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Abstract 

 
Heat shock protein 90 KDa (Hsp90) belongs to family of proteins called molecular chaperone 

that are associated with protein folding and maturation. Hsp90 clients play a critical role in the 

pathogenesis of diseases such as cancer, neurodegeneration and infection. Currently, clinical 

trials are underway for various Hsp90 inhibitors, however, all of these inhibitors exhibit pan-

inhibition of all four Hsp90 isoforms, which could be the cause of side effects observed with 

these inhibitors, including, hepatotoxicity, cardiotoxicity, and renal toxicity. Hence, the 

development of isoform selective Hsp90 inhibitor is needed to delineate the role each Hsp90 

isoform plays towards the pathogenesis of these toxicities. One such isoform is the ER residing 

glucose regulated protein (Grp94), which is important for cellular communication and adhesion. 

Co-crystallization studies of radamide, an Hsp90 pan-inhibitor developed in our lab 

established that there exists a unique hydrophobic pocket found only in Grp94. To probe this 

pocket, two approaches have been investigated; 1) des-quinone analogs of radamide and 2) 

employing cis-amide isosteres. 

The co-crystal structure of cis-amide isostere compound BnIm bound to Gp94 and Hsp90 

led to the discovery of a novel pocket in Grp94 due to ligand induced conformational change. 

This pocket has been probed by the modification of SNX 2112, a pan-inhibitor of Hsp90 that is 

currently undergoing clinical evaluation. These modifications have resulted in the identification 

of ACO1, which exhibits good potency and high selectivity towards Grp94. Rationale for the 

design of ACO analogs is discussed alongside their inhibition activities.   
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     Chapter 1  

 

Introduction 

Molecular chaperones such as Heat shock protein 90 (Hsp90) play a key role in protein synthesis 

by folding nascent polypeptides into their functional conformation, thereby inducing maturation 

and providing stability to client proteins.
1,2

 Cellular stress such as increased temperature, 

presence of heavy metals, and oxidative stress cause the denaturation of proteins. In order to 

rescue these proteins, cells respond with increased levels of Hsp90.
3,4

 Hsp90 is one of the most 

abundant proteins within the cell and exists as four isoforms;  Hsp90 α (inducible) and Hsp90 β 

(constitutively expressed) are present in cytosol, whereas the Endoplasmic Reticulum (ER) 

residing  glucose regulated protein 94 (Grp94/gp96/endoplasmin) and mitochondrial isoform 

tumor necrosis factor associated protein (Trap-1/Hsp75) are present in a distinct organelle.
5,6

 

More than 200 client proteins have been identified that are dependent upon the Hsp90 machinery 

for their maturation and activation.
7
 These client proteins are critical for cell growth as they are 

associated with signal transduction, chromatin remodeling , protein trafficking and cell survival. 

Two classes of Hsp90 client proteins are best characterized, namely, the steroid hormone 

receptors and protein kinases. In fact, >2/3 of protein kinases, many transcription factors and 

some E3-ligases, have been found  dependent on Hsp90.
8
 Hsp90 clients are mutated and/or 

overexpressed in many cancers, therefore, inhibition of Hsp90 represents a unique multipronged 

chemotherapeutic approach to treat cancer by interfering with multiple pathways simultaneously, 

which forces these client proteins to undergo proteasomal degradation.
8,9

 While inhibition of 

Hsp90 has been shown to be effective in cancer treatment, induction of Hsp90 however, has been 

proposed as an approach to treat diseases such as Parkinson’s Alzheimer’s, Huntington’s, and 

prion-related diseases caused by the aggregation of proteins.
2,4
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2. Hsp90 Structure 

The Hsp90 molecular chaperone is a member of the GHKL (Gyrase, Hsp90, Histidine Kinase 

and MutL) subgroup of ATPases, which contain a Bergerat fold.
10

 Hsp90 exists as a homodimer 

with each homodimer comprising three structural domains; A 25 kDa highly conserved N-

terminal ATP-binding domain (NTD), a 35 kDa  flexible middle domain (MD), and a 12 kDa C-

terminal dimerization domain (CTD) (Figure 1.1).
3
  

                          

  

  

 

Figure 1.1. The Crystal structure of yeast Hsp90; PDB 2CG9.  

ATP binds the NTD ATP-binding site in a unique and bent conformation, which is a 

characteristic feature exhibited by members of GHKL superfamily.
11

 The Bergerat fold present 

in NTD comprises four β- sheets and three α-helices with an ATP-binding pocket located in the 

middle.
12-14

 Also, in the NTD, a few conserved residues of the Bergerat fold form an “ATP lid” 

that is closed when ATP is bound, but is open when ADP is bound.
15

 The NTD is the major site 

of ATP hydrolysis in Hsp90 and represents the most druggable binding pocket of Hsp90, which 

is evident by 17 N-terminal inhibitors in clinical trials.
1
 The MD is connected to the NTD by a 

flexible, highly charged linker (CL), and is required for interactions with co-chaperones and 

client proteins (e.g. Aha1).
16

 This domain also regulates ATP hydrolysis in the NTD by 

interacting with the γ-phosphate of ATP.
17
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The CTD is the site for homodimerization of Hsp90
12

, and contains MEEVD motif that 

recognizes the tetratricopeptide-containing repeat (TPR) found in various co-chaperones such as 

the Hsp70-Hsp90 organizing protein (HOP) and the immunophillins. In eukaryotic Hsp90, 

opening of the CTD is anticorrelated to closing of the NTD.
18

 The CTD has an alternative ATP 

binding site that allosterically regulates NTD ATPase activity.
19

 Natural products such as 

Novobiocin and EGCG have been found to bind to the CTD ATP binding site and affect the 

Hsp90 protein folding process.
20-22

 

3. Hsp90 Function  

Hsp90 is a multifaceted protein, with functions ranging from folding nascent polypeptides into 

mature proteins, to solubilizing and refolding aggregated or denatured proteins
23-25

. In unstressed 

cells, Hsp90 represents about 1-2 % of total cellular protein, whereas, under stress or in a state of 

unregulated growth such as cancer, the levels of Hsp90 can rise to 4-6 %, as there is an increased 

demand for Hsp90 client proteins.
24 

The Chaperoning cycle involves processing of newly 

synthesized polypeptides via a heteroprotein complex before its release as a conformationally 

mature protein (Figure 1.2). Although, Complete elucidation of the Hsp90-mediated protein 

folding mechanism is yet to be achieved, we now know that it involves various co-chaperones, 

immunophilins and partner proteins.
26

 A newly synthesized protein exits the ribosomal 

machinery as a long linear polypeptide, Hsp70 binds to and stabilizes these polypeptide chains, 

preventing their aggregation before transferring them to Hsp90, which subsequently folds them 

into their biologically active conformation.
27

 The Hsp90 chaperone cycle begins with the 

association of nascent polypeptides to a complex comprising of Hsp70, Hsp40 and ADP. It is 

then followed by the binding of Hsp70 interacting protein (HIP), which stabilizes it further.
28

 

The immature protein is then transferred from Hsp70 to Hsp90 via Hsp90-Hsp70 organizing 

protein (HOP), as HOP can bind to both Hsp70 and the Hsp90 CTD via the TPR domain.
29

 Co-
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chaperones, immunophilins (FKBP51, FKBP52) and partner proteins, also bind the Hsp90 

homodimer to form an activated 

     Figure 1.2. The Hsp90-chaperone cycle 

heteroprotein complex that simultaneously releases Hsp40, Hsp70, Hip and HOP. After 

formation of the activated complex, ATP binds to the open NTD and promotes formation of the 

closed conformation of Hsp90 and clamps around the bound client protein
31

.  Small molecules 

compete with ATP for binding to NTD, and subsequently prevent formation of the closed 

conformation that makes Hsp90 a catalyst for client protein degradation via the ubiquitin-

proteasome pathway
3
.However, in the presence of ATP, the co-chaperone p23 is recruited to the 

complex, and further stabilizes the closed Hsp90 complex and inducing ATP hydrolysis, which 

reprents the source of the energy required for client protein maturation
32

. The mature protein is 

finally released from the complex along with the dissociation of immunophilins and co-

chaperones from the heteroprotein complex.  
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 The Hsp90 chaperone cycle is regulated by a number of co-chaperones and post-

translational modifications.
7
 These co-chaperones work in conjunction with Hsp90 to modulate 

the rate of chaperoning cycle (Table 1.1).
26, 33

 Post-translational modifications to Hsp90 include 

acetylation, phosphorylation, S-nitrosylation and methylation that control Hsp90 chaperone 

activity by modulating its affinity for co-chaperones and/or client proteins.
34

 

 

4. Hsp90 Therapeutic Potentials 

 Indirect functional disruption of Hsp90 client proteins via inhibition of Hsp90 can represent a 

useful therapeutic approach for various diseases, as these client proteins carry out a wide range 

of functions that are critical in disease etiology. For example, client proteins such as signaling 

tyrosine kinases and steroid hormones receptors are responsible for the progression of various 

cancers.
35

 Inhibitors of Hsp90 are being sought for the treatment of cancer, neurodegenerative, 

and infectious diseases.
36

 

Co-chaperone or 

Co-activator 
Function 

Aha1 Stimulates ATPase activity 

Cdc37 Mediates activation of protein kinase substrates 

CHIP Involved in degradation of unfolded client proteins 

Cyclophilin-40 Peptidyl propyl isomerase 

FKBP51 and 52 Peptidyl propyl isomerase 

Hop Mediates interaction between Hsp90 and Hsp70 

Hsp40 Stabilizes and delivers client proteins to Hsp90 complex 

Hsp70 Stabilizes and delivers client proteins to Hsp90 complex 

p23 Stabilizes closed, clamped substrate bound conformation 

HIP 

PP5 

Inhibits ATPase activity of Hsp70 

Protein phosphatase 5 

Sgt1 Client adaptor, involved in client recruitment 

Tom70 Facilitates translocation of pre-proteins into mitochondrial matrix 
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Table 1.1: Co-chaperones and co-activators that regulate Hsp90 chaperone cycle. 

 

 Rapidly growing cancer cells require oncoproteins at increased levels, many of which are Hsp90 

dependent clients. Therefore, inhibition of Hsp90 provides an alternate approach to traditional 

chemotherapy for the treatment of cancer.
4, 37

 While Hsp90 inhibition is beneficial for the 

treatment of cancer, induction of the pro-survival heat shock response is desired for 

neurodegerative disorders in which protein aggregates accumulate. An overall increase in Hsps, 

causes de-aggregation and solubilization of neurotoxic protein aggregates.
38

 Hence, drugs that 

induce Hsp90 at non-toxic levels can serve as a potential treatment for neurodegenerative 

disorders.  

 

4.1. Cancer  

Cancer is a group of diseases that involve uncontrolled cell growth which results from the 

dysregulation of signaling pathways.
39

 Recent advances in cancer chemotherapy have focused on 

perturbing functions of specific proteins involved in these signaling pathways, but resistance 

often develops via compensatory mechanisms. However, we now know that malignant 

transformations require multiple interconnected signaling pathways. Therefore, combination 

therapy has evolved as a useful approach for cancer treatment. Alternatively, inhibition of Hsp90 

can provides a combinatorial disruption of multiple client proteins, providing effective anticancer 

therapy with a single agent. Figure 1.3 explains how client proteins are directed towards 

degradation after Hsp90 inhibition. Hsp90 inhibitors bind the Hsp90 multiprotein complex and 

 

WISp39 Regulates p21 stability 
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Figure 1.3. Proposed mechanism of Hsp90 inhibition for cancer treatment.  

 

prevent formation of the closed Hsp90 conformation that is needed for the maturation of client 

proteins. As a result, the complex is directed toward the ubiquitin-proteasome pathway, which 

leads to degradation of these clients.    



Increased Hsp90 expression stabilizes client proteins that are key drivers of malignancy in tumor 

cells. Hsp90 thereby promotes the maturation of clients distributed amongst all six hallmarks of 

cancer, such as Her2, Raf1, Akt, and CDK4 (Table-1.2),
5, 37 

which affect signal transduction 

pathways, tumor-cell survival, proliferation, immortalization, angiogenesis and metastasis.
40

 

  

Hallmarks of Cancer Client Protein 

Evasion of Apoptosis 
Akt,Rip,P53,Survivin, Apaf-1,Bcl2, 

IGF-IR 

Sustained Angiogenesis VEGFR, HIF1,Akt, FAK,Src 

Limitless replicative potential Telomerase 

Tissue invasion and metastasis MMP-2, c-MET 

Self-sufficiency in growth signals 
EGFR, Raf, Bcr-Abl, ErbB-2, Src, 

Akt, MEK 

Insensitivity to anti-growth signals Plk-1,Cdk4,Cdk6, Myt-1,cyclin D 
 

 

  

       Table-1.2. Six hallmarks of cancer associated with Hsp90 client proteins.
5
  

There have been apprehensions about the selectivity  manifested by Hsp90 inhibitors towards 

tumor cells, since Hsp90 is present ubiquitously across cell types. However, increasing evidence 

suggests that Hsp90 inhibitors accumulate to a greater extent in tumor cells than in normal cells. 

Hence, manifesting differential selectivity towards tumor vs normal cells, thus providing a large 
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therapeutic window.
41, 42

 Kamal and co-workers demonstrated that the accumulation of Hsp90 

inhibitors in tumor cells results from the heteroprotein complex present in cancer cells, whereas in 

normal cells Hsp90 exists as a homodimer.
43

 In cancer cells, Hsp90 exists in an activated 

multiprotein complex with enhanced affinity for ATP or inhibitors. Clinical trials with the Hsp90 

inhibitor, 17-AAG, have shown promising results in both phase I and II studies with HER2 over 

expressing  breast cancer patients, serving as a proof-of-concept for Hsp90 inhibition with 

therapeutic benefits
64

.  

4.2. Neurodegenerative diseases  

Neurodegenerative diseases are characterized by chronic and progressive dysfunction or loss of 

neurons. Examples include Alzheimer ’s (AD), Parkinson (PD), Huntington (HD), 

Polyglutamine  (PGD) and Prion diseases.
2, 4

 Neurodegenerative diseases can be caused by 

various reasons, however,  the accumulation of misfolded/aberrant proteins leading to neuronal 

toxicity, is a common characteristic observed in most neurodegenerative diseases.
44 

Consequently, prevention of protein aggregation in neuron may serve as a therapeutic strategy 

for the treatment of these diseases. It has been shown that the binding of NTD inhibitors to 

Hsp90 causes the release of a transcription factor called heat shock factor-1 (HSF-1) from the 

Hsp90 multiprotein complex.
45

 Upon release, HSF-1 is trimerized, phosphorylated and 

translocated to the nucleus, wherein, it induces the heat shock response, which is the 

overexpression of molecular chaperones, including Hsp27, Hsp40, Hsp70 and Hsp90 (Figure 

1.4).
46

 Induction of the heat shock response provides neuroprotection by preventing protein 

aggregation, resolubilizing aggregated proteins, and promoting the degradation of misfolded and 

aggregated proteins.
47

 Interestingly, aberrant proteins such as Tau and α-synuclein are also 

degraded after heat shock induction.
48, 49

 This finding presents a new paradigm for development 

of drugs against AD and PD. AD is a disease that results from protein misfolding (proteopathy), 
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and subsequent formation of β-amyloid (Aβ) plaques in the brain. In AD, Tau 

hyperphosphorylation results in aggregation of filamentous structures that organize into 

neurofibrillary tangles.
50

 Hsp90 client proteins cyclin-dependent protein kinase 5 (Cdk5), 

glycogen synthase kinase-3β (GSK3β) and microtubule affinity regulating kinase-2 (MARK2) 

are known Tau kinases. These kinases are dysregulated in AD and hyperphosphorylate Tau, 

leading to neuronal toxicity
33

. Another Hsp90 client protein, α-synuclein, has been found to 

aggregate and form Lewy bodies in neurons causing PD. Administration of the Hsp90 inhibitor, 

GDA, has been shown to alleviate PD-like symptoms in a transgenic mouse model.
51

 Recent 

studies have found that Hsp90 forms a strong complex with toxic oligomeric α-synuclein and 

prevents further aggregation in an ATP-independent manner.
52

 Future investigation into the role 

played by Hsp90 in neurodegenerative diseases may prove useful in development of a 

therapeutic approach with dual advantage of inhibiting client proteins and simultaneous 

induction of the prosurvival heat shock response.  

        
Figure 1.4. Proposed mechanism of induction of heat shock response with Hsp90 N-terminal 

inhibitors. 

 

4.3. Infectious diseases  

Hsp90 is essential for the pathogenesis of many infectious diseases caused by viruses, bacteria, 

and fungus.
36, 53

 Viruses exploit the protein folding machinery of the host and thus depend upon 

molecular chaperones, such as Hsp90 for replication. Therefore, inhibition of Hsp90 provides an 

alternative strategy for the treatment of viral diseases such as hepatitis B, hepatitis C, polio, herpes 
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simplex and influenza.
54

 Interestingly, Hsp90 inhibitors have been found to be inhibiting viral 

replication at levels that are not toxic.
55

 Similar to viral infections, Hsp90 client proteins have 

been associated with the virulence of fungal pathogens, including Candida albicans, Aspergillus 

fumigatus and teereus and hence, could be targeted for development of antifungal agents.
56-57

 

 

5. Hsp90 Inhibitors 

There has been considerable progress towards the development of Hsp90 inhibitors in past few 

years, beginning with first generation compounds that were derived from natural products to 

second generation small molecules based on rational design. These inhibitors interupt Hsp90 

chaperone activity by competing with ATP or by binding Hsp90 to regulate ATPase activity and 

Hsp90 co-chaperone interactions. Hsp90 inhibitors are broadly divided into three categories; (1) 

N-terminal inhibitors, (2) C-terminal inhibitors, and (3) others, which will be discussed below.  

 

5.1. N-terminal Inhibitors  

5.1.1. Natural products and their semi-synthetic derivatives 

The natural product, geldanamycin (GDA) was the first Hsp90 inhibitor identified and is a 

benzoquinone ansamycin isolated from fermentation broth of Streptomyces hygroscopicus in 

1970.
58

 GDA was thought to manifest anti-proliferative activity through inhibiton of the v-Src 

oncogene,
 59

 until Whitesell and Neckers revealed that GDA exerted its activity through the 

inhibition of Hsp90 in 1994.
60

 Finally, by attainment of co-crystal, it was established that GDA 

is a competitive inhibitor of the N-terminal ATP binding site, and upon binding, restrains Hsp90 

in its ADP bound form, and disrupts the chaperone cycle.
61, 62

 Although GDA exhibits 

promising anticancer activities against various cell lines in vitro, it failed as a clinical candidate, 

primarily as a result its poor solubility, in vivo stability, and hepatotoxicity.
63 

However, it has 
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been used as a chemical probe to identify Hsp90 client proteins and to study the role of Hsp90 

during malignant transformations. Subsequent structure-activity relationship studies on 

semisynthetic derivatives of GDA led to the development of 17-(allylamino)-17-

demethoxygeldanamycin (17-AAG) and 17-(2-dimethylaminoethylamino)-17-

desmethoxygeldanamycin (17-DMAG), which manifest an improved toxicity profile and are 

currently undergoing clinical investigation.
64, 65

                

                  

Figure 1.5. Structures of Geldanamycin (GDA) and its derivatives 17-AAG and 17-DMAG 

 

Radicicol (RDC) is a macrocyclic lactone isolated from the fungi, Monocillium nordinii and 

Monosporium bonorden, as an antifungal agent in 1953
66

. RDC was believed to be a tyrosine 

kinase inhibitor, but later studies confirmed it as an inhibitor of the Hsp90 N-terminus (Kd= 

14nM).
67

  

  

Figure 1.6. Structure of radicicol and related analogues. 
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RDC exhibits promising anticancer activity in vitro, but not in vivo, likely due to the α,β,γ,δ- 

unsaturated ketone and  epoxide, which make it prone to rapid metabolism.
68

 Therefore, SAR 

studies have focused on the identification of analogues with improved in vivo stability. 

Modifications such as the oxime in KF 25706, have led to the development of derivatives that 

manifest potent inhibitory activity in vitro as well as in human tumor xenograft models.
63 

Furthermore, replacement of the labile allylic epoxide with a cyclopropyl ring 

(cycloproparadicicol, c-RDC) was shown to not compromise its inhibitory activity.
69

 Although, 

RDC and its derivatives could be potential candidates, there are no clinical reports for the use of 

this class of  natural product compounds yet.                                             

5.1.2 Synthetic small molecule inhibitors  

Limited availability, challenging synthetic accessibility, and the toxicity associated with these 

natural products necessitated the discovery of new small molecule inhibitors. In 2001, Chiosis 

and co-workers used X-ray crystallographic analysis and molecular modeling to design PU3, 

which contained a purine scaffold and became the first known synthetic inhibitor of Hsp90. PU3 

manifested low micromolar affinity (Kd = 15-20 μM) for the Hsp90 N-terminus and moderate 

anti-proliferative activity (IC50 = 50 μM) against MCF-7 breast cancer cells.
70

 Modifications to 

the purine scaffold led to identification of PU24FC1, which exhibits improved anticancer activity 

both in in vitro and in vivo.
71

 CNF2024/BIIB021 is an optimized purine-based molecule that was 

identified in 2005 and became the first purine-based inhibitor to enter clinical trials.
72

 Debio 

0932 represents another molecule derived from the purine scaffold that has subsequently entered 

clinical trials for the treatment of solid tumors and lymphomas.
64
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Figure 1.7. Structures of purine based analogues. 

After it was determined that small molecules could effectively inhibit Hsp90 function, 

pharmacophore hit discovery efforts were initiated by the pharmaceutical industry and high 

throughput screening (HTS) campaigns were launched. One such HTS led to the identification of 

the 3,4-diarylpyrazole scaffold containing compound CCT018159, which manifested potent 

ATPase inhibitory activity against yeast Hsp90 (IC50= 7.1 μM).
73 

It was confirmed through 

protein crystallographic studies that CCT018159 binds deep into the ATP pocket of the Hsp90 

N-terminal domain, and that the resorcinol ring and pyrazole nitrogen engage in water-mediated 

hydrogen bonding interactions.
74

 In another such HTS effort, Novartis Research Foundation 

screened a library of 1,000,000 compounds and identified two lead compounds, G3129 and 

G3130, which also contained the resorcinol pharmacophore. Co-crystal structures of G3129 

bound to Hsp90
75 

helped Dymock and co-workers to develop, VER49009 (ATPase IC50 = 0.14 

μM), which contains an amide group that provides additional interactions with Gly97 within the 

Hsp90 N-domain.
76

  



15 
 

          
 Figure 1.8. Stuctures of resorcinolic and benzamide Hsp90 NTD inhibitors. 

 

Further exploration involved the replacement of the pyrazole with an isoxazole which led to 

VER50589, a compound that exhibited both higher affinity and incresed cellular uptake (Kd = 

4.5 nM).
77

 Finally, an optimized isoxazole analog, VER52296/NVP-AUY922, entered clinical 

trials in 2008 and is currently being evaluated in phase I/II for the treatment of solid 

malignancies.
78

 STA-9090 is another resorcinol derived compound, and manifest Hsp90 

inhibition with a Kd of 10 nM, and is currently under clinical evaluations for metastatic breast 

cancer
79

. A fragment based approach resulted in the discovery of AT13387, a resorcinol 

containing compound with a dihydroisoindole amide. AT13387 shows anticancer activity 

comparable to 17-AAG and is currently in clinical trials for refractory gastrointestinal stromal 

tumors.
80

 Benzamides represent another interesting class of Hsp90 N-terminal inhibitors, such as 

SNX-2112, which was identified through an affinity purification technique, SNX-2112 manifests 

a Kd of 3 nm against Hsp90α and β, and has re-entered clinical trials after being withdrawn due 

to ocular toxicity.
81, 82
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5.2. C-terminal Inhibitors  

5.2.1. Novobiocin and Related Natural Products  

The coumarin containing antibiotics such as novobiocin (NB), chlorobiocin, and coumermycin 

A1 are known inhibitors of enzyme DNA gyrase and have been utilized extensively as anti-

infectious agents for multi-resistant gram-positive bacterial infections.
83

 In 2000, Neckers and 

co-workers found that NB was a weak inhibitor of the Hsp90 C-terminal nucleotide binding site 

(IC50 = 700 μM in SKBr3 cells), and induced the degradation of Hsp90 dependent client 

proteins, including v-src, Raf-1 and Erb2.
20, 84

 Interestingly, NB did not induce the pro-survival 

heat shock response, which is a major concern associated with Hsp90 N-terminal inhibitors. 

Encouraged by the initial findings, the NB scaffold was investigated for SAR studies and to 

improve its inhibitory activity against Hsp90. Initial studies done by Blagg and co-workers 

revealed key structural features of NB required for its binding to Hsp90.
85

 Compound A4 (Figure 

1.10), which lacks the 4-hydroxyl on the coumarin ring and contains an N-acyl side chain in lieu 

of the aryl group, was found to induce Hsp90 client protein degradation at ~70 fold lower 

concentrations than NB (IC50 = 10 μM). Surprisingly, compound A4 induced Hsp90 levels at 

much lower concentrations (~1000 fold) than that required for client protein degradation. This 

observation generated interest in A4 and its further exploration as a neuroprotective agent.             

