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In this paper we study nonparametric estimation of regression quantiles for time
series data by inverting a weighted Nadaraya–Watson~WNW! estimator of con-
ditional distribution function, which was first used by Hall,Wolff , and Yao~1999,
Journal of the American Statistical Association94, 154–163!+ First, under some
regularity conditions, we establish the asymptotic normality and weak consis-
tency of the WNW conditional distribution estimator fora-mixing time series at
both boundary and interior points, and we show that the WNW conditional distri-
bution estimator not only preserves the bias, variance, and, more important, auto-
matic good boundary behavior properties of local linear “double-kernel” estimators
introduced by Yu and Jones~1998, Journal of the American Statistical Associa-
tion 93, 228–237!, but also has the additional advantage of always being a distri-
bution itself+ Second, it is shown that under some regularity conditions, the WNW
conditional quantile estimator is weakly consistent and normally distributed and
that it inherits all good properties from the WNW conditional distribution estima-
tor+ A small simulation study is carried out to illustrate the performance of the es-
timates, and a real example is also used to demonstrate the methodology+

1. INTRODUCTION

In nonparametric estimation of regression function, most investigations are con-
cerned with the regression functionm~x!, the conditional mean ofY given value
x of a predictorX+ See, for example, the books by Wahba~1990!, Wand and
Jones~1995!, and Fan and Gijbels~1996! for good introductions and interest-
ing applications to the general subject areas and Härdle~1990!, Engle and
Granger~1991!, and Granger and Teräsvirta~1993! for applications to econo-
metrics in particular+ However, new insights about the underlying structures
can be gained by considering the other aspects of the conditional distribution
F~ y6x! of Y given X 5 x other than the mean functionm~x!+ Regression~con-
ditional! quantilesqp~x!, 0 , p , 1, of Y given X 5 x, the topic of this paper,
coupled with the conditional distributionF~ y6x!, are key aspects of inference
in various statistical problems and are of particular interest in econometrics+
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Although some individual quantiles, such as the conditional median, are some-
times of interest in practice, more often one wishes to obtain a collection of
conditional quantiles that can characterize the entire conditional distribution+
More important, another application of conditional quantiles is construction of
prediction intervals for the next value given a small section of the recent past
values in a stationary time series$Y1, + + + ,Yn% , which motivates this work+

Estimation of conditional quantiles has gained particular attention during the
recent three decades because of their useful applications in various fields such
as econometrics and finance and also the related fields+ Although Hogg~1975!
uses the idea of regression quantile technique to study salary data, Koenker
and Bassett~1978! first introduce regression quantiles and provide detailed back-
ground and motivation from econometrics+ Koenker and Bassett~1982! use their
proposed techniques to test heteroskedasticity, and Powell~1986! applies the
ideas to consider censored data in econometrics+ Fan and Gijbels~1996, p+ 229!
use them to study the change pattern of family income during the Reagan ad-
ministration ~1981–1988!+ For more applications, see Cole~1988!, Cole and
Green~1992!, Yu and Jones~1998!, and Hall, Wolff , and Yao~1999!+ Of par-
ticular interest is the median functionq102~x! for asymmetric distribution, which
can provide a useful alternative to the ordinary regression based on the mean+
Regression quantiles can also be useful for the estimation of predictive inter-
vals+ For example, in predicting the response from a given covariateX 5 x,
estimates ofqa02~x! andq12a02~x! can be used to obtain a~1 2 a!100% non-
parametric predictive interval+ We refer to the papers by Koenker~1994! and
Zhou and Portnoy~1996! for detailed discussions on the advantages of the di-
rect use of regression quantiles to construct confidence and prediction intervals
and other aspects+

For cases whenX andY satisfy a linear model with independent and identi-
cally distributed~i+i+d+! errors, Hogg ~1975! and Koenker and Bassett~1978!
develop innovative procedures, called regression quantiles, for inference about
qp~x!; Koenker and Bassett~1982! use them to test heteroskedasticity; Powell
~1986! extends them to censored data; Koenker~1994! and Zhou and Portnoy
~1996! discuss how to use them to construct confidence sets+ In a nonparamet-
ric setting, several authors study the asymptotic properties of nonparametric
estimation of conditional quantiles, such as kernel and nearest neighbor, includ-
ing Stone~1977!, Lejeune and Sarda~1988!, Troung ~1989!, Samanta~1989!,
Bhattacharya and Gangopadhyay~1990!, and Chaudhuri~1991! for i+i+d+ er-
rors; Roussas~1969! and Roussas~1991! for Markovian processes; and Troung
and Stone~1992! and Boente and Fraiman~1995! for mixing dependence+ It is
well known that kernel type procedures have serious drawbacks: the asymp-
totic bias involves the design density so that they can not be adaptive, and they
have boundary effects so that they require boundary modification+ To attenuate
these drawbacks, recently some new methods of estimating conditional quan-
tiles have been proposed+ The first one, a more direct approach using the “check”
function such as a robustified local linear smoother, is provided by Fan, Hu,
and Troung~1994! and further extended by Yu and Jones~1997, 1998!+ An
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alternative procedure is first to estimate the conditional distribution function
using the “double-kernel” local linear technique of Fan, Yao, and Tong~1996!
and then to invert the conditional distribution estimator to produce an estima-
tor of a conditional quantile, which is called the Yu and Jones estimator+ See Yu
and Jones~1997, 1998! for details+ A detailed comparison of these two meth-
ods can be found in Yu and Jones~1997, 1998!+ According to Yu and Jones
~1998!, a particular preference is the Yu and Jones type estimator+

