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Abstract

This dissertation examines the scaling of large scale assessments containing both

dichotomous and polytomous items, mixed format assessments. Because large scale

assessments are generally built to measure one construct, e.g. eighth grade mathe-

matics, unidimensional data was generated to simulate a mixed format assessment.

The test length, number of polytomous to dichotomous items per assessment and the

discrimination level between dichotomous and polytomous items were varied in this

study. There were five item combinations and two level of discrimination defined.

The goal of this dissertation was to compare the fit of the generated data to three

different Item Response Theory models; one unidimensional and two multidimen-

sional. The first model used to fit the data was the same model type used to generate

the data; a 3PL IRT model in combination with the Generalized Partial Credit model.

The second model was the Hierarchical MIRT Model. The final model was the bi-

factor model. The research questions examined in this study were; (1) Which of the

models achieves the best model fit across simulation conditions?, and (2) Do the vari-

ables of item combination or discrimination affect the model fit?

The study showed that the bi-factor model fit unidimensional data, in mixed for-

mat, better than either the unidimensional or the hierarchical MIRT models. The cri-

terion used to make this determination was the Bayesian convergence criterions; BIC,

DIC and AIC. Overall, the bi-factor model fit the unidimensional mixed format data

better than the generating model fit the data. The hierarchical MIRT model did not fit

the data very well, and in a few cases, did not converge. The more polytomous item



included on the assessment the better the bi-factor model improved overall fit over the

unidimensional model.

This result suggests that noise in the data from mixed format assessments can

cause the unidimensional models to fail to fail to fit the data. This study illustrates

the format alone can create the appearance of dimensionality. However since the data

was generated as unidimensional, this format dimensionality affect was an attribute of

the data alone, not of items or examinees interactions with the items. Mixed format

assessments create an artifact in the data that causes the data to factor into dimensions

that are not actually present. It appears there is noise in the data of mixed format

assessment that needs to accounted for when scaling.

iii



Acknowledgements

I would first like to thank God for the many blessing that have made this disser-

tation completion possible. If it were not for my faith during these past few years, this

dissertation would not have been possible. I would also like to thank my church family

for their prayers and support.

I must also thank my dissertation chairperson and advisor, William Skorupski,

whose teaching and inspiration was the catalyse for this project. He encouraged me

to pursue this degree path and provided invaluable support and encouragement during

my entire program and especially during the dissertation process. I would also like

the thank the other members of my committee Dr. Bruce Frey, Dr. Neal Kingston,

Dr. Vicki Peyton, and Dr. Susan Twombly. You have each inspired me in various

ways through the classes you taught, the projects we worked on and through a variety

of interaction where each of you have supported and encouraged me. Without that

support and encouragement, this would not have been possible.

I would like to thank Minho Scholle and the Mathematics Stack Exchange for

help with the proof that the sum of quotients was not equal to the quotient of the sums.

This proof was part of the methodology in determining the amount of error in the

parameter estimates.

Finally, I would like to thank Dr. Paul Johnson, from the Center for Research

Methods and Data Analysis at the University of Kansas, whose assistance with the

Rocks cluster of Linux computer nodes was invaluable to completion of this project.



Contents

1 Introduction 1

1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 IRT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 IRT Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 IRT Model Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Format Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Bi-factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Purpose of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Definitions of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Summary and Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 14

2.1 IRT Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Model Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 IRT Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Unidimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Format Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



2.3.2 Method of Examining Unidimensionality . . . . . . . . . . . . . . . . . . 19

2.4 Mixed Format Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methods 25

3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Combination 3PL/GPC Model . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Second Order IRT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Bi-Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Scoring Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Bayesian Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Markov Chain Monte Carlo with Gibbs Sampling . . . . . . . . . . . . . . 34

3.3 Simulation Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1.1 Item Type and Test length . . . . . . . . . . . . . . . . . . . . . 36

3.3.1.2 Item and Examinee Characteristics . . . . . . . . . . . . . . . . 37

3.4 Checking Model Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.0.3 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Bayesian Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Results 41

4.1 Computing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Model Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Bayesian Criteria Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Bi-factor A-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



4.5 Hierarchical MIRT A-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion 52

5.1 Bayesian Model Fit and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Parameter Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Hypothesis and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Limitations and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

A Script 64

B 3PLGPC Model 65

C Bifactor Model 66

D Second Order Model 68

E Proof 70

F Monte Carol Estimate Error Tables 71

G Bifactor Loadings 72

H Hierarchical MIRT Loading 77

vii



List of Figures

3.1 Diagram of Second-Order Model with 1-dichotomous (θ1) and 1-polytomous spe-

cific domain (θ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Diagram of Bi-Factor Model with 1-dichotomous (θ1) and 1-polytomous specific

domain (θ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Same A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Higher A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Same A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Higher A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Same A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Higher A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Same A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Higher A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Same A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Higher A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

List of Tables

3.1 Simulation conditions for the 3PL/GPCM, Second Order Model, and Bi-factor model 35

3.2 Discrimination parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



4.1 Unidimensional Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Bayesian Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Bi-factor Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

F.1 3PL/GPC MCMC Average Error by Parameter . . . . . . . . . . . . . . . . . . . . 71

F.2 Bifactor MCMC Average Error by Parameter . . . . . . . . . . . . . . . . . . . . 71

F.3 2nd Order MCMC Average Error by Parameter . . . . . . . . . . . . . . . . . . . . 71

G.1 Bifactor Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 72

G.2 Bifactor Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 73

G.3 Bifactor Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 74

G.4 Bifactor Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 75

G.5 Bifactor Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 76

H.1 Hierarchical Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . 77

H.2 Hierarchical Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . 78

H.3 Hierarchical Loading Structure Matrix . . . . . . . . . . . . . . . . . . . . . . . . 79

List of Equations

3.1.1 IRT 3PL Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Generalized Partial Credit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Second Order Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Transformed Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.5 2nd Order Logit Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.6 Logit Theta Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.7 Logit Linking Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



3.1.8 Bi-factor matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.9 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.10 Linear Logit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Indicator Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Latent Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Conditional Joint Probability Function . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5 Transition Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.5 Akaike Informational Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.6 Bayesian Informational Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.7 Deviance Information Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



Chapter 1

Introduction

Education assessment is an integral part of the national debate on educational reform. The

heart of the issue is a common goal that all children receive the best education possible. But, how

do we measure that? What kind of assessment is needed to determine whether or not students are

meeting educational goals. Most assessments are designed to measure how much students know

about a particular subject: e.g. mathematics or English. But, could we design assessments that

measure that ability more fully or more accurately so that students and educators have a better

measure of students strengths and weaknesses. Some stakeholders suggest that part of the solution

is to create better, more “authentic” assessments. This is not a new initiative. Dating back to World

War II, there have been several waves of assessment reform (Linn, 2000). The more recent wave

of assessment reform involves the inclusion of performance based assessments or at the very least

more performance based items (Linn, 2000). Madaus and O’Dwyer (1999) claim that standardized

multiple choice assessments are ‘out’ in popular and profession literature and that more “authentic”

performance assessments are “in.” Exactly what is meant by “authentic” performance assessment

varies according the stakeholder involved, but it is clear that the current wave of assessment re-

form includes a move away from assessments containing only multiple-choice items and toward

assessments that include more innovative and/or constructed response items.

Some argue that the inclusion of innovative items provides more information about examinees’

understanding and true ability than multiple choice items alone (Bennett, Morley, & Quardt, 2000;
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A. L. Zenisky & Sireci, 2001). Innovative items can range from “drop and drag” to “formulating

hypothesis” (A. Zenisky & Sireci, 2002). In fact, A. Zenisky and Sireci (2002) defined twenty-one

different polytomously scored innovative item types used in various testing situations, although

most commonly in licensure exams. Particularly in the area of licensure exams, the variety of

innovative items is designed to create assessments that providing examinees a variety of differ-

ent methods to demonstrate their understanding, knowledge, and ability on the construct being

measured.

While there is overlap between multiple choice and constructed response items, in terms of the

processes they assess, constructed response items can provide additional information about exam-

inee cognitive processes which cannot be easily duplicated with multiple choice items (Bennett,

Rock, & Wang, 1991). The decision about which type of items to use on assessment depends on

the intended purpose of the assessment outcome, mastery or a more refined evaluation of the exam-

inee abilities (Bennett et al., 1991). If the purpose is merely to determine mastery, then a multiple

choice assessment may provide all of the information required (Bennett et al., 1991). However, the

trend in the educational assessment today is to use assessments to evaluate examinee abilities on a

continuum rather than to determine mastery.

Education Testing Services (ETS), the SMARTER Balanced Assessment Consortia and The

Partnership for Assessment of Readiness for College and Careers (PARCC) Consortia, consider

innovative item types an important part of the next generation of assessments. A quick look at the

ETS website’s research section will find Cognitively Based Assessment of, for, and as Learning

(CBAL) in addition to several current research projects on innovative assessments (ETS). One

large component driving the push to integrate innovate item into large scale assessments is driven

by the Common Core State Standards (CCSS). CCSS requires examinees to be assessed on more

critical thinking and analytical thinking skills in the two categories: college and career readiness

standards, and K-12 standards (CCSS Process, 2009). As stated above, innovative or constructed

response items may provide a better means to assess these desired critical thinking skills.

While discussion of innovative items dates back to the nineties, the ability to create and score

2



those item types had been cost prohibitive. Advancements in assessment technology has not only

increased the ability to machine score items (Madaus & O’Dwyer, 1999), but is also making it pos-

sible to create a variety of innovative items more efficiently. Of the twenty-one different item types

defined by A. Zenisky and Sireci (2002), the range of difficult as well as the possibility of com-

puter scoring the items varies widely. Items such as drag-and-drop, inserting text, or sorting might

be easily computer scored, whereas items such as generating examples and analyzing situations or

writing essays are less conducive to computer scoring. A. L. Zenisky and Sireci (2001) indicated

that the best choice of scoring routines used on innovative item types remains unanswered.

1.1 Background of the Study

How to scale the next generation of assessments in an important ongoing topic. It is likely that

future large scale assessments will contain both dichotomously scored as well as polytomously

scored items. The choice of an incorrect model can result in incorrect conclusions with respect to

parameter estimation and person fit (Kang & Cohen, 2007; Kang, Cohen, & Sung, 2009). While

issues of parameter estimation, person fit as well as topic of equating are well understood for most

unidimensional IRT models, the added complexity of a mixed format assessment requires further

study. The choice of model that will provide the most valid and generalizable results is a growing

focus of educational researchers. In particular, several studies have considered the use of item

response theory (IRT) models, bi-factor models, testlet models and hierarchical IRT models to

scale mixed format assessments (Cai, Yang, & Hansen, 2011; DeMars, 2006; Reise, Morizot, &

Hays, 2007; Rijmen, 2010; Whittaker, Chang, & Dodd, 2012).

Details about these research studies will be presenting in the literature review section. As an

overview, Cai et al. (2011) proposed an extended item bi-factor analysis framework and conducted

a study on how this framework could handle item responses from multiple groups, with dichoto-

mous, ordinal, and nominal response formats. The extended bi-factor model allows some items to

load onto the general factor without loading onto one of the specific factors. They found that the

generalized bi-factor models reliably fit the data with little bias and reported no convergence issues.

3



Cai et al. (2011) suggest that the generalized framework can be used to study dimensionality in data

as wells as bi-factor based linking and equating studies. Based on the (Cai et al., 2011) study, this

study examined a dimensionality affect resulting from the scoring associated with multiple formats

on an assessment by utilizing the bi-factor model.

The DeMars (2006) study favored the more parsimonious testlet-effects model over the bi-

factor model. However, the authors also stated that the speed at which the bi-factor model can

be calibrated, in comparison to the testlet-effects model, might be of benefit to practitioners. In

a study that compared the hierarchical MIRT, testlet and bi-factor models to real data, Rijmen

(2010) found that the proportionality restrictions imposed by the hierarchical MIRT model were

too stringent. The better fit of the bi-factor model suggests that practitioners might reconsider the

tendency to use the testlet model over the bi-factor (Rijmen, 2010).

The study conducted by Whittaker et al. (2012) considered the accuracy of six model selection

methods ability to choose the correct IRT models for mixed format data. They found that the

proportion of polytomously scored to dichotomously scored items had an effect the accuracy of

model selection. In particular, the 2PL Item Response Theory (IRT) model combined with the

Generalized Partial Credit Model was correctly selected more often when the assessment consisted

of more polytomously scored items than dichotomously scored items. They also found that sample

size played a role in the accuracy of model selection.

These finding supported the findings in a preliminary study conducted by Montgomery and

Skorupski (2012) which also found that the proportion of polytomously scored items to dichoto-

mously scored items as well as sample size played a role in the rate of convergence in mixed

format data fit to combined unidimensional IRT models. This finding led the author to consider the

possibility of either dimensionally or simply data noise resulting from item format. If there is in

fact noise in the data resulting from mixed format alone, it could cause the models to fail to fit the

generating model in favor of more complex models that account for that noise. The findings by Cai

et al. (2011); DeMars (2006); Rijmen (2010) indicating that the bi-factor model showed promise

in fitting a variety of mixed format assessments and might be useful identifying any dimensionally

4



affect inherent in assessments of this type.

It is important to understand the underlying assumptions of Item Response theory models and

higher order models used to model mixed format assessments. The following sections will explain

some of the assumptions and complications with the unidimensional and hierarchical models.

1.2 IRT Model

Item response theory (IRT) models utilize a nonlinear, logistic model, based on the item dif-

ficulty, item discrimination, a parameter for guessing and an optional constant used in scaling

(De Ayala, 2009). One benefit of IRT is that the analysis is at the item level as opposed to Classical

Test Theory which is at the test score level. IRT links the item with the examinees ability whereas

Classical Test Theory places examinee ability on the total score metric. In IRT the examinees’ abil-

ity is placed on a scale from negative infinity to positive infinity allowing for a more accurate view

of examinee ability based on the probability of answer the item correctly given the item difficulty

and discrimination. The result is an ability score that is generalizable, a very desirable outcome.

Given the advantages of IRT models in large scale assessments it is reasonable that testing organi-

zations would first look to these models when scaling mixed format assessments. However, there

are some important assumptions that must be considered.

1.2.1 IRT Assumptions

Two important, and related, assumptions when considering unidimensional IRT models are that

the assessments are unidimensional and the items are locally independent. Unidimensionality is

defined as independence of item responses after controlling for the a single latent variable (Reise et

al., 2007). The assumption of unidimensionality simply means that the assessment measures only

one construct. It has been argued that a slight deviations from unidimensionality, provided that

the assessment is designed to assess the same general construct, continues to establish essential

unidimensionality (Strout, 1990).

5



Some have suggested that there might be enough dimensionality created by the difference in

item types (dichotomous/polytomous) in a mixed format assessment that the unidimensionality

assumption has been violated to the point that a multidimensional approach is a better choice for

scaling the assessment(Ercikan et al., 2005). A multidimensional IRT model allows the assessment

to consist of more than one dimension and provides a method for assigning an overall ability

score. It is possible that the introduction of constructed response items might introduce a level of

multidimensionality in the form of noise in the data from the different score values. How much

of this noise can be tolerated without violating the unidimensionality assumption is unclear. Too

much noise int he data could result from construct irrelevant variance related to the item format

alone or from item complexity. If true, that variance needs to be accounted for and factored out

before an overall ability score is assigned.

1.2.2 IRT Model Combinations

It is well known that the properties of IRT models provide useful and desirable features to

large-scale assessments. We count on the invariant property of IRT models that afford sample

independence of item and person parameters, provided the model fits the data. IRT models can

be used in combination with other IRT models, as was done in this study. The combined models

considered for this study were created by paring a 3PL dichotomously scored model with the

Generalized Partial Credit model (GPC) (Muraki, 1992).

There have been several recent studies evaluating the model fit and parameter recovery of

mixed format assessments using the GPC and one or more of the dichotomous models (Chon, Lee,

& Dunbar, 2010; Whittaker et al., 2012). The Chon et al. (2010) article consider item fit statics and

found that sample size and test length was related to the performance of item fit statistics. They also

found that they model type affected fits statics. In particular, the 3PL/GPC model demonstrated

slightly higher error rates. However, based on a previous study, the 3PL/GPC model combination

was selected for this study because it has been found to maintain a high convergence rate and has

also demonstrated low bias and low RMSE(Montgomery & Skorupski, 2012).
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1.2.3 Format Effect

There may also be a format effect that results from the variety of score values attributed to

each set of item types. This format affect may cause a combined IRT model to fail to fit the data.

Hence, it may turn out that a multidimensional model such as a hierarchical MIRT (mathematically

equivalent to a testlet model) or a bi-factor model would be a better choice in scaling assessments

with this type of complexity. If there is a format affect, not only is it important to find a model that

will accurately fit the data, but also a model that might be used to better explain the complexity.

Modeling the data is such a way as to highlight the format differences could provide a more com-

plete picture of examinee ability. Format effect will be discussed more completely in Section 2.3.1

of the literature review.