Eventually KU32, a variant of A4, showed greater induction of Hsp90 compared to A4 

and is currently under investigation for the treatment of neurodegenerative diseases.
87

 Further 

studies investigated the carbamoyl side chain in KU32 to switch the activity from anti-

proliferative to cytoprotective.
87

  Incorporation of a benzamide side chain onto KU32 was shown 

to restore the anti-proliferative activity without induction of the heat shock response, and 

identified DHN1. Further SAR studies on this class of compounds led to the development of 
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highly efficacious compounds, such as NA-2, which manifests mid nanomolar activity in anti-

proliferative assays against various cancer cell lines.
88-90

 

 
Figure 1.10 Structures of A4, KU32, DHN1 and NA-2.  

 

5.2.2. Epigallocatechin-3-Gallate (EGCG)  

EGCG is a polyphenolic compound extracted from green tea that elicits functional inhibition of 

wide range of proteins, including telomerase, aryl hydrocarbons receptor (AhR), several kinases 

and transcription factors, all of which are known Hsp90 dependent client proteins.
91

 In 2005, 

Palermo and co-workers used affinity chromatography to show that EGCG exhibits its 

antagonistic behavior against AhR through Hsp90 inhibition.
92

 Subsequent SAR studies revealed 

the phenols to be essential for anti-proliferative activity manifested by EGCG.
93

 Studies are 

currently underway to improve the Hsp90 inhibitory activity exhibited by EGCG analogues.  

5.2.3. Cisplatin  

Cisplatin is a platinum-containing anti-cancer chemotherapeutic agent that binds DNA 

covalently and is used to treat a range of solid tumors
94

. Cisplatin has been found to bind Hsp90 

and interfere with its chaperone activity.
95

 Subsequent studies have suggested that cisplatin binds 
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both the CTD and NTD, having different effects on these two domains. Cisplatin induces a 

conformational change in NTD, but not CTD.
96

 

                    
 

Figure 1.11 Structures of EGCG, cisplatin, celastrol, gedunin and Sansalvamide A.  

 

5.3. Co-chaperone/Hsp90 disrupters  

Agents that disrupt protein-protein interactions between Hsp90 and its co-chaperones can have 

similar consequences as those inhibitors that directly inhibit Hsp90.
98

 Natural products such as 

celastrol and gedunin have been identified as disruptors of such interactions of Hsp90.
98, 99

 The 

Hsp90 co-chaperone, Cdc37, is required for the recruitment and maturation of several oncogenic 

kinases such as BRAF and EGFRvIII. Celastrol has been shown to disrupt Hsp90-Cdc37 

interactions, subsequently inducing the degradation of the Cdc37-dependent Hsp90 clients.
98, 100

 

Another natural product that disrupts the Hsp90/co-chaperone interaction is gedunin, a 

tetranortriterpenoid natural product that traditionally is used for the treatment of malaria and 

other infectious diseases.
99

 Gedunin exhibits potent anti-proliferative activity against various 

cancer cell lines. Patwardhan and co-workers determined that gedunin exhibits its anticancer 
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activity by disruption of Hsp90-p23 interactions, which causes cell death through the activation 

of caspases.
101

 Sansalvamide A (San A) is a cyclic pentapeptide that binds Hsp90 NTD/MD  and 

allosterically effects the CTD. San A disrupts CTD specific protein-protein interactions with 

IP6K2 and FKBP102 within CTD, and its derivatives exhibit 1 nM IC50 against pancreatic 

tumor cells.
103

 Recently, Cruentaren A, a resorcinolic natural product with EC50 of 0.2-0.8 nM 

against breast and lung cancer cells, was shown to disrupt interactions between Hsp90 and F1Fo 

ATP synthase (FAS) without induction of the heat shock response.
104

 As our understanding of 

the Hsp90 interactome grows, these compounds will find new applications and will help validate 

disruption of specific Hsp90/co-chaperone/client interaction. 

 

6. Conclusion and Future Directions  
 

The discovery of natural products that bind to Hsp90 led to the establishment that Hsp90 is a 

druggable target, which laid the foundation for the eventual design of synthetic small molecules 

inhibitors. It has now been validated that Hsp90 is a crucial mediator of oncogene addiction and 

disruption of the Hsp90 chaperone machine can shift the paradigm of cancer chemotherapeutics.  

Hsp90 as an anti-cancer target has an attractive advantage of simultaneous depletion of multiple 

oncogenic proteins. However, the inhibitors of Hsp90 that are being investigated in clinical trials 

have manifested side effects, such as cardiotoxicity and hepatotoxicity which are believed to be 

caused as a result of pan-inhibition of all Hsp90 isoforms. As a consequence, alternative 

strategies are desired for future development of Hsp90 inhibitors that are isoform selective, to 

expand our understanding of contributions of individual isoforms towards disease pathogenesis. 

In particular, the less explored isoforms such as Grp94 and Trap-1  

Although, Hsp90 C-terminal inhibitors present as an attractive alternative for Hsp90 

inhibition by not exhibiting heat shock induction, lack of a crystal structure of Hsp90 C-terminus 
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bound to an inhibitor, has proved to be a roadblock for structure based design of isoform 

selective C-terminus inhibitor. In conclusion, as the of Hsp90 biology advances, it will help us 

gain better insight about the role of each isoform of Hsp90 in pathogenesis, of not only cancer 

but other diseases. This knowledge can then be used collectively towards rational design of a 

drug that has improved pharmaceutical properties and tolerance. 
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Chapter 2 

1. Introduction 

Heat shock protein 90KDa (Hsp90) is a molecular chaperone that facilitates the conformational 

maturation of approximately 200 client proteins, thereby, playing an important role in cellular 

trafficking, signaling, protein folding and the maintenance of client protein levels.
1,2

 Hsp90 is a 

homodimer with each monomer comprising  three domains; the N- and C-termini and the middle 

domain. The N-terminus contains an ATP-binding                                                                                                                                                                                                                                                                                                                                                                 

site that binds and hydrolyzes ATP to provide the energy required for protein folding.
3-9

 During 

cancerous transformation, Hsp90 is overexpressed and provides matured client proteins 

associated with the rapid growth and proliferation of cancer cells. Therefore, Hsp90 has emerged 

as an attractive therapeutic target, since disruption of Hsp90 can simultaneously affect multiple 

pathways required for cancer cell growth.
10-22

  

Hsp90 inhibition has been shown to be an effective therapeutic strategy and 17 Hsp90 inhibitors 

have progressed into clinical trials for the treatment of various cancers. These inhibitors, 

however, have been found to manifest side effects including cardiovascular, ocular, and/or 

hepatotoxicity, resulting in narrow therapeutic window for administration of these inhibitors.
23-24

 

Therefore, it is necessary to study the effects of individual Hsp90 isoforms and to delineate the 

contribution of each isoform towards the pathogenesis of these diseases as well as their side 

effects. Recently, it was found that Hsp90α is responsible for the maturation of the hERG 
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channel, and therefore could be responsible for the clinically observed cardiotoxicity.
25

 

Unfortunately, the development of isoform selective inhibitors has been challenging since the N-

terminal ATP-binding site is >85% identical across all four Hsp90 isoforms; cytosolic Hsp90α 

and β, the endoplasmic reticulum-localized isoform, Grp94, and the mitochondrial chaperone, 

Trap1.
26

  

In comparison to cytoplasmic isoforms Hsp90 α and β, the biological role for the ER 

residing isoform, glucose regulated protein-94 kDa (Grp94) has not been studied extensively.
16 

Grp94 chaperones various secreted proteins that are critical for intercellular communication and 

adhesion (Table 2.1).
27

 For example, Grp94 regulates cellular metastasis indirectly via the 

integrins, making it a potential target for the development of anti-metastatic agents.
28

 This is 

further supported by a recent finding that Grp94 knockdown leads to inhibition of cell 

proliferation, migration and metastasis in highly metastatic breast cancer cell line MDA-MB-231 

and reactive oxygen species (ROS) resistant MCF-7 cells.
29

 Due to its role in the clearance of 

mutant myocilin, Grp94 has also been implicated for the treatment of glaucoma.
30

 In addition, 

Grp94 is required for the maturation of Wnt co-receptor, LRP6, which is overexpressed in 

multiple myeloma,
31-33

 and as hypothesized, Grp94 inhibition results in reduced proliferation of 

multiple myeloma cells.
34

 

Grp94 client protein Pathogenesis  

IGF I/II Regulates cell mitosis (Cancer) 

EGF-R/ ErbB2 Cell growth (Cancer) 

Insulin receptor Cell growth (Cancer) 

Integrins  
(CD11a, CD18, CD49d, α4, β7, αL, β2) 

Cell adhesion and communication 
(Cancer) 

Toll-like receptors (TLR1,TLR2,TLR4and 
TLR9) 

Inflammation and autoimmunity 

LRP6 Co-receptor for Wnt receptor (Cancer) 

Mutant myocilin Glaucoma 

                     Table-2.1 Grp94 clients and their role in disease pathogenesis.35, 30 
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The Grp94 primary sequence differs from other Hsp90 isoforms in that it contains a five-amino 

acid (QEDGQ) sequence that is inserted between residues 182 and 186, which translates into 

topographic differences between the binding pockets of Grp94 and Hsp90.
36

 This small 

perturbation creates a unique hydrophobic environment within the Grp94 N-terminal ATP-

binding site, and provides an opportunity for selective inhibition.
36-37

 In 2009, co-crystal 

structures of radamide (RDA), radicicol/geldanamycin chimeric inhibitor bound to Hsp90 and 

Grp94 were solved,
 
revealing that in the case of Hsp90, RDA bound exclusively in the trans 

conformation of the amide bond, whereas in Grp94, RDA existed in a 50:50  conformational 

abundance of cis:trans amide bond (Figure 2.1).
38-42

 The cis amide bond in the case of Grp94 

was found to occupy a unique pocket that is absent in Hsp90. Also, the quinone moiety of RDA 

was found to participate in polar interactions with Hsp90, and to a lesser extent with Grp94 

(Figure 2.2). Therefore, modifications were sought to modify the RDA scaffold that specifically 

target the unique hydrophobic pocket of Grp94. The first approach involved replacement of the 

quinone with a phenyl ring that can be easily substituted to explore the unique pocket. While the 

second approach focused on constraining the amide bond into the cis conformation, utilizing  

         

Figure 2.1 Structures of natural product Hsp90 inhibitors GDA and RDC, and chimeric inhibitor 

RDA. 
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isosteres of the cis amide bond, which ultimately led to the development of BnIm, the first Grp94 

selective inhibitor identified.
37

 Modifications to the benzyl ring of the BnIm were also sought to 

explore the unique hydrophobic pocket found in Grp94. Therefore, the goal of this project was to 

establish structure-activity relationships for RDA as well as BnIm, as Grp94 inhibitiors. 

trans-RDA
trans-RDA

cis-RDA

 

Figure 2.2 (A) Co-crystal structures of RDA bound to Hsp90 (PDB: 2FXS) and Grp94 (PDB: 

2GFD) (B) primary amino acid sequence alignment of Grp94 and Hsp90 illustrates the insertion 

of five amino acids (QEDGQ) in Grp94 but not in Hsp90.
36
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2. Structure Activity Relationship (SAR) studies on RDA and BnIm Analogs   

     

Scheme 2.1 Proposed approaches for design of Grp94 selective inhibitors 

 

2.1 des-quinone approach (RDA analogs) 

Previous studies in our lab demonstrated that removal of the quinone moiety in RDA results in 

the loss of anti-proliferative activity in MCF7 cells, 
43

 which translates to a loss in Hsp90 affinity 

for the des-quinone molecules. Additionally, the phenyl ring provides opportunities for 

modifications that can access the hydrophobic pocket of Grp94. Molecular modeling studies 

suggested that additional methylene linker between amide nitrogen and aromatic ring would be 

detrimental for efficacy, which was further validated via the synthesis and evaluation of the 

compounds containing extended linkers (Figure 2.3). In the event, acid 1
44

 (figure2.4)  was 

coupled with the corresponding amines, utilizing 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI) and 4-(Dimethyl)aminopyriine (DMAP) in 
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dichloromethane to generate the respective amides. The amides were subsequently subjected to 

tetrabutylammonium fluoride (TBAF) for deprotection and to provide phenols 2-4 in good yield. 

These compounds were then screened for binding affinity against Grp94 via a fluorescence 

polarization assay with FITC-GDA as the tracer.
45, 46

 It was found that the binding affinity 

decreased with increased linker length, mirroring the results obatined from the modeling studies. 

Therefore, phenyl amide (compound 2 figure 2.3) was used for further modifications on the 

phenyl ring.  

 `  

 

 

 

 

 

 

 

 

Figure 2.3 A) Synthetic scheme and B) Biological evaluation of the linker RDA analogs using 

fluorescence polarization assay.  

Functionalization of phenyl amide 2 was pursued to explore the spatial and electronic 

requirements of the hydrophobic pocket by the inclusion of electron donating/withdrawing 

groups. As can be seen in the crystal structure, there exist two subpockets surrounding the phenyl 

ring of the RDA in Grp94, labeled as pockets A and B (figure 2.4). Molecular docking studies 

predicted that pocket A would be responsible for the accommodation of functional groups at the 

2-position of the phenyl ring, whereas the 3- and 4-positions would project towards pocket B. 

A 

B 
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Substitutions at these positions could also provide potential π-stacking interactions with Phe199 

and Tyr200 (figure 2.2) as well as hydrogen bonding interactions. 

                    

 

 

 

            

    

      

Figure 2.4 A) Synthetic scheme for compounds 5-10 B)  biological evaluation of the 2-

substitued RDA analogs using fluorescence polarization assay C) Compounds 6 docked in the 

Grp94 (PDB code 2GFD), arrows indicating the subpockets A and B. 

Functionalization of 2 at the 2-position of the phenyl ring was performed in order to explore 

pocket A and/or change the electronic nature of the phenyl ring to access π-π interactions with 

aromatic residues within the binding pocket . EDCI-DMAP was used for activation of acid 1 for 

coupling with the corresponding anilines, 5a-10a, followed by deprotection of the phenols, to 

generate amides 5-10 in good yields. Compounds 5-10 were then evaluated using the 

fluorescence polarization (FP) assay, establishing that 2-position substitutions with hydrophobic 

groups such as halogens provide compounds with significantly higher binding affinity (≥80% 

tracer displaced). 

A 

B C 
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These compounds demonstrated that both electronic and steric effects influence the ability of 

these amides to bind Grp94 with the 2-chlorine exhibiting the highest affinity (6, 99.9% tracer 

displaced). It was observed that substituents larger than chlorine (for example, 2-bromine and 2-

Iodine, compounds 7 and 8, respectively) exhibit a size-dependent decline in binding affinity. 

The 2-fluorine derivative, 5, also exhibits a low binding affinity when compared to 6, which may 

be the result of the fluorine not occupying pocket A sufficiently. In addition, this could be 

perceived a consequence of the electronic effects manifested by fluorine on the amide   

     

Figure 2.5 A) Synthetic scheme for compounds 11-15  B)  Biological evaluation of the 3-

substitued RDA analogs using fluorescence polarization assay C) Compounds 12 docked in the 

Grp94 (PDB code: 2GFD). 

bond geometry, which is likely to disfavor the cis-conformation of the amide bond.
47

 

Substitutions with polar groups such as NH2 and methoxy group resulted in a decrease in binding 
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affinity for Grp94. Finally, it was concluded that a chlorine atom at the 2-position (compound 6) 

is optimal.           

Additional structure-activity relationships studies were performed by the incorporation of the 

substituents at the 3-position of the phenyl ring of compound 2. As can be seen in figure 2.4C, 

the 3-position of the phenyl ring projects into surface between pocket A and B and the amide 

bond may rotate to allow the 3-substitutions to enter either pocket A or B. A series of modeling 

studies suggested that Packet B would best accommodate substitutions at the 3-postion when 

compared to pocket A (figure 2.5 C). Similar to compounds 5-10, substitutions at the 3-position 

 

Figure 2.6 A) Synthetic scheme for compounds 16-27 B) Biological evaluation of the 4-
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substitued RDA analogs using fluorescence polarization assay C) Compounds 18 docked in the 

Grp94 protein. 

also contributed towards understanding the spatial and electronic requirements of the  Grp94 

hydrophobic pocket. Synthesis of 3-substituted amides was conducted via an EDCI-DMAP 

mediated coupling of acid 1 with the corresponding anilines, 11a-15a, followed by silyl- 

deprotection to obtain the desired amides, 11-15, in good yield. As seen in Figure 2.5, these 

substitutions followed a similar trend as observed for the 2-postion analogs, wherein the 3-

chlorine manifested the highest affinity for Grp94. In comparison, larger (compound 13) and 

smaller (compound 11) substituents resulted in diminished binding. Amino and methoxy 

substitutions at the 3-position manifested decreased binding affinity, establishing that a hydrogen 

bond donor/acceptor group at 3-postion is not beneficial. Ultimately, compound 12 proved to 

exhibit highest affinity for Grp94 amongst the 3-substituted derivatives.  

The 4-position of the phenyl ring was also substituted with electron donating and withdrawing 

groups. As seen in figure 2.6 C, the 4-position substitutions are oriented towards pocket B, as 

visualized by molecular docking studies. Substitutions with polar groups were sought to gain 

hydrogen bond interactions with Gly196. In addition, the 4-position was also investigated for 

steric constraints within pocket B, as well to alter the electronic nature of the phenyl ring to 

increase π-π interactions with Phe199 and Tyr200. Compounds 16-27 were synthesized with 

similar conditions that involved an EDCI-mediated coupling of 1 with the corresponding 

anilines, 16a-27a, followed by silyl-deprotection to give amides 16-27 in good yields. When 

evaluated for their ability to bind Grp94, the 4-position followed an SAR trend with particular 

sensitivity to sterics (as shown in Figure 5). The 4-position proved to accommodate larger groups 

as compared to the 2-and 3-positions, which is exemplified by compound 18 as can be seen in 
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figure 2.6 C, wherein the bromine atom occupies pocket B and results in a greater affinity for 

compound 18. Furthermore, compounds with smaller groups (compound 16 and 17) and larger 

than bromine (compounds 19 and 20) displayed a loss in affinity towards Grp94. 

                 

Table 2.2: Kd values determined using fluorescence polarization assay for listed compounds 

using Grp94 and Hsp90. 

Following the trends observed for the 2- and 3-positions, electron withdrawing groups at the 4-

position also exhibited a higher binding affinity than electron donating groups. Interestingly, the 

hydroxyl containing compound, 23, showed higher affinity than aniline compound 25, but less 

than compound 18.   Hydrogen bond acceptors such as a methoxy in compound 24 resulted in a 

loss of binding affinity, potentially because of the bulk arising from the methoxy group. 

Compound 26 containing a nitrile substitution also showed better binding affinity, bolstering the 

hypothesis that pocket B is larger than pocket A. Additionally, the nitrile may be acting as a 

hydrogen bond acceptor (potential interaction with TYR 200) and could affect the π-stacking 

nature of the phenyl ring. 
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Figure 2.7 Inhibition of MDA-MB-231 cell migration by compounds 6 and 18.MDA-MB-231 

cells were cultivated for 24 h prior to treatment with compounds Cells were incubated for 16 h at 

37°C with the respective compounds indicated above (2.5 µM). 

 

These observations were in line with the results obtained via molecular modeling that predicted 

compounds 18, 23 and 26 to bind with increased binding affinity. Kd values of the selected 

compounds were determined using the fluorescence polarization assay for both Grp94 as well as 

Hsp90. Compound 6 displayed ~4 fold selectivity and compound 18 exhibited ~7 fold 

selectivity, which is due to binding to pocket B, which is found only in Grp94. Surprisingly, 

compound 12 was not as effective in binding to Grp94 as compounds 6 and 18, displaying only a 

moderate increase in potency and selectivity for Grp94. Compound 27 was synthesized to 

investigate the combined steric requirements of both the 2 and 4-positions. Unfortunately, 2-4 

disubstitution led to decreased binding affinity, concluding that substitutions about the  2-and 4-
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postion are mutually exclusive. To determine the cellular efficacy of these compounds, a wound 

healing scratch assay was performed utilizing MDA-MB-231 cells, a highly metastatic breast 

cancer cell line that has been previously used to establish that Grp94 knockdown diminishes the 

ability of these cells to migrate
29

. Hence, supporting the hypothesis that Grp94 inhibition is a 

potential strategy for development of anti-metastatic agents. In this assay, Compounds 6 and 18 

inhibited migration of MD-MB-231 cells, which mirrored the binding affinity trend observed in 

fluorescence polarization assays. Furthermore, an MTS assay was performed utilizing the MDA-

MB-231 cells to determine that the anti-migratiory activity of these compounds did not result 

from their anti-proliferative activity. In the event, MDA-MB-231 cells were treated with the 

same concentration as in the wound healing assay (2.5 µM) and it was found that compounds  

exhibited a negligible effect on the proliferation of these cells. 

                                   

Table 2.3 Percent viability of MDA-MB-231 cells determined using MTS assay with DMSO 

serving as a positive control. 

 

2.2 cis-amide isostere approach: Since the cis-amide conformation of RDA was observed to be 

responsible for selective binding to Grp94, it was hypothesized that putting a constraint onto 

would lock it into a predisposed cis conformation, which would lead to potent and selective 

Grp94 inhibitors. After a series of molecular modeling studies, it was determined that an 

imidazole ring could serve as a cis amide surrogate to project the phenyl ring of radamide into 

the unique hydrophobic pocket of Grp94. After screening the linker length between the amide 
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nitrogen and the phenyl ring, it was determined that the one carbon linker compound (BnIm) 

selectively binds to Grp94 with the highest binding affinity.
37

 Since, the linker length was 

different than that optimized for RDA, binding mode of BnIm was believed to be slightly 

different than that of  RDA. Therefore, a SAR study was needed for the BnIm scaffold to 

distinguish its binding mode from RDA. 

                          

                   Scheme 2.2 cis-amide constraint employed on the RDA scaffold  

BnIm analogs 30-44 were synthesized using a one pot cyclization method, employing aldehyde 

28 (a precursor to acid 1)
37

 and the corresponding substituted benzylamines, followed by  

deprotection to give the free phenols. The 2-position of the phenyl ring was explored via 

substitutions that could modify the electronic nature of the ring, potentially providing increased 

π-interactions with aromatic residues TYR 200 and PHE 199. In addition, substitutions were also 

sought to extend into the hydrophobic pocket and increase hydrophobic interactions. Among the 

halogen substitutions, the fluorine containing compound 30 displayed the greatest binding 

affinity, however it was comparable with the unsubstituted analog i.e.compound 29 (BnIm). This 

observation suggested that the fluorine does not affect the binding significantly, possibly because 

the 2-position faces the solvent in the case of the radamide crystal structure (figure 2.4). When 

the size of the halogen was increased from fluorine to chlorine to bromine, such as in compounds 

31 and 32, a decrease in binding affinity was observed. The methoxy analog was prepared to 



43 
 

explore the binding pocket for potential hydrogen bonding interactions, and to help establish 

spatial requirements at the 2-position. Unfortunately, compound 33 did not show any 

improvement in binding affinity, and in fact, the binding affinity was diminished, suggesting that 

the methoxy group is not well tolerated at the 2-position.   

                

                                  Scheme 2.3 Synthesis of the cis-amide isostere analogs               

               

Table 2.4 Determination of binding affinity of compounds 29-33 (25 µM)  towards Grp94 by 

fluorescence polarization assay using 1 % DMSO as positive control (tracer displaced 0%). 

Similarly, the 3-position of BnIm was modified with halogens to explore the hydrophobic 

pocket. Although it had been established with RDA analogs that the 3-position of the RDA 

phenyl does not allow substitution as favorably as the 4 and 2-position of the RDA phenyl ring, it 

was still worth pursuing with the BnIm scaffold, as it utilizes a carbon linker that may provide 

additional flexibility for projecting the substitutions into the Grp94 hydrophobic pocket. 
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Unfortunately, modifications to the 3-position led to decreased binding affinities as compared to 

the parent compound (29). The fluorine containing compound was the least active at the 3-

osition, followed by bromine substituted compound 36. Interestingly, the chlorine containing 

compound (35) was the most active compound as compared to other substitutions, potentially 

due to the combined effects of both sterics and electronic changes to the phenyl ring. However, it 

did not exhibit an improvement in Grp94 binding affinity as compared to compound.29.      

         

Table 2.5 Determination of binding affinity of the compounds 34-37 (25 µM) towards Grp94 by 

fluorescence polarization assay using 1 % DMSO as positive control (tracer displaced 0%). 

Similarly, substitutions at the 4-position were also pursued, in particular, to explore pocket B 

interactions (Figure 2.4) as found in the RDA crystal structure. The hydrophobic nature of the 

pocket B was investigated by the incorporation of halogen and alkyl substitutions. As 

hypothesized, larger substituents exhibited improved binding affinity with bromine substituted 

compound 40 manifesting best activity amongst all the halogens. This could be due to the ability 

of the bromide to occupy pocket B better than other halogens (figure 2.8C). Loss in activity for 

the fluorine and chlorine containing compound (38 and 39) could be due to the unfavorable 

changes within electronics of the aromatic ring. Whereas, iodine containing compound 41 

appeared too bulky for the pocket B 
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A methyl group was also found beneficial for binding, however, potency was lost with increasing 

size, such as the incorporation of an ethyl group (43). Since the bromide group exhibited the 

highest potency amongst all substitutions, a trifluoromethyl group was utilized in compound 44 

as an isostere of the bromine atom, however, it did not maintain the potency observed for 

compound 40. Dissociation constants were determined for BnIm and compound 40 for binding to 

Hsp90 and Grp94 and compound 40 was found to bind Grp94 more tightly than BnIm. It was 

also found to exhibit increased selectivity of ~12 fold towards Grp94 (Table 2.6). Compound 40 

has been evaluated for cellular efficacy in the mutant myocilin assay, wherein mutant myocilin  

(Grp94 client) degradation is monitored as a result of Grp94 inhibition. It was  

 

Figure 2.8 A) Determination of the binding affinity of the compounds 38-45 (25 µM) towards 

Grp94 by fluorescence polarization assay using 1 % DMSO as positive control (tracer displaced 
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0%). B) Docked pose of BnIm in Grp94 (crystal structure of RDA bound to Grp94). C) 

Compound 40 docked into Grp94. 

found that  Compound 40 is 15 fold more potent at degrading mutant myocilin than BnIm.
48 

To further explore the available space and to probe for increased π-π interactions around pocket 

B, phenyl substitutions were included at the 4-position, but these compounds manifested a loss in 

activity, thus concluding that a phenyl is not well tolerated in pocket B. 

