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We suggest using a class of semiparametric dynamic panel data models to cap-
ture individual variations in panel data. The model assumes linearity in some
continuous/discrete variables that can be exogenous/endogenous and allows for
nonlinearity in other weakly exogenous variables. We propose a nonparametric
generalized method of moments (NPGMM) procedure to estimate the functional
coefficients, and we establish the consistency and asymptotic normality of the
resulting estimators.

1. INTRODUCTION

There exists a rich literature on linear and nonlinear parametric dynamic panel
data models that assume that all regression coefficients are constant, both over
time and across individuals. The readers are referred to Arellano (2003), Bal-
tagi (2005), and Hsiao (2003) for an overview of statistical inference and econo-
metric interpretation of this widely used class of parametric panel data models.
It is well known, however, that parametric panel data models may be misspec-
ified, and estimators obtained from misspecified models are often inconsistent.
To deal with this issue, some nonparametric/semiparametric dynamic panel data
models have been proposed. For example, Robertson and Symons (1992) con-
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sidered a model that assumes the coefficients of the dynamic part to be con-
stant whereas the coefficients for the static part are allowed to change over
individuals. Pesaran and Smith (1995) treated the case where coefficients of
both the dynamic and the static parts can vary across individuals. Horowitz and
Markatou (1996), Li and Hsiao (1998), and Kniesner and Li (2002) considered
partially linear panel data models with exogenous regressors, and Li and Sten-
gos (1996) and Baltagi and Li (2002) considered instrumental variable (IV)
estimation of partially linear models. One of the advantages of the non-
parametric/semiparametric approach is that little prior restriction is imposed
on the model’s structure. Also, this approach may offer useful insights for the
construction of parametric models. Obviously there are many possible nonlin-
ear semiparametric functional forms to be explored.

In this paper we contribute to this literature by extending a varying coeffi-
cient method to the analysis of dynamic panel data models. We consider a panel
with N individual units and over T time periods. We consider the case of large
N and allow for both fixed T and large 7. Moreover, we allow for endogenous
variables to enter the parametric part of the model. We propose a nonparamet-
ric generalized method of moments (NPGMM) approach that is a combination
of the local linear fitting of Fan and Gijbels (1996) and the generalized method
of moments (GMM) approach of Hansen (1982). We establish both the consis-
tency and asymptotic normality of the proposed estimators. A related work to
this paper is the paper by Cai, Das, Xiong, and Wu (2006). Cai et al. (2006)
considered estimating a varying coefficient model, and they also allowed for
endogenous variables to enter the parametric part of the paper. However, Cai
et al. (2006) only considered the independent data case, whereas we consider a
panel data model allowing for both small 7 and large T cases. Moreover, our
estimation procedure is fundamentally different from the two-stage estimation
procedure proposed by Cai et al. (2006). Their two-stage estimation method
requires one to first estimate a high-dimension nonparametric model and then
to estimate a varying coefficient model using the first-stage nonparametric esti-
mates as generated regressors. Our estimation method only requires a one-step
estimation of a varying coefficient model (a low-dimension semiparametric
model). We will further discuss the comparison of our estimator with that of
Cai et al. (2006) in Section 3 after we introduce our estimation method. Recently,
Ai and Chen (2003) considered an efficient estimation of the parametric com-
ponents in a general class of semiparametric models where the endogenous vari-
able is allowed to appear inside an unknown function, i.e., the endogenous
variable appears at the nonparametric part of the model. Their model is more
challenging to handle than ours technically. However, the difference between
the present paper and their paper is that Ai and Chen mainly considered the
efficient estimation of the \/; (n is the sample size) asymptotic normality
result for the finite-dimensional parameters but they did not provide asymp-
totic distribution of the nonparametric components because the exact leading
bias term in series estimation is generally unknown, whereas in this paper we
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use the kernel method and we derive the asymptotic normal distribution of our
(the nonparametric component of the model) semiparametric estimator.

Varying coefficient models are well known in the statistics/econometrics
literature, and there are a variety of applications; see, e.g., Cai, Fan, and Yao
(2000), Chen and Tsay (1993), and Hastie and Tibshirani (1993) for details.
The structures of these models are analogous to those of random coefficients
models (e.g., Hsiao, 2003; Granger and Terdsvirta, 1993). Recently, these mod-
els have been used in various empirical applications. For example, Hong and
Lee (2003) explored inference and forecasting of exchange rates, Juhl (2005)
studied the possible unit root behavior of U.S. unemployment data, Li, Huang,
Li, and Fu (2002) modeled the production frontier using Chinese manufactur-
ing data, and Cai et al. (2006) considered nonparametric two-stage IV estima-
tors for returns to education.

The rest of this paper is organized as follows. In Section 2, we formally intro-
duce the varying coefficient dynamic panel data model and discuss model iden-
tification issues. In Section 3, we propose a nonparametric IV estimation
procedure that combines the local linear fitting scheme and GMM to estimate
the coefficient functions, and we establish the consistency and asymptotic
normality of the resulting estimators. All technical proofs are relegated to the
Appendix.

2. VARYING COEFFICIENT DYNAMIC PANEL MODELS

We consider a class of semiparametric panel data models, called “varying coef-
ficient dynamic panel data models,” that assume the following form:

Yit = X;tg(Zit)+€i1’ 1 SlSNa and IStSTa (1)

where X, is of dimension d X 1 with its first element X;, ; = 1, the prime denotes
the transpose of a matrix or vector, the coefficient functions {g;(-)} (j =1,...,d)
are unspecified smooth functions in W” (p =1, Z; € N7?), the errors {€,} can
be serially correlated and are assumed to be stationary (also strong mixing if
T is large), and E(e;|Z;,) = 0. The main focus in this paper is on estimating
model (1) under the assumption that some or all components of X; may be
correlated with the error €;,. More specifically, we assume that E(e;,|Z;,) = 0
but allow for E(e;|X;,) # 0. If both X, and Z,, are exogenous, and in particu-
lar do not contain lagged values of Y;,, then model (1) becomes a varying coef-
ficient static panel data model.