As pointed out by Hall et al+ ~1999!, although local linear estimators of the
Yu and Jones type have some attractive properties such as no boundary ef-
fects, design adaptation, and mathematical efficiency~see, e+g+, Fan and Gij-
bels, 1996!, they have the disadvantage of producing conditional distribution
function estimators that are not constrained either to lie between zero and one
or to be monotone increasing although some modifications in implementation
have been addressed by Yu and Jones~1998!+ In both these respects, the
Nadaraya–Watson~NW! methods are superior, despite their rather large bias
and boundary effects+ The properties of positivity and monotonicity are par-
ticularly advantageous if the method of inverting the conditional distribution
estimator is applied to produce an estimator of a conditional quantile+ To over-
come these difficulties, Hall et al+ ~1999! propose a weighted version of the
NW ~WNW! estimator, which is designed to possess the superior properties
of local linear methods such as bias reduction and no boundary effect and to
preserve the property that the NW estimator is always a distribution function+
Also, Hall et al+ discuss the asymptotic normality of the WNW estimator for
b-mixing under some stronger assumptions~see Remark 1, which follows!+
However, they do not provide rigorous theoretical justification, and they do
not discuss the boundary behavior+ Furthermore, Hall et al+ ~1999! conduct an
empirical study on the comparison of WNW with other methods such as NW,
local logistic, and local linear+ The basic techniques are not novel to this pa-
per because the WNW method was first used by Hall et al+, but many details
and insights are+

The goal of this paper is twofold+ First, we establish asymptotic normality
and weak consistency for the WNW estimator of conditional distribution for
a-mixing under a set of weaker conditions at both boundary and interior points+
It is therefore shown, to the first order, that the WNW method enjoys the same
convergence rates as those of the local linear “double-kernel” procedure of Yu
and Jones~1998!+ An important consequence of this study is that the WNW
estimator has desired sampling properties at both boundary and interior points
of the support of the design density, which seems to be seminal+ Second, we
derive the WNW estimator of the conditional quantile by inverting the WNW
conditional distribution estimator+ We show that the WNW quantile estimator
always exists as a result of the WNW distribution being a distribution function
itself and that it inherits all advantages from the WNW estimator of conditional
distribution, as we describe later+

Although our interest in conditional quantile estimation is motivated by fore-
casting from time series data, we introduce our methods in a more general set-
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ting ~a-mixing! that includes time series modeling as a special case+ Our
theoretical results are derived under ana-mixing assumption+

For reference convenience, we first introduce the mixing coefficient+ Let Fa
b

be thes-algebra generated by$~X t ,Yt !%t5a
b + Define

a~t ! 5 sup$6P~AB! 2 P~A!P~B!6 :A [ F2`
0 , B [ Ft

`%+

This is called the strong mixing coefficient of the stationary process
$~X t ,Yt !%2`

` + If a~t ! r 0 as t r `, the process is called strongly mixing or
a-mixing+

Among various mixing conditions used in the literature, a-mixing is reason-
ably weak and is known to be fulfilled for many time series models+ Goro-
detskii ~1977! and Withers~1981! derive the conditions under which a linear
process isa-mixing+ In fact, under very mild assumptions linear autoregressive
and more generally bilinear time series models area-mixing with mixing co-
efficients decaying exponentially+ Auestad and Tjøstheim~1990! provide illu-
minating discussions on the role ofa-mixing ~including geometric ergodicity!
for model identification in nonlinear time series analysis+ Chen and Tsay~1993!
show that the functional autoregressive process is geometrically ergodic under
certain conditions+ Furthermore, Masry and Tjøstheim~1995, 1997! demon-
strate that under some mild conditions, both autoregressive conditional hetero-
skedastic~ARCH! processes and nonlinear additive autoregressive models with
exogenous variables, particularly popular in finance and econometrics, are sta-
tionary anda-mixing+

The plan of the paper is as follows+ In Section 2, we concentrate on the WNW
estimator of conditional distribution+ In Section 3, we discuss the WNW esti-
mator of conditional quantiles+ In both sections, the asymptotic normality and
weak consistency of the estimators at both boundary and interior points are
stated, and an ad hoc estimator of the asymptotic variance is also presented+ In
Section 4, a small simulation study is carried out to illustrate the estimates, and
the methodology is also applied to a real example+ All technical proofs are given
in the Appendix+

2. CONDITIONAL DISTRIBUTION ESTIMATE

2.1. Weighted Nadaraya–Watson Estimate

Let pt~x!, for 1 # t # n, denote the weight functions of the dataX1, + + + ,Xn and
the design pointx with the property that eachpt~x! $ 0, (t51

n pt ~x! 5 1, and

(
t51

n

~X t 2 x!pt ~x!Kh~x 2 X t ! 5 0, (1)

whereK~{! is a kernel function, Kh~{! 5 K~{0h!0h, andh 5 hn . 0 is the band-
width+ Motivated by the property of the local linear estimator, constraint~1!
can be regarded as a discrete moment condition~see Fan and Gijbels, 1996,
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~3+12!, p+ 63!+ Of course, $ pt~x!% satisfying these conditions are not uniquely
defined, and we specify them by maximizing) t51

n pt ~x! subject to the con-
straints+ The weighted version of the NW estimator of the conditional distribu-
tion F~ y6x! of Yt given X t 5 x is defined as

ZF~ y6x! 5

(
t51

n

pt ~x!Kh~x 2 X t ! I ~Yt # y!

(
t51

n

pt ~x!Kh~x 2 X t !

