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Hydrogen atoms in circularly polarized microwave fields: Near-integrability and ionization
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We have recently found that ihe hydrogen atom in a circularly polarized (CP) microwave field

possesses an approximate dynamical symmetry and its bounded motion can be well described by a
three-dimensional integrable (but nonseparable) Hamiltonian function with a velocity-dependent poten-
tial [Rakovic and Chu, Phys. Rev. A 50, 5077 (1994)]. This finding provides a theoretical foundation for
the understanding of the origin of the regularity of Rydberg atom dynamics in CP fields. We describe
here the phase space topology of the three-dimensional integrable system relevant to the microwave ion-
ization of the hydrogen atoms in CP fields. Using the integrable system as an approximation to the real
system and with the use of the two additional integrals of motion, we are able to trace the deformation of
the tori up to the point of bifurcation (ionization). From this, we have determined the classical
ionization-field threshold law f„,=1/cno, where no is the principal quantum number of the initial state
of the hydrogen atom and c is almost a constant ( =6 a.u.). These results are in good accord with the ex-
isting experimental observations.

PACS number(s): 32.80.Rm, 03.20.+1, 32.60.+1

I. INTRODUCTION

In the past decade considerable attention has been paid
to the study of the ionization of Rydberg atoms in linear-
ly polarized (LP) microwave fields [1,2]. This is a nonin-
tegable system that exhibits classically chaotic motion
and has served as one of the paradigms for the study of
"quantum chaos. " A related problem, of more recent in-
terest, is the ionization of Rydberg atoms in the presence
of circularly polarized (CP) microwave fields. A recent
experiment [3] on microwave ionization of Rydberg (sodi-
um) atoms has revealed a dramatic difference of the
behavior in LP and CP fields. First, it was observed that
the ionization threshold fields f,„ in CP fields are consid-
erably higher than those in the LP fields. Further, the
ionization thresholds in the CP fields obey the scaling law
characteristic for the case of the classical hydrogen atom
in the static field (Stark effect), i.e., f,h = 1/cn o, where no
is the principal quantum number of the hydrogenic initial
state and c is almost a constant. Several recent theoreti-
cal studies [4,5] of the restricted motion in the plane of
the polarization of the CP field have shown that the clas-
sical motion is almost completely regular below the clas-
sical ionization threshold. This regularity of the Rydberg
atom motion in CP fields is unexpected as the classical
dynamics of the corresponding Rydberg systems in the
LP fields can be "very chaotic. "

The motivation of this paper is twofold. First, we shall
theoretically analyze the origin of the regularity of
motion in CP fields. Second, we shall study the classical
ionization threshold law for the case of hydrogen atom in
CP microwave fields, providing a prediction for the con-
stant c. In connection with this, we note that microwave
ionization of atomic hydrogen in CP fields is currently
being pursued experimentally. Our prediction of the ion-
ization threshold law is found to be in excellent agree-

ment with the preliminary experimental results [6].
We shall study the ionization of the Rydberg states of

the hydrogen atom in circularly polarized microwave
fields from the standpoint of classical mechanics. Recall
that the Hamiltonian function (atomic units will be used
throughout this paper unless otherwise indicated) of the
hydrogen atom in circularly polarized field

H„,=p /2 —1/r+ f(x coscot+y sincot) has, in the frame
rotating around the z axis together with the field
(x~x coscot —y sincot, y —+x sincot+y coscot), the time-
independent form

p 1

where p=(p„,p,p, ), l, =xp —yp„and f and co are, re-
spectively, the amplitude and the frequency of the ap-
plied microwave field. Essential for our treatment is the
fact that„although this system is not integrable, almost
all bounded trajectories are regular for all intensities of
the applied field provided that the frequency is small
enough. This regularity is the consequence of the approx-
imate dynamical symmetry of the system, i.e., of its near-
integrability [5,7].