The general setting in model (1) includes many familiar models in the liter-
ature. For example, it covers the following partially linear dynamic panel data
model:

Y, =g1(Z,) + X, B + € I=i=N, and I=t=T, (2)
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where X, is X, without the first component X, 1- Indeed, model (2) has been
studied by many authors in the literature. For example, Li and Hsiao (1998)
and Kniesner and Li (2002) studied model (2) under the assumption that
E(e;|X;,Z;) = 0 (i.e., there is no endogenous regressor), and Li and Stengos
(1996) and Baltagi and Li (2002) tackled it by allowing some or all compo-
nents of X, to be correlated with the error €, (i.e., there exist some endogenous
regressors). If some or all components of X;, are endogenous, model (1) covers
the nonparametric IV models considered by Das (2005) for discrete endog-
enous regressors and Cai et al. (2006) for both discrete and continuous endog-
enous regressors, and the semiparametric IV models by Newey (1990) and Cai
and Xiong (2006) with cross-sectional data. Finally, if there is no endogenous
variable, model (1) includes the static panel transition regression model of
Gonzdlez, Teriisvirta, and van Dijk (2005) and the threshold nondynamic panel
model of Hansen (1999).

When E(e;,|X;,) # 0, it is clear from (1) that E(Y;|X;,Z;) # X, g(Z,,).
Therefore, one cannot consistently estimate the coefficient functions {g;(-)} by
projecting Y;; on X!,g(Z,,) (in the £,(X,Z) projection space). To obtain a con-
sistent estimator of the coefficient functions {g;(-)}, we assume that there exists
a g X 1 vector of instrumental variables W;, with the first component W,, ; = 1
such that E(e;,|W;,) = 0. Then, we have the following orthogonality condition:

E(Eiz‘vit) =0, 3)

where V;, = (W/,,Z,)’. Multiplying (1) by 7(V;;) = E(X;,|V;;) on both sides
and taking expectations, conditional on Z; = z, we obtain

E(7(V,)Y,|Z,=12) = E(W(Vit)X;r|Zit =1z)g(z)
= E(7(V,)m(V,;,) |Zit =12)g(z),

where we have made use of the law of iterated expectations. Under the assump-
tion that E(#7 (V,,)7(V,)'|Z,, = z) is positive definite, we obtain

g(Z) = [E(W(Vit)ﬂ-(viz)/ |Ziz = Z)]_IE(W(Vit)Yit|Zit = Z)- (4)

The condition that E(7(V;,)7(V;,)'|Z;, = -) is positive definite guarantees
that g(-) is identified. In principle one can also construct an estimator of g(z)
based on (4). However, such an estimator will require a two-stage nonparamet-
ric estimation procedure: the first step is to estimate the conditional mean 7 (V;,),
and the second stage is to estimate another conditional mean function of 7(V;,)Y;
conditional on Z; = z where 77(V,,) is the nonparametric estimate obtained at
the first step; see, e.g., Cai et al. (2006). Such a double nonparametric estima-
tion procedure complicates the asymptotic analysis of such an estimator. To
overcome this shortcoming, in the next section we propose a simple estimator
for g(-) that requires only one nonparametric estimation procedure.
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3. STATISTICAL PROPERTIES
3.1. NPGMM Estimation

In the remaining part of the paper we assume that the model is identified. It
follows from the orthogonality condition (3) that, for any vector function Q(V;,)
with dimension m; specified later, we have

0 = E(Q(V,)e;|V,) =E[Q(V, )Y, — X}, g(Z,)}|V,]. (5)

If Q(V;,) is chosen to be 7(V;), solving g(-) from equation (5) leads to equa-
tion (4). However, for computational simplicity, we will not choose Q(-) as
().

Clearly, (5) provides conditional moment restrictions and can lead to an esti-
mation approach similar to the GMM of Hansen (1982) for parametric models.
We propose an estimation procedure to combine the orthogonality conditions
given in (5) and the local linear fitting scheme of Fan and Gijbels (1996) to
estimate the coefficient functions. This nonparametric estimation procedure is
termed nonparametric generalized method of moments (NPGMM).

We apply local linear fitting to estimate the coefficient functions {g;(-)},
although other smoothing methods such as the Nadaraya—Watson kernel method
and spline method are applicable. The main reason for preferring local linear
fitting is because it possesses some attractive properties, such as high statisti-
cal efficiency in an asymptotic minimax sense, design adaptation, and auto-
matic boundary corrections (e.g., Fan and Gijbels, 1996). The detailed description
of this approach can be found in Fan and Gijbels (1996), and its basic idea is
illustrated next. Note that although a general local polynomial technique is appli-
cable here, Fan and Gijbels (1996) argued that local linear fitting might be suf-
ficient for most applications, whereas the theory developed for the local linear
estimator holds for the local polynomial estimator with a slight modification.
Therefore, in this paper we focus only on local linear estimation.