+

Note that 0# ZF~ y6x! # 1 and it is monotone iny+ We show in Theorem 1,
which follows, that ZF~ y6x! is first-order equivalent to a local linear estimator,
which does not enjoy either of these properties, and, more important, in Theo-
rem 2 that ZF~ y6x! has automatic good behavior at boundaries+

A question naturally arises regarding how to choose the weights+ The idea
is from empirical likelihood+ Namely, by maximizing(t51

n log$ pt ~x!% subject
to the constraints(t51

n pt ~x! 5 1 and~1! through the Lagrange multiplier, the
$ pt~x!% are simplified to

pt ~x! 5 n21$11 l~X t 2 x!Kh~x 2 X t !%
21,

wherel, a function of data andx, is uniquely defined by~1!, which ensures
that(t51

n pt ~x! 5 1+ Equivalently, l is chosen to maximize

Ln~l! 5
1

nh (
t51

n

log$11 l~X t 2 x!Kh~x 2 X t !%+ (2)

In implementation, the Newton–Raphson scheme is recommended to find the
root of the equationLn

' ~l! 5 0+

2.2. Sampling Properties

In this section, we establish weak consistency with a rate and asymptotic nor-
mality for the WNW estimator ZF~y6x! undera-mixing although Hall et al+ ~1999!
gave asymptotic normality forb-mixing without detailed proofs under a set of
stronger conditions+ For expositional purposes, we consider only the special
case thatX is a scalar+ We first introduce some notation+ Let g~{! denote the
marginal density ofXt + Define m2 5 *u2K~u! du and n0 5 *K 2~u! du+ Let
F ~i !~ y6x! 5 ~]0]x! iF~ y6x!+We now impose the following regularity conditions+

B1+ For fixed y andx, g~x! . 0, 0 , F~ y6x! , 1, g~{! is continuous atx,
andF~ y6x! has continuous second-order derivative with respect tox+

B2+ The kernelK~{! is a symmetric, bounded, and compactly supported
density+
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B3+ The process$~Xt ,Yt !% is a-mixing with the mixing coefficient satisfying
a~t ! 5 O~t2~21d! ! for somed . 0+

B4+ As n r `, h r 0 andnh r `+

B5+ Let g1, t~{,{! be the joint density ofX1 and Xt for t $ 2+ Assume that
6g1, t~u, v! 2 g~u!g~v!6 # M , ` for all u andv+

B6+ nh1120d r `+

Remark 1+ Note that condition B3 is weaker than that in Hall et al+ ~1999!
for b-mixing, which is stronger thana-mixing+ Because B6 is satisfied by band-
widths of optimal size~i+e+, h ' n2105! if d . 1

2
_ , we do not concern ourselves

with such refinements+

THEOREM 1+ Suppose that conditions B1–B5 hold. Then, as nr ` ,

ZF~ y6x! 2 F~ y6x! 5
1

2
h2m2 F ~2! ~ y6x! 1 op~h2! 1 Op~~nh!2102!, (3)

and in addition, if B6 holds,

Mnh@ ZF~ y6x! 2 F~ y6x! 2 B~ y6x! 1 op~h2!# D
&& N~0,s2~ y6x!!, (4)

where the bias and variance are given, respectively, by

B~ y6x! 5
1

2
h2m2 F ~2! ~ y6x!

and

s2~ y6x! 5 n0 F~ y6x!@12 F~ y6x!#0g~x!+ (5)

Remark 2+ It may be seen from Theorem 1 that first, the WNW estimator
ZF~y6x! r F~y6x! in probability with a rate, which, of course, implies that ZF~y6x!

is consistent+ Also, to the first order, the WNW method enjoys the same con-
vergence rates as those of the local linear “double-kernel” procedure of Yu and
Jones~1998!, under similar regularity conditions+ However, Yu and Jones~1998!
treat only the case of independent data+

As for the boundary behavior of the WNW estimator, we offer Theorem 2,
which follows+ Without loss of generality, we consider the left boundary point
x 5 ch, 0 , c , 1+ From Fan et al+ ~1994!, we takeK~{! to have support@21,1#
andg~{! to have support@0,1# + First, we introduce the following notation+ Let

Lc~l! 5E
21

c uK~u!

12 luK~u!
du

and lc be the root of equationLc~l! 5 0, namely, Lc~lc! 5 0+ For example,
lc ' 1+8 for c 5 0+5 andlc ' 1+1 for c 5 0+6+ Figure 1 depicts the solutions of
Lc~l! 5 0 for c taking values from 0+5 to 1 with increment 0+1+
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THEOREM 2+ Suppose that the conditions of Theorem 1 hold. Then,

Mnh@ ZF~ y6ch! 2 F~ y6ch! 2 Bc~ y! 1 op~h2!# D
&& N~0,sc

2~ y!!, (6)

where the bias term is given by

Bc~ y! 5
h2b0~c!F ~2! ~ y601!

2b1~c!

and the variance is

sc
2~ y! 5

b2~0!F~ y601!@12 F~ y601!#

b1
2~c!g~01!

with

b0~c! 5E
21

c u2K~u!

12 lcuK~u!
du and bj ~c! 5E

21

c K j ~u!

$12 lcuK~u!% j du,

j 5 1 and2+

Of course, g~01! 5 limzf0 g~z! .

