-04 1.1E-05 
RVCR65-09 2.9E-06 6.1E-06 0.0E+00 5.6E-06 bdl 6.5E-07 bdl 

Pailas de Agua I               
RVCR1-09 5.6E-06 bdl 2.9E-06 9.0E-03 bdl 2.1E-04 1.7E-05 
RVCR9-09 5.5E-06 bdl 2.2E-06 9.6E-03 bdl 1.8E-04 2.0E-05 

RVCR12-09 4.8E-06 bdl 3.0E-06 9.3E-03 bdl 6.8E-04 1.9E-05 
RVCR17g-09 1.7E-04 bdl 1.1E-04 4.6E-01 bdl 1.4E-02 8.0E-04 
RVCR17r-09 4.1E-07 bdl 4.3E-08 6.6E-04 bdl 2.2E-05 1.0E-06 
RVCR17b-09 6.9E-07 bdl 1.0E-07 1.4E-03 bdl 5.6E-05 1.0E-07 

Pailas de Barro               
RVCR6-09 4.6E-06 bdl 2.8E-06 8.9E-03 bdl 3.0E-04 1.1E-05 
RVCR7-09 4.2E-06 bdl 8.2E-07 7.9E-03 bdl 2.9E-04 bdl 

RVCR23-09 4.1E-06 bdl 2.8E-06 8.8E-03 bdl 3.1E-04 1.7E-05 
Hornillas 1.6E-06 bdl 4.2E-07 2.4E-03 bdl 2.2E-05 5.7E-06 

values reported in mg/l 
*bdl=below detection limits  
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Appendix B: Chloride-Fluoride Clay Experiments 

 
*bdl= below detection limits 

 

 

 

Al Fe Si Al Fe Si Al Fe Si Al Fe Si
0 bdl 3.1E+01 2.9E+00 3.3E-03 1.5E+01 6.5E+00 bdl 1.6E+01 8.4E+00 4.3E-03 1.7E+01 9.2E+00
1 7.5E-02 1.5E+01 6.3E+00 8.5E-02 1.6E+01 6.6E+00 bdl 1.5E+01 7.2E+00 1.9E-03 1.5E+01 7.3E+00
2 9.8E-02 1.5E+01 6.2E+00 1.0E-01 1.5E+01 6.0E+00 bdl 1.2E+01 5.4E+00 1.4E-02 1.3E+01 5.8E+00
3 1.4E-01 1.5E+01 6.3E+00 1.5E-01 1.6E+01 6.4E+00 bdl 1.6E+01 7.2E+00 bdl 1.4E+01 6.4E+00
4 1.7E-01 1.7E+01 7.3E+00 1.6E-01 1.5E+01 6.3E+00 1.1E-03 1.7E+01 7.8E+00 bdl 1.4E+01 6.1E+00
5 1.8E-01 1.6E+01 6.5E+00 1.9E-01 1.5E+01 6.4E+00 3.0E-04 1.5E+01 6.4E+00 4.1E-04 1.5E+01 6.8E+00
6 1.7E-01 1.4E+01 5.8E+00 1.6E-01 1.3E+01 5.1E+00 8.0E-04 1.5E+01 6.8E+00 bdl 1.3E+01 5.9E+00
7 2.0E-01 1.5E+01 6.1E+00 2.0E-01 1.4E+01 5.8E+00 1.9E-03 1.5E+01 6.7E+00 7.8E-04 1.4E+01 6.0E+00

11 3.0E-01 1.6E+01 6.5E+00 2.4E-01 1.3E+01 5.4E+00 1.3E-03 1.4E+01 5.9E+00 1.1E-03 1.4E+01 6.2E+00
15 3.4E-01 1.4E+01 5.6E+00 1.5E-01 1.0E+01 4.2E+00 3.7E-03 1.5E+01 6.3E+00 5.5E-02 1.1E+01 4.4E+00