We assume throughout that {g;(-)} are twice continuously differentiable. Then,
for a given point z € N’ and for {Z;} in a neighborhood of z, using Taylor
expansions, g;(Z;) can be approximated by a linear function a; + bj(Z, — z)
with a; = g;(z) and b; = Vg;(z) = dg;(z)/0z, the derivative of g;(z). Hence,
model (1) is approximated by the following working linear model:

—~ !
Yit - Uita + €irs

where U;, = <x ®)((z _z)> is an my, X 1 (my, = d(p + 1)) vector, X) denotes
the Kronecker p’rroduc'tr, and @ = (ay,...,a4, b},...,b})" is an m, X 1 vector of
parameters. Therefore, for {Z,,} in a neighborhood of z, the orthogonality con-
ditions in (5) implies the following locally weighted orthogonality conditions:

N

M =

_ Q(Vn)(th - U;,d)K,,(Z,-, - Z) = 0, (6)

i=1

~
Il
—
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where K,(-) = h"PK(-/h), K(-) is a kernel function in ?, and h = h, > Ois a
bandwidth that controls the amount of smoothing used in the estimation.

We will estimate g(z) based on (6). Although (6) is the sample analog of an
unconditional zero population mean equation, it is equivalent to the conditional
mean restriction of (3) if one requires that (6) hold true for all measurable func-
tions Q(-). For a specific choice of Q(-), (6) is weaker than (3). It might be
possible to relax the conditional mean restriction (3) to a weak unconditional
population mean restriction based on (6). However, this will complicate the
asymptotic analysis. Therefore, we will impose the orthogonal condition (3)
throughout the paper to simplify the asymptotic analysis.

Equation (6) can be viewed as the IV version of the nonparametric estima-
tion equations discussed in Cai (2003) and the locally weighted version of equa-
tion (9.2.29) in Hamilton (1994, p. 243) or equation (14.2.20) in Hamilton (1994,
p. 419) for parametric IV models. To ensure that equation (6) has a unique
solution, the dimension of Q(-) must satisfy m; = m, because the number of
parameters in (6) is m,. However, when m; > m,, the model is overidentified,
and there may not exist a unique e to satisfy (6). To obtain a unique @ satisfy-
ing (6), we premultiply (6) by an m, X m; matrix S/, where with Q;, = Q(V;,)
and n = NT,

Qit U;rKh(Zit - Z)-

95
=
Il
S
M=
M~

i=1t

Then solving for @ we obtain
a=(S,8,)7'S,T, (7)

where

T
Z it Kh (th ) it*

:I»—‘
HMZ

The estimator & defined in (7) is termed the NPGMM estimate of e, and it gives
the NPGMM estimate of g(z) and its first-order derivatives Vg;(z) (1 =j = d).

We now compare our estimation procedure with the two-stage estimation
method proposed by Cai et al. (2006), described briefly as follows. At the
first stage, one estimates 77 (V;,) nonparametrically (say, by a kernel method).
Let 77(V;,) denote the resulting nonparametric estimator. Then at the second
stage, one estimates g(-) based on the varying coefficient model: Y;, =
(V) g(Z;) + u;. Recall that the dimensions of W;, and Z;, are ¢ and p, respec-
tively. Hence, the first stage of Cai et al. (2006) requires the estimation of a
nonparametric regression model of dimension g + p. Also, their two-step method
requires the use of two sets of smoothing parameters and that first-step estima-
tion should be undersmoothed. In contrast, our proposed method only involves
a one-step estimation procedure of a varying coefficient model with nonpara-



NONPARAMETRIC ESTIMATION OF DYNAMIC PANEL DATA MODELS 1327

metric components of dimension p. In empirical applications, it is likely that
W,, is a high-dimension vector, whereas Z; is a scalar (or a low-dimension
vector). In such situations our proposed estimator is expected to have much
better finite-sample performance than that for the two-stage estimator of Cai
et al. (2006) because our estimator only involves low-dimensional nonparamet-
ric estimations.

Note that if there is no endogenous variable (all components of X, are exog-
enous), then one can choose W;, to be X;, and choose Q(V,,) to be U;,. In this
case, equation (6) becomes

N T

2 2 UitKh(Zir - Z)(Yir - U;,a) =0,

i=11r=1

which is the normal equation of the following locally linear least squares prob-
lem for the varying coefficient panel data model:

N T
E E Kh(Zit - z)(Yiz - Uz{ta)z'
i=11t=1

Therefore, in this case the NPGMM estimator given by (6) reduces to the ordi-
nary local linear estimator.

We now turn to the question of how to best choose Q(V;,) in (6). Motivated
by local linear fitting, a simple choice of Q(V;,) is

v ( W, ) o
Q= \w, ® (z, - o) ®
so that the dimension of Q;, is m; = g(p + 1). Therefore, the identification
condition m; = m, becomes g = d. Note that the choice of Q(V;,) given in (8)
is computationally simple but it may not be optimal in the sense of minimizing
the estimation asymptotic variance. For fixed orthogonality conditions, optimal
instruments can be constructed by following approaches similar to Newey (1990)
and Ai and Chen (2003). In this paper we focus only on the simple case whereby
Q(V;) has the form given in (8).

Before we derive the asymptotic distribution of &, we first introduce some
notation. Let H = diag{I,, h1,,}, which is of dimension m, X m,, where I;
denotes a j X j identity matrix. Substituting (8) into (6), multiplying H on both
sides of (7), and also inserting HH™! in the middle on the right-hand side of
(7), we obtain

Ha = H(S,S,) 'HH'S,T, =[S, H')S,H '] '(S,H ')'T,
=[S,S,1°'S,T,, )
where

S,=S,H !=

n n

S | =
M=
M=~

I
~
I

Q; ﬁ;t K,(Z;, —z)
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with
_ X
U, = HilUit =
Xit ® (Zir - Z)/h

(so that U, = U, H™"). We are now ready to derive the asymptotic distribution
of @, which is the subject of the next section.