Theorems 1 and 2 reflect two of the major advantages of the WNW estima-
tor: ~a! no dependence of the asymptotic bias on the design densityg~{! and,
indeed, its dependence on the simple conditional distribution curvatureF ~2!~{6{!;
and~b! automatic good behavior at boundaries, at least with regard to orders of

Figure 1. Plot of Lc~l! versusl for c taking values from 0+5 to 1 with increment 0+1+
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magnitude, without the need of boundary correction+Also, we remark that a sim-
ilar result~6! holds for the right boundary pointx 5 1 2 ch+ If the point 0 were
an interior point, then the expression~6! would hold withc51 andlc 5 0+ Fur-
thermore, note that because the proofs of Theorems 1 and 2 are similar, we
present only the detailed proof of Theorem 1 and give a brief outline of the proof
of Theorem 2 in the Appendix+

The explicit expression of the asymptotic variance ofZF~ y6x! given in ~5!
gives a more direct and simpler way to construct the estimate ofs2~ y6x!, as
follows:

[s2~ y6x! 5 n0 ZF~ y6x!@12 ZF~ y6x!#0 [g~x!, (7)

where [g~x! is any consistent density estimator ofg~x! that might be obtained
by a local linear procedure+

3. QUANTILE ESTIMATE

Our interest here is to estimate thepth conditional quantile functionqp~x! of Yt

given Xt 5 x for any 0, p , 1, defined by

qp~x! 5 inf $ y [ R : F~ y6x! $ p%,

which is assumed to be unique+ As demonstrated in Section 2, the WNW esti-
mator of the conditional distribution functionZF~ y6x! possesses the following
advantages: design adaptation and no boundary effects, which are the same as
the local linear counterpart; and more important, being between zero and one
and monotone, two properties that the local linear estimator does not enjoy+We
thus define the WNW type conditional quantile estimator[qp~x! in principle to
satisfy ZF~ [qp~x!6x! 5 p so that

[qp~x! 5 inf $ y [ R : ZF~ y6x! $ p% [ ZF21~ p6x!+ (8)

We remark that [qp~x! always exists becauseZF~ y6x! is between zero and
one and monotone iny, and it involves only one bandwidth, so that it makes
practical implementation more appealing+ In contrast, the “double-kernel” es-
timator of Yu and Jones~1998! has some difficulty inverting the conditional
distribution estimator because of lack of monotonicity, and it requires choos-
ing two bandwidths, although the second bandwidth should not be very sensi-
tive+ Furthermore, we show in Theorems 3 and 4, which follow, that the WNW
estimator [qp~x! maintains the aforementioned advantages ofZF~{6x!+ To this
end, we need the following additional conditions+

C1+ Assume thatF~ y6x! has a conditional densityf ~ y6x! andf ~ y6x! is con-
tinuous atx+

C2+ f ~qp~x!6x! . 0+
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THEOREM 3+ Suppose that conditions B1–B5 hold. Then, as nr ` ,

[qp~x! r qp~x! in probability. (9)

In addition, if conditions C1 and C2 are satisfied, then,

Mnh@ [qp~x! 2 qp~x! 2 Bp~x! 1 op~h2!# D
&& N~0,sp

2~x!!, (10)

where the bias and variance are given, respectively, by

Bp~x! 5 2
B~qp~x!6x!

f ~qp~x!6x!
and sp

2~x! 5
s2~qp~x!6x!

f 2~qp~x!6x!
5

n0 p@12 p#

f 2~qp~x!6x!g~qp~x!!
+

An important way of assessing the performance of[qp~x! is by its asymptotic
mean squared error~AMSE!+ As an application of Theorem 3, the AMSE of
[qp~x! is given by

AMSE~ [qp~x!! 5
h4

4 Hm2 F ~2! ~qp~x!6x!

f ~qp~x!6x! J2

1
1

nh

n0 p~12 p!

f 2~qp~x!6x!g~qp~x!!
+ (11)

Comparing~11! with Theorem 1 in Yu and Jones~1998! for the “double-
kernel” estimator reveals that~11! does not have the extra two terms from the
vertical smoothing “in they direction+” Minimizing AMSE in ~11!, therefore,
yields the optimal bandwidth

hopt 5 F m2
2$F ~2! ~qp~x!6x!%2

n0 p~12 p!0g~qp~x!!G105

n2105+

In the same manner as in~7!, the consistent estimate ofsp
2~x! is

[sp
2~x! 5

n0 p@12 p#

Zf 2~qp~x!6x! [g~qp~x!!
,

where Zf ~ y6x! can be obtained by using the local linear “double-kernel” method
of Fan et al+ ~1996!+

Similar to Theorem 2, we consider the boundary behavior of the WNW esti-
mator [qp~x! in the following theorem+ The proof of Theorem 4 is omitted be-
cause it is similar to that of Theorem 3, which can be found in the Appendix+

THEOREM 4+ Suppose that the conditions of Theorem 3 hold. Then, as
n r ` ,

Mnh@ [qp~ch! 2 qp~ch! 2 Bp,c 1 op~h2!# D
&& N~0,sp,c

2 !,

where the bias and variance are given, respectively, by

Bp,c 5 2
Bc~qp~01!!

f ~qp~01!601!
5 2

h2b2~c!F ~2! ~qp~01!601!

2b1~c! f ~qp~01!601!
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and

sp,c
2 5

sc
2~qp~01!!

f 2~qp~01!601!
5

b0~0!p@12 p#

b1
2~c! f 2~qp~01!601!g~qp~01!!

+

Similarly, we can derive the AMSE of[qp~ch!

AMSE~ [qp~ch!! 5
h4

4 H b2~c!F ~2! ~qp~01!601!

b1~c! f ~qp~01!601! J2

1
1

nh

b0~0!p~12 p!

b1
2~c! f 2~qp~01!601!g~qp~01!!