1.2.4 Dimensionality

There are a number of methods that can be used to determine whether or not an assessment is

unidimensional: inspection of the ratio of the fist and second eigenvalues, inspection of the residual

distribution after one factor has been extracted, examining scree plots, and a confirmatory factor

analysis (Reise et al., 2007). Another method that can be used is the bi-factor model. This model

deviated from a typical factor analysis by allowing each item to have a positive loading onto a

general trait in addition to allowing each item to load onto a group factor. More information about

how the bi-factor model can be used to establish dimensionality will be provided in the literature

review section.

So the question remains, in data from a mixed format assessment, will a multidimensional or

a unidimensional model provide the most reliable information about examinee’s performance on

each item and on the examinees’ overall ability? Since this study utilized simulate data only, the

issue of scoring differences based on item type was the criteria considered. This study sought to

answer that question by looking at three specific types of models: combined unidimensional model

(3PL/GPC), hierarchical MIRT, and the bi-factor model.
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1.3 Hierarchical Model

The hierarchical IRT model is one option for fitting data from mixed format assessments. The

hierarchical model is mathematically equivalent to the testlet model. Assuming a standard normal

distribution for the latent variables, the hierarchical MIRT model can be thought of as a restricted

bi-factor model in that the loading on the specific dimensions are proportional to the loadings on

the general dimension (Rijmen, 2010). Loadings in this case refers to the Item Response Theory

a-parameters rather than loadings a factor analysis.

The hierarchical model contains both a general dimension and a specific dimension, just like the

testlet and bi-factor models, but the items do not depend directly on the general dimension (Rijmen,

2010). In this model, item depend directly on the specific dimension which in term dependent

upon the general dimension. This model assumes that the specific dimensions are conditionally

independent and all associations between the specific dimensions are accounted for by the general

dimension.

1.4 Bi-factor Model

In the bi-factor model, each item is dependent upon both the specific dimension and the general

dimension (Holzinger & Swineford, 1937). The general dimension stands for the latent variable of

central interest such as polynomials in an algebra class. The K other dimensions take into account

additional dependencies such as format effect. In this model there are J items in which individual

items load onto the general dimension and Jk items, k = 1, . . . ,K, that load onto the K specific

dimensions.

The major difference between the bi-factor model and the hierarchical model is that, in the

hierarchical model, the specific dimension are explained by the general dimension. By comparison,

in the bi-factor model, the specific dimensions are not explained by the general dimension but by

the items clusters alone.
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1.5 Statement of the Problem

While the most commonly selected method of scaling mixed format assessment in large scale

testing programs most likely utilizes combined unidimensional IRTs such as a 2PL for the dichoto-

mous items and a GPC for the polytomous items, there are issues with these combined models.

Several studies have found that the ability to select the model that fits the data best, as well as the

ability to choose the correct model, is influenced by the IRT model selected, test length, sample

size, and the proportion of score points attributed to polytomous and dichotomous items (Chon et

al., 2010; Whittaker et al., 2012).

In addition to the ability to choose the best model to fit the data, there is also the question

of whether or not the format of the items, or just the scoring associated with the format, creates

dimensionality that is large enough to require a more complex model than the combined unidimen-

sional IRT models. However, is unidimensional data is generated and a more complex model fits

the data better, this may instead indicate that there is enough noise in mixed format data that is

unexplained.

1.6 Purpose of the Study

The purpose of this study is to compare the fit of three types of IRT models to unidimen-

sional data generated in mixed format: a combined unidimensional model, a bi-factor model and

a hierarchical IRT model. This study used Fortran to generate unidimensional data based on the

distributions of the parameters defined in the methods section. A Bayesian approach was then used

to fit the data to the three models.

The model that fits the data best, based on the fit indices defined in the methods section will

be considered the better fitting model. This study also considered the issue of dimensionality

through the use of a bi-factor model. This bi-factor model created specific dimensions based on

item format. The loading structure of both the bi-factor model and hierarchical MIRT model was

used to determine if there is important information that can be obtained about the data structure
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based on the item format.

1.7 Hypothesis

A unidimensional IRT model assumes an underlying unidimensional structure. A bi-factor

model allows for the possibility of multiple dimensions by allowing each items to load onto the

specific factors and to the specific factor. The hierarchical model also allows for the possibility

of multiple dimensions by allowing the items to load on the specific factors and for the specific

factors to load onto the general factor.

Literature has shown that model selection can be impacted by sample size and the proportion of

polytomously scored items to dichotomously score items (Whittaker et al., 2012). (Rijmen, 2010)

found that the bi-factor model, in particular, fit the data from mixed format assessments and should

be considered more frequently.

Based on the belief that dimensionality, or noise, is present in mixed format assessments even

when the data is generated as unidimensional, this study sought to determine whether or not there

was enough unexplained dimensionality or noise for the data to fail to fit its generating model. The

following hypothesis serve as the underlying premise under which data was evaluated.

Hypothesis. The bi-factor model will fit the unidimensional mixed format data better than the

unidimensional IRT model or the hierarchical model. Since the specific dimensions in the bi-factor

model are not accounted for by the general dimension, any format effect dimensionality will be

evident in the loading structure of the bi-factor model.

This study fit a unidimensional model, bi-factor model, and a hierarchical IRT model to several

variations of mixed format assessments. The two research questions examined in this study are:

1. How well does the unidimensional model recover item and examinee parameters across the

simulation conditions?

2. Which model fits the unidimensional data best: 3PL/GPC, bi-factor, or hierarchical MIRT?
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3. Is the model fit affected by the proportion of dichotomous to polytomous items or by the

level of discrimination?

1.8 Definitions of Variables

The definitions of terms used in this study are summarized as follows:

Item Response Theory

Item Response Theory (IRT) models the correspondence between the latent variables of ex-

aminee ability and item difficulty, discrimination, and guessability as predictors of observed

responses.

• 3PL Model

The 3PL model is an IRT model that uses the latent variables of examinee ability,

difficulty, discrimination and guessability as predictors of observed responses. The

3PL models dichotomous responses only.

• Generalized Partial Credit Model (GPCM)

The GPCM is an IRT model that uses the latent variables of examinee ability, diffi-

culty and discrimination as predictors of observed responses. This model is similar to

the 2PL with the exception that this model is designed to model the latent variables

from polytomous predictor variables. It divided the range of possible item scores into

categories and models the probability of one category over another as a function of

examinee ability.

Hierarchical Model

The hierarchical model is a multidimensional IRT model where each cluster of items, testlet,

represents a specific dimension. Each item depends on the specific domain but do not de-

pend directly upon the general dimension. The specific dimensions depend upon the general
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dimension. This means that all associations between the specific dimensions is accounted

for by the general dimension (Rijmen, 2010)

Bi-factor Model

The bi-factor model consists of more than one dimension: a general dimension and K other

specific dimensions. The general dimension represents the overall latent construct (e.g. Solv-

ing polynomials) where the specific dimensions represent clusters of attributes that make up

the general dimension (e.g. factoring, quadratic formula)(Rijmen, 2010). In this model items

depend on both the specific and general dimensions.

1.9 Summary and Significance

The motivation for this study is the increasing desire of test developers to build and accurately

score assessments that contain both dichotomously and polytomously scored item. Many testing

companies may opt to use a mixed unidimensional IRT model for the purpose of scoring mixed

format assessments. There has been concern in recent years that assessments that consist of both

dichotomous and polytomous items may be inherently multidimensional and thus require a multi-

dimensional approach to scaling.

If dimensionality is created by mixing item format, then this must be account for when scaling

the assessment. Fitting a unidimensional model to multi-dimensional data could result in examinee

score bias. Particulary in state assessments or other high stakes assessments this bias could result in

misclassification of examinees. The bi-factor and multidimensional models may provide a method

for accounting for the format affect and provide less bias in examinee scores.

Chapter Two will review the existing studies including two specific studies that informed this

research, a study by Rijmen (2010) which compared the Bi-factor, testlet and hierarchical multidi-

mensional IRT models and a study by Cai et al. (2011) that compared the Bi-factor model with a

mixed unidimensional IRT models. Additionally this section will provide background for mixed

format assessment and motivation for the simulation study approach incorporated by this study.
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Chapter Three defines model specifications for each of the models: 3PL/GPCM, Bi-factor,

Hierarchical MIRT. Next, this chapter details the simulation including defining the independent

variable and a discussion of the Bayesian estimation approach utilized in this project.

Chapter Four details the findings of the study including comparing the Bayesian model fit

criterion, monte carlo error and loading structure differences across models.

Finally, Chapter five will recap the study methodology and results as well as a discussion of

limitations and implications.
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Chapter 2

Literature Review

This literature review will discuss research on the different types item response theory (IRT)

models that are commonly used on educational assessments in general and on mixed format as-

sessments specifically. Issues of dimensionality in mixed format assessments and its affect on the

of IRT scaling models will be discussed. Several authors have noted the possibility of a format

affect resulting from assessments that consist of items that are scored both as polytomously and

dichotomously. Finally this literature review will discuss methods that can be used to check dimen-

sionality. The purpose of this literature review is to establish this study in the existing literature

and illustrate the gaps in the literature that this study seeks to fill.

2.1 IRT Models

There are a number of possible choices for scaling mixed format assessments including uni-

dimensional and multidimensional models. The combination could include the dichotomous re-

sponse models including the 1PL, 2PL or a 3PL model along with polytomous models such as the

partial credit model (PCM)(Masters, 1982), the generalized partial credit model (GPCM) (Muraki,

1992) or the graded response model (Samejima, 1997). These partial credit models can be viewed

as nested models (Chon et al., 2010). The 1PL/PCM is nested within the 2PL/GPCM which is

in turn nested within the 3pl/GPCM. When the slope parameters are constrained across items, the

GPCM reduces to the PCM (Chon et al., 2010). However, equal discrimination is unlikely partic-
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ularly in mixed format assessments (Sykes & Yen, 2000). The Rasch model, generalized as the

Partial Credit Model (Masters, 1982; Muraki, 1992), takes a cumulative approach to partial credit

scoring in that the examinee must answer the first part correctly in order to have the possibility

of receiving points on subsequent parts. In other words, if the examinee makes an error in the

first part of the calculation there is no partial credit awarded and the item is counted as incorrect.

This type of scoring is typically used in mastery assessments such as the registered nursing exams

(Julian, Wendt, Way, & Zara, 2001; O’Neill, Marks, & Reynolds, 2005).

In addition to the GPC or PCM models for scaling polytomous items, the Graded Response

Model (GRM) have also been studies for many years with several authors finding important dif-

ferences between the GRM and the GPCM. van der Ark (2005)found that ordering of the expected

latent trait was violated more often by the GRM than the GPCM. DeMars (2008) confirmed those

results but found that this result did not lead to differences in theta values matched on raw scores.

Kang et al. (2009)found that the GPCM fit data generated by the GRM better than the GRM, itself

particularly in small sample sizes. This issue of fitting generated data to the other models will not

be tested in this study, but may be considered in subsequent studies. What is clear is that several

authors have found that the GRM and the GPCM perform differently under certain criteria.

A simulation study comparing these two models in mixed format assessments found that the

GPC maintained a higher rate of convergence than the GRM (Montgomery & Skorupski, 2012).

Based on this finding and the difference cited above by other authors, this study will use the Gen-

eralized Partial Credit model (Muraki, 1992) for the polytomously scored items. The GPCM con-

siders the probability that an examinee selected a particular response over the previous one and

treats the response space as dichotomous.

2.1.1 Model Comparisons

Gibbons et al. (2007) conducted a simulation study to examine the GRM in unidimensional and

bi-factor form to multidimensional data. This study varied; test length, number of items, number

of dimensions, primary loadings, and domain loadings. The outcome results included; the standard
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deviation of the theta estimates, posterior standard deviations, log-likelihood, differences between

estimated and actual theta and the percentage change between unidimensional and bi-factor models

of these variables (Gibbons et al., 2007). The significant likelihood ratio test for the improvement

of model fit found that the bi-factor model fit the data better then the unidimensional graded re-

sponse model (Gibbons et al., 2007). Gibbons et al. (2007) concluded that the bi-factor model

provides an alternative to the traditional unidimensional IRT models when conditional dependence

is likely as is the case where tests consist of two or more methods of item presentation.

For the type of polytomous item considered in this study, the GPC scoring model seems to best

represent the scoring procedures that might be implemented in practice. Furthermore, since model

convergence has been an issue in previous studies and the GPC converges more consistently than

the GRM, the GPC model was selected.

2.2 IRT Assumptions

There are several assumption important Item Response Theory. The first assumption is unidi-

mensionality which holds that the observations on the manifest variables are a function of a single

continuous latent variable (De Ayala, 2009). In other words, the items measure the same construct.

In an ideal situation, the unidimensionality assumption can be thought of as analogous to the ho-

mogeneity of variance assumption in analysis variance (De Ayala, 2009). All the variance in item

responses can be accounted for by the latent dimension.

However, in data from real assessments there is likely to be some degree of violation to the

unidimensionality assumption. It is possible for a unidimensional model to sufficiently fit data

generated from two latent variables De Ayala (2009). A typical middle school math assessment

might contain as many as five subcategories ranging form data to geometry and yet it will usually

be considered and often scaled as a unidimensional assessment.

The second assumption for unidimensional IRT models is conditional independence. Con-

ditional independence simply means that the response to a question is determined solely by the

examinee’s location on the ability continuum and not by any other question on the assessment.
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(De Ayala, 2009). The testlet model is an example of a multidimensional model where the re-

sponse to one question is not expected to be independent of other responses in a particular testlet.

Even in unidimensional assessments this assumption can be violated. English Language Arts tests

often require examinees to answer a number of questions based on the same passage. It is also

possible in science or mathematics to have a stem followed by several response questions. In these

cases, the responses to one question may be closely related to responses to other questions in the

same section. When there is a substantial violation to the conditional independence assumption;

accuracy in item parameter estimation is affedted and the the total information may be overesti-

mated (De Ayala, 2009).

The third assumption is functional form, meaning that the date follow the function specified by

the model (De Ayala, 2009). In a unidimensional 1Pl model this is reflected in parallel item re-

sponse functions. While this assumption may not be perfectly met but as long as the item response

functions are parallel within sampling error, model-data fit is indicated (De Ayala, 2009).

On assessments that are composed of both dichotomous and polytomously scored items, mixed

format assessments, there may exist a type of format affect that violates one of more the above

IRT assumptions (Traub, 1993; Kim & Kolen, 2006). There are a several possible methods for

determining if there is a dimensionality in data including; the inspection of the ratio of the first to

the second eigenvalues, inspection of the distribution of the residuals after extracting one factor,

inspection of scree plots, and confirmatory factor analysis. Fitting the data to a bi-factor model is

another method that can be used to test for dimensionality (Reise et al., 2007).

2.3 Unidimensionality

One problem with the mixed format assessment is that is unlikely to meet the unidimensionality

assumption. Lee (2010) found that the Iowa Test of Basic Standards in Mathematics and the

Science assessment, both of which are mixed format in design, violated this unidimensionality

assumption. The failure to fits a unidimensional model may result from a type of formatting effect.

A formatting effect occurs then the multiple choice and constructed response items are said to
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measure different abilities and cause the presence of multidimensionality in the total test score

(Kim & Kolen, 2006). A number of authors have discussed the issue of dimensionality in mixed

format assessments (Lee, 2010; Kamata & Bauer, 2008; Kim & Kolen, 2006; Kim & Lee, 2006;

Kim, Walker, & McHale, 2010; Yao & Schwarz, 2006; Cao, 2008).

Cao (2008), in a study of a two construct assessment using the Graded Response Model as the

constructed response model, found that the multidimensional test structure showed more signif-

icant and systematic effects on the performance of the calibration of the data than other factors

in study. Kim et al. (2010) discussed the possibility of a multidimensionality effect on equating,

but did not find any difference associated with dimensionality. Yao and Schwarz (2006) stated

that the issue of dimensionality is important but that dimensionality based on format could not

be concluded from the factor analysis used in the study. The study went on to conclude that the

skills and knowledge assessed by the item contributes as much to the dimensionality effect as does

format (Yao & Schwarz, 2006). The fact that a mixed format assessment has two different item

types may not be enough to cause some examinees to perform differently on the two item types

but the complexity of the one of the item types might cause those items to measure different skills

and knowledge.

2.3.1 Format Effect

Traub (1993) found that there can be a format effect resulting from examinees processing items

differently. For example, if the polytomously score item is multiple select or matching that adds

a level of complexity over a multiple choice item. When a formatting effect occurs, the multiple

choice and constructed response items may measure different abilities and cause the presence

of multidimensionality in the test total score Kim and Kolen (2006). Neither of these studies,

or the studies listed in the previous section provided a comprehensive analysis of the issue of

dimensionality in mixed format assessment.

A. L. Zenisky and Sireci (2001) mentioned the possibility that innovative items may introduce

construct irrelevant variance. In other words, the level of complexity of the innovative item, as well
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as how the examinee interfaces with the item format, may cause that item to appear either easier,

or more difficult, than a multiple choice item measuring the same construct. Bennett et al. (1991)

was unable to concluded that multiple choice items substantially measure different constructs but

stated that the differences is the process used by the examinee might not be apparent in the factor

analytic process used in their study.