3.2. Asymptotic Theory

First, for ease of reference, we state the definition of a strongly mixing sequence.
Let {{,} be a strictly stationary stochastic process and F," denote the sigma
algebra generated by (Z,...,{,) for s = t. A process {Z,} is said to be strongly
mixing or a-mixing if

a(r) = sup{|P(A N B) — P(A)P(B)|:A € F*_,BE FZ.} >0
SEN
as T — oo.
Next, we introduce the following notation. Denote by u,(K) = fuu’K(u)du
and vy = [K*(u)du. Define o%(v) = Var(e;|V, = v), @ = Q(z) =

E(WirX;t|Zit = 2), & = Q(2z) = Var{W,e;|Z;, = z}, 0,(V;,Vy) =
E{€i16i1|Vil’Vit}a and

G,(Z,,Z,) = E{W, Wi,zo-lt(vil’vit)|ZiI’Zit} = E{Wi] W€, Eit|Zil’Zit}~

Then, it is obvious that &, = G,(z,z) and o%(v) = o4,(v, V). Set

(Q 0 ) (leo 0 )
S =S(z) = ,  S"=8%(z) = .

0 Q® u,(K) 0 Q]@I"z(Kz)
and
B f < QA (u,z) ) - WV (z)u
B(z) = (0AW2)} @ u K(u)du, where A(u,z) =
u'Vg,(z)u

and V2g;(z) = 9%g;(z)/02dz'. We now impose some regularity conditions that
are sufficient for deriving the consistency and asymptotic normality of the pro-
posed estimators, although they might not be the weakest possible.

Assumption A.

Al. {(W;,X;;,Y:,Z,,€;,)} are independent and identically distributed across
the i index for each fixed ¢ and strictly stationary over ¢ for each fixed
i, E[W, X, |2 < o0, E|JW, W, > < oo, and Ee, > < oo, where [A]> =
tr(AA’) is the standard L,-norm for a finite-dimensional matrix A.
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A2. For each r = 1, G,(z,,2,) and f;,(z,,2,), the joint density of Z;, and
Z,,, are continuous at (z, = z,z, = z). Also, for each z, Q(z) > 0 and
f(z) > 0, where f(z) is the marginal density function of Z,. Further,
sup,=1|G,(z,2) f,(z,2z)| = M(z) < oo for some function M(z). Finally,
g(z)and f(z) are both twice continuously differentiable at z € R?.

A3. The kernel K(-) is a symmetric, nonnegative, and bounded second-
order kernel function having compact support.

A4. The IV W,, satisfies the conditions that E(e;|W;,,Z;) = 0 and that
E[7 (V) 7w (V;,)'|Z;, = z] is of full rank for all z, where V;, = (W/,,Z))
and 7(V;,) = E(X;,| V).

AS5. h — 0 and Nh? — oo as N — oo.

Assumption B.

Bl. T — oo and nh? — oo as N — oo.

B2. There exists some 8 > 0 such that E{|e;, W,,|?1*®|Z = u} is continu-
ous at u = z.

B3. For each fixed i, the process {(W;;, X;;,Yi;, Zi;, €;;)} is a-mixing with the
mixing coefficient satisfying the condition a(k) = O(k~ "), where 7 =
2+ 8)(1 + 8)/8.

BA4. NT(T+1)/Thp(2+§)/(1+5) — 0.

Remark 1 (Discussion of conditions). Assumption Al requires that obser-
vations are independent and identically distributed across i and stationary across
t, which is a standard assumption in the panel data literature. Note that we do
not assume that {€,} is a martingale (random walk) difference process, which
is imposed by Kniesner and Li (2002). Assumption Al also gives some stan-
dard moment conditions. Assumption A2 includes some smoothness conditions
on functionals involved. The requirement in A3 that K(-) be compactly sup-
ported is imposed for the sake of brevity of proofs and can be removed at the
cost of lengthier arguments. In particular, the Gaussian kernel is allowed.
Assumption A4 is a necessary and sufficient condition for model identification.
Assumption A5 allows for T either fixed (bounded) or going to infinity. When
T is fixed, the theoretical results are similar to the cross-sectional data case.
But for large T (T — o0), the mathematical derivation is more involved. There-
fore, for large T, we need some additional (stronger) conditions such as B2-B4.
In particular, B2 requires the existence of some high-order moments. The
a-mixing condition is one of the weakest mixing conditions for weakly depen-
dent stochastic processes. Stationary time series or Markov chains fulfilling cer-
tain (mild) conditions are a-mixing with exponentially decaying coefficients;
see Cai (2002) and Carrasco and Chen (2002) for additional examples. On the
other hand, the assumption on the convergence rate of (k) in B3 might not be
the weakest possible and is imposed to simplify the proof. Conditions B2-B4
are similar to those needed for nonlinear time series models (e.g., Cai et al.,
2000). Finally, we note that B4 is not restrictive; e.g., if we consider the opti-
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mal bandwidth such that h,,, = O(n~"/"*¥) (see Remark 3 in this section),
then B4 is satisfied when 6 = p/4 — 1. Therefore, the conditions imposed here

are quite mild and standard.
Before presenting some auxiliary results, we need to introduce some nota-

tion. Denote
Rj(ZinZ) = g,(ZiZ) —a;— bj"(Ziz —1z)— %(Ziz - Z)'Vzg_,-(z)(Z,-t —1z),
d

1
Kh(Zit - Z)Qlt E (Zn‘ - Z) Vzgj(z) (Zzt ) itj»

j 1

B

n

I

S | =
M=
M=

Il
-
Il

b
Il
S | =
=
M~

d
K,(Z;, —7)Q, 2 R/'(Zir’Z)Xitj’
Jj=1
and

T
2 Kh(Zit - Z)Qit€ir-

=1

:I»—
M=

i

Then T, = S,Ha + T: + B, + R,,. Substituting this into (9), we obtain
H(@—a)—(S,S,)7'S,B,—(5,S,)"'S,R, = (§,8,)'S, T;. (10)

To establish the asymptotic distribution of &, we will show that the second
term on the left-hand side of (10) contributes to the asymptotic bias, the third
term on the left-hand side is negligible in probability, and the term on the right-
hand side is asymptotically normal. To this end, we first provide some prelim-
inary results stated here with their proofs relegated to the Appendix.