,

and the corresponding optimal bandwidth is

hc,opt 5 Fb2
2~c!$F ~2! ~qp~01!601!%2

b0~c!p~12 p!0g~qp~01!! G105

n2105+

Remark 3+ As mentioned earlier, the WNW method involves only one band-
width in estimating the conditional distribution and quantile+ As for the band-
width selection issue, because the WNW estimate is a linear smoother, we
recommend using the optimal bandwidth selector, called the nonparametric
Akaike information criterion, proposed by Cai and Tiwari~2000!, which is used
in our implementation in Section 4+

Remark 4+ From the foregoing discussions, it appears clear that one of the
advantages of the conditional distribution0quantile technique is to cope with
heteroskedasticity automatically, which is particularly relevant for prediction
in ARCH modeling+ Also, it is convenient to use the conditional quantile for
detecting conditional heteroskedasticity+ To this end, we assume thatYt is re-
lated toXt through the model

Yt 5 m~Xt ! 1 s~Xt !«t , (12)

wherem~{! is the mean function, s2~{! is the variance function, andXt and«t

are independent+ The conditional distribution and quantile ofYt given Xt 5 x
are

F~ y6x! 5 F« $~ y 2 m~x!!0s~x!% and qp~x! 5 m~x! 1 s~x!q«~ p!,

whereF«~{! is the distribution of«t andq«~ p! is thepth quantile+ An informal
way to test conditional heteroskedasticity is to use a graph+ If the curves of
F~ y6x! or qp~x! for different values ofx are parallel, this indicates thats~{!
should be a constant+ We hope to report in greater detail on a formal test for
heteroskedasticity using a regression quantile technique for time series in fu-
ture work+
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4. EXAMPLES

We now illustrate the methods discussed earlier with a small simulation and a
real data set for time series+ The purpose of the examples is to demonstrate that
the foregoing methods work reasonably well for time series data in terms of
predictive utility and detecting heteroskedasticity graphically+ Throughout this
section, the Epanechnikov kernelK~u! 5 0+75~1 2 u2!1 is used+

4.1. A Simulated Example

We begin the illustration with a simulated example of the ARCH model in~12!
with Xt 5 Yt21:

Yt 5 0+6Yt21 1 s~Yt21!«t ,

wheres~x! 5 M0+5~11 x2! and$«t % are i+i+d+ N~0,1!+ Heren 1 5 data points
are generated+ The first n observations are used for estimation of the condi-
tional distribution and quantile, and the last 5 observations are left for construc-
tion of predictive intervals~PI!+ Sample sizes aren 5 100, 300, and 500+ The
95% prediction intervals@ [q0+025~Yn1j21!, [q0+975~Yn1j21!# for Yn1j ~1 # j # 5! are
computed+ Finally, for eachn, 500 replications are performed, and the ratio of
the length of PI versus the range of data and the coverage frequencies are re-
corded+ In Table 1, we present the median of the 500 values for ratios and cov-
erage frequencies for eachn andYn1j with its standard deviation in parentheses+
The ratio of the length of PI versus the range of data decreases whenn in-
creases, and the coverage frequency increases and is close to 95% whenn
increases+ Figures 2a and 2b display the WNW estimates of conditional dis-
tributionsF~ y6x! 5 F~~ y 2 0+6x!0s~x!! ~solid line in Figure 2a! of Yt given
Xt 5 x and their quantilesqx~ p! 5 0+6x 1 s~x!F21~ p! ~solid line in Fig-
ure 2b!, dotted line~x 5 21+76! and dashed line~x 5 20+75!, based on a ran-
dom sample withn 5 500, where F~{! is the standard normal distribution+
Clearly, Figure 2 shows that the two curves of conditional distribution0quantile
for two different values ofXt are not parallel, which implies that the condi-
tional variance is not a constant+ This example shows that the performance of
the WNW estimate is reasonably good+

Table 1. The postsample prediction for the ARCH model

n Yn11 Yn12 Yn13 Yn14 Yn15

Ratio of length 100 0+46 ~0+19! 0+49 ~0+18! 0+42 ~0+18! 0+45 ~0+18! 0+44 ~0+17!
of PI vs+ range 300 0+29 ~0+15! 0+30 ~0+14! 0+30 ~0+15! 0+30 ~0+16! 0+28 ~0+13!
of data 500 0+23 ~0+13! 0+25 ~0+12! 0+24 ~0+14! 0+24 ~0+12! 0+23 ~0+10!

Coverage 100 0+90 ~0+30! 0+90 ~0+30! 0+88 ~0+32! 0+88 ~0+33! 0+91 ~0+29!
Frequencies 300 0+94 ~0+23! 0+93 ~0+26! 0+95 ~0+22! 0+91 ~0+29! 0+92 ~0+27!

500 0+94 ~0+23! 0+96 ~0+21! 0+95 ~0+22! 0+95 ~0+22! 0+95 ~0+23!
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4.2. A Real Example

Finally, we consider the International Airline Passenger Data$Ut , t 5 1, + + + ,144%
of Box and Jenkins~1976, p+ 531! ~monthly totals@in thousands# of passengers
from January 1949 to December 1960!+ This data set has been analyzed exten-
sively in time series literature~see, e+g+, Brockwell and Davis, 1991; Faraway
and Chatfield, 1998!+ The previous work focuses mainly on linear or nonlinear