In a previous paper [7] we have discovered that the
dynamical system with the Hamiltonian function

1 20= ———col +fx + (r +3z )
2 r 18

is completely integrable. Let us name the systems corre-
sponding to the Hamiltonian functions (1) and (2) as sys-
tems I and II, respectively. Note that the global topolog-
ical structure of the phase spaces corresponding to two
systems is quite difFerent. System II allows only bounded
trajectories and since it is integrable, almost all its trajec-
tories are contained in the invariant three-dimensional
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tori in the phase space. On the other hand, system I sup-
ports both bounded and unbounded (scattering, ionizing)
trajectories. However, since

2V=H H—„,= (r +3z ),
one might expect that for small enough co, e.g., for the
microwave fields that are of current interest in this study,
the bounded trajectories of system I, located in the vicini-
ty of the nucleus, can be well approximated by the (regu-
lar) trajectories of the integrable system II. This explains
the regularity of system I in the region of the phase space
that contains bounded trajectories. The relation between
the two systems will be explored in detail in Sec. III. Be-
fore that, we shall describe in Sec. II the topological
structure of the phase space corresponding to the integra-
ble system II. Finally, in Sec. IV, within the framework
of the adiabatic theory, we shall use the integrable system
II as a zeroth-order approximation to calculate ionization
threshold fields for the hydrogen atom in circularly polar-
ized microwave field.

II. PHASE-SPACE STRUCTURE
QF THE INTKGRABLK SYSTEM II

Recall that an n-dimensional Hamiltonian system is in-
tegrable if it possesses n independent integrals of motion
that are in involution. In the case of the three-
dimensional integrable system II two additional [besides
the Hamiltonian function itself, Eq. (2)] integrals of
motion are [7]

I=4, col, (H fx)+ ,'co l,—+f l p, —l,p—+

+ (y +z )+ 3cof(3xl, —p—~r +zl )
2

,'co fx(r +z ), ——

J=~ l„p —
/yp +-

r

+ —,'co3z(x +y ) ——', fl„—,'cofxz . —

Both systems I and II possess the following useful scal-
ing property: if one introduces the scaled canonical coor-
dinates r, =co r and p, =co '

p and the scaled field in-
tensity f, =co ~ f, then the scaled Hamiltonian func-
tions H' =~ H and H =~ H and scaled in-

tegrals of motion I, =re I and J, =co 'J have the
same functional forms as given in Eqs. (I)—(5) with the
replacement co=1. Further, both systems I and II pos-
sess a discrete symmetry. The Hamiltonian functions
H„, and H, as well as the function I, are invariant under
the transformation (x,y, z,p,p,p, )~(x,y, —z,

p,p~,
—p, ), while the function J transforms as J~—J.

A. Invariant sets of the integrable system II

Let P be a phase space of both systems I and II. Con-
sider the energy momentum map-[8] corresponding to the

integrable system II:

AfsM: P~)R': (r, p)~(H(r, p), I(r, p), J(r, p)),

A,FM(P)=Q .

where Q C:IR is the image of the phase space P under the
energy-momentum map. Let M(r, p) be the differential
of the energy-momentum map, i.e., the (3X6) Jacobian
ITlatrlx,

BH /Br BH /Bp
M(r, p) = BI/Br BI/Bp

BJ/Br BJ/Bp

The phase space naturally decomposes into a (disjoint)
union of the level sets of the energy-momentum map (i.e.,
inverse images of the points from Q )

pz c c = [(r,p): H(r, p) =E,I(r, p) =C„J(r,p) =Cz j

=JRFM(E, C„C2), (E,C), C~) H Q .

Each level set pz c c is invariant under the motion cor-
i' 2

responding to the Hamiltonian function H, as weH as un-

der the motions of I and J treated as Hamiltonian func-
tions. The topological structure of the given level set de-
pends on whether the corresponding point from Q is reg-
ular or not. Recall [8] that the point (E,C„Cz)HQ is

regular if it is a regular value of the energy-momentum
map JN zM or, in other words, if for each (r, p) H pz c
one has that rank [M(r, p)]=3; otherwise the point
(E,C„C2) is said to be critical. In other words, if the
point from Q is regular, then at each phase-space point
belonging to the corresponding level set the three Hamil-
tonian vector fields generated by the functions H, I,J are
linearly independent. Let Q„and Q, be the sets of all reg-
ular and singular points, respectively. It is easy to verify
that rank [M(r, p)] is invariant under the discrete trans-
formation (x,y, z,p p,p, )~(x,y, —z,p,p, —p, ).
Therefore the sets Q, Q„, and Q, are all invariant under
the transformation (E,C „Cz ) ~(E,C„—Cz —). Accord-
ing to Liouville s theorem [8], if the point (E,C„Cz) is