PROPOSITION 1. Under Assumptions AI-AS5, we have

(i) S, = f(@S{L + 0, (1)},
(i) B, = (h?/2) f(z)B(z) + op(hz), and
(iii) R, = op(hz).
PROPOSITION 2.
(i) Under Assumptions AI-A4 and Bl, and if Th? — 0, then
nh? Var(T*) — f(z)S*. (11)

(ii) If Th? = C > 0, and Assumptions A1-A4 and B1-B3 are satisfied, then
(11) holds true.
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It follows from (10), Proposition 1, and Assumption A3 that

1> (B, (2)
H(a —a) — 7( 0 > + ol,(hz) =f"Yz)(S'S)IS'T{1 + 0,(1)}, (12)

where B,(z) = [A(u,z)K(u)du = (tr(Vzgj(z)/.Lz(K)))dX] is a d X 1 vector.
The asymptotic sampling theory for the NPGMM estimators is established in
Theorem 1 for consistency and in Theorems 2 and 3 for asymptotic normality
with detailed proofs relegated to the Appendix.

THEOREM 1.
(i) If Th? — 0, under Assumptions AI-A5, we have

2 /B
H(a - a) - %( .

) = op(hz) + Op((nhf’)"/z). 13)
(ii) If Th? = C for some C > 0, and Assumptions AI-AS5, B2, and B3 are
satisfied, then (13) holds true.

The proof of Theorem 1 is straightforward from Proposition 2 and (12) and
is therefore omitted.

Remark 2. Theorem 1 shows that & is consistent (with rate of convergence)
for both large and small T cases. In particular, for the case where Th” — 0, it
does not require any assumptions on the dependence structure such as Assump-
tion B3. This is particularly useful in practice. For example, it covers models
with serially correlated errors. The next two theorems give the asymptotic nor-
mal distribution for & for fixed and large T cases.

THEOREM 2. If T is finite, under Assumptions AI-A5 and B2, we have

2 /B
\nh? [H(& —a)— h—( g(fz)

5 ) + op(hz)] <5 N(0, f ' (z)A), (14)

where A = diag{roQ, @, @ [y (K)o(K?) iy (K]} with @, = (2'0)""
2'0,0(00) "

THEOREM 3. If T — oo and Assumptions AI-A5 and B2-B4 are satisfied,
then (14) holds true. In particular we have

\nh? [g(z) —g(z) - % B,(z) + o,,(hz)] LN, v f T (2)Q,).
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To prove the asymptotic normality results stated in Theorems 2 and 3, given
the results of Theorem 1, it suffices to show that \nh?”T; — N(0, f(z)S*(z)),
which is proved in the Appendix.

Remark 3. From Theorem 2 it is easy to see that the asymptotic variance of
W(g(z) — g(z)) is vof ~'(2)Q,, which is the same as that given in Theo-
rem 3. Hence, Theorems 2 and 3 show that g(z) has the same leading bias and
variance expressions for both finite 7 and the large T cases. This implies that if
one first lets N — oo (for a fixed value of T'), and then let T — oo, this sequen-
tial limit is the same as the joint limit of N — oo and T — co. Therefore, we
know that the asymptotic mean squares error (AMSE) of g(z), whether T is
fixed or large, is given by

AMSE = h*|B,(2)[*/4 + vo f ' (2)tr(Q,) (nh?)~".

Then it is easy to show that the optimal bandwidth £, that minimizes the pre-
ceding AMSE is given by

ope = (pvof ~H (@)t (Q,)[B,(2)] 72) P+ n =109
and the resulting optimal AMSE is

AMSE,,,, = (p 7 /+p=7/7* ) (vy tr(Q,) f ' (2)) V7T
2p/(p+4),,—4/(p+4)
X B, (z) 2P/,
which is the optimal rate of convergence.
Also, it can be shown that, when T is sufficiently large and N is small, the

results of Theorem 3 still hold although the theoretical justification needs some
modifications.

Finally, let us consider the special case when model (1) does not have any
endogenous variable (e.g., W;, = X;,). For this case, we have the following
asymptotic normality result for the local linear estimator of the coefficient func-
tions, which covers the results in Cai et al. (2000).

THEOREM 4.

(i) Under Assumptions AI-A5 and B2, if T is finite, then we have

2

h
\nh? [Q(Z) —g(z) — Y B,(z) + 01,(h2)] = N(0, v, f ' (2)Q;(2)),

15)
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where
Q:’:(Z) = [E{X, X}|Z, =2}] 'E{o*(V,) X, X},|Z,, = z}
X [E{XirX:‘t|Zit = Z}]71~

(ii) If T — oo, and Assumptions AI-AS5 and B2-B4 are satisfied, then (15)
holds true.

Remark 4. Note first that (i) and (ii) of Theorem 4 are special cases of Theo-
rems 2 and 3 by letting W;, = X;,. Also, Remarks 2 and 3 are applicable here
for Theorem 4.