Figure 2. ~a! Conditional distributions and their WNW estimates+ ~b! Conditional quan-
tiles and their WNW estimates+ Solid line, true function; dotted line~Xt 5 21+76!, and
dashed line~Xt 5 20+75!+
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autoregressive moving average~ARMA ! modeling+ The main purpose of this
analysis is to use the regression quantiles technique to construct prediction in-
tervals and to check heteroskedasticity graphically without making any model
assumptions+ Figure 3a shows clearly that variability increases asUt increases
~called multiplicative seasonality! and also shows tread+ To eliminate the tread
and seasonality, following the convention in the literature, we consider trans-
formations+We first use the logarithmic transformation because$Ut % is a series
whose standard deviation increases linearly with the mean+ The transformed
seriesVt 5 log~Ut !, shown in Figure 3b, does not display increase in variability
with Vt but clearly shows a linear tread+ Second, by following the analysis in
Brockwell and Davis~1991, pp+ 284–287!, we apply the difference operator
~1 2 B!~1 2 B12! to $Vt % to obtain the new seriesYt 5 ~1 2 B!~1 2 B12!Vt ,
shown in Figure 3c, which does not display any apparent deviations from sta-
tionarity+ The first 125 transformed observations are used for estimation, and
the last 6 observations are left for prediction+ The WNW estimates of condi-
tional distribution ofYt given Xt 5 Yt21 are depicted in Figure 3d for two dif-
ferent values ofXt ~0+0086, 20+0501!, and Figure 3e gives the WNW estimates
of two conditional quantiles+ Figure 3f presents the estimated surface of the
conditional quantile+ Both Figures 3d and 3e indicate that two curves are al-
most parallel, which implies that there is no clear indication that there exists
heteroskedasticity of$Yt % given Xt + Now we consider the forecasting for the
last 6 observations based on both the WNW and NW estimators, which are
computed by using the same bandwidth for each case+ The 95% prediction in-
tervals are reported in Table 2, which shows that the WNW method outper-
forms the NW approach, although all predictive intervals based on both methods
contain the corresponding true values+ The average lengths of the intervals for
WNW and NW are 0+166 and 0+179, respectively, which are 58+7% and 63+6%
of the range of the data+ Therefore, we can conclude that without making any
complex model assumptions, the prediction intervals based on the WNW method
for time series data work reasonably well+

Table 2. The postsample predictive intervals for airline data

Observation True value P+I+ for WNW P+I+ for NW

Y126 0+001 @20+101, 0+045# @20+101, 0+045#
Y127 20+046 @20+101, 0+055# @20+101, 0+067#
Y128 0+012 @20+102, 0+131# @20+102, 0+131#
Y129 0+032 @20+101, 0+042# @20+101, 0+042#
Y130 20+050 @20+086, 0+044# @20+086, 0+044#
Y131 20+010 @20+054, 0+131# @20+115, 0+141#
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(c) Time series plot for differenced log-transformed data

1
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Figure 3. ~a! Time series plot of Airline data+ ~b! Time series plot of log-transformed data+ ~c! Time series plot of twice-differenced log-
transformed data+ ~d! WNW estimates of conditional CDF’s for two different values of covariateXt ~0+0086, 20+0501!+ ~e! WNW estimates of
conditional quantiles for two different values of covariateXt ~0+0086, 20+0501!+ ~f ! Estimated conditional quantileqx~ p! of Yt givenYt21 5 x+
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APPENDIX

Note that we use the same notation as in Sections 2 and 3+ Let «t 5 I ~Yt # y! 2 F~ y6Xt !
and

bt ~x! 5 F12
hm2g'~x!

2n2g~x!
~Xt 2 x!Kh~x 2 Xt !G21

, (A.1)

wheren2 5 *u2K 2~u! du+ Then,

J1 [ ! h

n (
t51

n

bt ~x!«t Kh~x 2 Xt ! 5
1

Mn (
t51

n

zt , (A.2)
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wherezt 5 Mhbt ~x!«t Kh~x 2 Xt !+ Let C denote a generic constant that might take a
different value at different places+

LEMMA 1 + Under assumptions B1–B5, we have

var~J1! r n0 F~ y6x!@12 F~ y6x!#g~x! 5 s2~ y6x!g2~x! [ u2~ y6x!+

Proof. It is easy to see thatE @zt # 5 0 becauseE @«t 6Xt # 5 0 and

var~J1! 5 E @zt
2# 1 (

t52

n S12
t 2 1

n
Dcov~z1,zt !+ (A.3)

A straightforward manipulation yields

E @zt
2# 5 hE@bt

2~x!«t
2Kh

2~x 2 Xt !# 5 s2~ y6x!g2~x! 1 o~1!+

Choosedn 5 O~h210~11d02! ! and decompose the second term on the right-hand side of
~A+3! into two terms as follows:

(
t52

n

5 (
t52

dn

1 (
t5dn11

n

[ J11 1 J12+

For J11, it follows by condition B5 that6cov~z1,zt !6# Ch, so thatJ11 5 O~dnh! 5 o~1!+
For J12, condition B2 implies thatKh~{! # Ch21 and6~Xt 2 x!Kh~x 2 Xt !6 # C, so that
6zt 6 , Ch2102+ Then, it follows from Theorem 17+2+1 of Ibragimov and Linnik~1971,
p+ 306! that

6cov~z1,zt !6 # Ch21a~t 2 1!,

which implies that

J12 # Ch21 (
t$dn

a~t ! # Ch21 dn
2~11d! 5 o~1!+

This completes the proof of the lemma+ n

LEMMA 2 + Under assumptions B1–B5, we have

l 5 2
hm2g'~x!