regular then the invariant level set pz c c is a three-

dimensional smooth manifold. In particular if pz c ~ is

compact and connected, then it is di6'eomorphic to a
three-dimensional torus. Since the integrable system II
allows only bounded motions, the level sets of regular
points are necessarily compact and some of them are con-
nected. As we shall soon see, if such a level set is not
connected, then it is difFeomorphic to a disjoint union of
exactly two three-dimensional tori. On the other hand, if
the point (E,C, , C2) is critical, then the corresponding
level set necessarily contains (as subsets) invariant smooth
manifolds of dimension lower than three, which if com-
pact and connected, are difFeomorphic to two-
dimensional tori, circles (periodic orbits), or (fixed)

points.
We shall now describe the topological structure of the

sets of regular and singular points corresponding to sys-
tem II. They are both subsets of E, i e.,
Q„UQ, =QC:IR . The set Q„ is three-dimensional open
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(in E ) and disconnected set h'1 Q, d1 c ~ ccoIIlposcs 1rlto
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of the set
way o represent these sets is to give plot fs Q 1Iltcl scctlons
o e set Q with various planes of th C SPRCC

—I, I, I)I defined by fixing the third mte ral C2.
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2,
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= IG(f, ); see the Appendix] and C2, i
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connected components Q =Q UQ Th c sct Qf cr'1t1cal

points Q, contains four two-dimens' 1ensiona su' sets—
suI'faces 0 )~ 0', 6', Rnd 62—and four one-d1mens1onal
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cT I Rn E2 1s thc
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c s Rs g ~ ccrcasc RIld foI'

f~ 9 ) it I'cdllccs 'to a poillt. FloIn F . 1(b)ig. and 1(c)
we see that the open regular set ~~ hse ~~& as nonempty inter-

and these intersections are bounded for 1( iC
~

(C
Fig. 1(c). Also we see hee that the curve I4 intersects only the
planes for which 0(

~
C

~

( 1 F' l (b).1g. . Th1s cul vc 1s

I I an
also represented in Figs. 2(a) —2( ) Nc . ote that the curves

2, 3, and l4 meet at the point 8. N t h ho e t at t e regular
set 1 is simply connected (and diFeomorphic to E )

while, due to 1ocation of the critical curves I the

Qz is not sim 1 co
C SCt

z
'

p y connected. Analytical formulas for all
surfaces and curves belonging to the set Q are summ-
rized in the Appendix.
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tained by the contraction of the tori from the family w2.
The level sets of the points e& have more complicated
structure (see below). However, the family wz can be ex-
tended across the critical surface o.

2 into the open regular
set Qi. This is because the level set of any given point
from o.

z is not connected: it is a disjoint union of one
three-dimensional torus, naturally embedded in the fami-
ly w2, and one two-dimensional torus. Consistent with
that is the fact the level set corresponding to any regular
point from Q, is also not connected: it is a disjoint union
of two three-dimensional tori, one of which belongs to
the family wz and another to the (new) family ia, . Clear-
ly, the two-dimensional tori that correspond to the points
from o2 are obtained by the contraction of the three-
dimensional tori of the family w&. Neither family of tori
can be extended across the critical surface o. ][. The level
sets of the points from that surface consist of two disjoint
two-dimensional tori. The most interesting is the critical
surface e&. The connected level sets of the points from
that surface are the so-called separatrices: they separate
two families of tori. Each such level set decomposes into
three invariant subsets: one unstable [under the motion
generated by the Hamiltonian function H, Eq. (2)] two-
dimensional torus and two noncompact three-
dimensional sets (diffeomorphic to direct products of two
circles and a real line), which constitute unstable and
stable manifolds of the unstable two-dimensional torus.
(Note that invariant two-dimensional tori that corre-
spond to the critical points from the surfaces o „o.2, and
ez are all stable. )

In the conclusion of this subsection we define sets 8',
and 8'2 to be the unions of the tori belonging to families
wi and w2, respectively. By construction they are two
six-dimensional open disjoint subsets of the phase space
foliated by the corresponding three-parameter families of
invariant three-dimensional tori. In the next subsection
we shall use the technique of surfaces of section to illus-
trate some of the level sets described above. A more de-
tailed analysis of the topological structure of the level
sets, especially of those corresponding to the critical
points and various bifurcation phenomena, will be ad-
dressed elsewhere [9].