Remark 5. It is quite difficult to compare the relative efficiency of our esti-
mator and the two-stage estimator proposed by Cai et al. (2006) for the general
setup. For the simplest case that both X;, and W, are scalars and that the error
is conditional homogenous, one can show that the Cai et al. (2006) two-stage
estimator is asymptotically more efficient than the estimator proposed in this
paper (in the sense of having smaller asymptotic variance). However, because
the Cai et al. (2006) estimator requires one first to estimate a high-dimensional
nonparametric regression model, this will affect the finite-sample performance
of the Cai et al. (2006) estimator. If one focuses on the first-order condition
of (5), then Cai and Li (2005) showed that the optimal choice of Q(V;,) is
Q(V,) = E(X;|Vi)/o*(V;,), where 02(V;,) = Var(€;|V;), and the resulting
estimator will be asymptotically more efficient than both the estimator dis-
cussed in Section 3 of this paper and the two-stage estimator of Cai et al. (2006).
However, a general treatment of efficient estimation is complex because (5)
does not take care of the correlation of the 7 moment conditions.! We leave the
general efficient estimation problem as a topic for future research.

NOTE

1. We owe this observation to a referee.
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APPENDIX

Before we prove the main results of the paper, for reference convenience, we first present
some lemmas which will be used in the proofs of Theorems 2 and 3, although they are
just stated here without proof. Indeed, Lemma 1 is the so-called Davydov’s inequality,
which is Corollary A2 in Hall and Heyde (1980, p.278), Lemma 2 is Lemma 1.1 of
Volkonskii and Rozanov (1959) and also appears in the books by Ibragimov and Linnik
(1971, Remark 17.2.1) and Fan and Gijbels (1996, Lem. 6.1), and Lemma 3 is a part of
Theorem 4.1 of Shao and Yu (1996). For the detailed proofs, see the aforementioned
books and papers.

LEMMA 1. Suppose that U and V are random variables that are F'_ and
F.Z.-measurable, respectively, and that |U|, < oo, |V, < oo, where |U|, =
{E[U|P1}"P and p, ¢ > 1, p~' + q~' < 1. Then

[E(UV) —E@)E(V)| = 8[a(n)]"|U],IV

q°

wherer=1—p ' — g~ 1
LEMMA 2. Let Vi,...,V, be a-mixing stationary random variables that are
F', ..., Fl-measurable, respectively, with 1 = iy < j, <iy --- <ji, ijy1 — j; =7, and

V| =1fori=1,...,L Then

‘E(ﬁ Vl> — ﬁE(V,)‘ =16(L —1)a(7).

LEMMA 3. Let 2 < p < r = oo and V, be an a-mixing process with E(V,) = 0
and |V,|, < co. Define S, = X'V, and assume that a(t) = O(77?%) for some
0 > pr/(2(r — p)). Then

ElS,|? = Kn” max|[V,]7,
1=n

where K is a finite positive constant.

We use the same notation introduced in Sections 2 and 3. Throughout this Appendix,
we denote by C a generic positive constant, which may take different values at different
places.

Proof of Proposition 1. By the stationarity given in Assumption Al, we have

E(grl) = E{Qit I.jl(tKh(Zit - Z)}

( WX’ WX' ® (Z —2)'/h )
= K,(Z —1z)
XW' ® (Z-2)/h WX ® (Z —2)(Z —2)//h?
( Q(Z) QZ) ® (Z—-2)/h )
=E K,(Z — z)
2)®Z-2)/h UZ) Q®(Z—-12)(Z—2)/h?
Q(u) Q(uw) ® (u—12)/h

_ f K, (u —2)f(u) du

Q@ u-2/r Q@ (u-2z)(u-2)7h*
_J‘( Q(z + hu) Q(z+hu)®u’) S
- Q(z+hu) @u Q(z+ hu) Q un’ K(wf(z + hu)du > f(z)S(z)
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by Assumptions A2 and A3. To establish the assertion in (i), we now define, for
l=l=gandl=j=d,

=z

M~

1
Sulj = ,_1 ) WirlXirj K,(Z; — 1),

where W, is the [th element of W;, and X,; is the jth element of X;. Then, by the
stationarity given in Assumption Al, we have

nh? Var(s, ;)

hp T
= 7 Var(E VVitIXithh(Zit - Z)) =h? Var(WiuXileh(Zil )

=1

p T—1

+ T E (T- f)COV(Wn/anKh(Zu - Z),"Vi(r+1>1Xi(r+1)_;Kh(Zi(x+|) — 1))

=1
= +1L.
By Assumptions Al and A2, it is easy to see that /; = C. Next, we consider /. By

Cauchy-Schwarz inequality, | I,| = CT. Therefore, Var(s,, ;,) = C/(Nh?) — 0 by Assump-
tion A5, so that

M=
M=

1
- W, X, K,(Z;, — 2) = f(2)Q(2) + 0,(1). (A.1)
n; 1

I3

Similarly, one can show that

1 X Z,—1z

L3 wxo (2 Kz -0 =00

n j=1=1

and

1Y Z,—z\(Z,—z\

;_IEIWnXE,@( Y >< Y >K/,(Zn—z)=f(l)0(l)®ﬂz(K)+0p(1)-

Hence, we have proved (i).
Next, we prove (ii). Indeed, it is easy to see that

1 {( WitX;rA((Zit - Z)/h) ) }
h?E(B,) = ZE K,(Z; —2)
2 WtrX;‘tA((Zit - Z)/h) ® (Zit - Z)/h

1 f( Q(u)A((u—2)/h)
2 \0WwA((u—12)/h) @ (u—1z)/h

_lj< Q(z + hu)A(u) )K e 1 ]
2J)\ez+ A ®u (w)f(z + hu) uezf(z) (z).