2n2g~x!
$11 op~1!% and pt ~x! 5 bt ~x!$11 op~1!%+

Proof. Define, for 1 # j # 3,

Aj 5
1

n (
t51

n

~Xt 2 x! jKh
j ~x 2 Xt !+

Using the same arguments as those in Lemma 1, we have

A1 5 2
1

2
m2h2g'~x! 1 op~h2!, A2 5 hn2g~x! 1 op~h2!, and A3 5 Op~h2!+

(A.4)
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By ~6+4! in Chen and Hall~1993!,

6l 6 #
6A16

A2 2 C16A16
5 Op~h!+

By a Taylor expansion,

0 5 A1 2 lA2 1 l2A3 2 l3A4 1 {{{,

so that

l 5
A1

A2

1 l2
A3

A2

2 l3
A4

A2

1 {{{+

Therefore, substituting~A+4! into the preceding equation, we prove the lemma+ n

Proof of Theorem 1. It follows from Lemma 2 that

ZF~ y6x! 2 F~ y6x! 5

(
t51

n

@I ~Yt # y! 2 F~ y6x!# pt ~x!Kh~x 2 Xt !

(
t51

n

pt ~x!Kh~x 2 Xt !

[ $~nh!2102J1 1 J2%J3
21$11 op~1!%,

where

J2 5
1

n (
t51

n

@F~ y6Xt ! 2 F~ y6x!# pt ~x!Kh~x 2 Xt !

and

J3 5
1

n (
t51

n

bt ~x!Kh~x 2 Xt !+

By condition B1 and~1! and also by the Taylor expansion, we have

J2 5
1

2n (
t51

n

F ~2! ~ y6x!~Xt 2 x!2bt ~x!Kh~x 2 Xt ! 1 op~h2! 5 B~ y6x!g~x! 1 op~h2!

by following the same line as that used in the proof of Lemma 1+ Similarly,

J3 5 g~x! 1 op~1!+ (A.5)

Therefore,

Mnh@ ZF~ y6x! 2 F~ y6x! 2 B~ y6x! 1 op~h2!# 5 g21~x!J1 1 op~1!+ (A.6)

This, in conjunction with Lemma 1, implies ~3!+ To prove~4!, it suffices to establish the
asymptotic normality ofJ1 by ~A+6!+ To this end, we employ Doob’s small-block and
large-block technique~see, e+g+, Ibragimov and Linnik, 1971, p+ 316!+ Namely, partition
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$1, + + + , n% into 2qn 1 1 subsets with large block of sizer 5 rn and small block of size
s 5 sn+ Set

q 5 qn 5


n

rn 1 sn
, (A.7)

where{x} denotes the integer part ofx+ Define the random variables, for 0 # j # q 2 1,

hj 5 (
i5j ~r1s!

j ~r1s!1r21

zi , jj 5 (
i5j ~r1s!1r

~ j11!~r1s!

zi , and hq 5 (
i5q~r1s!

n21

zi +

Then,

J1 5
1

Mn H (
j50

q21

hj 1 (
j50

q21

jj 1 hqJ [
1

Mn
$Qn,1 1 Qn,2 1 Qn,3%+

We show that, asn r `,

1

n
E @Qn,2# 2 r 0,

1

n
E @Qn,3# 2 r 0, (A.8)

*E @exp~itQn,1!# 2 )
j50

q21

E @exp~ithj !#* r 0, (A.9)

1

n (
j50

q21

E~hj
2! r u2~ y6x!, (A.10)

whereu2~ y6x! is defined in Lemma 1 and

1

n (
j50

q21

E @hj
2 I $6hj 6 $ «u~ y6x!Mn%# r 0 (A.11)

for every« . 0+ Expression~A+8! implies thatQn,2 andQn,3 are asymptotically negli-
gible in probability+ Expression~A+9! shows that the summandshj in Qn,1 are asymptot-
ically independent+ Expressions~A+10! and ~A+11! are the standard Lindeberg–Feller
conditions for asymptotic normality ofQn,1 for the independent setup+

Let us first establish~A+8!+ To this effect, we define the large-block sizern by rn 5
{~nhn!102} and the small-block sizesn 5 {~nhn!1020 log n}+ Then, asn r `,

sn0rn r 0 and ~n0rn!a~sn! r 0+ (A.12)

Observe that

E @Qn,2# 2 5 (
j50

q21

var~jj ! 1 2 (
0#i,j#q21

cov~ji ,jj ! [ F1 1 F2+ (A.13)

It follows from stationarity and Lemma 1 that

F1 5 qnvar~j1! 5 qnvarS(
j51

sn

zjD5 qnsn @u2~ y6x! 1 o~1!# + (A.14)
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Next consider the second termF2 on the right-hand side of~A+13!+ Let rj
*5 j ~rn 1 sn!;

thenrj
* 2 ri

* $ rn for all j . i+ We therefore have

6F26 # 2 (
0#i,j#q21

(
j151

sn

(
j251

sn

6cov~zri
*1rn1j1,zrj

*1rn1j2!6# 2 (
j151

n2rn

(
j25j11rn

n

6cov~zj1,zj2!6+

By stationarity and Lemma 1, one obtains

6F26 # 2n (
j5rn11

n

6cov~z1,zj !65 o~n!+ (A.15)

Hence, by ~A+12!–~A+15!, we have

1

n
E @Qn,2# 2 5 O~qn sn n21! 1 o~1! 5 o~1!+ (A.16)

It follows from stationarity, ~A+12!, and Lemma 1 that

var@Qn,3# 5 varS (
j51

n2qn~rn1sn!

zjD5 O~n 2 qn~rn 1 sn!! 5 o~n!+ (A.17)

Combining~A+12!, ~A+16!, and ~A+17!, we establish~A+8!+ As for ~A+10!, by stationar-
ity, ~A+12!, and Lemma 1, it is easily seen that

1

n (
j50

qn21

E~hj
2! 5

qn

n
E~h1

2! 5
qn rn

n
{

1

rn

varS(
j51

rn

zjDr u2~ y6x!+

To establish~A+9!, we make use of Lemma 1+1 of Volkonskii and Rozanov~1959! to
obtain

*E @exp~itQn,1!# 2 )
j50

qn21

E @exp~ithj !#* # 16~n0rn!a~sn!

tending to zero by~A+12!+
It remains to establish~A+11!+ To this end, we employ Theorem 4+1 of Shao and Yu

~1996! and condition B4 to obtain

E @h1
2 I $6h16 $ «u~ y6x!Mn%# # Cn2d02E~6h1621d !