 

Table 2.6 Kd Values for BnIm and Compound 40 determined using fluorescence polarization 

assay towards Grp94 and Hsp90. 
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Figure 2.9 Crystal structure of BnIm bound to Hsp90(green) and Grp94(cyan). The binding 

pocket difference has been highlighted with a red box. 

In the meantime, the crystal structures of BnIm bound to Grp94 and Hsp90 were solved in 

collaboration with Gewirth laboratory. Surprisingly, the binding mode of BnIm in Grp94 and 

Hsp90 were found to differ significantly. In particular, the resorcinol ring was found to be 

flipped in the Grp94 and to project the ester into the binding site, unlike the radamide crystal 

structure, wherein the resorcinol ester faces the open solvent (Figure 2.9). This was in stark 

contrast to the RDA bound structure of Hsp90 and Grp94. Immediate efforts were made to 

explore the new subpocket that was observed exclusively (Figure 2.9 outlined with box) in 

Grp94. For this purpose, the  methyl ester in BnIm was replaced with bulkier alkyl substitutions. 

Compounds 46-48 were evaluated against Grp94 and it was determined that there was loss in 

potency that correlated with an increase in the size of the alkyl group. 

 

Figure 2.10 A) Synthetic scheme for the ester analogs of BnIm B) Determination of binding 

affinity of the compounds 29, 46-48 (3 µM)  towards Grp94 by fluorescence polarization assay 

using 1 % DMSO as positive control (tracer displaced 0%). 
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3. Conclusions and Future Directions 

 In summary, preliminary structure-activity relationship study has been performed on 

radamide and the cis-amide isostere containing compounds to probe for Grp94 selective 

inhibition. With radamide analogs, a selectivity of ~7 fold was achieved with compound 18 that 

also exhibited ~7 fold increase in binding affinity for Grp94 compared to RDA. In the case of the  

cis-amide isotere analogs, compound 40 manifested ~12 fold selectivity for Grp94 as compared 

to ~7 fold for the parent compound BnIm. These compounds also display efficacy in cellular 

assays, such as the wound healing scratch assay and the mutant myocilin degradation assay.  

 The two carbon linker appears to represent a source of entropic penalties for both 

scaffolds and future modifications will focus on the same. Multiple cis-amide isosteres need to 

be explored for the BnIm analogs to determine whether enhaced π-π interactions can be 

achieved. Furthermore, the newly identified pocket in case of BnIm bound to Grp94 will also be 

explored. 
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4. General Experimental Methods. 

 Fluorescence Polarization. Assay buffer (25 µL, 20 mM HEPES pH 7.3, 50 mM KCl, 5 

mM MgCl2, 1 mM DTT, 20 mM Na2MoO4, 0.01% NP-40, and 0.5 mg/mL BGG) was added to 

96-well plate (black well, black bottom) followed by the desired compound at the indicated final 

concentrations in DMSO (1% DMSO final concentration).
32

 Recombinant cGrp94 (10nM for 

compounds 2-27, 30 nM for compounds 28-48) and FITC-GDA were then added (6 nM). Plates 

were incubated with rocking for 24 h at 4°C. Fluorescence was determined using excitation and 

emission filters of 485 and 528 nm, respectively. Percent FITC-GDA bound was determined by 

using the DMSO millipolarization unit (mP) as the 100% bound value and the 0% for FITC-

GDA. Kd values were calculated from separate experiments performed in triplicate using 

GraphPad Prism.   

 Anti-proliferation Assays. MDA-MB-231 cells were maintained in DMEM (Cellgro) 

media , supplemented with nonessential amino acids , L-glutamine (2 mM), streptomycin (500 

µg/mL), penicillin (100 units/mL) and 10% FBS. Cells were grown to confluence in a 

humidified atmosphere (37°C, 5% CO2), seeded (2000/well, 100 µL) in 96-well plates, and 

allowed to attach overnight. Compounds with varying concentrations in DMSO (1% DMSO final 

concentration) were added, and cells were returned to the incubator for 72 h. After 72 h, the cell 

viability was determined using an MTS/PMS cell proliferation kit (Promega) per the 

manufacturer’s instructions. Absorption value from 1% DMSO wells were use as 100% 

proliferation, and values were adjusted accordingly.  
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Wound-Healing Scratch Assay. MDA-MB-231 cells were grown to confluence in a humidified 

atmosphere (37°C, 5% CO2), seeded (200000/well, 1 mL) in 12-well plates, and allowed to grow 

to a confluent monolayer (24 h) at 37°C and 5% CO2. Each well was then scratched with a 200 

μL sterile pipet tip, and then imaged with an Olympus IX-71 microscope (60x objective, time=0 

h), the respective compound solutions (2.5 μL, final DMSO concentration is 0.25%) were added, 

and the plates were returned to the incubator. Cell migration was recorded after 16 h of 

incubation. All experiments were run in quadruplicate on two different days.  

Molecular Modeling. Surflex-Docking module in Sybyl v8.0 was used for molecular modeling 

and docking studies. The co-crystal structure of RDA bound to Grp94 and yHsp82 was utilized 

for all docking experiments.
30

 The docked molecules were locked in a cis-amide conformation 

and rotation of the bonds was unrestricted. Pymol was used for further visualization and figure 

preparation.  

Chemistry 

General procedure A: Amide coupling 

 

General Amide Formation for Compounds 2-27. To a solution of acid 1 (0.05 mmol), 

EDCI∙HCl (0.12 mmol), and DMAP (0.13 mmol) in CH2Cl2 (1 mL) was added the 

corresponding aniline (0.1 mmol) and stirred at room temperature under Argon overnight. Upon 
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completion of reaction as monitored by TLC, the solvent was removed in vacuo and redissolved 

in THF (1 mL). The reaction mixture was then treated with TBAF (0.2 mmol) and stirred for 30 

min, and upon completion saturated aqueous NH4Cl was added and extracted 3x with EtOAc. 

The combined organic layers were then dried over Na2SO4, filtered, and concentrated in vacuo. 

The residue was purified via chromatography (SiO2, 49:1, CH2Cl2:MeOH) to afford the desired 

amide. 

 

Ethyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(phenylamino)propyl)benzoate (2). 15 mg, 86% 

yield, white solid. 
1
H NMR (400 MHz, CDCl3): δ 11.23 (s, 1 H), 7.53 (d, J = 7.91 Hz, 2 H), 7.34 

(t, J =  7.66 Hz, 2 H), 7.12 (t, J =  7.36 Hz, 1 H), 6.59 (s, 1 H), 6.33 (s, 1 H), 3.97 (s, 3 H), 3.50 

(dd, J =  5.76, 10.15 Hz, 2 H), 2.66-2.59 (m, 2 H). 
13

C NMR (125 MHz, CDCl3): δ = 170.43, 

169.99, 162.91, 156.28, 141.66, 137.73, 129.10 (2 C), 124.40, 119.72 (2 C), 113.92, 106.81, 

102.94, 52.75, 36.73, 28.81. HRMS (ESI) m/z [M+Na
+
] for C17H16ClNO5Na: 372.0609, found: 

372.0609. 

 

 Methyl 2-(3-(benzylamino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (3). 30 mg, 83% 

yield, white solid. 
1
H NMR (500 MHz, CDCl3): δ 7.32 – 7.21 (m, 5H), 6.44 (s, 1H), 4.40 (d, J = 
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4.7 Hz, 2H), 3.86 (s, 3H), 3.44 – 3.29 (m, 2H), 2.50 – 2.33 (m, 2H). 
13

C NMR (125 MHz, 

CDCl3) δ 171.98, 170.68, 162.51, 157.03, 141.87, 138.12, 127.81, 127.60, 114.22, 106.34, 

102.63, 52.53, 49.78, 43.73, 35.65, 28.92. HRMS (ESI) m/z [M+Na
+
] for C18H18ClNO5Na: 

386.0874; found: 386.0877. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(phenethylamino)propyl)benzoate (4). 17 mg, 

90% yield, white solid. 
1
H NMR (400 MHz, CDCl3): δ 11.29 (s, 1H), 7.32 (dd,  J = 6.63, 8.10 

Hz, 2 H), 7.26-7.23 (m, 1H), 7.22-7.17 (m, 2H), 6.57 (s, 1H), 5.48 (t, J =  5.95 Hz, 2H), 3.91 (s, 

3H), 3.56 (q, J =  6.58 Hz, 2H), 3.40-3.34 (m, 2H), 2.84 (t, J =  6.84 Hz, 2H), 2.41-2.35 (m, 2H). 

13
C NMR (125 MHz, CDCl3): δ 171.92, 170.64, 162.90, 156.43, 141.74, 138.72, 128.77, 128.71, 

126.63, 113.90, 106.64, 102.80, 52.58, 40.63, 35.81, 35.61, 29.05. HRMS (ESI) m/z [M+Na
+
] 

for C19H20ClNO5Na: 400.0922, found: 400.0931. 

 

Methyl 3-fluoro-2-(3-((2-chlorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (5). 15 

mg, 81% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 11.19 (s, 1H), 8.49 – 8.00 (m, 1H), 

7.34 (s, 1H), 7.12 – 6.97 (m, 3H), 6.53 (s, 1H), 6.05 (s, 1H), 3.91 (s, 3H), 3.49 – 3.37 (m, 2H), 
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2.67 – 2.57 (m, 2H).
13

C NMR (125 MHz, CDCl3) δ 170.45, 169.98, 163.02, 156.23, 141.37, 

124.71, 124.68, 124.37, 121.60, 114.87, 114.72, 113.86, 106.81, 102.99, 52.73, 36.80, 28.83. 

HRMS (ESI) m/z [M+Na
+
] for C17H15ClFNO5Na: 390.0521; found: 390.0547. 

 

Methyl 3-chloro-2-(3-((2-chlorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (6). 14 

mg, 73% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 11.22 (s, 1H), 8.36 (d, J = 8.3 Hz, 

1H), 7.61 (s, 1H), 7.31 (dd, J = 8.0, 1.5 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.02 – 6.97 (m, 1H), 6.53 

(s, 1H), 3.91 (s, 4H), 3.54 – 3.32 (m, 2H), 2.76 – 2.47 (m, 3H).
13

C NMR (126 MHz, CDCl3) δ 

170.49, 169.99, 163.08, 156.23, 141.30, 134.49, 129.04, 127.85, 124.68, 122.45, 121.47, 113.86, 

106.83, 103.00, 52.75, 37.03, 28.90. HRMS (ESI) m/z [M+Na
+
] for C17H15Cl2NO5Na: 406.0225; 

found: 406.0246. 

 

Methyl 2-(3-((2-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (7). 

16.3 mg, 76% yield, pale yellow solid.
 1

H NMR (500 MHz, Chloroform-d) δ 11.31 (s, 1H), 8.38 

(s, 1H), 7.67 (s, 1H), 7.55 (dd, J = 8.1, 1.5 Hz, 1H), 7.34 (m, 1H), 7.00 (m, 1H), 6.59 (s, 1H), 

6.20 (s, 1H), 3.98 (s, 3H), 3.59 – 3.42 (m, 2H), 2.71 (t, J = 8.3 Hz, 2H)..
13

C NMR (125 MHz, 

CDCl3) δ 170.54, 170.04, 163.07, 156.29, 141.26, 135.54, 132.27, 128.50, 125.26, 121.80, 
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113.89, 113.18, 106.80, 103.01, 52.79, 37.05, 27.08. HRMS (ESI) m/z [M+Na
+
] for 

C17H15BrClNO5Na: 449.9720; found: 449.9767. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-((2-iodophenyl)amino)-3-oxopropyl)benzoate (8). 18.2 

mg, 77% yield, pale yellow solid.
  1

H NMR (500 MHz, CDCl3) δ 11.27 (s, 1H), 8.21 (d, J = 8.2 

Hz, 1H), 7.77 – 7.23 (m, 3H), 6.82 – 6.78 (m, 1H), 6.53 (s, 1H), 6.03 (s, 1H), 3.92 (s, 3H), 3.51 – 

3.37 (m, 2H), 2.72 – 2.52 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 170.58, 169.99, 163.13, 

156.24, 141.26, 138.84, 138.04, 129.38, 126.07, 122.95, 121.88, 113.88, 106.85, 103.01, 52.84, 

37.05, 28.97. HRMS (ESI) m/z [M+Na
+
] for C17H15ClINO5Na: 497.9581; found: 497.9593. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-((2-methoxyphenyl)amino)-3-oxopropyl)benzoate (9). 

14.5 mg, 77% yield, white solid.
 1

H NMR (500 MHz, CDCl3) δ 11.40 (s, 1H), 8.41 (dd, J = 7.9, 

1.7 Hz, 1H), 7.77 (s, 1H), 7.10 – 6.85 (m, 3H), 6.59 (s, 1H), 3.96 (s, 3H), 3.87 (s, 3H), 3.56 – 

3.46 (m, 2H), 2.71 – 2.62 (m, 2H).
13

C NMR (125 MHz, CD3OD) δ 173.39, 171.67, 161.61, 

158.99, 151.43, 142.28, 128.21, 126.10, 123.37, 121.46, 114.98, 111.74, 109.46, 103.16, 56.19, 

52.83, 37.23, 29.40. HRMS (ESI) m/z [M+H] for C18H18ClNO6: 380.0901; found: 380.0920. 
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Methyl 2-(3-((2-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (10). 

7.5 mg, 41% yield, pale yellow solid.
 1

H NMR (400 MHz, CD3OD) δ 7.07 – 6.90 (m, 2H), 6.81 – 

6.60 (m, 2H), 6.32 (d, J = 4.7 Hz, 1H), 3.84 (d, J = 5.2 Hz, 3H), 3.33 – 3.23 (m, 2H), 2.68 – 2.58 

(m, 2H). 
13

C NMR (125 MHz, CD3OD) δ 173.77, 171.72, 161.58, 159.34, 143.21, 142.29, 

128.24, 127.13, 125.21, 119.62, 118.61, 115.21, 109.28, 103.28, 52.91, 36.45, 29.33. HRMS 

(ESI) m/z [M+Na
+
] for C17H17ClN2O5Na: 387.0724; found: 387.0744. 

 

Methyl 3-chloro-2-(3-((3-fluorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (11). 27 

mg, 74% yield, white amorphous solid: 
 1

H NMR (500 MHz, (CD3)2CO) δ 9.38 (br s, 1H), 7.86 – 

7.64 (m, 1H), 7.37 – 7.22 (m, 2H), 6.81 (m, 1H), 6.51 (s, 1H), 3.95 (s, 3H), 3.57 – 3.20 (m, 2H), 

2.84 – 2.52 (m, 2H); 
13

C NMR(125 MHz, (CD3)2CO): δ 171.37, 164.74, 162.86, 162.33, 158.65, 

143.04, 142.17, 131.08, 130.96, 115.53, 110.44, 108.24, 106.93, 103.28, 52.99, 36.87, 28.86; 

HRMS (ESI) m/z [M + H
+
] for C17H15ClFNO5: 368.0701; found: 368.0701. 
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Methyl 3-chloro-2-(3-((3-chlorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (12). 30 

mg, 78% yield, white amorphous solid: 
1
H NMR (500 MHz, (CD3)2CO) δ 9.33 (s, 1H), 8.06 – 

7.85 (m, 1H), 7.49 (m, 1H), 7.31 (t, J = 8.1 Hz, 1H), 7.08 (m, 1H), 6.51 (s, 1H), 3.95 (s, 3H), 

3.69 – 3.33 (m, 2H), 2.85 – 2.53 (m, 2H); 
13

C NMR(125MHz. (CD3)2CO): δ 171.31, 171.34, 

162.37, 158.65, 143.04, 141.89, 134.73, 131.07, 123.82, 119.80, 118.17, 114.82, 108.23, 103.25, 

52.97, 36.84, 28.85; HRMS (ESI) m/z [M – H
-
] for C17H14Cl2NO5: 382.0249; found: 382.0237. 

 

Methyl 2-(3-((3-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (13). 

27 mg, 74% yield, white amorphous solid: 
1
H NMR (500 MHz, (CD3)2CO) δ 9.32 (s, 1H), 8.10 

(q, J = 1.6 Hz, 1H), 7.66 – 7.46 (m, 1H), 7.38 – 7.15 (m, 2H), 6.51 (s, 1H), 3.95 (s, 3H), 3.60 – 

3.33 (m, 2H), 2.73 – 2.61 (m, 2H). 
13

C NMR (125 MHz, (CD3)2CO) δ 171.32, 171.26, 158.63, 

142.99,  131.31, 126.77, 122.77, 122.70, 122.62, 118.63, 118.54, 114.81, 108.21, 103.18, 52.93, 

36.81, 28.84; HRMS (ESI) m/z [M + Na
+
] for C17H15ClBrNO5Na: 449.9720; found: 449.9720. 
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Methyl 3-chloro-4,6-dihydroxy-2-(3-((3-methoxyphenyl)amino)-3-oxopropyl)benzoate (14). 

14.6 mg, 76% yield, white solid.
 1

H NMR (500 MHz, CDCl3) δ 11.15 (s, 1H), 7.30 – 7.11 (m, 

3H), 6.92 – 6.58 (m, 2H), 6.52 (s, 1H), 6.25 (s, 1H), 3.90 (s, 3H), 3.75 (s, 3H), 3.46 – 3.37 (m, 

2H), 2.58 –2.51 (m, 2H).
13

C NMR (126 MHz, CDCl3) δ 170.82, 170.71, 162.10, 160.03, 157.67, 

142.01, 139.24, 129.61, 114.59, 111.83, 109.92, 106.09, 105.39, 102.47, 55.27, 52.54, 36.41, 

28.58. HRMS (ESI) m/z [M+Na
+
] for C18H18ClNO6: 402.0720; found: 402.0722. 

 

Methyl 2-(3-((3-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (15). 9 

mg, 49% yield, pale yellow solid.
  1

H NMR (400 MHz, CDCl3) δ 7.12 – 7.05 (m, 1H), 7.01 (t, J 

= 8.0 Hz, 1H), 6.68 (dd, J = 7.8, 2.1 Hz, 1H), 6.44 – 6.26 (m, 2H), 3.87 (s, 3H), 3.38 (t, J = 8.4 

Hz, 2H), 2.61 – 2.47 (m, 2H). 
13

C NMR (125 MHz, CDCl3) δ 170.50, 162.27, 157.40, 146.36, 

141.98, 139.20, 129.72, 114.46, 111.35, 110.11, 106.84, 106.20, 102.55, 52.57, 36.57, 29.69, 

28.69. HRMS (ESI) m/z [M+Na
+
] for C17H17ClN2O5Na: 387.0724; found: 387.0736. 
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Methyl 3-chloro-2-(3-((4-fluorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (16). 

14.5 mg, 80% yield, white solid.
 1

H NMR (500 MHz, CDCl3) δ 11.28 (s, 1H), 7.89 (s, 1H), 7.50 

(m, 2H), 7.02 (t, J = 8.7 Hz, 2H), 6.50 (s, 1H), 3.96 (s, 3H), 3.52 – 3.44 (m, 2H), 2.65 – 2.56 (m, 

2H).
 13

C NMR (125 MHz, CDCl3) δ 170.34, 169.85, 162.91, 160.34, 156.21, 141.58, 121.57, 

121.50, 115.82, 115.64, 113.88, 106.86, 102.98, 52.73, 36.57, 28.79. HRMS (ESI) m/z [M+Na
+
] 

for C17H15ClFNO5Na: 390.0521; found: 390.0553. 

     

Methyl 3-chloro-2-(3-((4-chlorophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (17). 

13.8 mg, 72% yield, white solid.
  1H NMR (500 MHz, CDCl3) δ 11.16 (s, 1H), 7.52 – 7.45 (m, 

2H), 7.32 – 7.28 (m, 2H), 6.60 (s, 1H), 6.14 (s, 1H), 3.97 (s, 3H), 3.55 – 3.45 (m, 2H), 2.65 – 

2.59 (m, 2H). 
13

C NMR (125 MHz, CDCl3) δ 170.45, 170.35, 162.39, 157.07, 141.80, 136.48, 

129.09, 128.99, 120.84, 114.29, 106.38, 102.70, 52.62, 36.48, 28.64. HRMS (ESI) m/z [M+Na
+
] 

for C17H15Cl2NO5Na: 406.0225; found: 406.0234. 
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Methyl 2-(3-((4-bromophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (18). 

15 mg, 70% yield, white solid.
 1

H NMR (500 MHz, CDCl3) δ 7.38 (s, 4H), 6.49 (s, 1H), 3.90 (s, 

3H), 3.45 – 3.39 (m, 2H), 2.58 – 2.52 (m, 2H).
 13

C NMR (125 MHz, CDCl3) δ 170.27, 169.88, 

162.91, 156.18, 141.50, 136.83, 132.05, 121.18, 116.89, 113.864, 106.87, 103.01, 52.74, 36.71, 

28.71. HRMS (ESI) m/z [M+Na
+
] for C17H15BrClNO5Na: 449.9720; found: 449.9740. 

 

methyl 3-chloro-4,6-dihydroxy-2-(3-((4-iodophenyl)amino)-3-oxopropyl)benzoate (19). 22 

mg, 76% yield, white solid. 
1
H NMR (500 MHz, CDCl3 and CD3OD) δ 7.55 (dd, 2H), 7.28 (dd, 

2H), 6.43 (s, 1H), 3.89 (s, 3H), 3.41 – 3.39 (m, 2H), 2.56 – 2.53 (m, 2H). 
13

C NMR (126 MHz, 

CDCl3) δ 169.93, 162.88, 156.22, 149.99, 141.51, 137.99, 129.72, 128.84, 126.65, 126.34, 

121.46, 103.01, 52.74, 36.74, 28.69. HRMS (ESI) m/z [M+Na
+
]

 
for C17H15ClINO5Na: 497.9683; 

found: 497.9656. 

 



60 
 

Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-((4-trifluoromethyl)phenyl)amino)propyl) 

benzoate (20). 31 mg, 74% yield, white amorphous solid: 
1
H NMR (500 MHz, (CD3)2CO) δ 

8.13 – 7.78 (m, 2H), 7.65 (dd, J = 8.8, 2.5 Hz, 2H), 6.51 (t, J = 1.7 Hz, 1H), 3.95 (t, J = 1.8 Hz, 

3H), 3.44 (m, 2H), 2.72 (m, 2H); 
13

C NMR (125 MHz, (CD3)2CO) δ 171.51, 171.47, 171.30, 

162.25, 158.67, 142.94, 126.95, 126.82,  119.82, 119.81, 114.83, 108.27, 103.22, 52.98, 36.82, 

28.87. HRMS (ESI) m/z [M + H
+
]

 
for C18H16ClF3NO5: 418.0669; found: 418.0669. 

 

Methyl 2-(3-([1,1'-biphenyl]-4-ylamino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (21). 

12.5 mg, 60% yield, white solid.
 1

H NMR (400 MHz, CDCl3) δ 11.24 (s, 1H), 7.65 – 7.56 (m, 

6H), 7.48 – 7.31 (m, 3H), 7.23 (d, J = 5.6 Hz, 1H), 6.61 (s, 1H), 6.10 (s, 1H), 4.00 (s, 3H), 3.57 – 

3.49 (m, 2H), 2.70 – 2.63 (m, 2H).
 13

C NMR (125 MHz, CDCl3) δ 170.41, 169.88, 162.96, 

156.19, 141.64, 140.41, 137.25, 137.03, 128.81, 127.70, 127.17, 126.84, 119.96, 113.88, 106.87, 

102.96, 52.75, 36.75, 28.82. HRMS (ESI) m/z [M+Na
+
] for C23H20ClNO5Na: 448.0928; found: 

448.0946. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-oxo-3-(p-tolylamino)propyl)benzoate (22). 14 mg, 76% 

yield, white solid.
  1H NMR (500 MHz, CD3OD) δ 7.32 (dd, J = 8.5, 2.0 Hz, 2H), 7.08 – 7.02 (m, 
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2H), 6.47 (s, 1H), 3.88 (s, 3H), 3.45 – 3.37 (m, 2H), 2.56 – 2.49 (m, 2H), 2.24 (s, 3H). 
13

C NMR 

(126 MHz, CD3OD) δ 168.00, 167.60, 167.51, 154.20, 139.34, 132.64, 131.44, 127.00, 117.21, 

111.59, 104.03, 100.23, 50.14, 34.05, 26.29, 18.34. HRMS (ESI) m/z [M+Na
+
] for 

C18H18ClNO5Na: 386.0771 ; found: 386.1007. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-((4-hydroxyphenyl)amino)-3-oxopropyl)benzoate (23). 