B.Reduced two-dimensional systems

For dynamical systems, with more degrees of freedom
than one, the standard method for graphical presentation
of invariant sets (trajectories) is the method of Poincare
surfaces of section in which one constructs intersection of
the given invariant set with some suitable transversal sub-
set (with the codimension one) of the phase space. In the
case of our integrable system II the most suitable subset
for the construction of the surfaces of section (SOS) is the
five-dimensional plane z =0 because it is transversal to all
invariant sets pE c c with Cz&0. To verify that, first

not that the Hamiltonian vector field
XH=(BH/Bp, —BH/Br) of the Hamiltonian function II,
Eq. (2), is tangent to all level sets pE c c . On the other
hand, the vector n=(0, 0, 1,0, 0,0) is orthogonal to the
plane z =0. Therefore, for the plane z =0 to be transver-

Px +5'y +Pzo
H C2

1

( z+ z)1/z

1—col, +fx+ co (x +y ),
18

(9)

Ic =—4col, (IIc fx )+ —,'co l, —

2 X+f pzo pyl.—+-
(x+y )

+ ,'f y + ,'cof—[3xl,—p (x —+y )]

,'co fx(x +y )—, — (10)

where

C2

co(p y+p x)—3fy/2

Now, given some invariant three-dimensional torus (from
the family w, or u1z) with the corresponding regular
point (E,C„C )HzQ„, its intersection with the plane
z =0 consists of two disjoint two-dimensional tori (which
lie in the half planes p, )0 and p, (0). The projections
of these two-dimensional tori on the (four-dimensional)
space IR = [(x,y, z =O,p,p,p, =0)] are invariant sets of
the system IIC and are subsets of the level set defined

2

with the conditions Hc =E and IC =C &.

As for the case of C2 =0, it appears that the plane z =0
is not necessarily transversal to the level sets pz c
However, it is easy to verify that the four-dimensional
subset of the phase space, defined with z=0 and p, =O
and for which Cz =0 [see Eq. (S)], is invariant under the
motion of the Hamiltonian function 0, Eq. (2), as well as
under the motion generated by the function I, Eq. (4),
treated as a Hamiltonian function. Therefore, the restric-
tion of system II to the plane z =0, p, =0 defines an inte-
grable two-dimensional system IIo with the following
Hamiltonian function and additional integral of motion:

sal to the level sets pE c c &o, it is sufficient that the sca-
1' 2

lar product n-X~=OH /Bp, =p, is di6'erent from zero at
the phase-space points for which z =0 and Cz %0. But
from Eq. (5) we see that if J=Cz %0 and z =0, then
p, AO. From this consideration we also see that the inter-
section of the plane z =0 and the level set pE c c ~p con-

sists of two disjoint subsets that belong to two five-
dimensional half planes defined with the conditions p, )0
and p, (0.

Moreover, to each Cz&0 corresponds an integrable
two-dimensional system IIC such that the intersection of
the plane z=0 with any level set pE c c for which

J=C2 is related to an invariant set of the system IIC .
2

The Hamiltonian function Hc (x,y,p,p ) and additional
integral of motion Ic (x,y,p„p ) of the system IIc are
obtained from the Eqs. (2) and (4) by setting z =0 and re-
placing p, with the solution (for p, ) of the equation
&l.=o=cz



M. J. RAKOVIC AND SHIH-I CHU S2

Ho=
2 2

Px+Py
2

1

(x 2+y 2) 1/2

—col, +fx+ co2(x2+y ),2 2

18

10

0- Q,

Q2

Io= 4col, (H—
O fx )—+ 8' l,

+f py+ 2 2 &y2 2f y
(x +y )

+ —,'cof[3xl, —p (x2+y )]

Ice fx—(—x +y ) . (12)
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Now, given some invariant three-dimensional torus (from
the family tvi or tv2) with the corresponding regular
point (E,C, ,O), its intersection with the plane z=O,
p, =0 consists of (one or two) two-dimensional tori that
are invariant sets of system IIO.