>Kh(u —z)f(u)du
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Similar to (A.1), it is easy to show that any component of the variance of #~2B,, con-
verges to zero so that (ii) holds true.
Finally, we establish (iii). To this end, it is not difficult to check that

W, X, R(Z;,z)
hE(R,) = th{( )Kh(Zit_Z)}
Wier"zR(ZinZ) ® (Zir - Z)/h

_ h2J< Q(u)R(u,z) )
- QuR(w,z) ® (u—12)/h K,(u—z)f(u) du

o f( Q(z+ hu)R(z + hu,z)

Q(z + hu)R(z + hu,z) ® u) Kl tet huydu =0,

because
-2 — 7,2 ’ 1 2.2
hR;(z + hu,z) = h g;(z + hu,z) — g;(z) — Vg;(2)' (hu) — > h*u'Vig(z)u

=o0(1)

for any u and that any component of the variance of 2~ >R,, converges to zero. (Recall
that R;(Z;,,z) = g;(Z;) — a;(z) — Vg(z)'(Z; — z) — G)NZiy — Z)Ivzgj(z)(zit - z))
Therefore, (iii) is verified. This completes the proof of Proposition 1. n

Proof of Proposition 2. Clearly, E(T}) = 0 and
nh? Var(T},)

hl’ T
= Var( 2 it €it Kh(Zir - Z)>
T =1

= h* Var(Q; €, K,(Z;, — 7))

2hP T—1

+ Z (T—1)Cov(Q, €, K, (Z;; — Z)’Qi(x+l)ei(t+l)Kh(Zi(t+l) — 1))
=1

=1, +1,.

By Assumptions Al and A2, I3 — f(z)S]. Clearly,

T—1

|I4| = Ch? E ‘COV(Qileil K,(Z;, — z)fQi(r+1)6i(t+l)K/l(Zi(r+1) —12))|. (A2)

=1

We now show that the right-hand side of the preceding inequality goes to zero. We
consider it in two cases: (I) Th? — 0 and (II) Th? = C > 0.
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Case I. For any r = 1, by Assumption A2,
Cov(Q; €, K, (Z;, — Z)vQ[(z+1)6[(1+1)Kh(Zi(t+1) — 1))
=E{Q,; Q;‘(ﬁrl)o-z(wilvWi(H—l)inl7Zi(t+1))Kh(Zil - Z)Kh(Zi(H—l) —2)}

Gl,t+1(zyz) 0 >

= fi,1(2,2) < 0 G +1(2,2) ® p,(K)

By Assumption A2, then

|L,| = Ch?T — 0. (A.3)

Case II. First, we split the sum in (A.2) into two parts as Is = X%, (---) and I =
E,M/l(- -+), where d, is a sequence of positive integers such that d,h” — 0. First, we
show that Is — 0, which can be done by an analog of (A.3). Next we consider the upper
bound of Is. For this purpose, we denote K/ = K,(Z; — z)[(Z; — z)/h]", where
v =0 or 1, and use Lemma 1 to obtain
[Cov (e Wi, Kits €i0e 1y Wies 1ym KiGar)|

= C[a(l)]s/(Hs) lei Wi K lovs- € Wi K >+

for v1, v, = 0 or 1. Conditioning on Z;; and using Assumption B2 yields

E‘anmeHs = E[E{|EilVVil]|2+6|Zil}Khz+§(Zil -2){|Z;, - Z|/h}y(2+6)]
= hip(Hé)f(Z)E{‘fil ‘/Vill|2+5 |Zi1 =1z} f|“|y(2+§)K2+6(u) du

+ o(h—P0+9)
= Ch Pt = Q(p—pU+o), (A4)
Then,
|COV(ei1u/illKiVll9ei(t+l)vvi(tJrl)mKi,E%Jrl))‘ = 0((15/(2+5)(f) h*Z])(1+5)/(2+5))'
Therefore, the (/,)th element of Iy becomes

Lo ) = ChP@+0) X [a(1)]9/2*
>d,

= O(h™7%/+9d%) - 0

by Assumption B3 and choosing d, such that 27d*> = O(1), so the requirement that
d,h? — 0 is satisfied. Therefore, I, — 0. This proves Proposition 2. n

To prove Theorems 2 and 3, from (12), clearly it suffices to establish the asymptotic
normality of \/nh”T%. To this end, we now employ the Cramér—Wold device because
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T% is multivariate. For any unit vector d € R™, let w;; = h?2d'Q Ky (Z;, — 7)€, 1 =
i=Nand 1=rt=T. Then,

N T
Vil T, = =3 S w,.

ni=11r=1
and by Proposition 2 and (A.2), forany | =i=Nand 1 =1 =T,

Var(w,,) = f(z)d’S*(z)d(1 + 0(1)) = 0%*(z)(1 + 0(1)) and
E |Cov(w;, ;)| = o(1).

Therefore, Var(\nh?d'T%) = 6%(z)(1 + o(1)).