If there is not enough noise in the data to affect model fit, but the ability to accurately classify

examinees into pass/fail or similar categories is compromised, then the assessment results may be

called into question. Lee (2010) examined the performance of classification and accuracy indices

on mixed format assessments using real data. He did not find a difference in the performance of the

indices across the models. However, Lee (2010) stated that the results were not generalizable due

to the specific test examined in the study and the limited population sample. In addition, while Lee

(2010) noted that there was some level of dimensionality in the data, the impact of dimensionality

on classification was not examined.

2.3.2 Method of Examining Unidimensionality

There are several traditional methods used to establish dimensionality in data. Among them

are; the inspection of the ratio of the first to the second eigenvalues, inspection of the distribution of

the residuals after extracting one factor, inspection of scree plots, and confirmatory factor analysis.

Reise et al. (2007) argues that the bi-factor representation can complement those more traditional

methods. First they argue that the bi-factor analysis allows for the evaluation of the distortion that

may occur when unidimensional IRT models are it to multidimensional data. When the factor

loading and the item discriminations are different this may indicate dimensionality (Reise et al.,

2007). The second argument for the bi-factor model is that it allows researches to empirically

examine the possibility of forming subscores. In the data studied by Reise et al. (2007), they found

that once the variance due to the general construct was removed the items did not provide sufficient

information to scale individuals on sub-dimensions. While they did not find significant sub-scales

this method can be used to determine dimensionality.
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Thirdly, (Reise et al., 2007) argue that the bi-factor model provides an alternative to the non-

hierarchical multidimensional models for scaling individual differences. By conducting a bi-factor

analysis and partitioning the item response variance into general and group components the re-

searcher can make an informed decision between the two models. When dimensions are modestly

correlated (r = 1 to .4), the items will tend to have small loadings on the general factor and larger

loadings on the group factors indicating the use of a non-hierarchical MIRT model (Reise et al.,

2007). The bi-factor model representation will be a viable alternative when the dimensions are

moderately or highly correlate (r = .4 and above).

2.4 Mixed Format Assessments

Several studies have considered the use of combined item response theory (IRT) models, bi-

factor models, and second order IRT models to scale educational assessments (Cai et al., 2011;

DeMars, 2006; Reise et al., 2007; Rijmen, 2010; Whittaker et al., 2012). These studies served, in

part, as motivation for this study.

Cai et al. (2011) conducted a study that considered fitting several different item response theory

models including an extended bi-factor. In this extended bi-factor model some items are allowed to

load onto the general factor without loading onto one of the specific factors. The study conducted

two simulations and the analysis of item responses resulting from the 2000 Program for Interna-

tional Student Assessment (PISA) data. The first simulation was conducted to check the accuracy

of the proposed estimation methods. In this simulation, data from an extended bi-factor model in

two groups was generated (N1 = N2 = 1000). Group 1 consisted of n1 = 16 dichotomously scored

items all fit to the graded response model for two categories. The specific factors were defined as

4-item clusters. The latent variable in group 1 were assumed to have zero means and unit standard

deviations. In group 2 there were only 3-item clusters composed from n2 = 12 observed items. The

item parameters in group 2 were constrained to be equal across groups to allow for measurement

of model invariance.

The second simulation study conducted by Cai et al. (2011) modeled a complex assessment
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that consisted of multiple choice (MC), constructed response (CR) and complex multiple choice

items (CMC). Complex multiple choice item occur in clusters that make up mini testlests within a

larger test structure (Cai et al., 2011). In this simulation the hypothesized test consisted of 9 MC

items, 1 CMC item containing 2 questions and 5 CR items. The first 5 items formed one cluster

and the CR items forms a second cluster each loading on to a specific factor. The factors were

assumed to me normally distributed with zero means and unit variances. Data was simulated from

a bi-factor model with N = 3000. For each data set the authors fit two models; the first model

imposed equality constrains on the slopes of the CR items whereas the second model does not

impost the equality constraints.

Cai et al. (2011) ran 500 replications and did not have any issues with convergence. They

imposed a normal stochastic constraint on the lower asymptote parameters with a mean equal to

-1.1 and standard deviation equal to 50 to help stabilize estimation for the MC items. Due to the

imposed constraints, the guessing estimates centered around the true values (Cai et al., 2011). They

found slightly larger bias estimates in the slope and intercepts in the MC items than in the CMC or

CR items. Cai et al. (2011) state that this finding is consistent with the fact that unidimensional IRT

3-parameter model requires significantly larger N than the other items response models to achieve

stable estimations.

Since the extended bi-factor model fit the data well, the authors conclude that the generalized

modeling framework outlined and analyzed in the study opens up opportunities for full-information

bi-factor-based multidimensional differential item functioning analyses and bi-factor-based link-

ing/equating studies(Cai et al., 2011). The authors also stated that the proposed extended bi-factor

model can be applied to explore the dimensionality of psychological and educational measurement

instruments (Cai et al., 2011).

DeMars (2006) conducted a study to compare the ability, reliability, item difficulty and item

discrimination estimates for the bi-factor model, the testlet effects model, the testlets-as-polytomous-

items model and the independent items model. The testlet-as-polytomous models refers to model

that estimates a unidimensional model but treats items within a testlet as a single polytomous item
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(DeMars, 2006). This study consisted of both a simulation study and an examination of the models

using real data. The authors found that using a more complex model when a less complex model

was sufficient led to slightly higher RMSE but not to higher bias. Using a less complex model

than necessary also led to a higher RMSE and to negatively biased slopes (DeMars, 2006). In

general this study favored the use of the more parsimonious testlet-effects model over the bi-factor

model. However, the authors also stated that the speed at which the bi-factor model could be ran,

in comparison to the testlet-effects model, might be of benefit to practitioners. The additional pa-

rameters of the bi-factor model did not decrease the accuracy of the primary trait or slope estimates

(DeMars, 2006).

Rijmen (2010) compared the formal relations between the bi-factor, the testlet and a second-

order multidimensional IRT models as well as the use of real data to fit and compare the mod-

els. He showed mathematically that the testlet model and the second-order model were formally

equivalent and furthermore that they are restricted version of the bi-factor model. The conditional

dependencies between items on the same testlet were taken into account through the testlet-specific

dimensions (Rijmen, 2010). The real data was collected from an international English assessment

(N = 13,508) consisting of 20 reading comprehension items organized into four testlets. Rijmen

(2010) found that the proportionality restrictions imposed on the data by the second-order model

were too stringent. The better fit of the bi-factor model indicated that the use of the testlet model

without even considering the bi-factor model in educational testing may not be the best practice

(Rijmen, 2010).

Whittaker et al. (2012) conducted a simulation study to examine the performance of six model

selection criteria on mixed-format IRT models. This study found that model selection indices

more accurately distinguished between correct and incorrect models that were less parameterized;

PC, 1PL, or 1PL/PC models. The accuracy of model selection was not as accurate for the 2PL,

3PL, 2PL/GPC, or 3PL/GPC. The authors also found that the models fit indices selected the mixed

format (2PL/GPC) more accurately when the assessment consisted of more polytomously scored

items than dichotomously scored items in terms of score points. When the score points were
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more equally distributed are more came from dichotomously scored items sample size also became

important. For example, the larger the sample size the better the LRC (G2) model selection method

was at correctly selecting the 3PL/GPC over the 2PL/GPC.

2.5 Summary

The body of research on mixed format assessments is still being developed. Gibbons compared

the graded response model to a bi-factor model by with Likert scaled data rather than an education

assessment (Gibbons et al., 2007). While they found that the bi-factor model fit the data better,

how the models compare in data generated from a mixed format assessment was not addressed.

Cao (2008) did consider the graded response model within a mixed format construct but created

the data to represent an assessment that was built to more than on construct. Furthermore, the ratio

of multiple choice to constructed response items was restricted to 8:1 and the primary object of

the study was to consider the affects of this kind of data model on equating. (Whittaker et al.,

2012) looked at model selection procedures for mixed format assessments but did not consider the

bi-factor or second order model.

In the Cao (2008) article the authors found that the extended bi-factor model fit the data well.

But, this study did not compare different test configurations in fitting the 3PL or the extended bi-

factor model. The primary focus of this study was to examine how the extended bi-factor model

would be used in fitting data from assessments in which some of the items are clustered together

(Cao, 2008). Similarly, DeMars (2006) looked at a specific type of mixed format assessment in

which the items clustered together were treated as one polytomously score item. Rijmen (2010)

compared the bi-factor, testlet and second order models both empirically and with real testlet-

based data. While the empirical finding where useful in the foundations of this study, the use of

testlet-based data will not be used in this study.

From the research of literature discussed here, it remains unclear whether or not data resulting

from a unidimensional construct but presented in a mixed format assessment, is better modeled by

a unidimensional or multidimensional model. In a mixed format assessment, where the constructed
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response items are innovative, there may be complexity and construct irrelevant variance associated

with the precess required to answer the item in addition to possible dimensionality in the data itself.

This study will look at the complexity of the data resulting from mixed format assessments and

will unitize the study from this section as a framework for the methodology.
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Chapter 3

Methods

This chapter is organized into three sections. The first section will discuss the specific models

used in this study including the parameters estimated. The second section will discuss the simu-

lation study design with discussions of the variables included in the study. The final section will

discuss the evaluation and simulation criteria used to determine model fit.

3.1 Models

3.1.1 Combination 3PL/GPC Model

One method of fitting mixed format assessment data to an item response theory model (IRT),

would be to combine an dichotomous IRT model for the dichotomous items and polytomous IRT

model for the polytomous items. Selection of the unidimensional IRT model combination has

many possibilities. For the dichotomous item; the Rasch, 1PL, 2PL or 3PL models, could be

utilized. For the polytomously scored items, there are also a number of possibilities including; the

rating scale method, the partial credit model and its generalized counterpart or the graded response

model. This study used the 3PL model for the dichotomous items and the generalized partial credit

model for the polytomously scored items.

The choice of the 3PL model is based on the fact that the 3PL provides the largest amount of

information and consequently should fit the data. Furthermore, the 3PL model allows the possi-
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bility that an examinee, who is not proficient with the skills required to answer a particular item

correctly based on their understanding of the concept, can answer the item correctly by guessing

through the inclusion of a c-parameter that sets a lower asymptote for the model. Below is the 3PL

model equation where c represents the guessing parameter, a j represents the item discrimination

and is allowed to vary across items, b j represents the item difficult and θ represents the examinee’s

ability estimate.

P(yi = 1|θ ,a j,b j,c j) = c j +(1− c j)
ea j(θ−b j)

1− ea j(θ−b j)
(3.1.1)

The selection of the generalized partial credit model (GPCM) model is based on the findings

of a previous study which found that the combination of a 3PL with a GPCM provided a higher

rate of convergence and model fit with little parameter recovery bias (Montgomery & Skorupski,

2012). The GPCM is an extension of the Partial Credit Model (PCM). The PCM forces the slope

parameters to remain the same across all item whereas the GPCM allows the slope parameter to

vary across items (Muraki, 1992).

P(y j|θ) =
e∑

y j
h=0 a j(θ−b jh)

∑
M j
k=0 e∑

k
h=0 a j(θ−b jh)

(3.1.2)

The GPCM models the probability that an examinee responded to a particular response cat-

egory over the previous one. In other words, it provides the probability of scoring a 1 over the

probability of a 0, or of scoring a 2 over a 1. This model dichotomizes the probability of answering

the item correctly to a comparison between categories. In the model below, M is the number of

response categories and b jh = b j−τh , is the threshold component used to identify the categories.

3.1.2 Second Order IRT Model

The second order multidimensional IRT model is formally equivalent to the testlet model (Rij-

men, 2010). This model contains a specific dimension for each testlet and a general dimension for

the overall assessment. Unlike the testlet model, and the bi-factor model discussed below, items
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do not depend directly on the general dimension (Rijmen, 2010). Rather, each item depends on a

specific parameter which is dependent upon the general dimension.

Rijmen (2010) showed that given the second-order equation below

g(π j) = α jkαkgθg +α jkξk +β j (3.1.3)

it follows that:

g(π j) = α jkαkgθg +α jk
αkg

αkg
ξk +β j

= α jkαkg(θg +
ξk

αkg
)+β j

= α
∗
jg(θg +C∗k ξk)+β j (3.1.4)

Where α∗jg = α jkαkg and C∗k ξk =
1

αkg
. Thus equation 3.1.4 is equivalent to the testlet equation,

without a guessing parameter, as written by (Rijmen, 2010).

Second order factors were first described by Thurstone (1947). Factors obtained from the test

item correlations are called first-order factors (Thurstone, 1947). Second order factors then, are

factors obtained from the correlation of the first order factors. In the case of the second order

multidimensional IRT model that is exactly what is being described. In this model, the general

ability is obtained from the correlation of the specific abilities. Or, as it is often stated, the gen-

eral ability explains the variance in the specific abilities which in turn explain the variance of the

item responses. The concept of a single general second-order factor was born from controversies

surrounding the Spearman general intellective factor (Thurstone, 1947).

As an educational example, suppose there is a 10-item mathematics test assessing solving

polynomials. This test is subdivided into three specific content domains (e.g. solving 2-degree

polynomial, solving 3-degree polynomials, and graphing) and one primary domain (e.g. solving

polynomials). The second order model states that answering an item correctly depends on the gen-
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eral ability to solve polynomials as a whole which in turn explains the ability to respond correctly

to the individual content domains. In this study, the individual domains consisted of item format.

Dichotomous and polytomous items each were forced to load onto a specific ability construct rep-

resenting the item format type then the specific ability constructs loaded onto a general ability

construct.

In the second order model, the position of the a-parameters for the primary and specific di-

mensions can be illustrated as the loading of the items on the specific construct and the loading of

the specific construct on the general construct. In the diagram below. y1 and y2 refer to the set of

dichotomously scored and set of polytomously scored items respectively.

Figure 3.1: Diagram of Second-Order Model with 1-dichotomous (θ1) and 1-polytomous specific
domain (θ2)

The model equations are as follows, let π j = P(y j(k) = Y |θg,θk), then the linear function of

the latent variables, in this model and the bi-factor model, can be written as the link function g(·),

where the response probabilities (π j) are linked to the predictor of latent variables with the logit

link, g(π j) = ln π j
(1−π j)

.

g(π j) = a jkθk +β j (3.1.5)

θk = akgθg +ξk (3.1.6)

Combining these equations yields
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g(π j) = a jkakgθg +a jkξk +β j (3.1.7)

Where akg indicates how much of the specific dimension θk is explained by the general dimen-

sion θg, and ξk is the unique contribution from θk. It can be assumed that all dependencies between

the specific dimensions are accounted for in the general dimension and consequently that all ξk are

statistically independent from each other and from the general dimension (Rijmen, 2010).

In this study, the θk dimensions represented item format. In this way, the assessment was

assumed to be unidimensional on the general dimension, but the specific dimensions allowed the

model to account for item fit differences between the dichotomously and polytomously scored

items.

3.1.3 Bi-Factor Model

The final model considered is the bi-factor model. The bi-factor method was introduced in

the (Preliminary Reports on Spearman-Holzinger Unitary Trait Study, 1930-1936). Holzinger and

Swineford (1937) illustrated how the bi-factor method could be modified for analysis of variables

that are more complex that originally considered in the preliminary report. The latter document is

the first reference of this methodology identified as "bi-factor." The authors describe the theoretical

framework as consisting of a general factor that runs through all variables with specific factors in

each variable (Holzinger & Swineford, 1937). The general procedure for utilizing this analysis is

to (1) resort the data so that items that are more highly correlated are clustered into small groups,

(2) remove the general factor from each of the groups, and (3) examine the group factors. This

process is repeated until the group factors show no greater complexity. At this point, the final

factor pattern may be established (Holzinger & Swineford, 1937).

The bi-factor model is a theoretical framework where a general factor is assumed to run through

all variables but in addition, a number of uncorrelated group factors is included in the model

(Holzinger & Swineford, 1937). The lack of correlation between the group factors is the difference
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between the second-order model and the bi-factor model. In the bi-factor model the group factors

are not correlated with each other or with the general factor.

As an example, using the same hypothesized 10-item mathematics test assessing solving poly-

nomials above, the test is subdivided into three specific content domains (e.g. solving 2-degree

polynomial, solving 3-degree polynomials, and graphing) and one primary domain (e.g. poly-

nomials). In the bi-factor model, each item loads onto the primary ability domain and onto the

specific content domains. But, unlike the second-order structure, the specific and general domains

are not directly related in the model. In this study, the group factors consisted of item format rather

than content.

The directed acyclic graph of the bi-factor model is displayed in Figure 3.2 below.