0 mmol/l 
No microspheres Microspheres No microspheres

 Table 3A:  High Temperature (80oC) Flouride Experiments

Day

FeCl2

Microspheres
0.1 mmol/l 

Al Fe Si Al Fe Si Al Fe Si Al Fe Si
0 1.4E-02 1.5E+01 5.6E+00 9.8E-03 1.6E+01 6.8E+00 bdl 1.3E+01 5.0E+00 bdl 1.5E+01 7.1E+00
1 1.1E-02 1.4E+01 5.5E+00 9.8E-03 1.5E+01 6.7E+00 8.1E-04 1.5E+01 5.4E+00 bdl 1.2E+01 5.0E+00
2 6.4E-03 1.0E+01 3.9E+00 8.4E-03 9.4E+00 4.1E+00 bdl 1.4E+01 5.2E+00 bdl 1.5E+01 6.3E+00
3 9.0E-03 1.2E+01 4.9E+00 1.0E-02 1.3E+01 6.1E+00 bdl 1.1E+01 4.0E+00 bdl 1.2E+01 5.1E+00
4 1.1E-02 1.3E+01 5.3E+00 1.3E-02 1.2E+01 5.8E+00 bdl 1.2E+01 4.5E+00 bdl 1.2E+01 5.0E+00
5 1.7E-02 1.3E+01 5.3E+00 1.3E-02 1.0E+01 4.7E+00 bdl 1.3E+01 4.8E+00 4.7E-04 1.3E+01 5.3E+00
6 1.5E-02 1.3E+01 5.2E+00 1.8E-02 1.2E+01 5.7E+00 2.6E-03 1.4E+01 5.3E+00 2.1E-03 1.3E+01 5.8E+00
7 1.3E-02 1.2E+01 4.8E+00 1.8E-02 1.2E+01 5.5E+00 bdl 1.3E+01 4.9E+00 bdl 1.2E+01 5.0E+00

11 1.6E-03 7.6E+00 3.2E+00 2.1E-03 1.5E+01 6.3E+00 2.6E-02 1.4E+01 5.8E+00 2.9E-02 1.3E+01 5.8E+00
15 9.2E-03 1.5E+01 5.9E+00 3.3E-03 1.3E+01 5.4E+00 3.5E-02 1.5E+01 6.5E+00 3.9E-02 1.5E+01 6.7E+00

No microspheres MicrospheresNo microspheres Microspheres

 Table 3B:  High Temperature (80oC) Oxalate experiments
FeCl2

Day
0.1 mmol/l 0 mmol/l 

Al Fe Si Al Fe Si Al Fe Si Al Fe Si
0 bdl 4.9E+00 2.1E+00 bdl 1.4E+01 6.2E+00 bdl 1.5E+01 6.3E+00 bdl 1.0E+01 4.5E+00
1 5.9E-02 1.7E+01 6.4E+00 4.2E-02 1.6E+01 6.2E+00 bdl 1.6E+01 6.3E+00 bdl 1.5E+01 6.1E+00
2 8.0E-02 1.6E+01 5.9E+00 6.5E-02 1.5E+01 5.6E+00 bdl 2.0E+01 7.7E+00 bdl 1.6E+01 6.1E+00
3 8.1E-02 1.4E+01 5.0E+00 6.0E-02 1.0E+01 3.8E+00 7.4E-04 1.7E+01 6.5E+00 bdl 6.7E+00 2.6E+00
4 1.4E-01 1.7E+01 6.2E+00 1.2E-01 1.8E+01 6.8E+00 bdl 1.7E+01 6.5E+00 8.9E-03 1.7E+01 6.5E+00
5 1.4E-01 1.7E+01 6.5E+00 4.3E-02 1.6E+01 6.4E+00 1.7E-03 1.7E+01 6.6E+00 7.9E-02 1.5E+01 6.1E+00
6 1.2E-01 1.6E+01 6.1E+00 1.4E-01 1.6E+01 6.6E+00 5.7E-03 1.6E+01 6.0E+00 3.3E-03 1.6E+01 6.3E+00
7 1.8E-01 1.8E+01 6.6E+00 1.7E-01 1.7E+01 6.7E+00 2.6E-03 1.7E+01 6.2E+00 8.7E-04 1.4E+01 5.2E+00