8.8 mg, 48% yield, white solid.
 1

H NMR (500 MHz, CD3OD) δ 7.36 – 7.27 (m, 2H), 6.74 – 6.63 

(m, 2H), 6.38 (s, 1H), 3.88 (s, 3H), 3.30-3.28 (m, 2H), 2.64 – 2.55 (m, 2H). 
13

C NMR (125 MHz, 

CD3OD) δ 172.98, 171.64, 161.37, 158.85, 155.34, 142.31, 131.72, 123.38, 116.18, 114.89, 

109.69, 103.11, 52.84, 36.88, 29.19.HRMS (ESI) m/z [M+Na
+
] for C17H16ClNO6Na: 388.0564 ; 

found: 388.0556. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(3-((4-methoxyphenyl)amino)-3-oxopropyl)benzoate (24). 

32 mg, 73% yield, white powder. 
1
H NMR (500 MHz, CD3OD): δ 7.42-7.37 (m, 2 H), 6.84-6.79 

(m, 2 H), 6.41 (s, 1 H), 3.90 (s, 3 H), 3.75 (s, 3 H), 3.45-3.39 (m, 2 H), 2.58-2.52 (m, 2 H). 
13

C 

NMR (125 MHz, CD3OD): δ 170.74, 170.72, 161.9, 157.8, 156.1, 142.0, 131.1, 121.6, 114.6, 
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114.0, 106.0, 102.3, 55.4, 52.4, 36.1, 28.6. HRMS (ESI) m/z [M+Na
+
] for C18H18ClNO6Na: 

402.0720; found: 402.0725. 

 

Methyl 2-(3-((4-aminophenyl)amino)-3-oxopropyl)-3-chloro-4,6-dihydroxybenzoate (25). 8 

mg, 33% yield, dark brown solid. 
1
H NMR (400 MHz, CD3OD) δ 7.45 – 7.27 (m, 2H), 6.90 – 

6.74 (m, 2H), 6.50 (s, 1H), 4.00 (s, 3H), 3.38 (t, J = 8.4 Hz, 2H), 2.77 – 2.65 (m, 2H). 13
C NMR 

(125 MHz, CDCl3 and CD3OD) δ 170.59, 169.91, 162.49, 156.88, 143.10, 141.99, 129.23, 

121.91, 115.51, 106.47, 102.65, 52.63, 49.80, 36.43, 28.90. HRMS (ESI) m/z [M+Na
+
] for 

C17H17ClN2O5Na: 387.0826; found: 387.0836. 

 

Methyl 3-chloro-2-(3-((4-cyanophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate (26). 

13.6 mg, 72% yield, white solid.
 1

H NMR (500 MHz, CDCl3 and CD3OD) δ 7.71 – 7.60 (m, 4H), 

6.56 (s, 1H), 3.98 (s, 3H), 3.53–3.46 (m, 2H), 2.70–2.64 (m, 2H). 
13

C NMR (125 MHz, CDCl3) δ 

170.97, 170.41, 162.19, 157.38, 142.28, 141.72, 133.26, 119.32, 118.94, 114.44, 106.70, 106.26, 

102.66, 52.59, 36.46, 28.41. HRMS (ESI) m/z [M+H] for C18H15ClN2O5: 375.0748; found: 

375.2276. 
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Methyl 3-chloro-2-(3-((2,4-dibromophenyl)amino)-3-oxopropyl)-4,6-dihydroxybenzoate 

(27). 21 mg, 83%, white solid. 
1
H NMR (500 MHz, CDCl3 and CD3OD) δ 8.22 (d, J = 8.9 Hz, 

1H), 7.63 (dd, J = 2.2, 1.2 Hz, 1H), 7.49 – 7.33 (m, 1H), 6.44 (d, J = 1.0 Hz, 1H), 3.90 (d, J = 1.2 

Hz, 3H), 3.47 – 3.39 (m, 2H), 2.72 – 2.54 (m, 2H). 
13

C NMR (126 MHz, CD3OD) δ 170.52, 

170.39, 162.40, 157.48, 141.32, 134.74, 134.42, 131.43, 122.78, 116.73, 114.47, 113.56, 106.14, 

102.72, 52.64, 36.99, 28.77. HRMS (ESI) m/z [M+Na
+
] for C17H14Br2ClNO5Na: 527.8927, 

found: 527.8935. 

General procedure for cis-amide isostere compounds (30-45): 

 

 Intermediate 28 (0.1 mmol) was dissolved in MeOH followed by addition of amine (30a-45a) 

(0.1 mmol) dropwise to the reaction flask. Ammounim bicarbonate (NH3HCO3), Glyoxal (40 % 

aqueous solution) ( 0.1 mmol) are then added to this stirring mixture at 25
o
 C. The reaction was 

then allowed to stir at 25 ° C for 8 h. Upon complete consumption of the aldehyde, TBAF was 
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added dropwise via syringe and the reaction was allowed to stir at 25 °C for ~30 min. The 

reaction was quenched with sat. aq. NH4Cl and extracted with EtOAc (thrice). The organic layers 

were combined, dried on Na2SO4, and concentrated in vacuo. Purification was then carried out 

via chromatography utilizing 95:5 (DCM:MeOH) as the eluent.  

 

Methyl 3-chloro-2-(2-(1-(2-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate 

(30). 23 mg, 55%, white solid.
1
H NMR (500 MHz, CDCl3) δ 7.23 (s, 3H), 7.05 – 6.99 (m, 2H), 

6.94 (d, J = 1.4 Hz, 1H), 6.81 – 6.75 (m, 2H), 6.40 (s, 1H), 5.05 (s, 2H), 3.82 (s, 3H), 3.49 – 3.37 

(m, 2H), 2.95 – 2.79 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 170.80, 162.21, 161.09, 159.13, 

157.79, 147.67, 141.77, 130.04, 128.42, 127.27, 124.63, 119.93, 115.69, 114.66, 106.02, 102.55, 

52.51, 43.46, 30.83, 26.04. HRMS (ESI) m/z [M+H] for C20H18ClFN2O4: 405.1029, found 

405.1017. 

 

Methyl 2-(2-(1-(2-chlorobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 

(31) 23 mg, 57%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.35 (dd, J = 8.1, 1.3 Hz, 1H), 7.25 
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– 7.12 (m, 3H), 7.06 (d, J = 1.5 Hz, 1H), 6.79 (d, J = 1.5 Hz, 1H), 6.64 – 6.57 (m, 1H), 6.43 (s, 

1H), 5.08 (s, 2H), 3.85 (s, 3H), 3.47 – 3.41 (m, 2H), 2.97 – 2.87 (m, 2H). 
13

C NMR (126 MHz, 

CDCl3) δ 170.58, 157.43, 147.63, 141.17, 133.48, 132.58, 129.83, 129.62, 127.72, 127.52, 

126.23, 126.18, 120.16, 114.51, 106.20, 102.85, 52.73, 47.48, 30.89, 25.78. HRMS (ESI) m/z 

[M+H] for C20H19Cl2N2O4: 421.0722, found: 421.0721. 

 

methyl 2-(2-(1-(2-bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 

(32) 26 mg, 61%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.54 (dd, J = 8.0, 1.3 Hz, 1H), 7.24 

– 7.20 (m, 1H), 7.15 (td, J = 7.7, 1.7 Hz, 1H), 7.10 (d, J = 1.6 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 

6.67 – 6.57 (m, 1H), 6.48 (s, 1H), 5.06 (s, 2H), 3.85 (s, 3H), 3.48–3.33 (m, 2H), 3.06–2.89 (m, 

2H). 
13

C NMR (126 MHz, CDCl3) δ 170.47, 162.64, 157.77, 147.55, 140.60, 134.53, 133.23, 

130.08, 128.23, 128.05, 125.07, 122.57, 120.27, 114.71, 105.94, 103.08, 52.85, 50.15, 30.78, 

25.58. HRMS (ESI) m/z [M+H] for C20H19BrClN2O4 : 465.0217, found : 465.0231. 
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Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(2-methoxybenzyl)-1H-imidazol-2-yl)ethyl)benzoate 

(33) 24 mg, 58%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.23 (dd, J = 7.9, 1.7 Hz, 1H), 6.95 

(d, J = 1.5 Hz, 1H), 6.85 – 6.80 (m, 2H), 6.78 (d, J = 1.5 Hz, 1H), 6.71 (dd, J = 7.4, 1.7 Hz, 1H), 

6.41 (s, 1H), 5.00 (s, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.48 – 3.39 (m, 2H), 3.01 – 2.84 (m, 2H). 

13
C NMR (126 MHz, CDCl3) δ 170.94, 162.59, 158.62, 156.68, 147.68, 141.40, 129.56, 127.91, 

125.74, 124.26, 120.78, 120.20, 115.10, 110.38, 105.43, 102.67, 55.32, 52.54, 45.12, 30.76, 

25.84. HRMS (ESI) m/z [M+H] for C21H22ClN2O5: 417.1217, found:  417.1216. 

 

Methyl 3-chloro-2-(2-(1-(3-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate 

(34) 26 mg, 59% pale yellow solid. 
1
H NMR (500 MHz, CDCl3) δ 7.29 – 7.20 (m, 1H), 7.01 (d, J 

= 1.4 Hz, 1H), 6.92 (m, 1H), 6.82 (d, J = 1.4 Hz, 1H), 6.75 (m, 1H), 6.70 – 6.58 (m, 1H), 6.46 (s, 

1H), 5.01 (s, 2H), 3.80 (s, 3H), 3.52 – 3.40 (m, 2H), 2.88 – 2.74 (m, 2H). 
13

C NMR (126 MHz, 

CDCl3) δ 156.91, 147.47, 141.64, 130.71, 127.65, 121.98, 120.09, 115.15, 114.98, 114.24, 

113.55, 113.38, 106.52, 102.84, 99.96, 53.44, 52.63, 48.82, 30.86, 26.12. HRMS (ESI) m/z 

[M+H] for C20H19ClFN2O4:  405.1017, found: 405.1009. 
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Methyl 3-chloro-2-(2-(1-(3-chlorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate 

(35) 27 mg, 62%, white solid. 
1
H NMR (500 MHz, CDCl3) δ7.27 (s, 1H), 7.24 – 7.16 (m, 2H), 

7.01 (d, J = 1.6 Hz, 1H), 6.94 (dd, J = 1.9, 1.0 Hz, 1H), 6.84 (m, 2H), 6.38 (s, 1H), 4.98 (s, 2H), 

3.80 (s, 3H), 3.45 – 3.35 (m, 2H), 2.94 – 2.85 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 174.40, 

165.70, 162.00, 151.36, 144.93, 141.56, 138.94, 134.29, 132.38, 130.62, 129.70, 128.71, 124.29, 

118.63, 110.07, 106.57, 56.46, 34.48, 33.56, 29.64. HRMS (ESI) m/z [M+H] for C20H19Cl2N2O4: 

421.0722, found: 421.0714. 

 

Methyl 2-(2-(1-(3-bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 

(36) 23 mg, 55%, white solid. 
1
H NMR (500 MHz, MeOD) δ 7.38 (m, 1H), 7.19 – 7.09 (m, 2H), 

6.99 (d, J = 1.5 Hz, 1H), 6.91 (m, 1H), 6.84 (d, J = 1.5 Hz, 1H), 6.40 (s, 1H), 5.00 (s, 2H), 3.83 

(s, 3H), 3.46–3.38 (m, 2H), 2.92 –2.79 (m, 2H). 
13

C NMR (126 MHz, MeOD) δ 168.02, 159.25, 

155.49, 145.00, 138.77, 135.70, 128.71, 128.01, 126.95, 124.05, 122.60, 120.52, 117.64, 112.15, 

103.58, 100.01, 49.95, 46.22, 28.09, 23.35. HRMS (ESI) m/z [M+H] for C20H19BrClN2O4: 

465.0217, found: 465.0225. 
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Methyl 2-(2-(1-(3-methoxybenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 

(37) 21 mg, 55%, white solid.  
1
H NMR (500 MHz, CDCl3) δ 7.24 (s, 1H), 6.89 (t, J = 1.6 Hz, 

1H), 6.84 (m, 2H), 6.61 – 6.57 (m, 1H), 6.57 – 6.50 (m, 2H), 6.49 (d, J = 2.8 Hz, 1H), 4.95 – 

4.91 (m, 2H), 3.92 (d, J = 4.7 Hz, 3H), 3.75 (d, J = 4.2 Hz, 3H), 3.55 (q, J = 6.7 Hz, 2H), 3.19 (q, 

J = 17.3, 12.3 Hz, 2H). 
13

C NMR (126MHz, CDCl3) δ 164.53, 162.14, 160.13, 157.93, 141.34, 

135.60, 130.52, 120.69, 119.27, 114.43, 113.87, 113.10, 106.17, 68.50, 55.23, 52.84, 31.81, 

30.10, 24.35, 22.14, 13.62. HRMS (ESI) m/z [M+H] for C21H22ClN2O5: 417.1217, found: 

417.1221. 

 

Methyl 3-chloro-2-(2-(1-(4-fluorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate 

(38) 22 mg, 55%, white solid. 
1
H NMR (500 MHz, MeOD) δ 7.07–6.94 (m, 5H), 6.86 (d, J = 1.4 

Hz, 1H), 6.29 (s, 1H), 5.00 (s, 2H), 3.69 (s, 3H), 3.22–3.19 (m, 2H), 2.84 (m, 2H). 
13

C NMR 

(126 MHz, MeOD) δ 171.22, 164.76, 162.81, 160.69, 158.81, 148.82, 141.37, 134.18, 127.28, 

121.71, 116.58, 114.85, 110.41, 103.34, 52.85, 49.61, 31.45, 27.26. HRMS (ESI) m/z [M+H] for 

C20H19ClFN2O4:  405.1017, found: 405.1009. 
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Methyl 3-chloro-2-(2-(1-(4-chlorobenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate 

(39) 28 mg, 63%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.24 (d, J = 8.4 Hz, 2H), 6.98 (d, J 

= 1.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 1.4 Hz, 1H), 6.40 (s, 1H), 4.97 (s, 2H), 3.81 

(s, 3H), 3.46–3.40 (m, 2H), 2.89–2.80 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 170.63, 162.30, 

157.66, 147.57, 141.56, 134.60, 134.02, 129.19, 127.92, 127.05, 120.00, 114.57, 106.08, 102.68, 

52.59, 48.83, 30.87, 26.04. HRMS (FAB) m/z [M+H] for C20H19Cl2N2O4: 421.0722, found: 

421.0714. 

 

Methyl 2-(2-(1-(4-bromobenzyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate 

(40) 26 mg, 58%, white solid. 
1
H NMR (500 MHz, CDCl3/MeOD) δ 7.43 – 7.33 (m, 2H), 6.95 

(d, J = 1.3 Hz, 1H), 6.87 – 6.79 (m, 2H), 6.77 (d, J = 1.3 Hz, 1H), 6.44 – 6.28 (m, 1H), 4.95 (s, 

2H), 3.82 (d, J = 1.1 Hz, 3H), 3.46 – 3.38 (m, 2H), 2.86 – 2.75 (m, 2H). 
13

C NMR (500 MHz, 

CDCl3/MeOD) 171.9, 163.5, 159.3, 148.8, 142.6, 136.1, 133.5, 129.6, 127.6, 123.5, 121.4, 
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116.0, 107.3, 104.07, 54.0, 50.4, 32.1, 27.2. HRMS (ESI) m/z [M+H] for C20H19BrClN2O4: 

465.0217, found: 465.0237. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-iodobenzyl)-1H-imidazol-2-yl)ethyl)benzoate (41) 

22mg, 55%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.59 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 1.3 

Hz, 1H), 6.80 – 6.75 (m, 1H), 6.71 (d, J = 7.9 Hz, 2H), 6.41 (s, 1H), 4.96 (s, 2H), 3.80 (s, 3H), 

3.47 – 3.38 (m, 2H), 2.87 – 2.79 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 170.60, 162.43, 

157.62, 147.61, 141.52, 138.10, 135.88, 128.41, 127.20, 120.02, 114.57, 106.06, 102.72, 93.56, 

52.61, 48.96, 30.90, 26.07. HRMS (ESI) m/z [M+H] for C20H19ClIN2O4: 513.0078, found: 

513.0079. 

 

Methyl 3-chloro-4,6-dihydroxy-2-(2-(1-(4-methylbenzyl)-1H-imidazol-2-yl)ethyl)benzoate 

(42) 28 mg, 62%, white solid. 
1
H NMR (500 MHz, MeOD) δ 7.05 (d, J = 7.9 Hz, 2H), 6.93 (d, J 

= 1.5 Hz, 1H), 6.88 (d, J = 8.1 Hz, 2H), 6.84 (s, 1H), 6.29 (s, 1H), 4.95 (s, 2H), 3.67 (s, 3H), 3.22 

(d, J = 4.0 Hz, 2H), 2.87 – 2.78 (m, 2H), 2.21 (s, 3H). 
13

C NMR (126 MHz, MeOD) δ 171.32, 
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160.89, 159.03, 148.82, 141.51, 138.89, 135.09, 130.52, 127.95, 127.08, 121.76, 114.99, 110.11, 

103.34, 52.82, 50.15, 31.47, 27.30, 21.10. HRMS (ESI) m/z [M+H] for C21H22ClN2O4: 401.1268, 

found: 401.1285. 

 

Methyl 3-chloro-2-(2-(1-(4-ethylbenzyl)-1H-imidazol-2-yl)ethyl)-4,6-dihydroxybenzoate  

(43) 25 mg, 59%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.11 (d, J = 8.1 Hz, 2H), 7.07 (d, J 

= 1.7 Hz, 1H), 6.92 – 6.88 (m, 2H), 6.82 (d, J = 1.5 Hz, 1H), 6.41 (s, 1H), 4.93 (s, 2H), 3.82 (s, 

3H), 3.46 (dd, J = 9.0, 6.7 Hz, 2H), 3.00 (d, J = 7.7 Hz, 2H), 2.57 – 2.53 (m, 2H), 1.17 – 1.11 (m, 

3H). 
13

C NMR (126 MHz, CDCl3) δ 169.54, 161.04, 157.10, 146.05, 143.86, 139.75, 130.97, 

127.68, 126.08, 123.07, 119.47, 113.81, 105.12, 101.88, 51.74, 48.87, 29.55, 27.47, 24.47, 14.46. 

HRMS (ESI) m/z [M+H] for C22H23ClN2O4: 415.1346, found: 415.1354. 

            

Methyl-3-chloro-4,6-dihydroxy-2-(2-(1-(4-(trifluoromethyl)benzyl)-1H-imidazol-2-

yl)ethyl)benzoate (44) 24 mg, 58%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.56 (d, J = 8.1 

Hz, 2H), 7.15 (d, J = 1.7 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 6.86 (d, J = 1.7 Hz, 1H), 6.44 (s, 1H), 
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5.06 (s, 2H), 3.85 (s, 3H), 3.45 (dd, J = 8.8, 6.8 Hz, 2H), 3.02 (t, J = 7.9 Hz, 2H). 
13

C  NMR (126 

MHz, CDCl3) δ 170.22, 162.13, 157.84, 147.28, 140.34, 138.67, 131.08, 130.82, 127.12, 126.25, 

126.23, 120.50, 114.62, 106.11, 103.08, 52.86, 49.53, 30.58, 25.29. HRMS (ESI) m/z [M+H] for 

C21H19ClF3N2O4: 455.0985, found: 455.1011. 

 

Methyl-2-(2-(1-([1,1'-biphenyl]-4-ylmethyl)-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-

dihydroxybenzoate (45) 27 mg, 57%, white solid. 
1
H NMR (400 MHz, CDCl3+MeOD) δ 7.61 – 

7.56 (m, 4H), 7.46 (t, J = 7.5 Hz, 2H), 7.40 – 7.35 (m, 1H), 7.15 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 

1.4 Hz, 1H), 6.93 (d, J = 1.4 Hz, 1H), 6.52 (s, 1H), 5.17 (s, 2H), 3.86 (s, 3H), 3.57 (dd, J = 14.8, 

6.5 Hz, 2H), 3.06–2.95 (m, 2H). 
13

C NMR (126 MHz, CDCl3+MeOD) δ 170.68, 161.64, 158.06, 

147.67, 141.53, 141.51, 140.97, 140.24, 135.18, 128.75, 127.56, 127.46, 127.03, 126.92, 126.80, 

120.19, 114.65, 106.32, 102.41, 52.32, 30.70, 26.14. HRMS (ESI) m/z [M+H] for C26H23ClN2O4: 

463.1346, found: 463.1349. 
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General procedure for synthesis of compounds 46-48 

 

In a reaction vessel, Compound 29 (BnIm) (10 mg, 0.025 mmol) was suspended into the 

corresponding alcohol (2ml), 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) (0.0025 mmol) was 

added, then the reaction vessel is sealed and heated to 190
o
 C overnight . The alcohol is 

evaporated in vacuo and the remaining residue is loaded onto a preparative TLC plate and 5% 

MeOH in DCM is used as the solvent system for purification of product. 

 

 Ethyl 2-(2-(1-benzyl-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate (46) 9.5 mg, 

88%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.29 – 7.22 (m, 3H), 6.97 (m, 3H), 6.81 (d, J = 

1.5 Hz, 1H), 6.44 (s, 1H), 4.98 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.55–3.43 (m, 2H), 2.92 – 2.79 

(m, 2H), 1.14 (t, J = 7.1 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 169.19, 161.52, 156.36, 146.34, 

140.68, 134.98, 127.98, 127.07, 125.72, 125.63, 119.09, 113.53, 105.28, 101.65, 60.98, 48.44, 

29.31, 25.08, 12.90. HRMS (ESI) m/z [M+H] for C21H21ClN2O4: 401.1268, found: 401.1269. 
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Propyl 2-(2-(1-benzyl-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate (47) 10 mg, 

96%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.29 – 7.21 (m, 3H), 7.01 – 6.92 (m, 3H), 6.80 

(d, J = 1.4 Hz, 1H), 6.46 (s, 1H), 4.98 (s, 2H), 4.15 (t, J = 7.0 Hz, 2H), 3.58 – 3.49 (m, 2H), 2.87 

(dd, J = 9.0, 7.1 Hz, 2H), 1.55 (q, J = 7.2 Hz, 2H), 0.79 (t, J = 7.4 Hz, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 169.24, 161.74, 156.40, 146.23, 140.61, 134.94, 127.97, 127.08, 126.14, 125.66, 

119.07, 113.58, 105.31, 101.77, 66.61, 48.45, 29.30, 25.15, 20.64, 9.34. HRMS (ESI) m/z [M+H] 

for C22H24ClN2O4: 415.1425, found: 415.1418. 

 

Isopropyl 2-(2-(1-benzyl-1H-imidazol-2-yl)ethyl)-3-chloro-4,6-dihydroxybenzoate (48) 9.5 

mg, 85%, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.28 – 7.21 (m, 3H), 7.04 – 6.91 (m, 3H), 

6.82 (d, J = 1.4 Hz, 1H), 6.47 (s, 1H), 5.16 (p, J = 6.3 Hz, 1H), 4.96 (s, 2H), 3.60 – 3.49 (m, 2H), 

2.88 – 2.79 (m, 2H), 1.16 (d, J = 6.3 Hz, 6H). 
13

C NMR (126 MHz, CDCl3) δ 168.71, 161.84, 

156.11, 146.14, 140.70, 134.88, 127.99, 127.08, 125.69, 119.13, 113.46, 105.65, 101.76, 69.23, 

48.45, 29.05, 25.19, 20.57. HRMS (ESI) m/z [M+H] for C22H24ClN2O4: 415.1425, found: 

415.1435. 
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Chapter 3 

1. Introduction 

Conformational maturation of polypeptides into biologically active proteins is performed via 

assistance from a class of proteins called chaperones.
1
 The heat shock proteins of 90 KDa 

(Hsp90), belong to a family of chaperones that are associated with folding, maturation and 

refolding of around 200 client proteins in the cell.
2
 Hsp90 serves to maintain homeostasis in a 

normal cell, however, cellular stress induces increased levels of Hsps, thereby facilitating  rescue 

of the denatured proteins.
3,4

 Similarly, Hsp90 is upregulated in cancerous cells, wherein they are 

required to provide client proteins that are essential for the proliferation of cancer.
3-12 

As a 

consequence, Hsp90 contributes significantly towards the growth of cancer cells. Thus, Hsp90 

has emerged as a promising therapeutic target for the development of novel anti-cancer 

therapeutics.
13, 14

 Hsp90 exists as four isoforms;  cytosolic Hsp90α and β, the endoplasmic 

reticulum-localized isoform, glucose regulated protein Grp94, and the mitochondrial chaperone, 

Trap1.
15

  Structurally, Hsp90 is a homodimer protein with each monomer comprising a C-

terminus, N-terminus and Middle domain. The N-terminus contains a ATP binding site, which is 

responsible for ATP hydrolysis and providing the energy required for client protein folding.
16,17  

Natural products such as geldanamycin (GDA) and radicicol (RDC) were the first Hsp90 

inhibitors identified and have since served as  probes to advance Hsp90 research, helping 

establish Hsp90 as a druggable target for the treatment of cancer.
18-20

 There are 17 Hsp90 

inhibitors being evaluated in clinical trials for their efficacy, all of which exhibit pan inhibition 

of all four Hsp90 isoforms.
21,22

 Additionally, the side effects observed with all these inhibitors 

are hypothesized to be linked to pan-inhibition of Hsp90 isoforms.
23

 Therefore, it is important to 
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establish a causal relationship between the inhibition of individual Hsp90 isoforms and the 

observed biological effects. 