Figure 3.2: Diagram of Bi-Factor Model with 1-dichotomous (θ1) and 1-polytomous specific do-
main (θ2)

In the bi-factor model, the position of the a-parameters for the primary and specific dimensions

can be illustrated in a simple structure matrix, Sb, as follows
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Sb =



a1,1 a1,2 0

a2,1 a2,2 0

a3,1 a3,2 0

a4,1 a4,2 0

a5,1 a5,2 0

a6,1 0 a6,3

a7,1 0 a7,3

a8,1 0 a8,3

a9,1 0 a9,3

a10,1 0 a10,3



(3.1.8)

In this structure matrix the primary domain items have a nonzero value on the discrimination

parameter, a j1 6= 0, and clusters of items that belong to the defined specific ability dimension have

nonzero value on the item discrimination, e.g. (ai2,ai2) 6= 0. Generalizing this structure, a test

with n items has clearly defined D - 1 orthogonal dimension of specific content domains and one

dimension that represent the primary ability.

Bi-factor structure

Y = λyΘ+ ε

Where Y =

[
yik

]
λy = loading structure matrix Θ =


θg1

θs1

θs2

 ε = item error

In the case of binary data, y jk denotes the response on the jth item, j = 1, . . . ,J, in the kth

testlet, k = 1, . . . ,K. There are Jk items within each testlet therefore,
K

∑
k=1

Jk = J. The responses,

conditional on the testlet specific latent variable θk and the general latent variable θg, are assumed
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to be statistically independent (Rijmen, 2010),

P(y|θ) =
J

∏
j=1

(y j(k)|θg,θk) (3.1.9)

where θ = (θg,θ1, . . .θk, . . .θK). Figure 3.2 illustrates the typical model where the latent vari-

ables are uncorrelated. The latent variables are also typically considered to be normally distributed.

The linear logit function g(·) represents the relationship between the latent variables and the prob-

ability of a correct response, π j = P(yik = Y |θg,θk), as in the previous model, can be written

g(π j) = a jgθg +a jkθk +β j (3.1.10)

where β j is the intercept parameter and a jg and a jk are the slopes of item j on the general

and specific latent variable (Rijmen, 2010). As in the case of the bi-factor model, this study

considered the specific dimensions as representing item format and the general dimension as the

overall attribute to be measured.

3.2 Scoring Procedure

3.2.1 Bayesian Estimation Method

In this study both dichotomously (0/1) and two levels of polytomously (0/1/2,0/1/2/3/4) scored

items were examined. Let Y be the matrix of item responses such that the response pattern array

for examinee i on item j is one row in the matrix Y = [yi j]Nxn , for N number of examinees and n

number of items. Where the indicator function for the conditional category response probability

P(yi j(k) = Y |θg,θk), is

yi j =


1 if y∗i j ≥ τ j

0 if y∗i j < τ j

(3.2.1)

Here, τ j represents the threshold for item j. In the dichotomous case, τi = 1. Note that the
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latent response variable can be written as

y∗i j = vi +λiξ + εi (3.2.2)

where vi is the intercept, λi is the factor loading, ξ is the latent factor score for a particular

person, and the residual for item i is εi.

For all three models, assuming conditional local item independence on item and person param-

eters, the conditional joint probability function of item responses, Y , is

f (yi j|θg,θk) =
k j

∏
k=0

P(yi j = k|θg,θk)
yi j (3.2.3)

Note that if yi j is a missing value then the indicator function will be zero. The general factor

and the specific dimensions are assumed to be jointly normally distributed and mutually orthogonal

(Cai et al., 2011). Theta is typically considered to have a multivariate normal distribution with a

zero mean and identity covariance matrix. The orthogonality and normality of these latent variables

reduces the density function to a product as illustrated in 3.2.4 (Cai et al., 2011).

f (θg,θk) = f (θg) f (θk), for k = 1, . . . ,K (3.2.4)

The vector of observed item responses for respondent i is yi (3.2.1). For the purposes of sim-

plicity, we can consider all of the unknown parameters together and refer to them collectively as β .

Thus the marginal likelihood of β , L(β |yi) = fβ (yi), is defined as a function of unknown parame-

ters β . Since the respondents are assumed independent, the marginal log-likelihood is a sum over

respondents
N

∑
n=1

L(β |yi). Then the conditional distribution of the observed responses in Equation

3.2.3 depends on β . The distribution of latent variable in Equation 3.2.4 does not depend on β

because this is not a multi-group design where the means and variances are free.
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3.2.2 Markov Chain Monte Carlo with Gibbs Sampling

Markov Chain Monte Carlo (MCMC) is an estimation method that constructs a set of random

draws, for each parameter being estimated, from the posterior distribution. This process involves

choosing a distribution that can be easily sampled from and then either accepting or rejecting the

draws based on the likelihood that they represent the actual posterior distribution. Essentially, the

prior distribution of draws multiplied by the likelihood function equals the posterior. Only the

draws that make sense are kept. The benefit of this Bayesian approach is that examinees with

identical response patterns will not get identical points which accounts for the fact that no two

individuals are ever truly identical in their responses.

By defining a Markov chain M0,M1,M2, . . . with states Mk = (θ k,ξ k), observations are sim-

ulated from the Markov chain. The distribution of Mk = (θ k,ξ k) will converge to the chain’s

stationary distribution π(θ ,ξ ). The Markov chain should be defined in such a way that π(θ ,ξ ) is

the posterior of p(θ ,ξ |U).

The MCMC transition kernel defines the probability of moving to a new draw given the current

draw. This is used to determine whether or not to retain each new random draw from the posterior.

t[(θ 0,ξ 0),(θ 1,ξ 1)] = P[Mk+1 = (θ 1,ξ 1)|Mk = (θ 0,ξ 0)] (3.2.5)

Provided that the transition kernel is defined so that π(θ ,ξ ) = p(θ ,ξ |U), after throwing away

the first K observations, the remaining observations are treated as draws from the posterior.

(θ 1,ξ 1) = MK+1,(θ
2,ξ 2) = MK+2, . . . ,(θ

L,ξ L) = MK+L

This process is called the Gibbs sampling procedure. It is defined iteratively as:

• Draw θ k ∼ p(θ |U,ξ k−1)

• Draw ξ k ∼ p(ξ |U,θ k)

• repeat the process.
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This study used OpenBugs (Thomas, O’Hara, Ligges, & Sturtz, 2006) to perform the MCMC

with Gibbs sampling procedure.

3.3 Simulation Study Design

For this study data was generated as unidimensional in mixed format form consisting of both

dichotomously and polytomously scored items. The programming language FORTRAN was used

to generate the data based on the 3PL IRT and GPCM equations. A separate data set was generated

for each of the five test types listed in Table 3.1. The polytomous items were generated at two

levels (0/1/2) and (0/1/2/3/4). The generated data was fit to the 3PL/GPC, second-order, and bi-

factor models using a Bayesian framework with OpenBUGS (Thomas et al., 2006). RMSE and

Bias was used to examine parameter recovery for the unidimensional model.

Table 3.1: Simulation conditions for the 3PL/GPCM, Second Order Model, and Bi-factor model

N Test Lengths Score points

Total
Length

Dichotomous Polytomous
(2-pts)

Polytomous
(4-pts)

2000 40 36 2 2 48
2000 40 10 15 15 100
2000 40 20 10 10 80
2000 60 45 10 5 85
2000 75 69 3 3 87

Note: N: Number of examinees

3.3.1 Independent Variables

The independent variables included the number of dichotomously scored items to the number

of polytomously score items in the form of 5 test types, five models combinations and two levels

of discrimination. Varying the proportion of dichotomously scored to polytomously scored items

was used to determine if there are some combinations of items from with a format affect creates

the appearance of multidimensional results out of unidimensional data. The model combinations
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are chosen to determine if varying the number of items and score point combinations of the poly-

tomously items impacts the model fit.

3.3.1.1 Item Type and Test length

The dichotomous items were scored in the traditional way; 0 for incorrect and 1 for correct.

Multiple choice questions with one correct answer and true/false questions are considered dichoto-

mous or binary. The polytomously scored items were scored on two values; 2 points and 4 points.

The mixed format assessments were constructed with the dichotomous items combined with the

polytomously scored items scored as either 2 points and 4 points. The true item parameters, ex-

aminee parameter and item responses were generated from the combination of equation 3.1.1 and

equation 3.1.2 for the unidimensional model as well as from equations 3.1.7 and 3.1.10 for the

second order and bi-factor models, respectively.

There were two criteria selected to define the item combinations; 1) holding the number of

items constant (40 items) and 2) allowing the number of items to vary to produces a variety of

score points. The 40 items test range in score points from 48 points to 100 points with the former

coming from mostly dichotomously scored items and the later from mostly polytomously score

items. The other two tests contained 60 and 75 items with score points of 85 and 87, respectively.

The number of examinees was fixed at 2000. This sample size will be large enough for param-

eter estimation while small enough to run in a reasonable about of time given the use of a Monte

Carlo estimation process for this simulation. Table 3.1 summarizes the test length and score point

simulation conditions of the study. There are 5 test types(test length/score point) X 3 fitted models

X 2 discrimination levels = 30 simulation conditions considered in this study. The 3 fitted models

are: the 3PL/GPCM, a bi-factor with 2 specific constructs, and a 2nd order model with 2 specific

constructs.
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3.3.1.2 Item and Examinee Characteristics

The examinee θ vector was randomly drawn from a multivariate normal distribution with a

zero mean vector and a variance-covariance matrix equal to the identity matrix, such that θ ∼

MV N(0, I). The θ values were chosen between -3 to 3, on the ability spectrum of the general and

specific domains. The α-parameters are bounded by zero and distributed as log-normal with a zero

mean and uniform variance U(0.2,2.0).

For this study the discrimination parameter for the primary dimension ranged from (0.75, 1.25).

Item discriminations on the specific domains were allowed to be equal to and greater than the pri-

mary domain for the second order and bi-factor models. One set of item combinations resulted

from the a-parameter ranging from (0.75,1.25) for both item types. A second set of item combina-

tions resulted from allowing the a-parameter on the polytomous items ranging from (1.25,1.75).

Table 3.2 summarizes the discrimination parameters for the second order and bi-factor models in

terms of their primary and secondary dimensions.

Table 3.2: Discrimination parameters

Primary dimension Secondary Dimension
a j1 ∼U (0.75,1.25) a j2 ∼U (0.75,1.25)

a j3 ∼U (1.25,1.75)

Examinee and item parameters were randomly drawn from the following distributions using

FORTRAN. The ability parameter for all dimensions were randomly drawn from a MVN distribu-

tion with each examinee having a minimum of one latent ability for the combined unidimensional

model and a maximum of three; one for the primary and as many as two for the specific content

domains in the second order and bi-factor models. The 3PL/GPCM incorporated difficulty values

drawn from b∼ N(0,1) and guessing parameters values drawn from c∼U (0.0,0.3).

Threshold values were drawn from a ∼ N(0,1) such that the sum of threshold values is zero.

For example, in the case where the possible scores are (0/1/2), there are three threshold values

β ji,β j2,β j3. Each of these values established the transition between categories; 0 versus {1,2},

{0,1} versus 2, and {0,1,2} versus greater than 2, which has a probability of 1. The probability
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of 1 is obtained by definition, when β j1 = 0 (Muraki, 1992). The other threshold values are ran-

domly drawn and added to the b-values. FORTRAN was used to generate the threshold values and

calculate the sum of b with each threshold for each item. The threshold values along with the a,b,

and c values were recorded and retained.

3.4 Checking Model Convergence

This study focused on model fit and rate of convergence over parameter recovery. Based on the

recommendation of Gelman and Shirley (2011), the R̂ or the potential scale reduction factor was

examined to determine if all parameters converged. This factor takes the mixture variance divided

by the average within-chain variance, and computes the square root of the ratio. The rational

behind this statistic is that at convergence the chains will have mixed. If the distribution between

the within chains and between chains are identical then R̂ should be equal to 1. As a rule of thumb,

R̂ values less than 1.2 or considered an indication the parameters have converged (Gelman, 1996;

de la Torre & Hong, 2010).

After convergence was established for each item combination, based on the R̂ values, the monte

carlo error was calculated to verify that the chain extended long enough after convergence was

established. The monte carlo error provided by OpenBUGS, when compared to the standard devi-

ation of the parameter estimate, should be 0.05 or less. Smaller values indicate that the estimate

contains less error.

3.4.0.3 Parameter Recovery

A comparison of the parameters generated from the unidimensional model was compared to

the parameters estimated with OpenBugs. This was only done with the unidimensional model to

verify that the parameters defined by the simulation were recovered with little error or bias. To

evaluate each of the parameters; a,b,c, and θ , the Root Mean Square Error (RMSE) and bias was

calculated to establish the amount of error present in parameter recovery. Below is the RMSE

calculation for theta. By replacing theta with each of the other parameters, the following formula
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can extended to the remaining parameters.

RMSEθ =

√√√√√ N

∑
i=1

R

∑
i=1

(θ̂ir−θi)
2

NR
(3.4.1)

By replacing theta with each of the other parameters of interest, the bias formula below was

altered to establish bias for each of the other parameters.

BIASθ =

N

∑
i=1

R

∑
i=1

(θ̂ir−θi)

NR
(3.4.2)

The standard deviation of estimates over replications provided a standard error of the estimate.

The following formula estimates the sampling error associated with theta across replications.

SDθ =

√√√√√ N

∑
i=1

R

∑
i=1

(θ̂ir− θ̂ i)
2

NR
(3.4.3)

The relationship between these parameters can be expressed, as the total error variance equal

to the random error plus systematic error as follows:

RMSE2 = SD2 +BIAS2 (3.4.4)

3.4.1 Bayesian Fit

Model convergence was examined through three commonly used methods for establishing

model fit and complexity; Akaike’s Information Criterion (AIC),Bayesian information criterion

(BIC) and the deviance information Criterion (DIC) (Akaike, 1974; Gelman, 2006; Gelman &

Shirley, 2011; Rijmen, 2010; Spiegelhalter, Best, Carlin, & Van der Linde, 1998; Spiegelhalter,

Best, Carlin, & Van Der Linde, 2002; Schwarz et al., 1978). Comparisons among these indices

can be useful in evaluating the relative effectiveness of model selection (Li, Cohen, Kim, & Cho,

39



2009).

The Akaike’s Information Criterion (AIC), first identified by Akaike (1974), incorporates a

penalty function on model complexity. In the equation below D is the posterior mean of the de-

viance in the MCMC estimation and 2PD serves as a penalty for overparameterization (Li et al.,

2009). PD is the number of parameters estimated calculate by OpenBUGS.

AIC = D+2PD (3.4.5)

The next recommended method for evaluation of the simulation model fit is the Bayesian in-

formational criteria (BIC) (Schwarz et al., 1978). This model penalizes overparameterization with

the use of the logarithm of the sample size multiplied by the number of parameters estimated. BIC

tends to chose models that are simpler, have fewer parameters, than the AIC.

BIC = D+PD logN (3.4.6)

The final method that was used to compare model fit was the deviance information criterion

(DIC) (Spiegelhalter et al., 1998).

DIC = D(θ)+2PD (3.4.7)

In this equation, D(θ), is the posterior mean of the deviance. The DIC was designed to be a

more generalized version of the AIC and suitable for hierarchical models (Li et al., 2009). Vales

for all there criterion were calculated and compared for each item combination and model type.
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Chapter 4

Results

In this chapter the results from the simulation study comparing data fit to three IRT models;

3PL/GPCM, bi-factor and hierarchical MIRT model, is discussed. Model fit, in terms of AIC, BIC,

and DIC across models is compared. Parameter recovery from the 3PL/GPCM to the generated

data will be discussed with respect to root mean square error (RMSE) and bias. Parameter recov-

ery in this sense, will only be discussed for the 3PL/GPCM calibration because the the parameters

estimated from the bi-factor and hierarchical MIRT models are on a different scale than than the

unidimensional model making direct comparison inappropriate . Unidimensional parameter recov-

ery RMSE and Bias is displayed in Table 4.1.

Once convergence for each model was established, R̂ values were less than 1.2, Monte Carlo

error estimates illustrating efficiency of the estimates after convergence were collected. Details

of MCMC error by parameter within model is displayed in Appendix F, Tables F1, F2, and F3.

Bayesian criterion for model fit, pD, DIC, AIC and BIC, by item combination and model type is

compared in Table 4.2.

The loading structure of each item onto the general and specific dimensions for both the bi-

factor and hierarchical MIRT models is displayed in apprentices G and H, respectively. In the

hierarchical MIRT model, lambda represents the loading of the specific abilities onto the general

ability. Consequently, there are only two lambda values for each hierarchical MIRT model.
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4.1 Computing Procedures

4.1.1 FORTRAN

To begin the discussion, the computing procedures utilized in the study are detailed. Data sets

were generated with FORTRAN 95 using the Integrated Development Environment; Plato. Plato

is the Silverfrost text editor available bundled with FTN95 or available as a stand alone editor.