Proof of Theorem 2. Define v}, = T°"/> 3]_| ,. Then, {w] } are 1ndependent
double array random variables because T is finite and \\nh?d' T = N~ 2 3w} .. To

show the asymptotic normality, it suffices to check Lyapounov’s condluon. By Mmkow—
ski’s inequality and using derivations similar to those used in the proof of (A.4), we
have

‘w;i|2+5 = CT(2+8)/2E|0)1-| |2+s < CT@+8)/2),-pd/2

by Assumption B2. Therefore, n- @92 3Y Elw > = C (Nh?)7%* — 0 by
Assumption AS. Thus, we have shown that Lyapounov’s condition holds and Theorem 2
follows. |

Proof of Theorem 3. When T — oo, for each i, {w;,}/_, is a stationary e-mixing
sequence. Therefore, the proof is more complicated; see Hall and Heyde (1980) and
Ibragimov and Linnik (1971). The common approach to prove asymptotic normality for
a stationary a-mixing sequence is to employ Doob’s small-block and large-block tech-
nique; see Ibragimov and Linnik (1971, Ch. 18), Cai (2002, 2003), and Cai et al. (2000)
for details. For this setting, we partition {1,...,T} into 2¢; + 1 subsets with large block
of size rr and small block of size sy < T with r + sy < T and ry and sy specified later.
Set g7 = | T/(ry + s7)] and define the random variables, for 0 = j < g7 — 1,

Jlrptsp)+rp (j+D(rp+s7) T
U E Wiy §zj = E w;, and fzqr E Wijq -
t=j(rp+syp)+1 1=j(rp+sp)+trpt+l t=qr(rp+sp)+1

Then,
{N qar— N gqr—1 } 1
h? ’T*=— = — 3f
VAT = =3 S ,J+lzuzof,,+zz,w IR ER N
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To establish the asymptotic normality of \/nh”d’ T}, it suffices to show the following:
as N > ooand T — oo,

1 1
- E[Qn,2]2 4 0’ - E[Qn,3]2 - 07 (A'S)
n n
qr—1 qr—1
‘E[exp(z’t > ”’ka>:| — II Elexp(itn,;)]| =0, forany I =k=N, (A.6)
=0 =0
N qr—1
-2 2 E(n) - 0°(2), (A7)
i=1 j=0
and
N ar—1
-2 2 E[n;I{n,| = e (2)VN}] - 0 (A.8)

llj_

for every € > 0. The explanations of the equations (A.5)—(A.8) are as follows: (A.5)
implies that Q, ,/ \/_ and Q, 5/ \/_ are asymptotically negligible in probability; (A.6)
shows that {n;} in Q, ,/ \/n are asymptotically independent; and (A.7) and (A.8) are
the standard Lindeberg-Feller conditions for the asymptotic normality of Q,, ;/ \/— for
the independent setup. It follows from the proof of Theorem 18.4.1 in Ibragimov and
Linnik (1971) that a combination of (A.6)—(A.8) concludes Q,, ,/\n = N(0,6%(z)).
Therefore, because both Q, ,/ \/; and Q, ;/ \/; converge to zero in probability, by
applying Slusky’s theorem, we prove the asymptotic normality of W d'T;.

The remaining parts of the proof are to verify equations (A.5)—(A.8). First, let us
establish (A.5). For this purpose, we choose the large-block size ry by rr = |T'/7| and
the small-block size by sy = [T"/"*1 |, where 7 is given in Assumption B3 and | x|
denotes the integer part of x. Then, it can easily be shown from Assumption B3 that

sp/rr =0, rr/T—0, and gqra(s;)=<CT ~V7D7 50, (A9)

Observe that

qr—1

N7'E[Q,,]* = X Var(¢;)+2 X Cov(éyp. &)=+, (A.10)
j=0

0=k<j=gr—1

It follows from stationarity and Proposition 2 that

ST

Jy = qr Var(¢,) = QTV3r<E wir) = qTST[gz(Z) +o(1)]. (A.11)

=1

Next consider the second term J, on the right-hand side of (A.10). Let r;" = j(ry + s7);
then r;* — ;" = ry for all j > k. Therefore, we have
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Sy St

|J2‘ =2 E 2 2 ‘Cov(w[,V:+V1+j|’w"s’/*+VT+j2)|

0=k<j=gp—1j,=1j>=1

T=rr T
=22 > |[Cov(wy,w, ;).

N=1ja=jitrr
By stationarity and (A.2), one obtains
T

|L| =21 3 |Cov(w;y,w;)| = o(T). (A.12)

Jj=rrtl

Hence, by (A.9)—(A.12), we have
1
;E(Qn,Z)z = 0(qrsy/T) +o(1) = o(1). (A.13)

It follows from stationarity, (A.9), and Proposition 2 that

T—qr(rp+sr)

Var(Q, 5) = NVaf( > wn> = O(N(T = qr(ry + 7)) = 0(n). (A.14)

=1

Combining (A.9), (A.13), and (A.14), we have established (A.5).
To establish (A.6), we use Lemma 2 to obtain

qr—1 qr—1
‘E[exp(it 2 771<j>:| - H E[eXP(imkj)]‘ = 16q,a(sy),
j=0 j=0

which goes to zero as T — oo by (A.9). Therefore, (A.6) is proved.
As for (A.7), by stationarity, (A.2), (A.9), and Proposition 2, it is easily seen that

1 N oar—! q

T rrr 1 i
-> X Ep) = ?E(ni) -4 ~—Var<2w,-t> — 60%(2),

ni=1 j=0 T rr =1

so that (A.7) is proved.
It remains to establish (A.8). For this purpose, we employ Lemma 3 and Assumption
B3 to obtain
E[n7 H{|ma| = e0(2)\N}] = CN“2E(|,,[*7°) = CN =211 7 w5735
Similar to (A.4), one can show easily that
E(|wil|2+28) =Ch™ ",
which in conjunction with the preceding result implies that

ELn {Im1| = e0()\n] = Cn 02302 roeo20:0)
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Thus, by the definition of r, we obtain

N ar—1
=3 S En2i{In,l = 0@ n}] = € (NI /oo o

ni=1 j=o0

tending to zero by Assumption B4. Thus this completes the proof of Theorem 3. n