Glucose regulated protein 94KDa (Grp94) is the endoplasmic reticulum (ER) residing 

Hsp90 isoform and is less studied in comparison to cytosolic Hsp90s.
24 

 Grp94 is the most 

abundant protein present in the ER lumen, where it is involved in the folding of secretory 

proteins  that find application in immunity, cellular communication and cellular adhesion. Grp94 

expression can be induced by the accumulation of misfolded proteins to initiate the unfolded 

protein response (UPR), a proteostatic mechanism in the secretory pathway.
25,26

 Grp94 clients 

such as the integrins regulate cellular metastasis, making  Grp94 a potential target for the 

development of anti-metastatic agents.
27

 A recent study has further supported this claim by 

determining that Grp94 knockdown leads to inhibition of cell proliferation, migration and 

metastasis in highly metastatic breast cancer cell lines (MDA-MB-231 cells) and reactive oxygen 

species (ROS) resistant MCF-7 cells.
28

 Myocilin is another Grp94 client, which upon  

aggregation leads to primary open angle glaucoma (POAG) , thus making Grp94 inhibition a 

potential therapeutic strategy for the treatment of glaucoma.
29

 Grp94  also mediates the 

maturation of Wnt co-receptor LRP6, which is overexpressed in multiple myelomas.
30-31

 Grp94 

knockdown/inhibition results in the reduced proliferation of multiple myeloma cells.
32

 In light of 

all these finding, it is apparent that a Grp94 selective inhibitor may provide a treatment for 

various cancers and glaucoma, while avoiding the side effects resulting from pan-Hsp90 

inhibition.  
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2. Rationale for Design  

As discussed in the previous chapter, the first Grp94 selective 

compound, BnIm, that contains a resorcinolic scaffold was co-

crystallized with Grp94 and Hsp90. This led to identification of key 

structural changes that occur Grp94 versus Hsp90 (figure 2.1). 

 

Figure 3.1 A) BnIm bound to Hsp90 (green)  B) BnIm bound to Grp94 (cyan) with the 

resorcinol ring flipped into an extended pocket. C) Overlay of the Hsp90 and Grp94 crystal 

structures, showing the movement of the PHE 138 and TYR 139. D) ATP lid movement in 

Grp94 and Hsp90 bound to BnIm.  

Two structural differences stand out upon comparison of the co-crystal structures 

between Grp94 and Hsp90 bound to BnIm . First, the presence of an extended pocket in Grp94 
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(figure 2.1 B) causes the resorcinol ring to flip and the ester to project into this new pocket 

(named the ester pocket), which is not observed in Hsp90. Creation of this new pocket results 

from the movement of backbone helix residues PHE138 and TYR 139 of Grp94 (figure 2.1C), 

which in turn, results from an insertion of five amino acids into the primary sequence of Grp94. 

The second structural difference observed is movement of the ATP lid, which is closed in , 

Grp94 but is open in Hsp90 (figure 2.1 D). These two changes in Grp94 upon binding to BnIm, 

led to a new induced conformation of the Grp94. Attempts to explore the ester pocket were made 

by extending the ester group of BnIm, unfortunately, the binding potencies were found to 

decrease with an increase in size (discussed in previous chapter) of the ester. In order to develop 

compounds with high selectivity for Grp94, it was essential to probe the Grp94 ester pocket. 

Investigation of the resorcinolic scaffold revealed that modifications to BnIm may not occupy 

the ester pocket sufficiently. Furthermore, the presence of rotatable carbons in BnIm were 

postulated to be a source of entropic penalty, leading to a loss in binding energy. Therefore, 

scaffold screening was performed by overlaying the BnIm crystal structure with scaffolds that 

are currently being investigated in clinical trials. It was desired that the design of a new 

compound should not elicit high entropy, and therefore should incorporate minimal number of 

rotatable bonds. This screening led to the observation that benzamide containing compound, 

SNX-2112, could be modified to occupy the ester pocket of Grp94. SNX 2112, an indazolone 

containing compound identified in 2007 as pan Hsp90 inhibitor,
33, 34  

and is based upon a 

privileged scaffold, unlike the natural products such as geldanamycin and radicicol. The 

selection of this scaffold was favored by the synthetic feasibility for modifying and exploring the 

different pockets of Grp94.  Figure 2.2 illustrates the overlay of SNX-2112 with BnIm when co-

crystallized with Grp94, and it can be observed that the benzamide group serves as a hydrogen 

bond donor-acceptor motif similar to the phenols on the resorcinol ring. The benzamide ring also 
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covers the distance of the linker carbons of BnIm (figure 2.2 A), which could help design more 

rigid compounds.         

 

Figure 3.2 A) Overlay of BnIm bound to Grp94 and SNX 2112 bound to Hsp90 (PDB code: 

4NH7) B) structures of BnIm and SNX 2112. C) Overlay of SNX 2112 with BnIm (not 

displayed) in Grp94 (cyan surface) D) the steric clash between SNX 2112 and induced 

conformation (BnIm bound ) of Grp94 circled with red.  

The aminocyclohexanol ring projects into the solvent exposed region and does not exhibit steric 

clash with the Grp94 induced conformation. Therefore, the benzamide along with the 

aminocyclohexanol ring could be used for the design of new Grp94-selective compounds without 

significant steric clash (figure 2.2 C). However, the trifluoromethyl and the ketone group of the 

tetrahydroindazolone ring found in SNX 2112 exhibit a steric clash with the induced 

conformation of Grp94 (figure 2.2 D). Therefore, the new design omitted the 
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tetrahydroindazolone ring, instead the pyrrole was hypothesized to occupy the Grp94 ester 

pocket upon substitution. In particular, the 2-position of pyrrole ring when substituted with a 

phenyl ring should bind the induced conformation of Grp94 preferentially over Hsp90.                                 

 

Figure 3.3 A) Proposed compound for Grp94 selective inhibition. B) Overlay of Grp94 (cyan) 

and Hsp90 (green) along with the docked ACO compound. C) Grp94 binding site residues 

illustrated.  

SNX 2112 binding affinity for Hsp90  is 4/6 nM, whereas, it binds to Grp94 with a Ki 

484nM.
35

 This difference in binding affinity could result from the change in the Grp94 

conformation, which leads to steric clash with the tetrahydroindazolone ring. In the proposed 

aminocyclohexanol  containing  compound ACO (scheme 2.1), the pyrrole was expected to 

manifest π-π interaction with PHE195, which is responsible for interactions with the imidazole 

moeity in BnIm (Fig 2.3 C). Additionally, the ASN107 on top could be targeted with 
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substitutions on the phenyl ring. Incorporation of these two interactions would then increase the 

potency of the compounds for Grp94, but diminish affinity for Hsp90. The Desired conformation 

for ACO binding is shown in figure 2.3 B, wherein the phenyl ring at the 2-position projects into 

the ester pocket. Molecular modeling studies suggested that ACO would favor the conformation 

shown in Figure 2.3 B, due to a clash between the cyclohexylamine and  phenyl ring as depicted 

in Figure 2.3 A.  

3. Synthesis and Evaluation 

Synthesis of ACO was envisioned by modifying the previously disclosed synthetic route for 

SNX 2112. Retrosynthetic analysis of the compound was performed and pyrrole fragment 2 

could be accessed via Suzuki coupling of various phenyl boronic acids with N-protected 2-

bromopyrrole, 1.  

 

Scheme 3.1. Retrosynthetic analysis of compound ACO   

The pyrrole containing fragment could then be coupled via nucleophilic aromatic substitution 

reaction to the commercially available benzonitrile, 3. Following this step, Buchwald-Hartwig 
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amination could be accomplished to couple the cyclohexylamine with the benzonitrile. 

Subsequent hydrolysis of the nitrile would then furnish the desired compound, 5. 

Synthesis of compounds 4a-j began with bromination of the pyrrole and in situ protection of the 

nitrogen using the butyloxy carbonyl (Boc) group.
36, 37

 The brominated pryrrole was then utilized 

for the subsequent Suzuki coupling reaction, followed by basic Boc deprotection
38

 to give      

       

Scheme 3.2 Synthetic scheme for compounds 4a-j 

intermediates 2a-j. Intermediate 3a-j were obtained via a nucleophilic substitution reaction 

between 2a-j with 4-fluoro-2-bromobenzonitrile. In the final step, amination was carried out 

using trans-aminocyclohexanol, followed by hydrolysis of the nitrile moeity to give the final 

benzamide   products 4a-j.  
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Upon synthesis of the parent compound, 4a, which contains an unsubstituted phenyl ring, it was 

evaluated for binding 

affinity towards Grp94 

and Hsp90. It was 

observed that compound 

4a bound Grp94 with 

greater affinity than 

Hsp90 (Figure 2.4).  

Thus, supporting the 

hypothesis that the 

designed compound, 4a, 

binds Grp94 in its induced 

conformation as depicted 

in figure 2.3 B. Following this exciting result, structure activity relationship (SAR) studies were 

performed on the phenyl ring to explore the spatial and electronic requirements of the Grp94 

ester pocket (Figure 2.1 B). Methyl substitutions were made on the phenyl ring to explore the 

steric demand of the ester pocket, and among the compounds evaluated, the 2-and 3-methyl 

containing compounds, 4b and 4c, were shown to exhibit comparable potency to the parent 

compound (4a), suggesting that there is  space around the ester pocket to accommodate methyl 

substitution while maintaining potency. Interestingly, the 4-methyl containing compound 4d was 

found to bind Grp94 more tightly than 4a, suggesting additional space in the pocket that could be 

probed further. In addition to the exploration of the steric requirement, chlorine substituted 
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compounds, 4e-g, were synthesized to study the effect on the electronics. 

 

Table 3.1 Determined Kd values for compounds 4b-j using fluorescence polarization assay.  

Among these compounds, the 3-and 4-chlorine substituted compounds 4f and 4g lost affinity, 

however, the 2-chlorine substituted compound 4e was found to exhibit potency of ~3µM. 

Analysis of the binding data for 2-methyl and 2-chlorine substituted compounds suggested that 

the potency manifested by the 2-chlorine compound, 4e, might not result from steric effects, as 

the 2-methyl compound was less active. To explore the possibility of gaining a hydrogen bond, 

potentially with ASN107 (labled in figure 2.3 C), the phenyl ring was replaced with a pyridine as 

shown with compounds 4h-j. Unfortunately, 2-and 4-pyridine analogues manifested decreased 

binding for Grp94, however, 4i, which contains a 3-pyridine ring was more active than 4a. 

Although 4i led to increase in affinity, it was not reflective of strong interactions with Grp94. It 

was therefore proposed that there could be two factors affecting potency: First, the nitrogen atom 
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of the pyridine ring does not appear to align properly in the binding site, second, the rigidity of 

the scaffold may cause an inherent clash between the compounds and the protein, thus resulting 

in a loss of potency, regardless of the substitution.  Molecular modeling studies were then 

directed to search for the potential clashes in the ester binding pocket with compound 4a. These 

studies concluded that the rigidity of the phenyl ring could be detrimental to potency, as it was 

found that the 3-postion of the phenyl ring was in close proximity to the Grp94 surface (figure 

2.3B).

 

                       Scheme 3.3 Synthetic scheme for compounds 7a-n  

 To incorporate flexibility into compound 4a, linker carbons were introduced between the 

pyrrole and phenyl rings. Synthesis of compound 7a (unsubstituted benzyl) was achieved by 

constructing the 2-benzyl pyrrole 5a via a SN2 reaction involving the pyrrole and corresponding 

benzyl bromide, using methyl magnesium bromide as a base. Fragment 5a then underwent the 

same sequence of reactions as in the case of non-linker based compounds.  
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                                  Scheme 3.4 Synthetic scheme for compound 11 

The two-carbon linker containing compound (11) hypothesized to be unfavorable for binding to 

either Grp94 or Hsp90, was synthesized and evaluated to validate the proposed model for Grp94 

ester pocket. Synthesis of compound 11 was achieved through modification of phenethyl alcohol 

to make the tosylated compound 8, which served as a leaving group (LG) in the subsequent SN2 

reaction with the pyrrole to furnish fragment 9. In subsequent steps, fragment 9 was utilized for 

the construction of compound 11 following similar synthetic scheme as outlined for the non-

linker based compound, 4a.    

 Evaluation of the linker led to interesting results that determined the unsubstituted benzyl 

containing compound, 7a, to manifest a Kd of ~1.3 µM, which was greater than the non-liner 

compound, 4a. Whereas the phenethyl containing compound (11) displayed a decrease in 

affinity, which corroborated the hypothesis that the Grp94 ester pocket cannot accommodate a 

phenethyl fragment. Excited with the results produced by 7a, SAR studies were initiated to probe 

the ester pocket with substitutions on the benzyl ring.      
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Table 3.2 Kd values for linker compounds 7a and 11 using fluorescence polarization assay. 

SAR studies were initiated with the chlorine substituted compounds, 7b-d. The 4-chlorine 

substituted compound 7d lost affinity for Grp94, indicating that the 4-position on the benzyl ring 

did not project into a region of the ester pocket spacious for accommodation of a chlorine atom. 

The 3-chlorine compound 7b manifested a slight loss in potency as compared to 7a. Whereas, 

the 2-chlorine substituted compound increased potency towards Grp94, while maintaining 

negligible binding towards Hsp90. To further probe the pocket around the 2-postion, compound 

7i was synthesized to contain a 2-methyl substitution. This compound exhibited a loss in potency 

of ~3 fold, thus explaining that a hydrophobic substitution at 2-position is not tolerated. 

Therefore, it was concluded that the increase in potency for the 2-chlorine compound, 7b, was 

not due to the hydrophobic nature of chlorine substituent. SAR studies continued to explore the 

pocket with compounds substituted with a flourine atom, compounds 7e-g. Increased potency 

was observed (~724 nM) with the 2-flourine compound 7e. Since the ester pocket does not 

contain aromatic amino acids, the fluorine alters electronics of the benzyl group that may not 
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have significant effect on potency. However, fluorine could interact with ASN107, and such 

interactions are known to occur with flourine acting as hydrogen bond acceptor.
39

 

         

Table 3.3 Kd values for linker compounds 7b-i determined using fluorescence polarization assay. 

In the case of the 3-flourine (7f) and 4-flourine (7g) analogs, a loss in potency was observed 

similar to that of the chlorine derivatives. To further explore the 2-position, Compound 7h was 

synthesized to contain bromine which also exhibited less affinity than the chlorine and the 

fluorine analogs. A trend was observed for halogens determining that fluorine is most active and 

bromine is least active .following a trend for the halogen substitution with fluorine being the 

most and the bromine analog the least active. 

 SAR studies concluded that the 2-position of the benzyl ring is critical for a gain in 

affinity and that ASN107 in Grp94 may be involved in hydrogen bonding. Therefore, hydroxyl 
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containing compounds 15a-c were synthesized to establish hydrogen bonds with ASN107. The 

synthesis began with 2-hydroxy benzyl alcohol reacting with two equivalents of tosyl chloride in 

presence of base to give intermediates 12a-c. These intermediates were subsequently utilized for 

the synthesis of compounds 15a-c via the same synthetic as shown earlier.

 

                  Scheme  3.5 Synthetic route for compounds 15a-c 

Upon their preparation, phenol-containing compounds were evaluated for binding affinity. 

Interestingly, the 2-hydroxyl substituted derivative (15a) exhibited Kd value of ~446nM towards 

Grp94 while maintaining >100 µm Kd for binding Hsp90 (>200 fold selectivity for Grp94 vs 

Hsp90). Increased potency of compound 15a could once again be explained via the potential 

hydrogen bonding interactions with ASN107 through phenol hydroxyl group. Furthermore, 3-

phenol substituted compound, 15b, and the 4-phenol 15c could only bind Grp94 with high Kd 

values (Table 2.4). Loss in activity for the 3-and 4-phenols were in accord with the binding data 

of the other observed 3-and 4-postion substitutions (table 2.3). However, a hydroxyl group could 

serve as both a hydrogen bond donor and acceptor; therefore, the 2-methoxy containing 

compound, 7m, was synthesized to differentiate the role of hydroxyl group in relation to 
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ASN107.

  

Table 3.4 Kd values for compounds 15a-c and 7m using fluorescence polarization assay. 

for compound 7m was determined to be ~1.1 µM, which was slightly better than the parent 

compound, validating the role of hydroxyl as a hydrogen bond acceptor.  

 To investigate whether the 2,6-disubtituted compound would lead to an increase in 

affinity,  2,6-difluoro substituted compound 16a was synthesized. Upon evaluation of binding 

affinity, compound 16a exhibited decreased affinity, leading to the conclusion that the 

 

Figure 3.5 A) Kd values for linker compounds 16 using fluorescence polarization assay. B) 

Docking image compound 4a in Grp94 depicting the cavity around ASN 107 (circled in red). 
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occupancy of the binding pocket about the 2-and 6-positions are mutually exclusive. The loss in 

affinity for the 2,6-disubstituted compounds could be attributed to presence of a channel around 

ASN107 that can only accommodate one 2-position substitution , while the 6-position is aligned 

too close to surface of the protein (figure 2.5). 

Following the SAR studies with compounds 15a and 7e, their cellular efficacy in a wound 

healing scratch assay investigated with the highly metastatic breast cancer cell line, MDA-MB- 

231.
28

 

 Figure 3.6 A) Inhibition of MDA-MB-231 cell migration by compounds 15a and 7e 10 and 

5µM determined at 0 and 16Hrs.B) percent viability of MDA-MB-231 cells determined using 

MTS assay. 

It can be seen in figure 2.6 A that compound 15a and 7e inhibited MDA-MB-231 cell migration 

at 10 µM as well as 5µM. To confirm that the inhibition of migration was not due to anti-



96 
 

proliferative activities, an MTS assay was performed to measure cellular viability of MDA-MB-

231 at 25µM of 15a and 7e. In the MTS assay, both compounds did not affect the proliferation 

of MDA-MB-231 (>95 % viability at 25µM 15a and 7e), confirming that inhibition of the cell 

migration was not the result of anti-proliferative activity.  

4. Conclusion and Future Directions 

 In summary, co-crystal structures of the first Grp94 selective compound (BnIm) bound to 

Grp94 and Hsp90 were examined to reveal the existence of a unique pocket in Grp94 ,which is 

not observed in Hsp90. Using a structure-based drug design approach, a new aminocyclohexanol 

(ACO) based scaffold was developed that selectively binds Grp94 as compared to Hsp90. 

Further SAR studies led to analogs with a benzyl group that manifested incresed potency. 

Subsequent modifications to the benzyl group led to compounds containing a phenol at the 2-

position of the benzyl ring, which displayed the highest affinity. Discovery of the novel Grp94 

selective scaffold, ACO, has enabled exploration of the biological consequences of Grp94 

perturbation and the development of potential anti-metastatic agents. Future modification to the 

ACO scaffold will focus on substitutions at the linker carbon and the introduction of various 

hydrogen bond acceptors on the benzyl group. Additionally, pyrrole replacements will be sought 

to gain the π-π interaction with PHE195. 
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5. General Experimental Methods. 

Fluorescence Polarization. Assay buffer (25 µL, 20 mM HEPES pH 7.3, 50 mM KCl, 5 mM 

MgCl2, 1 mM DTT, 20 mM Na2MoO4, 0.01% NP-40, and 0.5 mg/mL BGG) was added to 96-

well plate (black well, black bottom) followed by the desired compound at the indicated final 

concentrations in DMSO (1% DMSO final concentration).
32

 Recombinant cGrp94 (10nM for 

compounds 2-27, 30 nM for compounds 28-48) and FITC-GDA were then added (6 nM). Plates 

were incubated with rocking for 5 h at 4°C. Fluorescence was determined using excitation and 

emission filters of 485 and 528 nm, respectively. Percent FITC-GDA bound was determined by 

using the DMSO millipolarization unit (mP) as the 100% bound value and the 0% for FITC-

GDA. Kd values were calculated from separate experiments performed in triplicate using 

GraphPad Prism.   

Procedure for Anti-proliferation assay, wound healing assay and molecular modeling as 

described in chapter 2. 

General chemistry 

Preparation of tert-butyl 2-bromo-1H-pyrrole-1-carboxylate (1) 

                             

 Pyrrole (5 g, 74.6 mmol) was dissolved in 200 mL of dry tetrahydrofuran (THF), the solution is 

cooled down to -78 C using dry ice-isopropanol bath. To this stirring solution was added N-
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bromosuccininmide (NBS) (13.2 g, 74.6 mmol) in portions. The solution was allowed to stir for 

5 mins before it was transferred to a freezer (-20
o
 C) for 2 hr during which the solution turns 

light green. This solution it then filtered into a 500mL flask that was cooled to -78 C via suction. 

The flask is then flushed with argon and triethylamine (TEA) (3.1g, 29.8 mmol) followed 

immediately by sequential addition of 4-dimethylaminopyridine (DMAP) (~0.1 g) and di-tert-

butyl dicarbonate (22.6 g, 104.2 mmol). This mixture was stirred for 8 hr while it was allowed to 

warm to room temperature. The solvent was removed in vacuo, ethyl acetate 150ml was added to 

the remaining crude mixture, washed with water (3 X 100 ml)  and dried over sodium sulfate and 

concentrated to  give compound 1 as a colorless oil (14.9g, 82%). 
1
H NMR (500 MHz, 

Chloroform-d) δ 7.33 (dd, J = 3.6, 1.9 Hz, 1H), 6.32 (dd, J = 3.5, 2.0 Hz, 1H), 6.18 (t, J = 3.5 

Hz, 1H), 1.64 (s, 9H). 
13

C NMR (126 MHz, CDCl3) δ 148.06, 123.00, 117.23, 111.58, 100.29, 

84.83, 27.99. HRMS (ESI) m/z [M+Na] for C9H12BrNO2Na: 267.9943; found, 267.9949. 

                             

General procedure for preparation of 2a-j: Compound 1 (200 mg, 0.81 mmol) was taken in a 

15 mL reaction vessel, aryl boronic acid (0.88 mmol), potassium bicarbonate (331 mg, 2.4 

mmol),were then added to the vessel. This was followed by addition of toluene (3 mL), ethanol 

(0.5 mL) and water (0.5 mL). argon was purged through the solvent for 15 mins and then 

pd(dppf)Cl2 (30 mg,0.04 mmol) was added the reaction vessel was sealed and heated to 110
o
 C 

for 12 Hr. Reaction was cooled to room temperature and water (5 mL) and ethyl acetate (5 mL) 

are added to the reaction mixture, organic fraction is collected and dried in vacuo, the remaining 



99 
 

crude mass was dissolved in 3mL methanol and 1mL water mixture. Potassium carbonate 

(331mg, 2.4 mmol) was then added. The reaction was refluxed until the reaction was complete, 

as monitored by TLC. The reaction was allowed to cool and the solvent was evaporated under 

vacuum till 1/4
th

 volume remained. To this 2mL water was added and then extracted thrice with 

5mL ethyl acetate. Organic fraction was then collected and dried over sodium sulfate, 

purification was then performed using column chromatography eluting with 20% ethyl acetate in 

hexanes to yield the corresponding products.   

   2a 

2-phenyl-1H-pyrrole (2a): 77% yield, light orange solid. 
1
H NMR (400 MHz, Chloroform-d) δ 

8.46 (s, 1H), 7.54 – 7.48 (m, 2H), 7.39 (dd, J = 8.5, 7.0 Hz, 2H), 7.27 – 7.21 (m, 1H), 6.90 (m, J 

= 2.7, 1.4 Hz, 1H), 6.56 (m, J = 3.8, 2.7, 1.5 Hz, 1H), 6.33 (m, J = 3.4, 2.5 Hz, 1H). HRMS (ESI) 

m/z [M+H] for C10H10N: 144.0813, found 144.0818. 

 2b 

2-(o-tolyl)-1H-pyrrole (2b): 83 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.20 (s, 

1H), 7.28 (dd, J = 7.5, 1.6 Hz, 1H), 7.20 – 7.17 (m, 2H), 7.16 – 7.10 (m, 2H), 6.81 (m, J = 2.7, 

1.5 Hz, 1H), 6.33 – 6.19 (m, 2H), 2.39 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 135.10, 132.85, 

131.32, 131.04, 127.91, 126.79, 126.05, 117.92, 109.24, 108.78, 21.27. HRMS (ESI) m/z [M+H] 

for C11H12N: 158.0970, found 158.0965.  
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                                                          2c 

2-(m-tolyl)-1H-pyrrole (2c): 77 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.35 (s, 

1H), 7.23 (m, 1H), 7.21-7.17   (m, 2H), 6.96 (m, 1H), 6.79 (m, 1H), 6.44 (m, 1H), 6.22 (m, 1H), 

2.31 (d, J = 0.7 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 138.46, 132.70, 132.25, 128.78, 127.03, 

124.64, 120.98, 118.63, 110.05, 105.82, 21.55. HRMS (ESI) m/z [M+H] for C11H12N: 158.0970, 

found 158.0965. 

                                                       2d 

2-(p-tolyl)-1H-pyrrole (2d):  73 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.32 (s, 

1H), 7.30 (m, 2H), 7.13 – 7.09 (m, 2H), 6.78 (m, 1H), 6.41 (m, 1H), 6.22 (m, 1H), 2.28 (s, 3H). 