11 1.5E-01 1.4E+01 4.8E+00 1.8E-01 1.5E+01 5.3E+00 1.4E-03 1.7E+01 5.8E+00 1.7E-03 1.6E+01 5.9E+00
15 2.2E-01 1.7E+01 5.9E+00 2.3E-01 1.7E+01 5.8E+00 7.9E-04 1.7E+01 5.9E+00 2.5E-03 1.6E+01 5.9E+00

0 mmol/l 
No microspheres Microspheres No microspheres Microspheres

FeCl2

Day

 Table 3C:  High Temperature (50oC) Flouride Experiments

0.1 mmol/l 

Al Fe Si Al Fe Si Al Fe Si Al Fe Si
0 3.9E-03 1.6E+01 7.5E+00 5.3E-03 1.6E+01 8.7E+00 5.5E-03 1.8E+01 9.9E+00 5.4E-03 1.6E+01 8.9E+00
4 2.5E-02 1.6E+01 6.6E+00 3.2E-02 1.6E+01 6.8E+00 3.8E-03 1.7E+01 8.3E+00 2.5E-03 1.5E+01 7.4E+00
7 3.4E-02 1.4E+01 6.1E+00 3.6E-02 1.5E+01 6.5E+00 2.2E-03 1.4E+01 6.0E+00 1.2E-03 1.5E+01 6.8E+00

11 4.2E-02 1.4E+01 4.7E+00 4.2E-02 1.4E+01 5.5E+00 9.3E-04 1.4E+01 6.1E+00 1.2E-03 1.5E+01 6.8E+00
14 4.7E-02 1.4E+01 5.5E+00 4.1E-02 1.3E+01 5.0E+00 2.1E-03 1.5E+01 6.9E+00 1.2E-03 1.4E+01 5.9E+00
17 5.0E-02 1.4E+01 5.1E+00 4.6E-02 1.4E+01 5.2E+00 2.5E-03 1.5E+01 5.4E+00 3.1E-03 1.3E+01 5.7E+00
21 5.5E-02 1.3E+01 5.1E+00 6.5E-02 1.7E+01 6.3E+00 2.7E-03 1.7E+01 6.7E+00 3.1E-03 1.6E+01 6.9E+00

Microspheres

FeCl2
 Table 3D:  High Temperature (25oC) Flouride Experiments

Day
0 mmol/l 0.1 mmol/l 

No microspheres MicrospheresNo microspheres
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Figure 1A 

Figure 1B 
Figure 1: XRD of precipitates at 80oC from (A) chloride-fluoride experiments after 
7 days. Smectite peaks are more well-developed in samples containing 
microspheres (solid lines); however, all experimental trials form smecitites and 
goethite. Amorphous silica is present in samples with microspheres. (B) chloride-
oxalate experiments after 7 days. Smectite peaks are more well-developed in 
samples containing microspheres (solid lines); however, all experimental trials 
form smecitites. Fe-oxides are more crystalline in the presence of microspheres. 
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Figure 1C 

Figure 1D 
Figure 1 continued: XRD of precipitates from chloride-fluoride (C) at 50oC from 
experiments after 7 days. Smectite peaks are more well-developed in samples 
containing microspheres (solid lines); amorphous silica is also present in samples 
with microspheres. Fe-/Al-oxides are present in samples without microspheres (B) at 
25oC from experiments after 17 days. All precipitates are similar regardless of 
experimental conditions. Fe-oxides form in all samples. Kaolinite may be present as 
well. 
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