Plato was used as a stand alone editor for this project. FORTRAN code was written and compiled

in this text editor both to generate data and to analyze the results. For each item combination 50

data sets were generated in two versions; one with the same a-parameters for both dichotomous

and polytomous items and one with higher a-parameters for the polytomous items. This resulted

in 500 unidimensional data sets. In addition to the data sets, the FORTRAN code also provided

output for the true parameter values for a, b, c, and theta for the 3PL model and a, b, threshhold,

and theta for the general partial credit model (GPCM). The true parameter values were used to

compute the RMSE and bias for these parameters.

FORTRAN code was then used to write the OpenBUGS script and batch files used to fit the

models in OpenBUGS. Both OpenBUGS 3.2.1 and OpenBUGS 3.2.2 were used to fit the data

depending on which version was loaded on the individual computers. Each OpenBUGS script was

sent directly to the OpenBUGS executable program with a batch file. As defined by the script file,

OpenBUGS outputs a log file and a set of coda files for each run. The coda files can then be read

by R2OpenBUGS to check convergence (Sturtz, Gleman, & Ligges, 2005). Do to the memory

requirements of the coda files, they were not retained after convergence was verified. The log files

contained the parameter estimates, standard error, MCMC error as well as the deviance statistics

required to compare the models.

Finally, FORTRAN code was used to calculate the BIAS and RMSE for each of the estimated

parameters as compared to the true parameter values in the 3PL/GPC model. The final calculation

was based on the average across the 50 data runs for each item combination within each model

type. RMSE and BIAS were not calculated for the parameters estimated by the bi-factor or the
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hierarchical MIRT model. Since the bi-factor and hierarchical MIRT model parameters are on

a different scale, it is not appropriate to make direct comparisons of parameter recovery. In the

bi-factor and the hierarchical MIRT model, the goal was to compare the model fit within this new

scale rather than to recover original values.

4.1.2 Parallel Computing

The overall study examined a total of 30 simulation conditions. For each simulation condition,

they were two parallel Markov chains observed. In the 3PL/GPC model, over all item conditions,

the total number of MCMC iterations were 5,000 with the number of discarded burn-in iterations

set at 1,000. Each run in the analysis of 50 replications took on average, approximately eight hours.

These analysis were conducted on the the quantitative statistics WinStat machines at the Univer-

sity of Kansas. Since the WinStat machines are intended for short-term interactive sessions with

statistical programs, and were are not intended for long running computations, another computer

system was used for the bi-factor and the second-order models.

Because of the computing time requirement of the Bayesian MCMC calibration in OpenBUGS,

as seen with the unidimensional models, the bi-factor and hierarchial MIRT models were fit on the

HPC cluster maintained by the Center for Research Methods and Data Analysis at the University

of Kansas. This is a Rocks Cluster of Linux compute nodes running on Dell Power Edge 2950.

Servers that have 16GB RAM and dual quad-core Intel Xeon processors. Because of the added

complexity of the higher dimensional models, each of the of the runs contained a total number of

33,000 MCMC iterations of which 15,000 were discarded during burnin. While this chain length

is much larger than the required by the unidimensional models, these lengths are consisted with

other studies using OpenBUGS to fit multidimensional models (Kang, 2006; Kang & Cohen, 2007;

Md Desa, 2012). Item combinations two and three, containing 10 dichotomous/30 polytomous and

20 dichotomous/20 polytomous items respectively, took five to six days to compile on the cluster

machines. Using the cluster computers allowed all 50 runs to finish in less time than it would

have taken to complete one run on a PC machine. The time requirement proved to be the biggest
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obstacle to study completion.

4.2 Model Convergence

A subset of runs from each model, within each item combinations, was evaluated to assure

convergence. Once the length of the Monte Carlo chains required to ensure convergence was

established, all data sets within that item combinations were calibrated to those chain lengths that

ensured convergence. At least three thousand chains were calculated after the convergence criteria

was met.

To verify the accuracy in the posterior estimates, the MCMC error was evaluated. The MCMC

error is provided in the OpenBUGS log file. The MCMC error depends on the true variance of the

posterior distribution, the number of MCMC iterations and autocorrelation in the MCMC sample.

By dividing the MCMC error by the standard deviation, for each parameter estimate, the efficiency

of the estimates after convergence were evaluated. Although the R̂ values were less than 1.2, which

is the rule of thumb for convergence, some models demonstrated slightly more error in the retained

MCMC chains overall. As a rule of thumb, the simulation should run until the MCMC error is

less than five percent of the sample standard deviation (Bugs Tutorial, 2012; Columbia University,

2012). In particular, the unidimensional models as a group displayed errors closer to 0.05 than

desired. On closer examination, of each model, there were 3-4 runs that contained higher error

values than other runs of the same model. Those runs were not removed and are included in the

overall error rates reported in Appendix F.

The smaller the value of the error, the better the estimate. Appendix F contains table of MCMC

error by parameter within model type and across item combinations. Order of calculation is impor-

tant. The quotient of error to standard deviation for each model must be calculated first and then

averaged across the replications. This value will not be the same as the quotient of the averages of

the individual vales. (See Appendix E for proof of this fact.) It is important that the quotient be

calculated at each run and then averaged over the runs so that the error is not underestimated. It

would be better to overestimate the error and run the chains longer.
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4.2.1 Parameter Recovery

Item combinations where there are equal numbers of dichotomous and polytomous items or

where there are more polytomous items than dichotomous items had higher RMSE and BIAS in

the a− and b− parameters, shown in Table 4.1. Item combination two containing 10 dichotomous

and 30 polytomous items produced the highest level of bias and RMSE in the a- and b- parameters.

These values were calculated using all of the runs for this model. But some of the run for this model

had higher error level in the retained parameters. If those runs were removed the overall values

would be closer to the other RMSE and bias for other item combinations. The theta parameters

produced bias values close to zero across all item combinations. In general, item combinations with

higher a-parameters for the polytomous items produced higher RMSE and bias when compared to

the same item combinations with the equal a-parameter for both dichotomous and polytomous

items.

Table 4.1: Unidimensional Parameter Recovery

Combination RMSE BIAS
A B C THETA A B C THETA

36/2/2 0.3274 0.7265 0.0817 0.4309 0.0235 0.2163 0.0437 -0.0092
0.5244 0.7765 0.0878 0.4342 0.0479 0.1376 0.0537 -0.0070

10/15/15 0.6792 1.4355 0.1194 0.8068 -0.5400 0.8377 0.0754 -0.0844
1.0265 1.5557 0.1165 0.8422 -0.8742 0.9523 0.0744 -0.0947

20/10/10 0.6478 1.1557 0.1044 0.5708 -0.2157 0.4090 0.0764 -0.0505
1.0092 1.2779 0.1058 0.5828 -0.3487 0.4593 0.0780 -0.0556

45/10/5 0.4795 1.0900 0.1023 0.4120 0.0483 0.3321 0.0713 -0.0412
0.6463 1.1865 0.1037 0.4164 -0.0213 0.3404 0.0726 -0.0439

69/3/3 0.3313 0.0791 0.0859 0.0442 0.5567 0.3461 0.0759 -0.0106
0.4294 0.6095 0.0788 0.3483 0.0658 0.0859 0.0439 -0.0140

Note: For each item combination, row one represents the same a-value for all items.
Row two represents item combinations with higher a-values for polytomous items.

4.3 Bayesian Criteria Comparison

From the table below, using the DIC criteria for model fit, the bi-factor model fits the data better

than either the unidimensional model or the hierarchical MIRT model. This finding is consistent
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with other researchers whose studies have also selected the bi-factor model over other models when

fitting data in mixed format assessments. This pattern is consistent across all data sets.

The hierarchical MIRT model did not fit the data at all in model two or three where the there

are more polytomous items than dichotomous and equal numbers of dichotomous and polytomous

items respectively. The output by OpenBUGS found a negative pD value even when the length of

the chain was increased to 40000. It should be noted that the initial 33000 chain length took 8 days

for one run to complete and resulted in a negative pD. The longer chain may take several weeks

and may or may not achieve convergence with a positive pD value. A negative pD value means

that the deviance of posterior means is larger than the posterior mean of deviances. According to

WinBUGS documentation, this can happen when when the posterior distribution for a parameter is

non-normal or bimodal. In that case, the posterior mean is a very poor summary statistic and gives

a very large deviance.

Table 4.2: Bayesian Fit

Combination Equal A Higher A
3PL/GPC Hierarchical bi-factor 3PL/GPC Hierarchical bi-factor

36/2/2 DIC 101164.4 100815 98133.2 101146 100792.0 99991.0
AIC 102968.7 102379 101759.4 102936.4 102479.35 101532.9
BIC 113102.2 111067 111023.9 112979.5 111930.74 110170.3

10/15/15 DIC 166031.6 * 164581 150610 * 148970
AIC 167510.5 * 166139.4 152131.2 * 150513.8
BIC 175764.5 * 174944.6 160653.7 * 159205.8

20/10/10 DIC 134158 * 132816.7 123044.9 * 121576
AIC 135929.9 * 134598.7 124855.7 * 123358.3
BIC 145887.9 * 144630.1 134973.3 * 133373.5

45/10/5 DIC 159334 158696.6 158020.8 149980 149357.9 148688.3
AIC 161282.8 160487.1 159895.7 151942.4 151182.7 150610.8
BIC 172173.2 170435.9 170431.9 162871 161378.1 161516.3

69/3/3 DIC 182428 182086.2 181206.7 179100 181135 178960
AIC 184429.4 185727.5 183026.3 181113.7 184545.5 180842.2
BIC 195651.9 19592.6 193162.8 192365 194134.4 191350.1

*-indicates combinations where the model did not fit the data. Missing values from combination
five will be provided with updated table.
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Based on the AIC, BIC and DIC calculations of Bayesian convergence, it is clear that the Bi-

factor model fits the unidimensional data better than the unidimensional model or the hierarchical

IRT model for most of the mixed format data sets reviewed in this study. Answering the question of

which model fit the data best satisfies one of the research questions but does not tell the whole story.

In the next section the mean and standard deviation from the Bi-factor model will be discussed.

4.4 Bi-factor A-parameters

The table below illustrates the distributions for each of the a-parameters in the bi-factor models

by items combination. Appendix G contains the full a-parameters structure for each of the item

combinations. What is clear from the structure is that the specific factors representing the dichoto-

mously scored and the polytomously scored items are larger than the a-parameters on the general

dimension. This factoring of the unidimensional data, coupled with the evidence that the bi-factor

model fit the data better, indicates that there is an element of mixed format data that causes a form

of dimensionality or noise in the mixed format data.

The table below illustrates the distribution of the a-parameters on each of the general and
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specific dimensions. In the polytomous items, in particular, the a-parameters on the general di-

mension is nearly zero in all cases except item combination four. Since these are distributions of

the a-parameters, examination of the individual a-parameters should be examined. The complete

table of a-parameters can be found in Appendix G. However, it is clear that unidimensional data in

mixed format can be factored into specific dimensions based on the item format.

Table 4.3: Bi-factor Loading

Equal A: Both Item types Higher A: Polytomous Items
a-Gen Dich a-Dichotomous a-Gen Poly a-Polytomous a-Gen Dich a-Dichotomous a-Gen Poly a-Polytomous

36/2/2 mean 0.6675 0.8718 0.0485 0.1768 0.6777 0.8896 0.0433 0.1760
st. dev 0.0229 0.0274 0.0221 0.0230 0.1004 0.1437 0.0139 0.0357

10/15/15 mean 0.4221 1.0723 0.0555 0.0985 0.4179 1.0653 0.0649 0.1120
st. dev 0.0570 0.1642 0.0220 0.0281 0.0521 0.2004 0.0284 0.0354

20/10/10 mean 0.5022 1.0260 0.0642 0.1234 0.5027 1.0385 0.0771 0.1454
st. dev 0.0547 0.1711 0.0523 0.0589 0.0560 0.1718 0.0782 0.0853

45/10/5 mean 0.5771 0.9560 0.0666 0.1865 0.5831 0.9494 0.1005 0.2030
st. dev 0.0721 0.1289 0.0478 0.0542 0.0797 0.1327 0.0860 0.1127

69/3/3 mean 0.6681 0.8274 0.0454 0.1610 0.6661 0.8302 0.0598 0.1787
st. dev 0.0915 0.1191 0.0317 0.0663 0.0960 0.1198 0.0596 0.0809

4.5 Hierarchical MIRT A-parameters

The hierarchical MIRT models did not improve the fit of the data over the bi-factor models. By

examining the loading structure, it is clear that these models did not explain the data (Appendix H).

As noted above, model two and three resulted in a negative pD value. Since the negative pD value

only occurred with model three and the same OpenBUGS script for the hierarchical model was

used for all hierarchical models, this cannot be a result of an error in the script file. Additionally,

the same data set was used to fit the unidimensional and the bi-factor models, so the issue is not

with the data. It may be that these item combination take much longer to run than other hierarchical

MIRT models in the study. Re-parameterizations of this model might also improve convergence.

In examining the loading structure of the model for this data set, the loading of the second

specific dimension onto the general dimension was essentially zero. Although the polytomous

items loaded onto the specific dimension that dimension did not load onto the general dimension.

In a hierarchical MIRT model the general dimension accounts for the correlation between the

specific dimensions. In this case, that correlation was very low therefore the model did not fit
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the data. A similar issue occurred with model two where there are more polytomous items than

dichotomous items. Although that model did not result in a negative pD value, from the loading

structure (Appendix H) the lambda two which represents the polytomous items did not load onto

the general dimension very well. In fact, that loading is nearly zero.

Additionally, notice that all of the a-parameters from the specific dimension onto the general

dimension are nearly zero. The dichotomous items load onto the specific dimension and then

onto the general dimension very strongly. In fact, the polytomous items load onto the polytomous

specific dimension strongly but there does not seem to be correlation between the two specific

dimensions as measured by the general dimension. However, it is important to note that two of the

item combinations failed to converge consistently with this model.

One possible explanation for this phenomenon is the topology of the posterior distribution.

Marin, Mengersen, and Robert (2005) stated that in a mixture model, instead of singling out one

mode of the posterior the parameter space may include parts of several models resulting in a poste-

rior mean that lay in a very low probability region. Even when the model specifies which region of

the posterior the maximum is likely to be found, that does not guaranty better fit as the constraints

may be at odds with the topology of the distribution (Marin et al., 2005). Since the Hierarchical

MIRT seeks to identify a general ability which accounts for the correlation between the specific

dimensions, rather than allowing the general and specific dimensions to be identified individually

as in the bi-factor model, the topology of the space may account for the deviance in the poster mean

of the general dimension. The Hierarchical model did not fit or explain the unidimensional mixed

format data as well as the generating unidimensional model or the Bi-Factor model. Interpretation

of the Hierarchical model results should be done with caution.
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Chapter 5

Discussion

5.1 Bayesian Model Fit and Complexity

Unidimensional data was generated using FORTRAN in five mixed format item combinations.

For each item combination there were two level of discrimination modeled. The model used to

generate the data was the IRT 3PL model for all dichotomous items and the Generalized Partial

Credit model for the polytomous items. The data was then fit to three models from a Bayesian ap-

proach using OpenBUGS. The three models consisted of; (1) the same unidimensional model used

to generate the data - 3PL/GPC, (2) the bi-factor model, and (3) the hierarchical multidimensional

IRT model (second order model). Fifty data sets for each of the ten model combinations were

generated. In order to fit the fifty set per item combination, OpenBUGS was ran in batch mode

using script files. OpenBUGS output the coda files used to determine convergence and log files for

each run used to calculate deviance, error and in the unidimensional case RMSE and BIAS.

The log files output by OpenBUGS could not be read be FORTRAN because each line was

missing a carriage return at the end of the line. While log files can also be generated from the coda

files using R, those log files do not contain the deviance statistics. In addition, it took hours for R

to read the coda files and output a new log files To correct this problem of reading the OpenBUGS

log files an EXCEL macro was written to open and save each of the log files. In doing this the new

log files contained the required carriage return and this process took only seconds to run.

Time turned out to be critical factor in this study. While the 3PL/GPC models generally took
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less than 24 hours to compile, the bi-factor and hierarchical MIRT models took much longer. The

items combinations containing more polytomous items than dichotomous items took the longest to

converge. The longest running item combination was the 10/15/15 combination. That combination

took a minimum of six day to run for both the bi-factor and the hierarchical MIRT model. The only

way to accomplish this was to use the hpc computing system described in the results section This

allowed all 50 replication to run consecutively on individual nodes. The 20/10/10 item combination

also took about six days to run for both the bi-factor and the hierarchical MIRT model. This time

concern is a barrier to future research using this methodology. Possible providing initial values

rather than allowing OpenBUGS to generate initial values might shorten the time requirement.

But, even when it appeared that initial values shortened the time required for burn-in the second

phase of model updating often took multiple days for most models. This study could not have been

completed in a timely manner without the HPC computer at the University of Kansas.

It was clear from the Bayesian convergence criteria of BIC, AIC and DIC, that the bi-factor

model fit the unidimensional data better. This is consistent with the findings of (Preliminary Re-

ports on Spearman-Holzinger Unitary Trait Study, 1930-1936). The bi-factor model better ex-

plains the data created from mixed format assessments. There does not seem to be a significant

different in this affect across the item combinations. This indicated that even a few polytomous

item added onto an assessment create a dimensionality effect that needs to be accounted for.