13
C NMR (126 MHz, CDCl3) δ 135.93, 132.28, 130.04, 129.55, 123.84, 118.38, 109.99, 105.38, 

21.13. HRMS (ESI) m/z [M+Na] for C11H11NNa: 180.0789, found 180.0788. 

 

                                                      2e 

2-(2-chlorophenyl)-1H-pyrrole (2e): 84 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

9.03 (s, 1H), 7.50 (dd, J = 7.8, 1.8 Hz, 1H), 7.33 (dd, J = 8.0, 1.5 Hz, 1H), 7.23 – 7.19 (m, 1H), 

7.14 – 7.04 (m, 1H), 6.90 – 6.85 (m, 1H), 6.54 (m, 1H), 6.25 (m, 1H). 
13

C NMR (126 MHz, 

CDCl3) δ 131.02, 130.74, 129.78, 129.34, 127.31, 127.18, 119.00, 109.39, 109.31. HRMS (ESI) 

m/z [M+H] for C10H9ClN: 178.0424, found 178.0429. 
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 2f 

2-(3-chlorophenyl)-1H-pyrrole (2f): 80 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

8.35 (s, 1H), 7.38 (t, J = 1.9 Hz, 1H), 7.27 (m, 1H), 7.22 (t, J = 7.8 Hz, 1H), 7.10 (m, 1H), 6.82 

(m, 1H), 6.47 (m, 1H), 6.24 (m, 1H).
 13

C NMR (126 MHz, CDCl3) δ 134.82, 134.48, 130.69, 

130.14, 126.05, 123.82, 121.82, 119.50, 110.40, 106.92. HRMS (ESI) m/z [M+H] for C10H9ClN: 

178.0424, found 178.0429. 

 2g 

2-(4-chlorophenyl)-1H-pyrrole (2g): 78% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

8.32 (s, 1H), 7.34 – 7.30 (m, 2H), 7.28 – 7.24 (m, 2H), 6.81 (m, 1H), 6.44 (m, 1H), 6.23 (m, 1H). 

13
C NMR (126 MHz, CDCl3) δ 131.74, 131.26, 129.04, 125.00, 119.22, 110.35, 106.42. HRMS 

(ESI) m/z [M+H] for C10H9ClN: 178.0424, found 178.0421. 

                                                  2h 

2-(1H-pyrrol-2-yl)pyridine (2h): 65% yield, White solid.
 1

H NMR (400 MHz, CDCl3) δ 9.82 (s, 

1H), 8.55 – 8.44 (m, 1H), 7.72 – 7.54 (m, 2H), 7.06 (m, 1H), 6.94 (m, 1H), 6.75 (m, 1H), 6.32 

(m, 1H). 
13

C NMR (126 MHz, CDCl3) δ 150.31, 148.46, 136.74, 131.18, 120.48, 120.12, 118.24, 

110.32, 107.44. HRMS (ESI) m/z [M+H] for C9H9N2: 145.0766, found 145.0762.  

                         2i 

3-(1H-pyrrol-2-yl) pyridine (2i): 74 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 9.02 – 

8.86 (m, 1H), 8.72 (dd, J = 2.4, 0.9 Hz, 1H), 8.35 (dd, J = 4.8, 1.6 Hz, 1H), 7.71 (m, 1H), 7.22 
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(m, 1H), 6.87 (m, 1H), 6.53 (m, 1H), 6.31 (m, 1H). 
13

C NMR (126 MHz, CDCl3) δ 146.90, 

145.11, 136.28, 131.11, 128.88, 123.78, 120.12, 110.45, 107.27. HRMS (ESI) m/z [M+H] for 

C9H9N2: 145.0766, found 145.0762.  

                                 2j 

4-(1H-pyrrol-2-yl) pyridine (2j): 73% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.72 (s, 

1H), 8.55 – 8.41 (m, 2H), 7.33 – 7.23 (m, 2H), 6.91 (m, 1H), 6.69 (m, 1H), 6.28 (m, 1H). 
13

C 

NMR (126 MHz, CDCl3) δ 149.92, 139.61, 129.01, 121.24, 117.70, 111.00, 109.21. HRMS 

(ESI) m/z [M+H] for C9H9N2: 145.0766, found 145.0768. 

 

      

General procedure A (preparation of 3a-j, 6a-n): Pyrrole intermediates 2a-j, 5a-n (0.7 mmol) 

and 2-bromo-4-fluorobenzonitrile (0.7 mmol) are taken in a reaction vial, 0.5 mL dry dimethyl 

formamide (DMF) is then added to the reaction vial. The mixture is stirred till dissolution of 

solids, sodium hydride (60% dispersion in oil) (0.7 mmol) is then added to the stirring reaction 

mixture under argon. Reaction is stirred at room temperature for 4 hrs or until the completion of 

reaction as monitored by TLC. 10 mL water is then added to the reaction mixture and ethyl 

acetate (2 x 15 mL) was used for extraction. The organic fraction was dried over sodium sulfate 

and adsorbed onto silica for column chromatography, which was performed utilizing 20% ethyl 

acetate in hexanes as the elution solvent system. 
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3a 

2-bromo-4-(2-phenyl-1H-pyrrol-1-yl) benzonitrile (3a): 84% yield, beige colored solid. 
1
H 

NMR (400 MHz, CDCl3) δ 7.58 – 7.54 (m, 2H), 7.38 – 7.28 (m, 3H), 7.16 – 7.09 (m, 3H), 6.98 

(dd, J = 3.0, 1.7 Hz, 1H), 6.48 (dd, J = 3.5, 1.7 Hz, 1H), 6.44 (dd, J = 3.5, 2.9 Hz, 1H). 
13

C NMR 

(126 MHz, CDCl3) δ 144.64, 134.51, 133.97, 131.93, 129.01, 128.56, 128.50, 127.26, 125.74, 

124.31, 123.70, 116.83, 113.04, 112.82, 111.22. HRMS (ESI) m/z [M+H] for C17H12BrN2: 

323.0183, found 323.0174. 

3b 

2-bromo-4-(2-(o-tolyl)-1H-pyrrol-1-yl)benzonitrile (3b) : 85% yield, pale yellow solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.45 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.27– 7.23 (m, 

1H), 7.20 – 7.15 (m, 3H), 7.01 – 6.95 (m, 2H), 6.44 (t, J = 3.3 Hz, 1H), 6.33 (m, 1H), 1.99 (s, 

3H). 
13

C NMR (126 MHz, CDCl3) δ 144.61, 137.21, 134.46, 132.96, 132.05, 131.05, 130.48, 

128.46, 127.79, 125.97, 125.60, 122.71, 121.67, 116.86, 113.21, 112.42, 110.98, 20.14. HRMS 

(ESI) m/z [M+Na] for C18H13BrN2Na: 359.0160, found 359.0165. 
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3c 

2-bromo-4-(2-(m-tolyl)-1H-pyrrol-1-yl)benzonitrile (3c) : 82 % yield, pale yellow solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.55 – 7.52 (m, 2H), 7.15 (t, J = 7.6 Hz, 1H), 7.09 – 7.06 (m, 2H), 

7.02 (m, 1H), 6.94 (m, 1H), 6.85 – 6.82 (m, 1H), 6.44 (m, 1H), 6.41 (m, H), 2.31 (s, 3H). 
13

C 

NMR (126 MHz, CDCl3) δ 144.71, 138.31, 134.45, 134.44, 131.85, 129.14, 129.14, 128.89, 

128.35, 128.06, 125.70, 124.30, 123.54, 116.90, 112.90, 112.72, 111.18, 21.45. HRMS (ESI) m/z 

[M+Na] for C18H13BrN2Na: 359.0160, found 359.0175. 

3d 

2-bromo-4-(2-(p-tolyl)-1H-pyrrol-1-yl)benzonitrile (3d) : 86 % yield, pale yellow solid. 
1
H 

NMR (500 MHz, Chloroform-d) δ 7.75 – 7.64 (m, 1H), 7.60 – 7.37 (m, 2H), 7.24 (m, 1H), 7.15 

– 7.06 (m, 2H), 7.05 – 6.87 (m, 2H), 6.43 (d, J = 6.5 Hz, 2H), 2.37 (s, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 144.82, 137.25, 136.10, 134.51, 129.28, 129.05, 128.95, 128.42, 125.74, 124.43, 

123.42, 115.82, 112.93, 112.43, 111.15, 21.11. HRMS (ESI) m/z [M+H] for C18H14BrN2: 

337.0340, found 337.0334.  

        3e 
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2-bromo-4-(2-(2-chlorophenyl)-1H-pyrrol-1-yl)benzonitrile (3e) : 74 % yield, light yellow 

solid. 
1
H NMR (500 MHz, CDCl3) δ 7.49 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H), 7.36 – 

7.27 (m, 4H), 7.05 – 7.01 (m, 2H), 6.47 – 6.43 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 144.59, 

134.53, 134.08, 132.42, 131.49, 130.55, 130.03, 129.68, 128.05, 126.98, 125.63, 122.85, 122.51, 

116.84, 114.15, 112.79, 110.98. HRMS (ESI) m/z [M+H] for C17H11BrClN2: 356.9794, found 

356.9803.  

3f 

 

2-bromo-4-(2-(3-chlorophenyl)-1H-pyrrol-1-yl)benzonitrile (3f): 86% yield, pale yellow 

solid. 
1
H NMR (500 MHz, CDCl3) δ 7.59 – 7.52 (m, 2H), 7.25 – 7.15 (m, 3H), 7.09 (dd, J = 8.4, 

2.1 Hz, 1H), 6.96 (dd, J = 3.0, 1.7 Hz, 1H), 6.89 – 6.86 (m, 1H), 6.48 (dd, J = 3.6, 1.7 Hz, 1H), 

6.42 (dd, J = 3.6, 2.9 Hz, 1H). 
13

C NMR (126 MHz, CDCl3) δ 144.27, 134.66, 134.50, 133.69, 

132.38, 129.69, 129.01, 128.21, 127.26, 126.51, 125.94, 124.39, 124.33, 116.73, 113.58, 113.42, 

111.39. HRMS (ESI) m/z [M+Na] for C17H11BrClN2: 378.9614, found 378.9616.  

                                                   3g 

2-bromo-4-(2-(4-chlorophenyl)-1H-pyrrol-1-yl)benzonitrile (3g): 88% yield, pale yellow 

solid. 
1
H NMR (500 MHz, CDCl3) δ 7.50 (d, J = 8.4 Hz, 1H), 7.48 (d, J = 2.1 Hz, 1H), 7.34 – 

7.24 (m, 1H), 7.20 (d, J = 1.9 Hz, 1H), 7.19 (s, 1H), 7.02 – 6.96 (m, 3H), 6.88 (m, 1H), 6.38 (m, 
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1H), 6.35 (m, 1H). 
13

C NMR (126 MHz, CDCl3) δ 144.37, 134.65, 130.39, 129.55, 129.03, 

128.82, 125.95, 125.00, 124.38, 124.16, 116.69, 113.39, 113.18, 111.34, 110.34. 

HRMS (ESI) m/z [M+H] for C17H11BrClN2: 356.9794, found 356.9803.  

                                                           3h 

2-bromo-4-(2-(2-chlorophenyl)-1H-pyrrol-1-yl)benzonitrile (3h): 75% yield, white solid. 
1
H 

NMR (500 MHz, CDCl3) δ 8.36 – 8.27 (m, 1H), 7.60 (m, 1H), 7.55 – 7.44 (m, 2H), 7.32 (d, J = 

7.9 Hz, 1H), 7.12 – 7.02 (m, 2H), 6.90 (m, 1H), 6.70 (s, 1H), 6.36 (m, 1H). 
13

C NMR (126 MHz, 

CDCl3) δ 150.55,148.86 , 145.31, 136.71, 134.29, 134.04, 129.39, 125.81, 125.48, 124.55, 

122.18, 121.39, 116.95, 114.77, 113.18, 111.21. HRMS (ESI) m/z [M+H] for C16H11BrN3: 

324.0136, found 324.0133. 

                                                         3i 

2-bromo-4-(2-(pyridin-3-yl)-1H-pyrrol-1-yl)benzonitrile (3i): 65 % yield, white solid. 
1
H 

NMR (400 MHz, CDCl3) δ 8.56 – 8.49 (m, 2H), 7.62 (m, 1H), 7.56 (d, J = 2.1 Hz, 1H), 7.43 – 

7.36 (m, 1H), 7.25 (m, 1H), 7.13 (m, 1H), 7.03 (m, 1H), 6.57 (m, 1H), 6.49 (m, 1H). 
13

C NMR 

(126 MHz, CDCl3) δ 148.31, 147.47, 144.00, 135.77, 134.90, 129.90, 129.31, 128.31, 126.23, 

125.10, 124.41, 123.43, 116.52, 114.09, 113.93, 111.66. HRMS (ESI) m/z [M+Na] for 

C16H10BrN3Na: 345.9956, found 345.9948.        
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3j        

2-bromo-4-(2-(pyridin-4-yl)-1H-pyrrol-1-yl)benzonitrile (3j) : 66% yield, white solid. 
1
H 

NMR (500 MHz, CDCl3) δ 8.48 – 8.39 (m, 2H), 7.59 – 7.48 (m, 2H), 7.07 (dd, J = 8.4, 2.1 Hz, 

1H), 6.96 – 6.89 (m, 3H), 6.60 (dd, J = 3.7, 1.6 Hz, 1H), 6.39 (dd, J = 3.7, 2.9 Hz, 1H). 
13

C NMR 

(126 MHz, CDCl3) δ 149.78, 144.03, 139.35, 134.90, 130.91, 129.25, 126.30, 126.23, 124.52, 

122.01, 116.52, 115.22, 114.15, 111.82. HRMS (ESI) m/z [M+H] for C16H11BrN3: 324.0136, 

found 324.0133. 

 

General procedure B: Amination and hydration of Nitrile (for intermediates 4a-j, 7a-n, 11) 

                

Intermediates 3a-j, 6a-n, 10 (0.07 mmol), trans-4-aminocyclohexanol (0.2 mmol), Pd(OAc)2 (5 

mol%), DPPF (10 mol %) and KOtBu (0.14 mmol) were suspended in toluene (0.4 mL). Argon 

was purged through the reaction mixture for 15 min. The reaction was then microwaved at 120
o
C 

for 20 min, cooled and concentrated. The residue was diluted with water, extracted with 5mL 

ethyl acetate thrice. The combined organic fractions were dried over sodium sulfate and 

concentrated. To this residue was added 5mL of ethanol and DMSO mixture (4:1), 0.5 mL 1N 

NaOH solution, 0.5 mL 30% H2O2 solution. The reaction was then stirred at room temperature or 
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at increased temperature (65
o
C for compounds 15a-c) until the benzonitrile intermediate 

disappears as observed using TLC. The solvent is evaporated and saturated NH4Cl solution ~20 

ml is added followed by extraction with ethyl acetate (3 x 25 mL). Combined organic layers 

were washed with brine (2 x 10 mL), dried over sodium sulfate and adsorbed onto silica gel for 

column chromatography using 50-80% ethyl acetate in hexanes to give the corresponding 

benzamide product. 

                      4a 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-phenyl-1H-pyrrol-1-yl)benzamide (4a): 51% 

yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.9 Hz, 1H), 7.32 –7.21 (m, 1H), 

7.19 (m, 2H), 7.01 (m, 1H), 6.68 (d, J = 8.2 Hz, 1H), 6.44 (dd, J = 4.4, 2.6 Hz, 2H), 6.39 (t, J = 

3.2 Hz, 1H), 6.12-5.4 (s, 2H) 3.60 (s, 1H), 2.81 (s, 1H), 1.89 (s, 2H), 1.71 (s, 2H), 1.18 (q, J = 

9.4 Hz, 4H). 
13

C NMR (126 MHz, CDCl3) δ 169.24, 155.66, 145.77, 144.74, 133.75, 130.22, 

128.84, 128.45, 126.99, 123.67, 112.79, 111.11, 99.83, 85.76, 68.99, 33.09, 30.97, 27.88, 14.21. 

HRMS (ESI) m/z [M+Na] for C23H25N3O2Na: 398.1844, found 398.1834. 

      4b 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(o-tolyl)-1H-pyrrol-1-yl)benzamide (4b): 45% 

yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 8.5 Hz, 1H), 7.23 – 7.20 (m, 2H), 

7.18 – 7.15 (m, 1H), 7.06 (dd, J = 2.9, 1.8 Hz, 1H), 6.50 (dd, J = 8.5, 2.1 Hz, 1H), 6.40 (m, 1H), 
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6.31 (dd, J = 3.5, 1.8 Hz, 1H), 6.14 (d, J = 2.0 Hz, 1H), 5.55 (s, 2H), 3.63 (m, 1H), 2.64 (s, 

1H),2.03 (s, 3H), 1.91 (d, J = 12.3 Hz, 2H), 1.66 (d, J = 12.8 Hz, 2H), 1.37 – 1.18 (m, 4H). 
13

C 

NMR (126 MHz, CDCl3) δ 171.52, 149.66, 144.66, 137.46, 133.49, 132.76, 130.88, 130.21, 

129.54, 127.67, 125.78, 121.83, 112.10, 109.37, 107.82, 69.96, 50.09, 42.69, 33.96, 30.12, 30.08, 

20.22. HRMS (ESI) m/z [M-H] for C24H26N3O2: 388.2025, found 388.2028. 

4c 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(m-tolyl)-1H-pyrrol-1-yl)benzamide (4c): 50 % 

yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 8.5 Hz, 1H), 7.14 (m, 2H), 7.05 – 

6.98 (m, 2H), 6.95 (d, J = 7.6 Hz, 1H), 6.52 (d, J = 8.3 Hz, 1H), 6.43 (m, 1H), 6.39 (t, J = 3.2 Hz, 

1H), 6.29 (s, 1H), 5.59 (s, 2H), 3.62 (s, 1H), 2.87 (s, 1H), 2.31 (s, 3H), 1.88 (d, J = 10.4 Hz, 2H), 

1.71 (d, J = 10.4 Hz, 2H), 1.18 (q, J = 9.9 Hz, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.59, 

149.83, 144.57, 137.85, 133.88, 133.06, 129.51, 129.10, 128.10, 127.27, 125.76, 123.62, 111.38, 

110.05, 109.59, 109.43, 69.92, 50.10, 33.84, 30.09, 29.97, 21.51. HRMS (ESI) m/z [M+H] for 

C24H28N3O2: 390.2182, found 390.2184. 

4d 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(p-tolyl)-1H-pyrrol-1-yl)benzamide (4d): 50% 

yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.38 (d, J = 8.3 Hz, 1H), 7.11 (s, 

4H), 7.00 (m, 1H), 6.51 (m, 1H), 6.43 – 6.37 (m, 2H), 6.27 (s, 1H),5.73-5.41(s, 2H), 3.63 (s, 1H), 
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2.88 (s, 1H), 2.33 (s, 3H), 1.89 (d, J = 10.3 Hz, 2H), 1.70 (d, J = 11.0 Hz, 2H), 1.18 (q, J = 12.3 

Hz, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.52, 149.80, 144.61, 136.22, 133.81, 130.28, 129.51, 

128.93, 128.45, 123.42, 111.03, 110.12, 109.53, 109.43, 69.92, 50.09, 42.69, 33.87, 30.12, 21.18. 

HRMS (ESI) m/z [M-H] for C24H26N3O2: 388.2025, found 388.2028. 

     4e 

4-(2-(2-chlorophenyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(4e): 55% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.07 – 8.11 (m, 1H), 7.50 – 7.60 (m, 

2H), 7.46 – 7.49 (m, 1H), 7.40 – 7.43 (m, 2H), 7.24 (dd, J = 2.9, 1.8 Hz, 1H), 6.67 (dd, J = 8.4, 

2.1 Hz, 1H), 6.57 – 6.64 (m, 2H), 6.35 (d, J = 2.1 Hz, 1H), 5.78 (s, 2H), 3.81 (m, 1H), 2.95 (d, J 

= 6.6 Hz, 1H), 2.05 – 2.13 (m, 2H), 1.81 – 1.91 (m, 2H), 1.32 (m, 4H). 
13

C NMR (126 MHz, 

CDCl3) δ 171.47, 149.73, 144.55, 134.32, 132.78, 132.39, 130.05, 129.76, 129.57, 128.72, 

126.64, 122.69, 113.14, 110.17, 109.42, 108.02, 69.92, 50.15, 41.02, 33.94, 30.12. HRMS (ESI) 

m/z [M-H] for C23H23ClN3O2: 408.1479, found 408.1461. 

                                         4f 

4-(2-(3-chlorophenyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(4f): 59% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.88 (s, 1H), 7.31 (d, J = 8.4 Hz, 

1H), 7.12 – 7.08 (m, 2H), 6.95 – 6.91 (m, 2H), 6.42 – 6.36 (m, 2H), 6.30 (dd, J = 3.6, 2.8 Hz, 
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1H), 6.19 (d, J = 2.0 Hz, 1H), 5.54 (s, 2H), 3.54 (m, 1H), 2.83 (d, J = 11.0 Hz, 1H), 1.84 (m, 

2H), 1.66 (m, 2H), 1.17 – 1.06 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.34, 149.77, 144.17, 

134.94, 134.10, 132.16, 129.69, 129.42, 128.16, 126.62, 126.42, 124.41, 112.17, 110.28, 109.83, 

109.52, 69.84, 50.30, 41.03, 33.78, 30.01. HRMS (ESI) m/z [M-H] for C23H23ClN3O2: 408.1479, 

found 408.1483. 

      4g 

4-(2-(4-chlorophenyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(4g): 55% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.90 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 

8.4 Hz, 1H), 7.25 – 7.22 (m, 2H), 7.15 – 7.09 (m, 2H), 6.99 (m, 1H), 6.47 – 6.40 (m, 2H), 6.37 

(m, 1H), 6.21 (d, J = 2.0 Hz, 1H), 3.63 (m, 1H), 2.89 (m, 1H), 1.95 – 1.88 (m, 2H), 1.69 (m, 2H), 

1.23 – 1.12 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.35, 149.87, 144.25, 132.42, 131.62, 

129.67, 129.64, 128.43, 124.15, 111.69, 110.64, 110.09, 109.76, 109.33, 69.83, 50.15, 41.02, 

33.78, 30.09. HRMS (ESI) m/z [M+H] for C23H25ClN3O2: 410.1635, found 410.1633.  

4h 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-2-yl)-1H-pyrrol-1-yl)benzamide (4h): 

55% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.55 (d, J = 4.9 Hz, 1H), 7.93 (d, J = 7.3 

Hz, 1H), 7.59 (s, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.12 (m, 2H), 7.06 – 7.01 (m, 1H), 6.49 – 6.39 

(m, 2H), 6.33 (d, J = 1.7 Hz, 1H), 5.54 (d, J = 64.2 Hz, 2H), 3.62 (m, 1H), 3.05 – 2.91 (m, 1H), 
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1.95 – 1.73 (m, 4H), 1.25 – 1.15 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.42, 171.41, 

150.04, 141.86, 129.72, 122.87, 120.96, 120.85, 114.95, 111.00, 110.41, 110.30, 109.19, 109.10, 

77.28, 69.81, 60.43, 50.02, 33.68, 30.07. HRMS (ESI) m/z [M+H] for C22H25N4O2: 377.1978, 

found 377.1979. 

    4i 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-3-yl)-1H-pyrrol-1-yl)benzamide (4i): 

59 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.52 – 8.40 (m, 2H), 7.95 (d, J = 7.3 Hz, 

1H), 7.53 (m, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.24 (dd, J = 8.0, 4.9 Hz, 1H), 7.06 (dd, J = 2.9, 1.7 

Hz, 1H), 6.55 (dd, J = 3.6, 1.7 Hz, 1H), 6.45 – 6.38 (m, 2H), 6.32 (d, J = 2.0 Hz, 1H), 5.62 (s, 

2H), 3.65 (dd, J = 9.8, 5.6 Hz, 1H), 2.99 (m, 1H), 1.94 (m, 2H), 1.84 – 1.72 (m, 2H), 1.27 – 1.18 

(m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.26, 150.08, 148.50, 146.78, 144.03, 135.48, 129.81, 

129.77, 129.28, 125.07, 123.17, 112.44, 111.20, 110.56, 110.06, 109.11, 69.74, 50.11, 33.69, 

29.98. HRMS (ESI) m/z [M-H] for C22H23N4O2: 375.1821, found 375.1834.  

      4j 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-4-yl)-1H-pyrrol-1-yl)benzamide (4j): 

48% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.45 (s, 2H), 7.98 (d, J = 7.2 Hz, 1H), 

7.38 (d, J = 8.4 Hz, 1H), 7.13 – 7.00 (m, 3H), 6.64 (dd, J = 3.7, 1.7 Hz, 1H), 6.44 – 6.36 (m, 2H), 

6.32 (d, J = 2.0 Hz, 1H), 5.63 (s, 2H), 3.63 (td, J = 9.6, 4.5 Hz, 1H), 3.06 – 2.94 (m, 1H), 1.92 
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(dt, J = 7.0, 4.3 Hz, 2H), 1.77 (dt, J = 10.9, 2.6 Hz, 2H), 1.27 – 1.17 (m, 4H). 
13

C NMR (126 

MHz, CDCl3) δ 171.24, 150.11, 149.16, 144.05, 140.58, 130.62, 129.83, 128.72, 126.39, 122.09, 

113.74, 111.27, 110.47, 110.32, 109.14, 69.69, 60.42, 50.18, 33.66, 30.02. HRMS (ESI) m/z [M-

H] for C22H23N4O2: 375.1821, found 375.1823. 

              

General procedure C: Alkylation of pyrrole (preparation of intermediates 5a-n).
40

 

MeMgBr (4.5 mmol, 3N solution in diethyl ether) was added dropwise to a solution of pyrrole 

(4.47 mmol) in 5mL THF:dichloromethane (1:1) at 0
o
C followed by quick addition of the 

corresponding benzyl bromide (to obtain corresponding intermediates)/tosylate 8,12a-c (4.4 

mmol) as solution in 2ml THF. The reaction was left stirring at room temperature overnight after 

which it was poured in 50mL saturated solution of ammonium chloride and extracted thrice with 

ethyl acetate. The combined organic extracts were dried over sodium sulfate and adsorbed onto 

silica for column chromatography which was performed using 15 % ethyl acetate in hexanes as 

eluent. 