# Cn2d02rn
~21d!02$E~6z162~21d! !%102+ (A.18)

It is easy to see that

E~6z162~21d! ! # Chn
2~11d! + (A.19)

Therefore, by ~A+18! and~A+19!,

E @h1
2 I $6h16 $ «u~ y6x!Mn%# # Cn2d02rn

~21d!02hn
2~11d!02+
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Thus, by ~A+7! and the definition ofrn, and using condition B6, we obtain

1

n (
j50

q21

E @hj
2 I $6hj 6 $ «u~ y6x!Mn%# # Crn

d02n2d02hn
2~11d!02 # C~nh1120d !2d04 r 0+

This completes the proof of the theorem+ n

To prove Theorem 2, we need the following lemma+

LEMMA 3 + Under assumptions B1–B5, we have

pt ~ch! 5 n21bt
c~ch!$11 op~1!%,

where

bt
c~x! 5 @11 lc~Xt 2 x!Kh~x 2 Xt !#

21+

Proof. Let Zl 5 argmaxl Ln~l! so thatLn
' ~ Zl! 5 0, where Ln~{! is defined in ~2!+

It suffices to show that Zl r lc in probability+ To this end, denote byS« the interval
lc 6 «+ We show that for any sufficiently small«, the probability

sup
l[S«

Ln~l! # Ln~lc!

tends to one+ By the Taylor expansion,

Ln~l! 2 Ln~lc! 5 Ln
' ~lc!~l 2 lc! 1

1

2
Ln
''~lc!~l 2 lc!2 1

1

6
Ln
'''~l* !~l 2 lc!3

with l* lying betweenl andlc+ It is easy to show that

Ln
' ~lc! 5 op~1!, Ln

''~lc! 5 2b3~c!g~01! 1 op~1!, and Ln
'''~l* ! 5 Op~1!,

where

b3~c! 5E
21

c u2K 2~u!

@12 lcuK~u!# 2 du+

This concludes with probability tending to one that when« is small enough, for all
l [ S«,

Ln~l! 2 Ln~lc! # 0,

which completes the proof of the lemma+ n

Proof of Theorem 2. By replacingbt~x! in zt by bt
c~ch! and following the same

arguments as those used in the proof of Theorem 1, we can prove the theorem via
Lemma 3+ n
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LEMMA 4 + Under assumptions B1–B5 and C1, we have, for anydn r 0,

ZF~ y 1 dn6x! 2 ZF~ y6x! 5 f ~ y6x!dn 1 op~dn! 1 op~~nh!2102!+

Proof. Let

J4 5
1

n (
t51

n

bt ~x!@I ~Yt # y 1 dn! 2 I ~Yt # y!#Kh~x 2 Xt !+

Then,

ZF~ y 1 dn6x! 2 ZF~ y6x! 5 J4J3
21$11 op~1!%+ (A.20)

It is easy to see that

E~J4! 5 E @$F~ y 1 dn6x! 2 F~ y6x!%bt ~x!Kh~x 2 Xt !# 5 f ~ y6x!g~x!dn 1 o~dn!+

Similarly,

var~J4! 5 O~dn~nh!21!+

Therefore,

J4 5 f ~ y6x!g~x!dn 1 op~dn! 1 op~~nh!2102!+

This, coupled with~A+5! and~A+20!, proves the lemma+ n

We now embark on the proof of Theorem 3+

Proof of Theorem 3. First, we prove~9!+ To this end, by ~3!, we have, for all x
andy,

ZF~ y6x! r F~ y6x! in probability+

It follows by Theorem 1 of Tucker~1967, pp+ 127–128! that

sup
y[R

6F~ y6x! 2 F~ y6x!6r 0 in probability (A.21)

becauseF~ y6x! is a distribution function+ The assumption thatqp~x! is unique implies
that, for any fixedx, there is an« 5 «~x! . 0 such that

d 5 d~«! 5 min$ p 2 F~qp~x! 2 « 6x!, F~qp~x! 1 « 6x! 2 p% . 0+

It is easy to see that the following inequalities hold:

P$6 [qp~x! 2 qp~x!6 . «% # P$6F~ [qp~x!6x! 2 p6 . d%

# PHsup
y
6 ZF~ y6x! 2 F~ y6x!6 . dJ ,
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which tends to zero by~A+21!+ Therefore, ~9! holds+ We now prove~10!+ For anyu, let
dn 5 Bp~x! 1 ~nh!2102sp~x!u+ Then,

Qn~u! [ P@Mnhsp
21~x!$ [qp~x! 2 qp~x! 2 Bp~x! 1 op~h2!% # u#

' P$ [qp~x! # qp~x! 1 dn% 5 P$ ZF~qp~x! 1 dn6x! $ p%

' P$ ZF~qp~x!6x! $ 2f ~qp~x!6x!dn 1 p%

by Lemma 4+ Therefore,

Qn~u! ' P@Mnhs21~qp~x!6x!$ ZF~qp~x!6x! 2 p 2 B~qp~x!6x!% $ 2u# ' F~u!

by Theorem 1, whereF~{! is the standard normal distribution+ Therefore, we finish the
proof of the theorem+ n
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