5.2 Parameter Structure

What is clear from the a-parameter structure of the bi-factor model is that there does appear to

be level of dimensionality present in these unidimensional mixed format data sets. The bi-factor

model in this study was designed to fit a-parameters onto the general ability dimension and then

to fit a-parameters to the dichotomous items of one specific dimensions and a-parameter to the

polytomous items of the second specific dimension. What we notice in the pattern, for all item

combinations, is that the a-parameter value for the specific dimension representing the polytomous

items was larger than the a-parameters of those same items onto the general construct. This seems
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to indicate that the Bi-factor model is factoring the mixed format data away from from the general

construct and into two distinct specific factors. Since this data is unidimensional, it cannot be

dimensionality, but rather, is likely to be noise in the data set resulting from combining polytomous

and dichotomous item the scaling process.

No matter the source, this noisse needs to be accounted for when scaling models and assigning

ability score to examinees. This dimensionality effect may explain the convergence rates discov-

ered by (Montgomery & Skorupski, 2012). In that study, data generated to specific model failed to

fit then generated models when calibrated in PARSCALE (Montgomery & Skorupski, 2012). The

current study provides an explanation for that phenomenon. When item combinations are more

complex in terms of the number of polytomous to dichotomous item on the assessment, the data

contains enough noise to create the appearance of dimensionality which the Bi-Factor model in the

current study is trying to account for.

5.3 Hypothesis and Research Questions

This study began with the following hypothesis:

Hypothesis. The bi-factor model will fit the unidimensional mixed format data better than the

unidimensional IRT model or the second order model. Since the specific dimensions in the bi-

factor model are not accounted for by the general dimension, any format effect dimensionality will

be evident in the loading structure of the bi-factor model.

The hypothesis was shown to be true in this study as in fact the bi-factor model did fit the

unidimensional IRT data better than either the unidimensional model or the second order model

(hierarchical MIRT). As strategy for verifying the hypothesis the following research questions were

defined.

1. How well does the unidimensional model recover item and examinee parameters across the

simulation conditions?

2. Which model fits the unidimensional data best; 3PL/GPC, bi-factor, or hierarchical MIRT?

54



3. Is the model fit affected by the proportion of dichotomous to polytomous items or by the

level of discrimination?

In answer to question one, the parameter recovery in terms of Bias and RMSE in the unidimen-

sional case showed that the parameter were recovered with little bias. Model two presented the

most bias and that was found to be in part because several of the runs in that model had more error

in the retained estimations. This model did not require as many monte carlo chains nor as much

time as did the bi-factor and the hierarchical MIRT model.

As to questions two and three, the bi-factor was the clear winner in terms of the Bayesian con-

vergence criterion BIC, AIC and DIC. This improvement in model fit did not seem to be affected

by the item combination or the whether or not the level of discrimination was the same for both

the polytomous and the dichotomous as opposed to a higher level of discrimination for the poly-

tomous items. The issue model fit does not seem to be impacted by the number of polytomous or

dichotomous items. However, item combination did have an impact on the fit of the hierarchical

MIRT model. In data sets were there were equal numbers of polytomous and dichotomous items

the MIRT model did not fit the data at all. Even when the MIRT models were able to converge, the

fit of the models were worse than either the bi-factor or the 3PL/GPC models.

5.4 Limitations and Future Research

With any simulation study the main limitation is that the data was generated rather than col-

lected from real examinees. The data used in this study was simulated. In this study the goal of the

study was to compare a variety of mixed format assessments which were then fit to three different

IRT models in order to answer the question which model fits the data best. Questions of this form

are best answered initially with simulated data. To valuable follow up study would be to fit data

from a mixed format assessment collected from real examinees to these three model and compare

the outcome to those found in this study. One of the limitations to performing such a follow up

exam is access to data from mixed format assessments. While there are many testing companies
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piloting and moving toward large scale assessments that are mixed format, those data sets are not

accessible to all researchers.

While several of the item combinations used in this simulation are less likely to currently

exist in practice, that was by design. One of the research questions was to see if there model

fit varied across the different item combinations. To answer that question required a use of item

combinations that might not typically be utilized but are possible combination that test developers

might use. This aspect of the study did not find a difference in model fit but it did highlight time

required to fit a bi-factor and second order model using a fully Bayesian approach. Follow up

studies could explore ways to reduce the time requirement.

Since this study showed the bi-factor model fit the unidimensional model the better than the

other two model, more studies should be conducted to examine the information that could be

obtained from using the bi-factor model in these types of mixed format assessments. In this study,

the bi-factor model was used to model the data from dichotomous items versus polytomous items.

Further study could be conducted to examine the bi-factor model to model the polytomous items

in more than one specific dimension. For example, this study contain two score point levels for

the dichotomous items. This study could be extend to model each of those score point levels as

separate specific dimensions rather that considering them as one set of polytomous items as was

the case with this study.

Additionally, the bi-factor model is a tough sell to stake holders. It is hard to explain why

examinees now have multiple ability scores. It is all a challenge for testing companies when pro-

viding, interpreting and explaining the overall score from a bi-factor model. Given the difficulty

of explaining and utilizing the bi-factor model in practice, even though it fits the data better, what

this study should highlight is that the even thought it has been commonly believed that two uni-

dimensional models could be combined that does not seem to be the case. There is the option

of scaling the dichotomous and polytomous items separately but that is not a satisfactory answer

either. There are unanswered questions that must be examined by future studies such as using a

2PL instead of the 3PL used in this study. Additional, using the GRM instead of GPC to determine
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the the results are present with these different models.

Finally, if large scale assessments need to move toward a bi-factor or hierarchical MIRT model,

or other complex model, better software is needed. OpenBUGS offers the ability to preform the

model fitting with a monte carlo methodology in a purely Bayesian approach. But, the cost of this

type of approach is time. While OpenBUGS allows the freedom to run the monte carlo chain as

long as need to reach convergence there is no way of knowing from the outset how long it will take.

In this study it was not uncommon for a multi-dimensional models to take five to tens to complete

on run of 33000 chain lengths. This time could be shortened a little by providing initial values,

more informative priors or simplifying the data sets or the models. Research should be conducted

to examine ways to improve time including looking at other software programs.

5.5 Conclusion

Even though this was a simulations study and did not utilize real examinee scores, there are

some important outcomes for this study that needs be considered in educational measurement prac-

tice as more and more large scale assessments include mixed format. This study also illustrates

the possibility for follow up studies that could improve our understanding of mixed format assess-

ments. First of all, this study showed that unidimensional data in mixed format assessments fit the

bi-factor model better than the unidimensional model from which it was generated. Does this mean

that large scale assessments in mixed format assessment form should be scaled using a bi-factor

model? Probably not. Much more study is needed to understand why this phenomenon exists in

mixed format data sets.

This study, and others like it, point out that we need a better way to scale mixed format as-

sessment with IRT models. Since the bi-factor model fit the unidimensional model better than the

unidimensional model, it is clear that there is much to learn about the latent space created by mixed

format assessments. It may be that the mixed format assessment creates a bimodal distribution in

the posterior or creates boundary conditions that cause difficulty in fitting the models. The bi-

factor model may account for complexity of the space by not requiring correlations between items
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of different item formats. But when measuring one unidimensional construct with a mixed format

assessment, the bi-factor model does not make measurement sense. Research should continue into

methodology that allows unidimensional data from mixed format assessment to be scaled together

as one assessment measuring one construct.

This is a timely topic because many large assessment are adding polytomous items to their

existing assessments. It is important that education measurement experts be able to accurately

scale those assessments and place examinees accurately on the ability scale. Follow-up studies

should include examination of the 2PL/GPC as well as the graded response model, as well as other

unidimensional combinations, to see if those model types fit the bi-factor model better than the

generating models.

Finally, more research into the complexity created by mixed format assessments including the

topology of the posterior and the parameter space must continue. We do not know enough about

the posterior or the parameter space created by mixed format assessments. The field had believed

that we could combine two unidimensional models, one for the dichotomous and one polytomous

items, and use that combined model to fit mixed assessments. But this study and the previous study

by (Montgomery & Skorupski, 2012) illustrates that this does not work in practice. Research into

the best way to scale mixed format assessments must continue.
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Appendix A

Script

modelCheck(’PATH/3PLGPC.txt’) !Defines the path to the OpenBUGS model file
modelData(’PATH/DATA1.TXT ’) !Defines the path to the data file
modelCompile(2)
modelGenInits() !Generates the initial values (could load values with ModelInits(path/filename))
modelUpdate(1000)
samplesSet(a)
samplesSet(b)
samplesSet(c)
samplesSet(theta)
summarySet(a)
summarySet(b)
summarySet(c)
summarySet(theta)
dicSet()
modelUpdate(5000)
samplesStats("*")
dicStats()
samplesCoda("*",’PATH/ 1’) !Saves Coda files for each run (each run is numbered)
modelSaveLog(’PATH/log1.TXT ’) !Saves a text file with the the summary stats and the deviance
statistics
modelQuit(’yes’)
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Appendix B

3PLGPC Model

model{
#Models defined

for (i in 1:N){
for (j in 1:D) { # dichotomous items
r[i,j] ∼ dbern(p[i,j])
t[i,j]← exp(-a[j]*(theta[i] - b[j]))
p[i,j]← c[j]+(1-c[j])/(1 + t[i,j])
}

for (j in (D+1):(D+P1)) { #polytomous (1,2,3)
r[i,j] ∼ dcat(pd[i,j,1:nK1])

for (k in 1:nK1){
td[i,j,k]← a[j] * (theta[i] - thresh[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k]← exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK1])

} }
for (j in (D+P1+1):(D+P1+P2)) { #polytomous (1,2,3,4)
r[i,j] ∼ dcat(pd[i,j,1:nK2])

for (k in 1:nK2)
td[i,j,k]← a[j] * (theta[i] - thresh[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k]← exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK2])
} } }

# Priors
for (i in 1:N){
theta[i] ∼ dnorm(0,1)
}
for (j in 1:D) { #D == number of dichotomous items
a[j] ∼ dlnorm(0,1)
b[j] ∼ dnorm(0,1)
c[j] ∼ dbeta(5,17)
} for (j in D + 1:D + P1) { #P1 == polytomous items modeled (1,2,3)
thresh[j, 1]← 0.0
a[j] ∼ dlnorm(0,1)
for (k in 2: nK1) { #nK1 == the threshold boundaries
thresh [j, k] ∼ dnorm(0, 1) }
b[j]← mean(thresh[j, 1:nK1])
for (k in 1:nK1) {
step[j, k]← b[j] - thresh[j, k]
} }
for (j in (D + P1 + 1): (D + P1 + P2)){ #item modeled as (1,2,3,4)
thresh[j, 1]← 0.0
a[j] ∼ dlnorm(0,1)

for (k in 2: nK2) {
thresh [j, k] ∼ dnorm(0, 1)
}

b[j]← mean(thresh[j, 1:nK2])
for (k in 1:nK2) {
step[j, k]← b[j] - thresh[j, k] }} } # MODEL END
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Appendix C

Bifactor Model

model {
# Bifactor: 2d-3PL model calibration: MC items

for (i in 1:N) {
for (j in 1:D) {
r[i,j]∼ dbern(p1[i,j])
t[i,j]← exp(aG[j]*thetaG[i] + aS1[j]*thetaS1[i] + d[j])
p1[i,j]← c[j]+(1-c[j])/(1+t[i,j])
}
for (j in (D+1):(D+P1)) { #Bifactor:polytomous (1,2,3)
r[i,j] ∼ dcat(pd[i,j,1:nK1])
for (k in 1:nK1) {
td[i,j,k]← (aG[j]*thetaG[i] + aS2[j]*thetaS2[i] + d[j] + tt[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k]← exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK1])
} }
for (j in (D+P1+1):(D+P1+P2)) { #Bifactor:polytomous (1,2,3,4)
r[i,j] ∼ dcat(pd[i,j,1:nK2])
for (k in 1:nK2) {
td[i,j,k]← (aG[j]*thetaG[i] + aS2[j]*thetaS2[i] + d[j] + tt[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k] <- exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK2])
} } }

#priors for dichotomous
#Priors Thetas

for (i in 1:N) {
thetaG[i] ∼ dnorm(0,1)
thetaS1[i] ∼ dnorm(0,1)
thetaS2[i] ∼ dnorm(0,1)
}
for (j in 1:D) {
aG[j]∼ dnorm(0,1) I(0,)
aS1[j]∼ dlnorm(0,1)
d[j]∼ dnorm(0,.5)
c[j]∼ dbeta(5,17)
}
for (j in D+1:D +P1) {
tt[j,1]← 0
aG[j]∼ dnorm(0,1) I(0,)
aS2[j]∼ dlnorm(0,1)
d[j]∼ dnorm(0,.5)
for (k in 2:nK1){
tt[j,k]∼ dnorm(0,1)
} }
for (j in D+P1+1:D +P1+P2) {
tt[j,1]← 0
aG[j]∼ dnorm(0,1) I(0,)
aS2[j]∼ dlnorm(0,1)
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d[j]∼ dnorm(0,.5)
for (k in 2:nK2){
tt[j,k]∼ dnorm(0,1)
} } }
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Appendix D

Second Order Model

model {
# 2nd Order: 2d-3PL model calibration: MC items

for (i in 1:N) {
thetaS[i,1]← (lambda[1]*thetaG[i] + eta[1])
thetaS[i,2]← (lambda[2]*thetaG[i] + eta[2])

for (j in 1:D) {
r[i,j] dbern(p1[i,j])
t[i,j]<- exp(aS[j]*thetaS[i,1] + d[j])
p1[i,j]<- c[j]+(1-c[j])/(1+t[i,j])

}
for (j in (D+1):(D+P1)) { #2nd order: polytomous (1,2,3)

r[i,j] ∼ dcat(pd[i,j,1:nK1])
for (k in 1:nK1) {

td[i,j,k]← (aS[j]*thetaS[i,2] + d[j] + tt[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k]← exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK1])
} }

for (j in (D+P1+1):(D+P1+P2)) { #2nd Order: polytomous (1,2,3,4)
r[i,j]∼ dcat(pd[i,j,1:nK2])

for (k in 1:nK2) {
td[i,j,k]← (aS[j]*thetaS[i,2] + d[j] + tt[j,k])
psum[i,j,k]← sum(td[i,j,1:k])
exp-psum[i,j,k]← exp(psum[i,j,k])
pd[i,j,k]← exp-psum[i,j,k]/sum(exp-psum[i,j,1:nK2])
} } }

#priors for specific dimensions
for (k in 1:2) {
lambda[k]∼ dnorm(0,1) I(0,)
eta[k]∼ dnorm(0,1)
} #Priors Thetas
for (i in 1:N) {
thetaG[i] ∼ dnorm(0,1)
}
for (j in 1:D) {
aS[j] ∼ dlnorm(0,1)
d[j] ∼ dnorm(0,1)
c[j] ∼ dbeta(5,17)
}
for (j in D+1:D +P1) {
tt[j,1]← 0
aS[j] ∼ dlnorm(0,1)
d[j] ∼ dnorm(0,1)
for (k in 2:nK1){
tt[j,k] ∼ dnorm(0,1)
} }
for (j in D+P1+1:D +P1+P2) {
tt[j,1]← 0
aS[j] ∼ dlnorm(0,1)
d[j] ∼ dnorm(0,1)
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for (k in 2:nK2){
tt[j,k] ∼ dnorm(0,1)
} } }
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Appendix E

Proof

n

∑
i=1

ai

bi
=

∑
n
i=1 ai

∑
n
i=1 bi

does not hold for all ai or bi ∈ℜ.

Proof: If ai ≥ 0,bi > 0 ∀i,

n

∑
i=1

ai

n

∑
i=1

bi

≤ max
1<i<n

ai

bi
is true when

ai

bi
= . . .=

an

bn
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ai
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≤
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∑
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ai

bi
is true only when at most one ai 6= 0.