        5a 

2-benzyl-1H-pyrrole (5a): 49 %yield, colorless oil. 
1
H NMR (500 MHz, CDCl3) δ 7.86 – 7.65 

(s, 1H), 7.26 – 7.21 (m, 2H), 7.18 – 7.11 (m, 3H), 6.60 (m, 1H), 6.08 (q, J = 2.9 Hz, 1H), 5.93 

(m, 1H), 3.92 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 139.47, 128.69, 128.62, 128.53, 126.43, 
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116.96, 108.37, 106.46, 34.08. HRMS (ESI) m/z [M+H] for C11H12N: 158.0970, found 

158.0965. 

5b-d, h were used as crude for further reaction. 

5e 

2-(2-fluorobenzyl)-1H-pyrrole (5e): 40% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.94 

(s, 1H), 7.16 – 7.06 (m, 2H), 7.03 – 6.91 (m, 3H), 6.61 (td, J = 2.7, 1.5 Hz, 1H), 6.06 (d, J = 2.8 

Hz, 1H), 5.97 – 5.90 (m, 1H), 3.96 – 3.90 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 159.86, 

130.76, 128.23, 128.16, 124.34, 117.12, 115.42, 115.25, 108.39, 106.48, 27.31. HRMS (ESI) m/z 

[M+H] for C11H11N: 176.0876, found 176.0880.  

5f 

2-(3-fluorobenzyl)-1H-pyrrole (5f): 42% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.77 

(s, 1H), 7.18 – 7.10 (m, 3H), 6.93 – 6.86 (m, 2H), 6.62 (m, 1H), 6.09 (q, J = 2.9 Hz, 1H), 5.81 (d, 

J = 2.7 Hz, 1H), 3.83 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 164.01, 163.98, 142.28, 129.97, 

124.17, 124.14, 115.56, 113.38, 108.50, 107.05, 33.88. HRMS (ESI) m/z [M+H] for C11H11FN: 

176.0876, found 176.0872. 

5g 

2-(4-fluorobenzyl)-1H-pyrrole (5g): 40% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

7.75 (s, 1H), 7.14 – 7.05 (m, 2H), 6.95 – 6.85 (m, 3H), 6.61 (d, J = 2.4 Hz, 1H), 6.08 (q, J = 2.7 

Hz, 1H), 5.91 (d, J = 3.1 Hz, 1H), 3.88 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 162.56, 130.11, 
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130.04, 129.94, 115.28, 115.02, 108.46, 106.58, 33.28. HRMS (ESI) m/z [M+H] for C11H11FN: 

176.0876, found 176.0875. 

5i 

2-(2-methylbenzyl)-1H-pyrrole (5i): 46% yield, white solid. 
1
H NMR (500 MHz, Chloroform-

d) δ 7.35 – 7.31 (m, 1H), 7.08 (m, 3H), 6.98 (m, 1H), 6.78 (dd, J = 2.9, 1.8 Hz, 1H), 6.46 – 6.40 

(m, 2H), 6.19 (t, J = 3.2 Hz, 1H), 5.87 (m, 1H), 3.80 (s, 2H), 2.12 (s, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 136.00, 130.08, 129.49, 128.86, 126.45, 126.13, 121.44, 110.05, 108.71, 69.74, 30.69, 

19.44. HRMS (ESI) m/z [M+Na] for C12H13NNa: 194.0946, found 194.091. 

5j 

2-((1H-pyrrol-2-yl)methyl)pyridine (5j): 36% yield, white solid. 
1
H NMR (400 MHz, CDCl3) 

δ 9.1-8.96(s, 1H), 8.57 (d, J = 4.9 Hz, 1H), 7.68 (t, J = 7.7 Hz, 1H), 7.27 – 7.18 (m, 2H), 6.75 (m, 

1H), 6.14 (d, J = 2.9 Hz, 1H), 6.06 (s, 1H), 4.17 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 136.73, 

133.11, 132.56, 125.40, 125.12, 121.81, 121.70, 119.91, 109.13, 35.14. HRMS (ESI) m/z [M+H] 

for C10H11N2: 159.0947, found 159.0922. 

      5k 

3-((1H-pyrrol-2-yl)methyl)pyridine (5k): 43% yield, white solid. 
1
H NMR (500 MHz, CDCl3) 

δ 8.44 – 8.40 (m, 2H), 7.88 (s, 1H), 7.48 – 7.40 (m, 1H), 7.17 (m, 1H), 6.64 (m, 1H), 6.09 (q, J = 

2.9 Hz, 1H), 5.91 (m, 1H), 3.92 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 149.77, 147.90, 136.32, 
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135.09, 129.29, 123.58, 117.50, 108.60, 107.04, 31.33. HRMS (ESI) m/z [M+H] for C10H11N2: 

159.0947, found 159.0922. 

5l 

4-((1H-pyrrol-2-yl)methyl)pyridine (5l): 40% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

8.46 – 8.41 (m, 2H), 7.88 (s, 1H), 7.06 (m, 2H), 6.66 (m, 1H), 6.10 (q, J = 2.9 Hz, 1H), 5.95 (m, 

1H), 3.92 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 149.80, 149.79, 148.91, 123.93, 117.64, 

108.68, 107.46, 33.49. HRMS (ESI) m/z [M+H] for C10H11N2: 159.0947, found 159.0936. 

`     5m 

2-(2-methoxybenzyl)-1H-pyrrole (5m): 42 %yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

8.21 (s, 1H), 7.22 – 7.08 (m, 2H), 6.93 – 6.81 (m, 2H), 6.65 (m, 1H), 6.14 – 6.06 (m, 1H), 5.99 

(t, J = 3.0 Hz, 1H), 3.91 (s, 2H), 3.85 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 157.02, 130.27, 

129.76, 128.89, 127.68, 120.99, 116.57, 110.61, 107.99, 105.60, 55.46, 28.83. HRMS (ESI) m/z 

[M+H] for C12H14NO: 188.1075, found 188.1074.  

5n 

2-(2, 6-difluorobenzyl)-1H-pyrrole (5n): 43% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 

7.95 (s, 1H), 7.19 – 7.08 (m, 2H), 6.94 – 6.79 (m, 3H), 6.55 (t, J = 2.8 Hz, 1H), 5.95 (t, J = 3.0 

Hz, 1H), 4.08 (d, J = 1.5 Hz, 2H). 
13

C NMR (126 MHz, CDCl3) δ 169.72, 135.78, 132.40, 

129.34, 121.32, 116.21, 111.30, 110.99, 33.06. HRMS (ESI) m/z [M+H] for C11H10F2N: 

194.0781, found 194.0785.  
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Intermediates 6a-n, 10 have been synthesized using general procedure A. 

     6a 

4-(2-benzyl-1H-pyrrol-1-yl)-2-bromobenzonitrile (6a): 81% yield, white solid. 
1
H NMR (400 

MHz, CDCl3) δ 7.65 (dd, J = 8.3, 1.6 Hz, 1H), 7.52 (t, J = 1.8 Hz, 1H), 7.34 – 7.15 (m, 4H), 7.12 

– 6.99 (m, 2H), 6.80 (m, 1H), 6.32 (t, J = 3.2 Hz, 1H), 6.16 (dd, J = 3.5, 1.8 Hz, 1H), 3.96 (s, 

2H). 
13

C NMR (126 MHz, CDCl3) δ 149.06, 135.23, 128.86, 126.67, 126.35, 125.04, 122.75, 

117.96, 112.33, 110.91, 109.13, 103.84, 102.96, 99.40, 98.31, 20.88. HRMS (ESI) m/z [M+H] 

for C29H25BrN3: 337.0340, found 337.0336. 

6b 

2-bromo-4-(2-(2-chlorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6b): 71% yield, white solid. 
1
H 

NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H), 7.28 – 7.24 

(m, 2H), 7.09 (dd, J = 5.8, 3.5 Hz, 2H), 6.89 (s, 1H), 6.73 (dd, J = 3.0, 1.8 Hz, 1H), 6.23 (t, J = 

3.2 Hz, 1H), 5.99 (m, 1H), 3.96 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 141.62, 138.52, 135.63, 

134.79, 130.22, 129.72, 129.53, 128.04, 127.00, 126.27, 124.26, 115.03, 110.25, 103.91, 103.01, 

98.95, 89.06, 29.71. HRMS (ESI) m/z [M+H] for C18H13BrClN2: 370.9951, found 370.9966. 
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6c 

2-bromo-4-(2-(3-chlorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6c): 76 % yield, beige solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.58 (d, J = 8.3 Hz, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.15 (dd, J = 8.3, 

2.1 Hz, 1H), 7.12 – 7.08 (m, 2H), 6.95 (m, 1H), 6.87 – 6.81 (m, 1H), 6.71 (dd, J = 3.0, 1.7 Hz, 

1H), 6.23 (t, J = 3.2 Hz, 1H), 6.08 (m, 1H), 3.84 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 144.40, 

140.97, 137.99, 134.73, 132.84, 130.04, 129.78, 128.61, 128.51, 126.76, 126.52, 124.55, 122.07, 

116.65, 111.93, 110.19, 100.38, 32.81. HRMS (ESI) m/z [M+Na] for C18H12BrClN2Na: 

392.9770, found 392.9771.  

6d 

2-bromo-4-(2-(4-chlorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6d): 70 % yield, beige solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.58 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.18 – 7.12 (m, 

3H), 6.92 – 6.89 (m, 2H), 6.71 (dd, J = 3.0, 1.7 Hz, 1H), 6.22 (t, J = 3.2 Hz, 1H), 6.04 (ddt, J = 

3.4, 1.6, 0.8 Hz, 1H), 3.83 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 144.43, 137.38, 134.75, 

132.33, 131.33, 129.95, 129.68, 128.68, 125.84, 124.48, 122.02, 116.66, 113.89, 111.80, 110.16, 

32.56. HRMS (ESI) m/z [M+H] for C18H13BrClN2: 370.9951, found 370.9946.  
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6e 

2-bromo-4-(2-(2-fluorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6e): 81 % yield, beige solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.59 (d, J = 8.3 Hz, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.21 (dd, J = 8.3, 

2.1 Hz, 1H), 7.15 – 7.07 (m, 1H), 6.97 – 6.86 (m, 3H), 6.71 (dd, J = 3.0, 1.8 Hz, 1H), 6.21 (t, J = 

3.2 Hz, 1H), 6.03 (m, 1H), 3.88 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 161.37, 144.46, 134.76, 

130.60, 130.43, 129.91, 128.41, 125.86, 124.46, 124.13, 121.92, 116.73, 115.39, 113.87, 111.68, 

110.13, 25.87, 25.84. HRMS (ESI) m/z [M+H] for C18H13BrFN2: 355.0246, found 355.0202.  

6f 

2-bromo-4-(2-(3-fluorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6f): 75% yield, beige solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.57 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 7.18 – 7.10 (m, 

2H), 6.82 (m, 3H), 6.74 – 6.69 (m, 1H), 6.24 (t, J = 3.2 Hz, 1H), 6.08 (m, 1H), 3.87 (s, 2H). 
13

C 

NMR (126 MHz, CDCl3) δ 163.97, 144.42, 134.73, 129.96, 125.82, 124.47, 123.95, 122.04, 

116.66, 115.33, 115.16, 113.88, 113.58, 113.42, 111.96, 110.19, 109.02, 32.83. HRMS (ESI) m/z 

[M+Na] for C18H12BrFN2Na: 377.0066, found 377.0114.  
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6g 

2-bromo-4-(2-(4-fluorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6g): 71% yield, white solid. 
1
H 

NMR (500 MHz, CDCl3) δ 7.57 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 2.0 Hz, 1H), 7.16 (dd, J = 8.3, 

2.0 Hz, 1H), 6.95 – 6.83 (m, 4H), 6.71 (dd, J = 3.0, 1.8 Hz, 1H), 6.22 (t, J = 3.2 Hz, 1H), 6.04 

(ddt, J = 3.4, 1.7, 0.8 Hz, 1H), 3.83 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 162.49, 144.50, 

134.72, 134.52, 131.75, 129.94, 129.81, 125.80, 124.47, 121.96, 116.68, 115.29, 113.82, 111.70, 

110.12, 32.41. HRMS (ESI) m/z [M+H] for C18H13BrFN2: 355.0246, found 355.0202. 

6h 

2-bromo-4-(2-(2-bromobenzyl)-1H-pyrrol-1-yl)benzonitrile (6h): 72 % yield, white solid.
 1

H 

NMR (500 MHz, CDCl3) δ 7.58 (d, J = 8.3 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.40 – 7.37 (m, 1H), 

7.16 – 7.07 (m, 2H), 7.03 – 6.96 (m, 2H), 6.74 (dd, J = 3.0, 1.7 Hz, 1H), 6.23 (t, J = 3.2 Hz, 1H), 

5.98 (m, 1H), 3.96 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 144.43, 138.37, 135.97, 134.81, 

132.86, 130.30, 129.70, 128.29, 127.56, 124.23, 121.86, 121.34, 121.13, 115.78, 115.60, 112.02, 

110.28, 33.38. HRMS (ESI) m/z [M+Na] for C18H12Br2N2Na: 436.9228, found 436.9265. 
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 6i 

2-bromo-4-(2-(2-methylbenzyl)-1H-pyrrol-1-yl)benzonitrile (6i): 76% yield, red oil. 
1
H NMR 

(400 MHz, CDCl3) δ 7.69 – 7.66 (m, 1H), 7.57 (q, J = 4.4, 3.2 Hz, 1H), 7.17 – 7.11 (m, 4H), 

6.99 (d, J = 7.1 Hz, 1H), 6.85 – 6.77 (m, 1H), 6.31 (t, J = 3.6 Hz, 1H), 5.99 (s, 1H), 3.89 (s, 2H), 

2.19 (d, J = 2.4 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 144.63, 137.17, 135.87, 134.75, 131.48, 

130.30, 129.57, 128.86, 126.72, 126.15, 124.15, 121.55, 116.75, 115.60, 113.61, 111.74, 110.26, 

30.80, 19.43. HRMS (ESI) m/z [M+H] for C19H16BrN2: 351.0483, found 351.0497. 

6j 

2-bromo-4-(2-(pyridin-2-ylmethyl)-1H-pyrrol-1-yl)benzonitrile (6j): 72% yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 8.41 (m, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.27 (dd, J = 8.3, 2.1 Hz, 

2H), 7.06 (m, 1H), 7.01 – 6.96 (m, 1H), 6.72 (dd, J = 3.0, 1.7 Hz, 1H), 6.24 (t, J = 3.2 Hz, 1H), 

6.08 (m, 1H), 4.08 (d, J = 1.0 Hz, 2H). 
13

C NMR (126 MHz, CDCl3) δ 158.92, 149.27, 144.43, 

136.79, 134.74, 130.46, 130.02, 125.79, 124.56, 122.88, 121.95, 121.69, 116.73, 113.77, 111.79, 

110.37, 35.77. HRMS (ESI) m/z [M+H] for C17H13BrN3: 338.0293, found 338.0300.  
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6k 

2-bromo-4-(2-(pyridin-3-ylmethyl)-1H-pyrrol-1-yl)benzonitrile (6k): 74% yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 55.8 Hz, 2H), 7.92 (d, J = 7.5 Hz, 1H), 7.39 – 7.27 

(m, 2H), 6.74 (dd, J = 2.9, 1.8 Hz, 1H), 6.37 (d, J = 2.0 Hz, 1H), 6.28 (dd, J = 8.3, 2.0 Hz, 1H), 

6.19 (dd, J = 3.5, 2.9 Hz, 1H), 5.99 (m, 1H), 3.88 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 150.16, 

149.80, 147.54, 144.36, 136.11, 135.33, 130.44, 129.50, 126.01, 123.35, 122.20, 111.70, 111.54, 

109.89, 109.12, 108.54, 30.41. HRMS (ESI) m/z [M+H] for C17H13BrN3: 338.0293, found 

338.0319.  

6l 

2-bromo-4-(2-(pyridin-4-ylmethyl)-1H-pyrrol-1-yl)benzonitrile (6l): 70 % yield, white solid.
 

1
H NMR (500 MHz, CDCl3) δ 8.43 – 8.39 (m, 2H), 7.58 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 2.0 Hz, 

1H), 7.14 (dd, J = 8.3, 2.1 Hz, 1H), 6.93 (m, 2H), 6.74 (dd, J = 3.0, 1.7 Hz, 1H), 6.25 (t, J = 3.3 

Hz, 1H), 6.10 (m, 1H), 3.88 (s, 2H). 
13

C NMR (126 MHz, CDCl3) δ 150.31, 149.77, 148.35, 

144.19, 134.88, 129.92, 129.48, 126.00, 124.46, 123.66, 122.39, 122.36, 116.54, 114.15, 112.29, 

110.34, 32.55. HRMS (ESI) m/z [M+H] for C17H13BrN3: 338.0293, found 338.0319. HRMS 

(ESI) m/z [M+H] for C17H13BrN3: 338.0293, found 338.0306.  
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6m 

2-bromo-4-(2-(2-methoxybenzyl)-1H-pyrrol-1-yl)benzonitrile (6m): 93% yield, white solid. 

1
H NMR (400 MHz, CDCl3) δ 7.64 (dd, J = 8.3, 1.0 Hz, 1H), 7.59 (d, J = 2.1 Hz, 1H), 7.23 – 

7.17 (m, 1H), 6.98 (dd, J = 7.5, 1.8 Hz, 1H), 6.89 – 6.81 (m, 3H), 6.80 (dd, J = 3.1, 1.8 Hz, 1H), 

6.31 (t, J = 3.2 Hz, 1H), 6.14 – 6.10 (m, 1H), 3.94 (s, 2H), 3.79 (s, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 156.58, 144.74, 134.59, 131.89, 129.72, 129.59, 127.75, 127.41, 125.62, 124.28, 

121.40, 120.50, 116.88, 113.34, 111.56, 110.15, 110.12, 55.31, 26.47. HRMS (ESI) m/z [M+H] 

for C19H16BrN2O: 367.0446, found 367.0455.  

 6n 

2-bromo-4-(2-(2,6-difluorobenzyl)-1H-pyrrol-1-yl)benzonitrile (6n): 83% yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 7.77 (dd, J = 8.2, 2.1 Hz, 1H), 7.71 (d, J = 2.0 Hz, 1H), 7.45 (dd, J 

= 8.3, 2.0 Hz, 1H), 7.23 – 7.16 (m, 2H), 6.89 – 6.84 (m, 2H), 6.75 (dd, J = 2.9, 1.8 Hz, 1H), 6.24 

(t, J = 3.2 Hz, 1H), 5.96 (m, 1H), 3.99 – 3.92 (m, 2H). 
13

C NMR (126 MHz, CDCl3) δ 162.18, 

144.50, 134.87, 130.30, 128.46, 125.97, 124.95, 121.86, 116.77, 114.13, 111.36, 111.16, 110.52, 

110.06, 108.17, 20.20, 20.17. HRMS (ESI) m/z [M+Na] for C18H11BrF2N2Na: 394.9976, found 

394.9971. 
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Tosyl protection of benzyl alcohols. General procedure D (preparation of 12a-c): 

 

Benzyl alcohol (16.1 mmol) was dissolved in 50 mL THF, the solution was cooled to 0
o
C and 

sodium hydride (37 mmol) was added slowly while stirring. The reaction was stirred at 0
o
C for 

20 minutes followed by addition of tosyl chloride (35.42 mmol) as a solution in 20 ml THF. 

After stirring the reaction overnight at room temperature 50ml water and 50 ml ethyl acetate 

were added. The organic layer was washed with brine and dried over sodium sulfate. A quick 

column chromatography was performed using 20% ethyl acetate in hexanes as eluent.  

12a 

2-(tosyloxy)benzyl 4-methylbenzenesulfonate (12a):  92 % yield, pale yellow oil. 
1
H NMR 

(500 MHz, CDCl3) δ 7.81 – 7.76 (m, 2H), 7.71 – 7.67 (m, 2H), 7.38 – 7.33 (m, 5H), 7.30 (dd, J = 

7.6, 1.9 Hz, 1H), 7.25 (td, J = 7.5, 1.5 Hz, 1H), 7.06 (dd, J = 8.0, 1.4 Hz, 1H), 4.91 (s, 2H), 2.48 

(d, J = 5.1 Hz, 6H). 
13

C NMR (126 MHz, CDCl3) δ 147.17, 145.94, 144.95, 132.81, 132.08, 

130.28, 130.13, 130.00, 129.89, 128.42, 127.99, 127.33, 127.31, 122.59, 66.04, 21.80, 21.70. 

HRMS (ESI) m/z [M+H] for C20H19O6S2: 419.0623, found 419.0605.  

12b 
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3-(tosyloxy)benzyl 4-methylbenzenesulfonate (12b): 80 % yield, pale yellow oil. 
1
H NMR 

(500 MHz, CDCl3) δ 7.81 – 7.77 (m, 2H), 7.72 – 7.68 (m, 2H), 7.39 – 7.32 (m, 5H), 7.26 (d, J = 

8.0 Hz, 1H), 7.19 – 7.15 (m, 1H), 6.96 (m, 1H), 6.89 (t, J = 2.0 Hz, 1H), 4.97 (s, 2H), 2.48 (d, J = 

2.4 Hz, 7H). 
13

C NMR (126 MHz, CDCl3) δ 149.62, 145.69, 145.12, 135.35, 132.88, 132.08, 

129.96, 129.91, 129.86, 128.48, 127.95, 126.89, 122.94, 122.32, 70.53, 21.77, 21.70. HRMS 

(ESI) m/z [M+H] for C20H19O6S2: 419.0623, found 419.0620. 

12c 

4-(tosyloxy)benzyl 4-methylbenzenesulfonate (12c): 94 % yield, pale yellow oil. 
1
H NMR 

(500 MHz, CDCl3) δ 7.72 – 7.69 (m, 2H), 7.63 – 7.59 (m, 2H), 7.29 – 7.22 (m, 4H), 7.13 – 7.09 

(m, 2H), 6.88 – 6.85 (m, 2H), 4.93 (s, 2H), 2.38 (s, J = 3.9, 1.1 Hz, 6H). 
13

C NMR (126 MHz, 

CDCl3) δ 149.91, 145.57, 145.09, 132.98, 132.34, 132.17, 129.92, 129.85, 129.78, 128.49, 

127.94, 122.68, 70.73, 21.76, 21.69. HRMS (ESI) m/z [M+H] for C20H19O6S2: 419.0623, found 

419.0620. 

Tosyl protection of phenylethyl alcohol. 

 

 

phenethyl 4-methylbenzenesulfonate (8): phenyl ethyl alcohol (16.1 mmol) was dissolved in 

50 mL THF, the solution was cooled to 0
o
C and sodium hydride (16.1 mmol) was added slowly 

while stirring. The reaction was stirred at 0
o
C for 20 minutes followed by addition of tosyl 
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chloride (17 mmol) as a solution in 20 ml THF. After stirring the reaction overnight at room 

temperature 50ml water and 50 ml ethyl acetate were added. The organic layer was washed with 

brine and dried over sodium sulfate. A quick column chromatography was performed using 20% 

ethyl acetate in hexanes as eluent.4 g, yellow solid, 90% yield. 1H NMR (500 MHz, CDCl3) δ 

7.74 – 7.68 (m, 2H), 7.32 – 7.22 (m, 7H), 7.17 – 7.10 (m, 2H), 4.23 (t, J = 7.1 Hz, 2H), 2.98 (t, J 

= 7.1 Hz, 2H), 2.46 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 144.65, 136.19, 132.93, 129.78, 

128.91, 128.60, 127.84, 126.88, 70.61, 35.35, 21.65. HRMS (ESI) m/z [M+Na] for 

C15H16O3SNa: 299.0718, found 299.0730.  

Intermediates 9, 13a-c have been synthesized using general procedure C 

9 

2-phenethyl-1H-pyrrole (9): 42% yield, colorless oil. 
1
H NMR (500 MHz, CDCl3) δ 7.78 (s, 

1H), 7.35 – 7.16 (m, 5H), 6.69 – 6.62 (m, 1H), 6.15 (p, J = 3.1 Hz, 1H), 5.98 (m, 1H), 3.00 – 

2.82 (m, 5H). 
13

C NMR (126 MHz, CDCl3) δ 141.60, 128.51, 128.47, 128.44, 128.42, 128.28, 

126.12, 116.26, 108.23, 105.26, 36.15, 29.62.  HRMS (ESI) m/z [M+Na] for C12H13NNa: 

194.0946, found 194.0941.  

13a 

2-((1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate (13a): 24% yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 8.36 (s, 1H), 7.82 – 7.78 (m, 2H), 7.38 – 7.35 (m, 2H), 7.20 – 

7.14 (m, 2H), 7.12 – 7.08 (m, 2H), 6.89 (dd, J = 8.0, 1.3 Hz, 1H), 6.67 (m, 1H), 6.11 (q, J = 2.9 

Hz, 1H), 6.02 (m, 1H), 3.89 (s, 2H), 2.48 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 147.15, 145.72, 
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133.86, 132.78, 131.28, 129.98, 128.50, 127.89, 127.50, 127.48, 122.21, 117.49, 107.92, 106.92, 

27.70, 21.79. HRMS (ESI) m/z [M+H] for C25H20BrN2O3S: 507.0378, found 507.0385.  

13b 

3-((1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate (13b): 27 % yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 7.71 – 7.57 (m, 3H), 7.24 – 7.20 (m, 2H), 7.14 (t, J = 7.9 Hz, 1H), 

7.01 (m, 1H), 6.81 – 6.77 (m, 1H), 6.74 (dd, J = 2.4, 1.4 Hz, 1H), 6.59 (m, 1H), 6.05 (q, J = 2.9 

Hz, 1H), 5.80 (m, 1H), 3.83 (s, 2H), 2.38 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 149.79, 145.31, 

141.64, 132.39, 129.76, 129.74, 129.69, 128.50, 127.36, 122.55, 120.38, 117.24, 108.46, 106.80, 

33.70, 21.76. HRMS (ESI) m/z [M+H] for C25H20BrN2O3S: 507.0378, found 507.0362. 

13c 

4-((1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate (13c): 25% yield, white solid. 

1
H NMR (500 MHz, CDCl3) δ 7.75 (s, 1H), 7.64 (m, 2H), 7.27 – 7.21 (m, 2H), 7.05 – 7.01 (m, 

2H), 6.85 – 6.82 (m, 2H), 6.62 (m, 1H), 6.07 (q, J = 2.9 Hz, 1H), 5.88 (m, 1H), 3.87 (s, 2H), 2.38 

(s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 148.14, 145.32, 138.59, 132.47, 129.76, 129.73, 128.53, 

128.50, 128.04, 122.49, 122.46, 117.26, 108.46, 106.83, 33.42, 21.75. 

HRMS (ESI) m/z [M+H] for C25H20BrN2O3S: 507.0378, found 507.0362. 

10 
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2-bromo-4-(2-phenethyl-1H-pyrrol-1-yl)benzonitrile (10): 80 % yield, white solid. 
1
H NMR 

(500 MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.28 – 7.21 (m, 4H), 7.09 

– 7.03 (m, 2H), 6.72 (dd, J = 3.0, 1.7 Hz, 1H), 6.31 (t, J = 3.2 Hz, 1H), 6.22 (m, 1H), 2.94 – 2.82 

(m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 144.63, 140.85, 134.72, 133.04, 129.83, 128.44, 128.33, 

126.27, 125.92, 124.52, 121.33, 116.78, 113.64, 110.08, 109.48, 36.00, 28.88. HRMS (ESI) m/z 

[M+H] for C19H16BrN2: 351.0497, found 351.0498.  

14a 

2-((1-(3-bromo-4-cyanophenyl)-1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate 

(14a): 81% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.64 – 7.58 (m, 2H), 7.54 (d, J = 

8.3 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.13 (dd, J = 8.3, 2.1 Hz, 1H), 7.09 – 

7.02 (m, 2H), 6.96 – 6.90 (m, 1H), 6.82 – 6.78 (m, 1H), 6.69 (dd, J = 3.0, 1.7 Hz, 1H), 6.20 (t, J 

= 3.2 Hz, 1H), 5.95 (m, 1H), 3.78 (s, 2H), 2.40 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 147.41, 

145.55, 144.30, 134.79, 132.90, 132.74, 130.49, 130.35, 129.88, 129.73, 128.33, 127.85, 127.19, 

125.80, 124.37, 122.22, 121.89, 116.75, 113.75, 112.00, 110.16, 27.18, 21.79. HRMS (ESI) m/z 

[M+H] for C25H20BrN2O3S: 507.0372, found 507.0378. 

14b 
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3-((1-(3-bromo-4-cyanophenyl)-1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate 

(14b): 82% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.68 – 7.62 (m, 4H), 7.43 (d, J = 

2.1 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.20 (dd, J = 8.3, 2.0 Hz, 1H), 7.14 (t, J = 7.9 Hz, 1H), 6.92 

(m, 1H), 6.78 – 6.76 (m, 1H), 6.28 (t, J = 3.2 Hz, 1H), 6.03 (m, 1H), 3.88 (d, J = 1.0 Hz, 2H), 

2.43 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 149.81, 145.30, 144.32, 141.14, 134.77, 129.88, 

129.75, 129.58, 128.55, 128.51, 128.47, 128.45, 126.99, 124.52, 122.45, 122.06, 120.33, 116.66, 

113.90, 111.98, 110.16, 32.73, 21.75. HRMS (ESI) m/z [M+H] for C25H20BrN2O3S: 507.0372, 

found 507.0362.  

14c 

4-((1-(3-bromo-4-cyanophenyl)-1H-pyrrol-2-yl)methyl)phenyl 4-methylbenzenesulfonate 

(14c): 71% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.69 – 7.65 (m, 2H), 7.60 (d, J = 

8.3 Hz, 1H), 7.44 (d, J = 2.1 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.16 (dd, J = 8.3, 2.1 Hz, 1H), 6.95 – 

6.90 (m, 2H), 6.86 – 6.82 (m, 2H), 6.75 (dd, J = 3.0, 1.7 Hz, 1H), 6.26 (t, J = 3.2 Hz, 1H), 6.06 

(m, 1H), 3.87 (s, 2H), 2.43 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 148.15, 145.39, 144.38, 

137.94, 134.74, 132.43, 131.17, 129.87, 129.76, 129.45, 128.48, 125.79, 124.46, 122.49, 122.04, 

116.63, 113.85, 111.88, 110.16, 32.55, 21.76. HRMS (ESI) m/z [M+Na] for C25H19BrN2O3SNa: 

529.0197, found 529.0177.   

Following Compounds (7a-n,11, 15a-c, 16 ) have been synthesized using general procedure B 
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7a 

4-(2-benzyl-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide (7a): 44 % 

yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 7.6 Hz, 1H), 7.32 – 7.26 (m, 1H), 

7.21 (q, J = 1.3 Hz, 0H), 7.18 (q, J = 1.2, 0.8 Hz, 1H), 7.15 – 7.10 (m, 1H), 7.08 – 7.01 (m, 2H), 

6.75 (dd, J = 2.9, 1.8 Hz, 1H), 6.34 (d, J = 7.0 Hz, 2H), 6.20 (t, J = 3.2 Hz, 1H), 6.00 (m, 1H), 

5.58 (s, 2H), 3.88 (s, 2H), 3.63 – 3.54 (m, 1H), 2.90 – 2.80 (m, 1H), 1.93 – 1.81 (m, 4H), 1.28 – 

1.12 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 170.40, 149.06, 143.59, 139.05, 130.50, 128.32, 

127.37, 125.14, 120.60, 110.62, 110.05, 108.83, 108.13, 107.44, 68.75, 48.65, 32.44, 31.86, 

29.12, 28.67. HRMS (ESI) m/z [M-H] for C24H26N3O2: 388.2025, found 388.2025. 

7b 

4-(2-(2-chlorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7b): 51 % yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 7.6 Hz, 1H), 7.33 – 

7.25 (m, 2H), 7.13 – 7.01 (m, 3H), 6.78 (dd, J = 2.9, 1.8 Hz, 1H), 6.43 – 6.35 (m, 2H), 6.21 (t, J 

= 3.2 Hz, 1H), 5.94 (m, 1H), 5.46 (d, J = 55.2 Hz, 2H), 3.97 (s, 2H), 3.60 (s, 1H), 2.94 (s, 1H), 

1.90 (m, 4H), 1.27 – 1.13 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.41, 150.18, 144.51, 

137.78, 133.76, 130.31, 129.98, 129.54, 129.37, 127.73, 126.83, 121.77, 111.34, 111.09, 110.20, 
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108.67, 108.65, 69.76, 49.85, 33.52, 30.68, 30.17. HRMS (ESI) m/z [M-H] for C24H25ClN3O2: 

422.1635, found 422.1642. 

7c 

4-(2-(3-chlorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7c): 53% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 

8.8 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.07 (td, J = 1.8, 0.9 Hz, 1H), 7.01 – 6.97 (m, 1H), 6.83 (dd, J 

= 2.9, 1.8 Hz, 1H), 6.41 – 6.36 (m, 2H), 6.32 – 6.25 (m, 1H), 6.14 – 6.07 (m, 1H), 5.63 (s, 2H), 

3.93 (s, 2H), 3.68 (m, 1H), 3.02 – 2.91 (m, 1H), 2.04 – 1.90 (m, 4H), 1.35 – 1.20 (m, 4H). 
13

C 

NMR (126 MHz, CDCl3) δ 171.40, 150.10, 144.46, 142.18, 134.20, 130.60, 129.60, 129.39, 

128.49, 126.58, 126.37, 121.95, 111.72, 111.32, 110.03, 109.22, 108.53, 69.75, 49.83, 33.50, 

32.60, 30.14. HRMS (ESI) m/z [M-H] for C24H25ClN3O2: 422.1635, found 422.1645. 

7d 

4-(2-(4-chlorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7c): 44% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.95 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 

8.3 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.06 – 6.98 (m, 2H), 6.81 (dd, J = 2.9, 1.8 Hz, 1H), 6.38 (dd, J 

= 8.3, 2.0 Hz, 1H), 6.34 (d, J = 2.0 Hz, 1H), 6.27 (dd, J = 3.5, 2.9 Hz, 1H), 6.08 (m, 1H), 5.61 (s, 

2H), 3.91 (s, 2H), 3.64 (m, 1H), 2.89 (m, 1H), 2.01 – 1.89 (m, 4H), 1.27 – 1.22 (m, 4H). 
13

C 

NMR (126 MHz, CDCl3) δ 171.37, 150.07, 144.48, 138.68, 131.79, 130.83, 129.73, 129.41, 
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128.52, 121.89, 111.62, 111.21, 109.99, 109.07, 108.53, 69.76, 49.84, 33.62, 32.28, 30.21. 

HRMS (ESI) m/z [M-H] for C24H25ClN3O2: 422.1635, found 422.1642. 

    7e 

4-(2-(2-fluorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7e): 48% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.08 (s, 1H), 7.40 (d, J = 8.3 Hz, 

1H), 7.21 – 7.15 (m, 1H), 7.08 – 6.95 (m, 3H), 6.82 (dd, J = 2.9, 1.8 Hz, 1H), 6.52 (d, J = 2.0 Hz, 

1H), 6.46 (dd, J = 8.3, 2.0 Hz, 1H), 6.26 (t, J = 3.2 Hz, 1H), 6.04 (dd, J = 3.6, 1.7 Hz, 1H), 5.69 

(s, 2H), 3.97 (s, 2H), 3.67 (m, 1H), 3.04 (m, 1H), 2.10 – 1.90 (m, 4H), 1.37 – 1.23 (m, 4H). 
13

C 

NMR (126 MHz, CDCl3) δ 171.38, 161.61, 159.65, 144.53, 130.50, 130.11, 129.48, 127.95, 

126.89, 124.03, 121.84, 115.19, 115.02, 112.01, 109.98, 109.42, 108.61, 69.73, 50.24, 33.51, 

30.08, 25.89. HRMS (ESI) m/z [M+H] for C24H27FN3O2: 408.2087, found 408.2086. 

7f 

4-(2-(3-fluorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7f): 42% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.08 (s, 1H), 7.38 (d, J = 8.3 Hz, 

1H), 7.20 (m, 1H), 6.90 – 6.87 (m, 2H), 6.81 (m, 2H), 6.47 – 6.39 (m, 2H), 6.29 – 6.24 (m, 1H), 

6.10 (dd, J = 3.5, 1.7 Hz, 1H), 5.68 (s, 2H), 3.95 (s, 2H), 3.65 (m, 1H), 2.99 (m, 1H), 2.03 – 1.93 

(m, 4H),1.36 – 1.21 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.31, 163.91, 161.95, 144.50, 

142.70, 130.69, 129.80, 129.73, 129.41, 123.99, 121.92, 115.36, 115.19, 113.17, 113.01, 110.13, 
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108.63, 69.70, 50.23, 33.47, 32.62, 30.03. HRMS (ESI) m/z [M+H] for C24H27FN3O2: 408.2087, 

found 408.2101. 

7g 

4-(2-(4-fluorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7g): 42% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.37 (d, J = 8.1 Hz, 

1H), 7.04 (dd, J = 8.4, 5.4 Hz, 2H), 6.97 – 6.88 (m, 2H), 6.80 (t, J = 2.4 Hz, 1H), 6.44 – 6.36 (m, 

2H), 6.26 (t, J = 3.2 Hz, 1H), 6.06 (dd, J = 3.3, 1.8 Hz, 1H), 5.84 – 5.44 (m, 2H), 3.91 (s, 2H), 

3.67 (m, 1H), 2.97 (t, J = 8.0 Hz, 1H), 1.97 (t, J = 5.5 Hz, 4H), 1.37 – 1.18 (m, 4H). 
13

C NMR 

(126 MHz, CDCl3) δ 171.38, 162.31, 160.37, 149.91, 144.57, 135.64, 131.47, 129.77, 129.37, 

121.87, 115.23, 111.89, 109.82, 109.37, 108.48, 69.71, 50.01, 33.55, 32.21, 30.13. HRMS (ESI) 

m/z [M-H] for C24H25FN3O2: 406.1931, found 406.1923.  

7h 

4-(2-(2-bromobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(7h): 41% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.62 – 7.54 (m, 1H), 7.52 (dd, J = 

7.9, 1.3 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.12 – 7.02 (m, 2H), 6.92 – 6.81 (m, 2H), 6.75 (d, J = 8.4 

Hz, 1H), 6.30 (t, J = 3.2 Hz, 1H), 6.04 (dd, J = 3.5, 1.7 Hz, 1H), 4.05 (s, 2H), 3.71 – 3.63 (m, 

1H), 3.09 – 3.03 (m, 1H), 1.99 (t, J = 14.8 Hz, 4H), 1.46 – 1.31 (m, 2H). 
13

C NMR (126 MHz, 

CDCl3) δ 170.55, 170.55, 162.20, 144.60, 144.60, 139.19, 133.52, 132.66, 130.36, 130.01, 
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129.67, 128.09, 127.59, 124.25, 121.92, 111.11, 109.40, 69.41, 53.45, 31.60, 29.71, 29.17. 

HRMS (ESI) m/z [M-H] for C24H26BrN3O2: 466.1130, found 466.1123.  

7i 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(2-methylbenzyl)-1H-pyrrol-1-yl)benzamide 

(7i): 45% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.20 – 7.76 (m, 1H), 7.35 – 7.31 (m, 

1H), 7.08 (m, 3H), 6.98 (m, 1H), 6.78 (dd, J = 2.9, 1.8 Hz, 1H), 6.46 – 6.40 (m, 2H), 6.19 (t, J = 

3.2 Hz, 1H), 5.87 (m, 1H), 5.68 (d, J = 57.1 Hz, 2H), 3.80 (s, 2H), 3.68 – 3.52 (m, 1H), 2.87 (s, 

1H), 2.12 (s, 3H), 1.94 – 1.81 (m, 4H), 1.26 – 1.15 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 

171.37, 144.69, 144.69, 138.29, 136.00, 131.09, 130.08, 130.00, 129.49, 129.21, 128.86, 126.48, 

126.45, 126.13, 121.44, 120.38, 110.05, 108.71, 69.74, 50.20, 33.44, 30.69, 30.05, 19.44. HRMS 

(ESI) m/z [M+H] for C25H30N3O2: 404.2338, found 404.2350.   

7j 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-2-ylmethyl)-1H-pyrrol-1-

yl)benzamide (7j): 48% yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 5.0 Hz, 

1H), 7.95 (s, 1H), 7.69 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.24 – 7.10 (m, 2H), 6.87 (s, 1H), 6.47 

(d, J = 7.3 Hz, 2H), 6.31 (t, J = 3.2 Hz, 1H), 6.17 (s, 1H), 5.32 (s, 2H), 4.27 (s, 2H), 3.70 (s, 1H), 

3.08 (s, 1H), 1.99 (s, 4H), 1.37 – 1.26 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.47, 159.98, 

150.15, 149.08, 144.48, 136.73, 129.53, 128.34, 122.82, 121.87, 121.39, 111.66, 111.23, 110.07, 
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109.07, 108.77, 69.74, 49.81, 35.60, 33.52, 30.11. HRMS (ESI) m/z [M+H] for C23H25N4O2: 

389.1978, found 389.1969.   

7k 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-3-ylmethyl)-1H-pyrrol-1-yl) 

benzamide (7k): 44% yield, white solid.
 1

H NMR (500 MHz, CDCl3) δ 8.38 (d, J = 55.8 Hz, 

2H), 8.00 (d, J = 7.5 Hz, 1H), 7.43 (m, 1H), 7.38 (d, J = 8.3 Hz, 1H), 7.19 (dd, J = 7.8, 4.8 Hz, 

1H), 6.82 (dd, J = 2.9, 1.8 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 6.36 (dd, J = 8.3, 2.0 Hz, 1H), 6.26 

(dd, J = 3.5, 2.9 Hz, 1H), 6.07 (m, 1H), 5.78 (d, J = 111.9 Hz, 2H), 3.96 (s, 2H), 3.69 (m, 1H), 

3.09 (m, 1H), 2.05 – 1.96 (m, 4H), 1.37 – 1.29 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.36, 

150.16, 149.80, 147.54, 144.36, 136.11, 135.33, 130.44, 129.50, 123.35, 122.20, 111.70, 111.54, 

109.89, 109.12, 108.54, 69.70, 49.97, 33.55, 30.41, 30.15. HRMS (ESI) m/z [M+H] for 

C23H25N4O2: 389.1978, found 389.1970.  

7l 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(pyridin-4-ylmethyl)-1H-pyrrol-1-

yl)benzamide (7l): 48% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.52 – 8.44 (m, 2H), 

8.01 (s, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.14 (d, J = 5.4 Hz, 2H), 6.84 (dd, J = 2.9, 1.8 Hz, 1H), 

6.36 (d, J = 2.0 Hz, 1H), 6.31 – 6.25 (m, 2H), 6.16 (dd, J = 3.4, 1.8 Hz, 1H), 5.54 (d, J = 99.5 

Hz, 2H), 4.02 (s, 2H), 3.66 (dd, J = 10.4, 4.8 Hz, 1H), 2.98 (d, J = 10.2 Hz, 1H), 2.02 – 1.94 (m, 
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4H), 1.34 – 1.27 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.20, 171.20, 150.14, 147.37, 

144.12, 129.58, 128.50, 124.40, 122.58, 111.54, 110.60, 109.24, 109.00, 108.78, 69.63, 50.00, 

33.56, 32.68, 30.15. HRMS (ESI) m/z [M-H] for C23H25N4O2: 389.1978, found 389.1983.  

7m 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-(2-methoxybenzyl)-1H-pyrrol-1-yl)benzamide 

(7m): 51% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.93 (d, J = 7.4 Hz, 1H), 7.35 (d, J 

= 8.3 Hz, 1H), 7.19 (m, 1H), 6.99 (m, 1H), 6.89 – 6.80 (m, 3H), 6.51 – 6.41 (m, 2H), 6.26 (dd, J 

= 3.4, 2.9 Hz, 1H), 6.03 (m, 1H), 5.53 (s, 2H), 3.91 (s, 2H), 3.75 (s, 3H), 3.71 – 3.58 (m, 1H), 

2.95 (d, J = 30.9 Hz, 1H), 1.99 – 1.88 (m, 4H), 1.30 – 1.16 (m, 4H). 
13

C NMR (126 MHz, 

CDCl3) δ 171.51, 156.91, 150.08, 144.75, 131.25, 129.55, 129.36, 128.73, 127.42, 121.32, 

120.48, 111.52, 110.85, 110.01, 109.86, 108.83, 108.55, 69.79, 55.30, 49.72, 33.47, 30.16, 26.77. 

HRMS (ESI) m/z [M+H] for C25H30N3O3: 420.2287, found 420.2292.  

16 

4-(2-(2,6-difluorobenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4hydroxycyclohexyl)amino)benzamide 

(16):  55% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.01 (s, 1H), 7.38 (d, J = 8.3 Hz, 

1H), 7.16 – 7.06 (m, 1H), 6.82 – 6.77 (m, 2H), 6.70 (dd, J = 2.9, 1.8 Hz, 1H), 6.61 (d, J = 2.0 Hz, 

1H), 6.49 (dd, J = 8.3, 2.0 Hz, 1H), 6.11 (t, J = 3.2 Hz, 1H), 5.85 – 5.38 (m, 3H), 3.88 (d, J = 1.4 

Hz, 2H), 3.64 (m, 1H), 3.24 (s, 1H), 2.10 – 1.90 (m, 4H), 1.39 – 1.26 (m, 4H). 
13

C NMR (126 
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MHz, CDCl3) δ 171.47, 162.48, 160.51, 150.17, 144.59, 130.97, 129.95, 129.51, 128.11, 121.80, 

112.00, 111.44, 111.28, 111.07, 109.56, 108.50, 108.40, 69.84, 50.22, 33.65, 30.24, 20.18. 

HRMS (ESI) m/z [M-H] for C24H24F2N3O: 424.1837, found 424.1838.  

11 

2-(((1r,4r)-4-hydroxycyclohexyl)amino)-4-(2-phenethyl-1H-pyrrol-1-yl)benzamide (11): 

45% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.41 (d, J = 8.2 Hz, 1H), 

7.24 (d, J = 7.5 Hz, 2H), 7.20 – 7.14 (m, 1H), 7.13 – 7.07 (m, 2H), 6.79 (t, J = 2.3 Hz, 1H), 6.62 

(s, 1H), 6.47 (dd, J = 8.4, 2.1 Hz, 1H), 6.25 (t, J = 3.1 Hz, 1H), 6.15 (dd, J = 3.4, 1.7 Hz, 1H), 

5.67 (s, 2H), 3.70 (m, 1H), 3.26 (m, 1H), 2.97 – 2.81 (m, 4H), 2.14 – 1.95 (m, 4H), 1.42 – 1.29 

(m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.39, 149.99, 144.79, 141.55, 133.06, 129.48, 128.36, 

128.27, 126.02, 121.43, 111.81, 111.33, 109.20, 108.37, 107.69, 69.75, 50.39, 35.47, 33.62, 

30.17, 29.26. HRMS (ESI) m/z [M-H] for C25H28N3O2: 402.2181, found 402.2176. 

 

15a 

4-(2-(2-hydroxybenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(15a)  46% yield, white solid. 
1
H NMR (500 MHz, CDCl3) δ 7.31 (d, J = 8.4 Hz, 1H), 7.03 – 

6.97 (m, 1H), 6.89 (dd, J = 7.6, 1.7 Hz, 1H), 6.78 – 6.76 (m, 1H), 6.74 – 6.68 (m, 2H), 6.47 (d, J 

= 2.0 Hz, 1H), 6.40 (dd, J = 8.3, 2.0 Hz, 1H), 6.21 – 6.15 (m, 1H), 6.02 – 5.95 (m, 1H), 5.53 (s, 
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2H), 3.88 (s, 2H), 3.57 (tt, J = 10.1, 4.2 Hz, 1H), 2.91 (m, 1H), 1.95 – 1.82 (m, 4H), 1.26 – 1.12 

(m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 172.86, 161.06, 159.17, 148.66, 130.08, 129.49, 

127.47, 126.26, 121.92, 120.07, 115.19, 111.67, 109.15, 108.47, 106.83, 102.07, 99.99, 69.67, 

60.50, 33.24, 30.18, 27.34. HRMS (ESI) m/z [M+Na] for C24H27N3O3Na: 428.1950, found 

428.1949. 

15b 

4-(2-(3-hydroxybenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(15b):  42% yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 7.9 Hz, 1H), 7.38 (d, J 

= 8.3 Hz, 1H), 7.12 (t, J = 7.8 Hz, 1H), 6.83 (dd, J = 2.9, 1.8 Hz, 1H), 6.74 – 6.63 (m, 3H), 6.44 

(dd, J = 8.4, 2.0 Hz, 1H), 6.35 – 6.28 (m, 2H), 6.19 (dd, J = 3.4, 1.8 Hz, 1H), 3.91 (s, 2H), 5.61-

5.90 (s, 2H) 3.64 (q, J = 10.8 Hz, 1H), 2.65 (s, 1H), 1.89 (d, J = 11.3 Hz, 4H), 1.24 – 1.10 (m, 

4H). 
13

C NMR (126 MHz, CDCl3) δ 168.64, 166.43, 162.90, 157.79, 152.71, 148.84, 141.58, 

119.49, 117.65, 115.39, 113.27, 109.31, 106.40, 99.52, 94.41, 90.08, 86.38, 68.98, 61.90, 46.01, 

31.76, 28.83. HRMS (ESI) m/z [M+Na] for C24H27N3O3Na: 428.1950, found 428.1974. 

15c 
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4-(2-(4-hydroxybenzyl)-1H-pyrrol-1-yl)-2-(((1r,4r)-4-hydroxycyclohexyl)amino)benzamide 

(15c): 42% yield, white solid. 
1
H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.5 Hz, 1H), 7.38 (d, J 

= 8.4 Hz, 1H), 7.01 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.5 Hz, 1H), 6.82 (dd, J = 2.9, 1.8 Hz, 1H), 

6.81 – 6.74 (m, 2H), 6.68 (d, J = 8.2 Hz, 1H), 6.44 (dd, J = 8.4, 2.0 Hz, 1H), 6.32 – 6.29 (m, 2H), 

6.16 (d, J = 3.6 Hz, 1H), 5.45-5.80 (s, 2H), 3.89 (s, 2H), 3.61 (s, 1H), 2.62 (s, 1H), 1.88 (m, 4H), 

1.19 (m, 4H). 
13

C NMR (126 MHz, CDCl3) δ 171.93, 154.50, 144.57, 132.16, 131.00, 129.49, 

129.34, 128.94, 121.36, 115.87, 111.30, 110.41, 108.72, 108.61, 108.42, 70.03, 55.99, 33.12, 

31.52, 30.28. HRMS (ESI) m/z [M+H] for C24H28N3O3: 406.2131, found 406.2135.  
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