It follows that
n

∑
i=1

ai

bi
=

∑
n
i=1 ai

∑
n
i=1 bi

only when all ai = 0

Therefore, ∀i ai ≥ 0,bi > 0 and when all ai 6= 0

n

∑
i=1
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>

∑
n
i=1 ai

∑
n
i=1 bi
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Appendix F

Monte Carol Estimate Error Tables

Table F.1: 3PL/GPC MCMC Average Error by Parameter

All Items:Equal A Polytomous Items:Higher A
a b c Theta a b c Theta

36/2/2 0.0571 0.0690 0.0683 0.0242 0.0554 0.0670 0.0644 0.0243
10/15/15 0.0531 0.0601 0.0352 0.0128 0.0538 0.0658 0.0460 0.0127
20/10/10 0.0533 0.0584 0.0677 0.0242 0.0561 0.0604 0.0680 0.0242
45/10/5 0.0551 0.0654 0.0655 0.0249 0.0563 0.0660 0.0656 0.0250
69/3/3 0.0561 0.0688 0.0648 0.0246 0.0566 0.0691 0.0691 0.0246

Table F.2: Bifactor MCMC Average Error by Parameter

All Items:Equal A
aG aS1 aS2 ThetaG ThetaS1 ThetaS2

36/2/2 0.0483 0.0451 0.0505 0.0250 0.0143 0.0348
10/15/15 0.0299 0.0467 0.0213 0.0157 0.0135 0.0121
20/10/10 0.0422 0.0470 0.0244 0.0202 0.0178 0.0128
45/10/5 0.0422 0.0468 0.0245 0.0247 0.0235 0.0119
69/3/3 0.0469 0.0491 0.0350 0.0288 0.0285 0.0123

Polytomous Items:Higher A
aG aS1 aS2 ThetaG ThetaS1 ThetaS2

36/2/2 0.0487 0.0507 0.0436 0.0261 0.0256 0.0137
10/15/15 0.0300 0.0462 0.0216 0.0158 0.0135 0.0121
20/10/10 0.0349 0.0453 0.0225 0.0192 0.0119 0.0119
45/10/5 0.0424 0.0473 00244 0.0249 0.0238 0.0118
69/3/3 0.0474 0.0495 0.0348 0.02955 0.0292 0.0123

Table F.3: 2nd Order MCMC Average Error by Parameter

All Items:Equal A
aS1 aS2 ThetaG ThetaS1 ThetaS2

36/2/2 0.0515 0.0505 0.0130 0.0324 0.0324
45/10/5 0.0482 0.0485 0.0119 0.0437 0.0437
69/3/3 0.0458 0.053 0.0120 0.0611 0.0610

Polytomous Items:Higher A
aS1 aS2 ThetaG ThetaS1 ThetaS2

36/2/2 0.0519 0.0544 0.0125 0.0370 0.0364
45/10/5 0.0490 0.0571 0.0119 0.0463 0.0463
69/3/3 0.0463 0.0539 0.0120 0.0610 0.0610
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Appendix G

Bifactor Loadings

Table G.1: Bifactor Loading Structure Matrix

Combination 36/2/2
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aG aS1 aS2 Intercept aG aS1 aS2
1 0.1679 0.6667 0.8672 0.4340 0.6858 0.8582
2 0.2468 0.6598 0.8458 0.9893 0.6576 0.9037
3 -0.0783 0.6626 0.8744 -2.2447 0.4883 0.5857
4 0.1273 0.6841 0.8487 -1.1563 0.8009 1.0742
5 0.2015 0.6399 0.8882 -0.3854 0.6429 0.8130
6 -0.1042 0.6409 0.8161 -1.5932 0.7687 1.0105
7 -0.0069 0.6686 0.8583 1.3373 0.6672 0.8434
8 0.3405 0.6892 0.9129 -0.7809 0.7160 0.9294
9 0.2466 0.7006 0.9201 2.0841 0.6514 0.9093

10 0.1565 0.6836 0.8983 0.7809 0.5625 0.7298
11 0.1824 0.6460 0.8548 -0.2298 0.7939 1.0472
12 0.1844 0.6711 0.8547 1.0352 0.6580 0.9114
13 0.0496 0.6573 0.8544 1.2265 0.6187 0.8410
14 0.1495 0.6590 0.9016 1.2496 0.7084 0.8901
15 -0.0214 0.6789 0.8688 -0.6425 0.7113 0.9439
16 -0.0503 0.6573 0.8310 0.6872 0.8203 1.0827
17 0.2500 0.7146 0.8936 1.7917 0.8638 1.1353
18 0.4126 0.6749 0.8654 0.7338 0.6736 0.8518
19 0.0261 0.6530 0.8365 0.4418 0.7102 0.9242
20 0.1704 0.6489 0.8924 -1.8364 0.5466 0.6482
21 0.2267 0.6758 0.8900 0.5070 0.7843 1.0383
22 0.1583 0.6784 0.9186 -0.1562 0.8436 1.1013
23 0.0027 0.6799 0.8930 0.7515 0.6649 0.8655
24 0.1573 0.6928 0.8866 1.1507 0.6843 0.9275
25 0.0390 0.6644 0.8732 0.8714 0.8286 1.1072
26 -0.0101 0.6339 0.8324 0.6766 0.6984 0.9128
27 0.3084 0.6157 0.9016 1.8387 0.5930 0.7237
28 0.0955 0.6544 0.8809 2.8920 0.4324 0.5361
29 0.2649 0.6634 0.8707 -1.2287 0.7137 0.9948
30 0.0925 0.7230 0.8885 -0.1637 0.7034 0.9391
31 -0.1481 0.6237 0.8315 1.3175 0.6662 0.9116
32 0.0341 0.6698 0.9042 -0.1231 0.5495 0.7471
33 0.2531 0.6962 0.8830 1.1108 0.7445 0.9631
34 0.1762 0.6742 0.8304 1.5572 0.6151 0.8343
35 0.0352 0.6700 0.8465 0.5871 0.5349 0.7136
36 0.0446 0.6569 0.8703 2.6944 0.5944 0.7754
37 -0.3637 0.0697 0.1915 0.6576 0.0606 0.2256
38 -0.3766 0.0653 0.1946 0.5365 0.0484 0.1721
39 -0.4433 0.0312 0.1768 -0.8185 0.0333 0.1652
40 -0.3941 0.0276 0.1442 -0.7605 0.0307 0.1410
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Table G.2: Bifactor Loading Structure Matrix

Combination 10/15/15
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aG aS1 aS2 Intercept aG aS1 aS2
1 0.1929 0.4275 1.1388 0.5910 0.4464 1.1907
2 0.2447 0.3779 1.0112 1.0698 0.3720 1.1319
3 0.2494 0.3609 0.7201 -2.2458 0.3500 0.7044
4 0.2572 0.4977 1.3300 -1.1216 0.4300 1.4070
5 0.2503 0.4216 1.0001 -0.3207 0.3891 0.9612
6 0.2523 0.5375 1.2112 -1.5687 0.4704 1.1825
7 0.1781 0.3956 1.0806 1.4052 0.4246 1.0706
8 0.2662 0.4017 1.2413 -0.7119 0.4072 1.1906
9 0.1767 0.4354 1.0762 2.0356 0.5207 0.9524

10 0.2312 0.3652 0.9136 0.7467 0.3687 0.8618
11 0.5994 0.0716 0.1321 -1.6794 0.0873 0.1691
12 0.9393 0.0955 0.1434 -1.5127 0.1060 0.1609
13 -2.2578 0.0772 0.1280 -1.8427 0.1219 0.1620
14 -1.0874 0.0610 0.1092 0.1826 0.0693 0.1209
15 -0.3233 0.0593 0.1178 -0.9047 0.0690 0.1309
16 -1.5971 0.0850 0.1421 -1.6552 0.1132 0.1709
17 1.3813 0.1003 0.1399 -1.7441 0.1153 0.1811
18 -0.7627 0.0847 0.1200 -0.5308 0.0735 0.1218
19 2.1038 0.0657 0.1183 -0.2998 0.0584 0.1205
20 0.8459 0.0706 0.1012 0.6094 0.0749 0.1172
21 -1.0694 0.0639 0.1180 -0.6646 0.0706 0.1281
22 -1.1613 0.0627 0.1071 -0.0465 0.0707 0.1167
23 -1.1765 0.0639 0.1087 0.3509 0.0591 0.1163
24 0.0878 0.0797 0.1442 -1.8674 0.0924 0.1518
25 -0.6380 0.0861 0.1323 -1.6690 0.1287 0.1682
26 -1.0362 0.0333 0.0708 -0.3891 0.0428 0.0756
27 -1.0467 0.0324 0.0763 -0.5153 0.0419 0.0826
28 -0.2037 0.0360 0.0722 -0.5306 0.0369 0.0817
29 -0.2514 0.0322 0.0725 -0.5552 0.0395 0.0775
30 0.4008 0.0390 0.0685 -0.4844 0.0476 0.0786
31 -0.3962 0.0410 0.0780 -0.5582 0.0506 0.0795
32 -0.1629 0.0339 0.0772 -0.5742 0.0448 0.0871
33 0.1984 0.0379 0.0751 -0.5079 0.0481 0.0814
34 -1.4481 0.0395 0.0776 -0.6120 0.0467 0.0841
35 -1.1428 0.0377 0.0653 -0.2969 0.0375 0.0757
36 -0.2852 0.0398 0.0733 -0.4694 0.0437 0.0851
37 -0.3960 0.0364 0.0674 -0.4469 0.0406 0.0767
38 -0.3908 0.0276 0.0642 -0.6234 0.0336 0.0788
39 -0.4558 0.0348 0.0742 -0.3085 0.0370 0.0902
40 -0.3054 0.0369 0.0807 -0.5923 0.0439 0.0891
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Table G.3: Bifactor Loading Structure Matrix

Combination 20/10/10
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aG aS1 aS2 Intercept aG aS1 aS2
1 0.4839 0.5112 1.0234 0.9275 0.5177 1.0251
2 0.8035 0.4583 0.9571 1.8586 0.4552 1.0082
3 -2.1884 0.3801 0.6872 -1.8067 0.3889 0.6608
4 -1.1155 0.5586 1.2584 -0.7149 0.5669 1.2543
5 -0.3796 0.4413 1.0052 0.1925 0.4609 0.9830
6 -1.4891 0.5320 1.1500 -1.1576 0.5531 1.1697
7 1.2055 0.4446 0.9515 2.0937 0.5055 0.9751
8 -0.6919 0.5336 1.0670 -0.2926 0.5011 1.0665
9 1.8791 0.5130 0.8872 3.1006 0.5668 0.9432

10 0.7107 0.4429 0.8254 1.5948 0.4380 0.8327
11 -0.1573 0.5389 1.2652 0.2114 0.5439 1.2756
12 1.0475 0.5000 1.0115 1.6448 0.5215 1.0272
13 1.2551 0.4951 0.9627 1.9157 0.4686 1.0016
14 1.1948 0.5464 1.0199 1.8816 0.5329 1.0137
15 -0.5652 0.5255 1.1039 -0.1892 0.4864 1.1039
16 0.7670 0.5788 1.2804 1.2153 0.5630 1.2978
17 1.7318 0.5977 1.2789 2.4881 0.5955 1.2994
18 0.7644 0.4772 1.0030 1.3436 0.4667 0.9854
19 0.4085 0.5283 1.0738 1.0128 0.5153 1.1057
20 -1.7900 0.4397 0.7078 -1.4199 0.4056 0.7407
21 -0.3591 0.0605 0.1295 0.2744 0.0648 0.1335
22 -0.1254 0.0504 0.1150 0.8470 0.0601 0.1284
23 0.0984 0.0596 0.1176 1.2268 0.0579 0.1248
24 -1.1681 0.0662 0.1549 -0.7946 0.0864 0.1779
25 -0.8241 0.0748 0.1519 -0.5612 0.0931 0.1907
26 -0.2432 0.0613 0.1189 0.5284 0.0675 0.1344
27 -0.7123 0.0690 0.1617 -0.1073 0.0734 0.1530
28 -2.8897 0.2742 0.3389 -2.8842 0.3964 0.4777
29 1.1036 0.0691 0.1490 2.8232 0.0936 0.1892
30 1.3151 0.0966 0.1652 3.2007 0.1139 0.1880
31 -0.3300 0.0391 0.0915 0.1169 0.0487 0.1073
32 -0.3930 0.0372 0.0829 0.2106 0.0445 0.0981
33 -0.4079 0.0429 0.0874 0.1287 0.0456 0.1038
34 -0.2781 0.0386 0.0805 0.0503 0.0416 0.0921
35 -0.4099 0.0392 0.0880 0.0877 0.0449 0.1007
36 -0.4084 0.0389 0.0885 0.0913 0.0452 0.1021
37 -0.4236 0.0396 0.0873 0.0760 0.0489 0.1000
38 -0.3940 0.0333 0.0875 0.0810 0.0395 0.1079
39 -0.1814 0.0293 0.0852 0.2497 0.0355 0.1002
40 -0.2499 0.0636 0.0876 0.1360 0.0398 0.0974
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Table G.4: Bifactor Loading Structure Matrix

Combination 45/10/5
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aG aS1 aS2 Intercept aG aS1 aS2
1 0.1897 0.5284 0.8865 0.1671 0.4595 0.9013
2 1.0397 0.5881 0.9283 1.0908 0.6100 0.9684
3 -3.3192 0.6055 0.9076 -3.2514 0.6558 0.7836
4 -0.8278 0.4705 0.7900 -0.8151 0.4546 0.8010
5 -0.1360 0.4549 0.7957 -0.1716 0.4555 0.7523
6 -1.4434 0.6337 1.1522 -1.4763 0.6394 1.1132
7 1.1784 0.4627 0.8317 1.0122 0.4698 0.7653
8 -0.5591 0.6122 0.9628 -0.5087 0.5537 1.0085
9 2.4518 0.7004 1.1291 2.4861 0.6696 1.2184

10 0.7751 0.4415 0.7949 0.7241 0.4131 0.7984
11 -0.1273 0.5384 0.9370 -0.1484 0.4940 0.9636
12 1.1208 0.6701 1.0940 1.0995 0.7011 1.1465
13 1.0543 0.4735 0.7895 1.0441 0.4382 0.7773
14 0.9776 0.5316 0.8380 0.9605 0.5020 0.8424
15 -0.6586 0.6348 1.0773 -0.6838 0.6360 1.0463
16 0.4767 0.6404 1.0833 0.3656 0.6326 1.0097
17 1.7681 0.6764 1.1612 1.7111 0.5425 1.1672
18 0.7086 0.5771 0.9534 0.6627 0.5335 0.9297
19 0.4966 0.6815 1.1381 0.5067 0.6415 1.2056
20 -2.0964 0.5469 0.8983 -2.0626 0.5377 0.8851
21 0.5343 0.7082 1.1119 0.5333 0.6966 1.1194
22 0.1143 0.5273 0.9344 0.0833 0.6156 0.8673
23 0.6062 0.5443 0.9166 0.6537 0.5777 0.8971
24 0.9269 0.5867 1.0373 1.0071 0.6261 1.0902
25 0.7120 0.6268 1.0119 0.6707 0.6063 0.9498
26 0.8357 0.6551 1.1294 0.9614 0.7741 1.1759
27 2.1217 0.5782 0.8937 2.1154 0.6357 0.8549
28 3.1318 0.5416 0.7967 3.1405 0.5730 0.8058
29 -0.5274 0.5383 0.8820 -0.5543 0.3794 0.9538
30 -0.1500 0.5683 0.9219 -0.1767 0.5599 0.9332
31 1.3328 0.5517 0.8400 1.3399 0.5575 0.8496
32 -0.1257 0.6150 1.1057 -0.1367 0.6717 1.0364
33 1.1757 0.6356 1.1036 1.1380 0.6281 1.0270
34 1.6733 0.5789 0.9522 1.6696 0.6071 0.9407
35 0.7787 0.6377 0.9938 0.7905 0.6678 0.9798
36 2.2324 0.4547 0.6779 2.3810 0.5426 0.8157
37 -0.8579 0.6146 1.0349 -0.8089 0.5904 1.0989
38 0.2551 0.5077 0.9049 0.2219 0.5587 0.8335
39 0.1533 0.4876 0.7268 0.1526 0.4303 0.7379
40 0.8369 0.5560 0.9070 0.8986 0.5890 0.8893
41 -0.0059 0.6418 1.0011 -0.0028 0.5949 1.0207
42 1.7138 0.6512 1.1198 1.7040 0.6406 1.1562
43 0.5166 0.6621 1.1441 0.5569 0.7463 1.1673
44 -0.9516 0.4961 0.8102 -0.9346 0.5934 0.7125
45 -0.5405 0.5374 0.9124 -0.5438 0.5750 0.8951
46 -2.9329 0.1954 0.2160 -3.7593 0.2792 0.4451
47 -1.3852 0.0749 0.1589 -2.3190 0.1431 0.2825
48 -2.2233 0.1319 0.2049 -3.2044 0.2757 0.3489
49 0.0942 0.0450 0.1171 0.0258 0.0505 0.1061
50 1.7385 0.0859 0.1645 2.6890 0.1859 0.2915
51 -1.2752 0.0801 0.2233 -2.0801 0.1665 0.2772
52 0.1601 0.0456 0.2314 0.2494 0.0423 0.1299
53 -0.6112 0.0552 0.2342 -0.9860 0.0643 0.1502
54 0.3761 0.0485 0.2020 0.7454 0.0502 0.1751
55 -1.9641 0.1026 0.2426 -2.8651 0.1590 0.3056
56 -0.5523 0.0284 0.1363 -0.6289 0.0269 0.1092
57 -0.2403 0.0261 0.2119 -0.2647 0.0266 0.1216
58 -0.2784 0.0267 0.0801 -0.5476 0.0262 0.0937
59 -0.3824 0.0282 0.1153 -0.5452 0.0391 0.0934
60 -0.4195 0.0250 0.2595 -0.6248 0.0233 0.0984
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Table G.5: Bifactor Loading Structure Matrix

Combination 69/3/3
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aG aS1 aS2 Intercept aG aS1 aS2
1 0.2960 0.6201 0.7659 0.3181 0.5656 0.8486
2 1.3017 0.7723 0.9905 1.3022 0.7687 0.9771
3 -2.9997 0.6156 0.7782 -2.9922 0.6372 0.7514
4 -0.8973 0.6445 0.7846 -0.8859 0.6616 0.7822
5 -0.6178 0.6666 0.8732 -0.6403 0.6643 0.8667
6 -1.2174 0.5387 0.6653 -1.2041 0.5171 0.6822
7 1.4620 0.7756 0.9330 1.4110 0.7239 0.9329
8 -0.3498 0.6325 0.8383 -0.3503 0.5925 0.8523
9 1.5737 0.5772 0.6540 1.5769 0.6305 0.6189

10 1.0924 0.6929 0.8454 1.0858 0.6443 0.8657
11 -0.2898 0.7496 0.9026 -0.2666 0.7233 0.9656
12 1.0656 0.7906 0.9779 1.0715 0.8308 0.9721
13 1.5080 0.8226 0.9897 1.5183 0.8137 0.9942
14 0.9721 0.6031 0.7857 0.9789 0.6605 0.7306
15 -0.5973 0.6731 0.7776 -0.6013 0.6419 0.7976
16 0.4228 0.6016 0.6926 0.4305 0.5979 0.7089
17 1.2433 0.6131 0.7734 1.2517 0.6339 0.7651
18 0.7671 0.6230 0.7908 0.8082 0.6015 0.8378
19 0.2733 0.6122 0.7944 0.2472 0.5732 0.7980
20 -2.5244 0.6722 0.8502 -2.5544 0.7250 0.8170
21 0.3007 0.5870 0.7254 0.3440 0.6143 0.7230
22 0.0328 0.6745 0.8714 0.0240 0.6982 0.8484
23 0.5622 0.6557 0.7330 0.5850 0.6006 0.8027
24 0.8559 0.6729 0.8092 0.8227 0.6486 0.8027
25 0.5734 0.6900 0.8808 0.5660 0.6491 0.9178
26 0.5639 0.6797 0.8191 0.5597 0.6715 0.8412
27 2.2078 0.6534 0.8740 2.2313 0.7036 0.8477
28 2.7122 0.4713 0.5662 2.6967 0.4861 0.5440
29 -1.0543 0.6216 0.7903 -1.0645 0.6117 0.7892
30 -0.4556 0.7265 0.8736 -0.4650 0.6818 0.9010
31 1.6186 0.8199 1.0031 1.6601 0.7988 1.0334
32 -0.1551 0.6228 0.7449 -0.1453 0.6366 0.7120
33 0.6416 0.5374 0.6429 0.6160 0.5026 0.6629
34 1.8660 0.8081 0.9688 1.8149 0.7613 0.9758
35 1.1124 0.9864 1.1581 1.1177 0.9872 1.2071
36 2.6100 0.6590 0.7540 2.6150 0.6319 0.7688
37 -0.6961 0.7477 0.8843 -0.7050 0.6974 0.9346
38 -0.0489 0.6562 0.8053 -0.0280 0.6621 0.7989
39 0.1196 0.5621 0.6393 0.1034 0.5109 0.6830
40 0.5114 0.6757 0.8053 0.5096 0.6446 0.8314
41 0.0183 0.6762 0.8454 0.0222 0.6883 0.8437
42 1.2508 0.5983 0.7249 1.3036 0.5646 0.7814
43 0.3944 0.5992 0.7464 0.4074 0.5762 0.7603
44 -0.7976 0.6291 0.7636 -0.8105 0.6590 0.7519
45 -0.9326 0.6523 0.8411 -0.9530 0.6637 0.8312
46 2.4242 0.8430 1.0916 2.3651 0.8074 1.0781
47 1.4905 0.5750 0.7023 1.5269 0.6005 0.6938
48 1.9444 0.6066 0.7679 1.9380 0.6377 0.7427
49 1.6094 0.6444 0.7708 1.5916 0.6305 0.7803
50 -1.1300 0.6024 0.7209 -1.1184 0.6169 0.7299
51 1.1408 0.6022 0.7384 1.1324 0.6082 0.7344
52 0.6014 0.7880 0.9985 0.5945 0.8059 0.9824
53 -0.5993 0.7107 0.8433 -0.6089 0.7095 0.7952
54 -0.7935 0.7322 0.9875 -0.7859 0.7378 0.9838
55 0.4973 0.7976 0.9943 0.4763 0.8207 0.9497
56 -0.4238 0.5932 0.7500 -0.4116 0.5961 0.7463
57 0.3700 0.6846 0.8837 0.3517 0.7379 0.8353
58 0.2655 0.5712 0.7045 0.2536 0.5797 0.7005
59 -0.4900 0.6960 0.8025 -0.4725 0.6709 0.8218
60 0.8728 0.8151 1.0620 0.9098 0.8889 1.0491
61 0.2584 0.8098 1.0235 0.2541 0.8199 0.9930
62 -0.8350 0.7185 0.9869 -0.8489 0.7876 0.9281
63 2.1456 0.7439 0.9661 2.1284 0.7664 0.9322
64 0.3075 0.5409 0.6951 0.3026 0.5300 0.6929
65 -2.7075 0.5508 0.7071 -2.6751 0.5220 0.7232
66 0.9210 0.6374 0.7492 0.9201 0.5975 0.7864
67 -0.6855 0.6204 0.8385 -0.6707 0.6208 0.8604
68 -3.0694 0.5380 0.7075 -3.0807 0.6104 0.6613
69 2.6531 0.7182 0.8647 2.7266 0.7006 0.9247
70 -0.5058 0.0436 0.1671 -0.5283 0.0428 0.1744
71 0.2521 0.0413 0.1605 0.4004 0.0440 0.1840
72 2.1123 0.1079 0.2874 2.8413 0.1808 0.3337
73 -0.4118 0.0274 0.1144 -0.4553 0.0308 0.1208
74 -0.3901 0.0241 0.1098 -0.4713 0.0289 0.1147
75 -0.4157 0.0277 0.1269 -0.4574 0.0316 0.1445
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Appendix H

Hierarchical MIRT Loading

Table H.1: Hierarchical Loading Structure Matrix

Combination 36/2/2
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aS1 aS2 Lambda Intercept aS1 aS2 Lambda
1 0.0227 1.0022 -0.0351 1.0284
2 -0.1069 0.9290 0.5007 1.0513
3 -0.0215 1.0059 -2.5219 0.6889
4 -0.1129 1.0005 -1.6892 1.2384
5 -0.1603 0.9631 -0.8188 0.9761
6 -0.5005 0.9906 -2.0841 1.1648
7 -0.1706 0.9606 0.8369 0.9702
8 0.0156 1.0356 -1.2668 1.0828
9 -0.0974 1.0259 1.6004 1.0542

10 -0.2846 1.0769 0.3719 0.8621
11 0.0249 0.9915 -0.7908 1.2184
12 -0.3039 1.0317 0.5461 1.0293
13 -0.2171 0.9916 0.7880 0.9699
14 -0.0617 1.0128 0.7628 1.0736
15 0.0064 0.9734 -1.1377 1.0870
16 -0.1890 0.9647 0.1155 1.2810
17 0.1522 1.0220 1.1944 1.3656
18 0.2842 0.9905 0.2497 0.9799
19 -0.1116 0.9965 -0.0555 1.0889
20 -0.1662 0.9900 -2.1472 0.7698
21 -0.0755 1.0127 -0.0312 1.2327
22 -0.1259 1.0052 -0.7315 1.2818
23 -0.1884 1.0134 0.2977 1.0236
24 -0.0773 1.0319 0.6523 1.0780
25 -0.1592 1.0154 0.2697 1.2730
26 -0.2776 0.9872 0.1860 1.0756
27 0.0431 0.9816 1.4330 0.8814
28 -0.2327 1.0150 2.5402 0.6278
29 0.1019 1.0387 -1.7068 1.1166
30 -0.2660 1.0854 -0.6373 1.0927
31 -0.2561 0.9422 0.8184 1.0524
32 -0.3081 0.9810 -0.5284 0.8664
33 -0.1081 0.9936 0.6055 1.1480
34 0.0611 0.9728 1.0895 0.9681
35 -0.2909 0.9609 0.2276 0.8298
36 -0.2008 0.9492 2.2420 0.9151
37 -0.4216 1.1285 0.2447 1.0721
38 -0.1211 1.2872 0.8152 0.9842
39 -0.3944 0.7403 -0.8210 0.8541
40 -0.3044 0.8121 -0.6213 0.8303

Dichotomous 1.1224 1.1037
Polytomous 0.0184 0.0150
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Table H.2: Hierarchical Loading Structure Matrix

Combination 40/10/5
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aS1 aS2 Lambda Intercept aS1 aS2 Lambda
1 -0.1960 0.9351 -0.1895 0.9100
2 0.5737 0.9926 0.6278 0.9940
3 -3.5489 0.9610 -3.6080 0.9540
4 -1.1519 0.8497 -1.1430 0.8284
5 -0.4983 0.8386 -0.4648 0.8113
6 -1.8882 1.2179 -1.8950 1.1830
7 0.8033 0.8857 0.7832 0.8616
8 -0.9801 1.0524 -0.9576 1.0290
9 1.9014 1.2285 1.9575 1.2195

10 0.3769 0.8130 0.4170 0.8169
11 -0.5333 0.9911 -0.5440 0.9647
12 0.6166 1.1899 0.6174 1.1582
13 0.6492 0.8301 0.6938 0.8012
14 0.5226 0.8995 0.5322 0.8532
15 -1.1212 1.1552 -1.1184 1.1296
16 -0.0150 1.1263 -0.0141 1.0780
17 1.2067 1.2232 1.2595 1.2045
18 0.2613 1.0164 0.2661 0.9713
19 -0.0177 1.2385 0.0177 1.2166
20 -2.4125 0.9574 -2.4225 0.9291
21 0.0224 1.2177 0.0579 1.1801
22 -0.2970 0.9977 -0.2799 0.9661
23 0.1958 0.9927 0.2276 0.9826
24 0.4567 1.1326 0.5042 1.1136
25 0.2236 1.0934 0.2778 1.0654
26 0.3614 1.2301 0.4086 1.2170
27 1.6490 0.9717 1.6747 0.9615
28 2.5892 0.8481 2.7146 0.8690
29 -0.9111 0.9415 -0.9044 0.9138
30 -0.5481 0.9927 -0.5306 0.9720
31 0.8999 0.9073 0.9475 0.9147
32 -0.6154 1.1499 -0.5875 1.1231
33 0.6524 1.1672 0.6834 1.1350
34 1.1512 0.9749 1.2023 0.9755
35 0.2929 1.0924 0.3240 1.0619
36 1.6792 0.6633 1.8466 0.7558
37 -1.2751 1.1038 -1.2664 1.0925
38 -0.1390 0.9510 -0.1452 0.9144
39 -0.1811 0.7986 -0.1624 0.7839
40 0.4323 0.9920 0.4900 0.9812
41 -0.4565 1.1210 -0.4358 1.0701
42 1.1958 1.2018 1.2416 1.2023
43 0.0059 1.2337 0.0306 1.2200
44 -1.2596 0.8639 -1.2497 0.8603
45 -0.9377 0.9889 -0.9241 0.9600
46 -1.1764 3.8226 -1.8005 4.7634
47 -0.7543 1.4946 -1.1174 2.2583
48 -1.0487 2.3774 -1.7928 3.3772
49 0.3970 1.0633 0.7203 0.9605
50 1.5317 0.8295 2.7882 0.7870
51 -0.3713 1.8412 -1.0185 2.1142
52 0.3752 1.1121 0.5680 1.0095
53 0.0022 1.3131 -0.3436 1.2837
54 0.6769 0.9327 1.1896 0.9194
55 -1.0208 1.9244 -1.6755 2.5484
56 0.0440 1.2929 -0.0682 1.4405
57 -0.0706 1.0076 -0.3524 0.8503
58 -0.0525 1.0607 -0.1201 1.0800
59 -0.0104 1.0068 -0.1381 1.1454
60 -0.0732 0.9609 -0.2461 0.9842

Dichotomous 1.0971 1.1260
Polytomous 0.0059 0.0072
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Table H.3: Hierarchical Loading Structure Matrix

Combination 69/3/3
Equal A: Both Item types Higher A: Polytomous Items

Item Intercept aS1 aS2 Lambda Intercept aS1 aS2 Lambda
1 -0.0619 0.9578 -0.0321 0.9849
2 0.8353 1.2228 0.8567 1.2033
3 -3.2781 0.9348 -3.2617 0.9374
4 -1.2527 0.9757 -1.2294 0.9890
5 -1.0067 1.0660 -1.0075 1.0527
6 -1.5195 0.8168 -1.4983 0.8200
7 0.9956 1.1766 0.9920 1.1576
8 -0.7066 1.0122 -0.6974 0.9977
9 1.1765 0.8111 1.2246 0.8319

10 0.6787 1.0480 0.6982 1.0435
11 -0.6976 1.1458 -0.6729 1.1712
12 0.6015 1.2224 0.6187 1.2362
13 1.0356 1.2533 1.0697 1.2575
14 0.6002 0.9451 0.5995 0.9391
15 -0.9627 0.9906 -0.9496 0.9858
16 0.0829 0.8785 0.0980 0.8965
17 0.8497 0.9487 0.8687 0.9491
18 0.3961 0.9771 0.4428 0.9935
19 -0.0933 0.9680 -0.1031 0.9449
20 -2.8389 1.0082 -2.8663 1.0351
21 -0.0453 0.8958 -0.0190 0.8922
22 -0.3659 1.0628 -0.3563 1.0672
23 0.1895 0.9478 0.2311 0.9726
24 0.4711 1.0223 0.4375 0.9838
25 0.1676 1.0907 0.1678 1.0844
26 0.1578 1.0136 0.1760 1.0427
27 1.7908 1.0615 1.8287 1.0754
28 2.3628 0.6764 2.3824 0.6788
29 -1.4047 0.9733 -1.3936 0.9582
30 -0.8600 1.0830 -0.8513 1.0937
31 1.1192 1.2541 1.1923 1.2806
32 -0.5020 0.9342 -0.4812 0.9172
33 0.3334 0.8087 0.3108 0.7986
34 1.4150 1.2507 1.3795 1.2159
35 0.5610 1.4737 0.5799 1.5128
36 2.2285 0.9773 2.2501 0.9758
37 -1.1122 1.1090 -1.0990 1.1201
38 -0.4260 0.9937 -0.3855 1.0076
39 -0.2139 0.7916 -0.1964 0.8043
40 0.1382 1.0267 0.1518 1.0192
41 -0.3771 1.0518 -0.3543 1.0579
42 0.8785 0.9038 0.9421 0.9276
43 0.0271 0.9244 0.0725 0.9167
44 -1.1488 0.9511 -1.1443 0.9645
45 -1.3159 1.0228 -1.3141 1.0220
46 1.9059 1.3576 1.8929 1.3289
47 1.1039 0.8556 1.1458 0.8592
48 1.5764 0.9510 1.5479 0.9340
49 1.2320 0.9828 1.2352 0.9754
50 -1.4471 0.9056 -1.4339 0.9240
51 0.7543 0.9125 0.7748 0.9171
52 0.1353 1.2266 0.1508 1.2376
53 -0.9847 1.0573 -0.9667 1.0293
54 -1.2234 1.1896 -1.1870 1.1845
55 0.0327 1.2233 0.0403 1.2161
56 -0.7641 0.9244 -0.7281 0.9298
57 -0.0343 1.0858 -0.0377 1.0818
58 -0.0620 0.8806 -0.0680 0.8770
59 -0.8612 1.0089 -0.8302 1.0210
60 0.3849 1.3037 0.4217 1.3323
61 -0.2070 1.2766 -0.1929 1.2509
62 -1.2567 1.1642 -1.2566 1.1668
63 1.6892 1.2028 1.7016 1.1893
64 -0.0175 0.8510 -0.0072 0.8426
65 -2.9711 0.8569 -2.9280 0.8492
66 0.5457 0.9453 0.5639 0.9486
67 -1.0418 0.9900 -1.0246 1.0191
68 -3.3005 0.8323 -3.3143 0.8476
69 2.2182 1.1097 2.2891 1.1370
70 -0.3050 0.9995 -0.3917 1.0614
71 0.3219 1.1105 0.4242 1.0982
72 1.8821 1.4797 2.1005 1.5148
73 -0.1727 1.0644 -0.3008 1.0171
74 -0.2476 0.9251 -0.1750 0.9382
75 -0.4213 0.8670 -0.3850 0.8775

Dichotomous 1.0478 1.0474
Polytomous 0.0102 0.0117
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