In Figs. 3 and 4 we show the plots of several level sets
of the two-dimensional system II~ (in the case f, =2.67)
corresponding to various regular and critical points. The
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FIG. 4. Same as in Fig. 3 but for (b) and (d) the critical point
from the surface cr2 and (c) and (e) the regular point from Q2.

semiparabolic coordinates, which regularize the Coulomb
singularity, are defined with the equations

-2

w, (b)

W)

r2. Q.

-2.
-4.

(c) x=(u —v )/2, y=uu,

p„=(up„—up„)/(u +u ),
p~=(vp„+up, )/(u +u )

(13)

-6

Q. Q.

-2- -2.

-4
-10 10

-4
-10

Us
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FIG. 3. Invariant level sets of a regular point from the set Q,
and a critical point from the surface e& corresponding to two-
dimensional system IIO. The scaled field intensity is f, =2.67.
(a) Positions of the regular and the critical points. (b) SOS,
defined with u =0, of the level set corresponding to the regular
point. (c) SOS of the level set corresponding to the critical
point. (d) Projection onto the u-v plane, of two tori w& and w2,
corresponding to the regular point. (e) Projection, onto the u-U

plane, of the sepatrix corresponding to the critical point. All
quantities are given in atomic units.

and in Figs. 3 and 4 we have used the corresponding
scaled variables u, =co' u, v, =co' U,p„=p„, and

S

p, =p, . Shown in Fig. 3(a) are the locations of a regular
S

point from the set Qi and critical points from the surface
e&. The corresponding level sets are represented in Figs.
3(b) —3(e). The SOS's are defined as the intersections of
the given level sets and the plane u =0. In the case of the
regular point, Fig. 3(b), it consists of four disjoint closed
curves (diffeomorphic to circles) whose projections on the
v-p, plane are shown in Fig. 3(b). One pair of these "cir-
cles" belongs to a two-dimensional invariant torus of sys-
tem IIO, which is the intersecting set of the corresponding
three-dimensional invariant torus from the family m& of
system II with the plane z=0, p, =0. Analogously the
other pair of the circles belongs to the torus from the
family w2. Projections of these two-dimensional tori onto
the configurational plane u-u are given in Fig. 3(d). (In
fact we plot the trajectories of the motion generated by
the Hamiltonian function Ho obtained by evolving ran-
domly chosen initial point, one from each torus. ) The lev-
el set of the critical point from the surface e, is presented
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in Figs. 3(c) and 3(e). We see that two tori from the fami-
lies wi and w2 "meet" at this point and the correspond-
ing level set of system IIO, the separatrix, consists of one-
invariant one-dimensional set (unstable periodic orbit)
and two invariant two-dimensional noncompact sets,
both difFeomorphic to cylinders. These cylinders consti-
tute stable and unstable manifolds of the unstable
(periodic) orbit. Shown in Fig. 4(a) are the locations of a
critical point from the surface o.

2 and a regular point
from the set Qz. The corresponding level sets of system
Ilo are represented in Figs. 4(b) —4(e). In the case of the
critical point, Figs. 4(b) and 4(d), the level set consists of
one two-dimensional torus (the intersection of the corre-
sponding torus from the family w2 with the plane z =0,
p, =O) and, as expected (the critical point), one one-
dimensional orbit. The level set of the regular point from
the set Qz, Figs. 4(c) and 4(e), is a single two-dimensional
torus (the intersection of the corresponding torus from
the family wz with the plane z=0, p, =O). Figures
5(b) —5(d) show the SOS's of the level sets of the two-
dimensional system II& (for C2, = 1. 1 and f, =2.67) that

2

correspond to three regular points from Qi, while Fig.
5(e) shows the SOS corresponding to the singular point
from the surface e, . In this case we have used polar coor-

O 0-

dinates in u-U plane, i.e., after the introduction of the
semiparabolic coordinates, Eq. (13), we define the follow-
ing set of canonically conjugate coordinates:

u =p cosP, v =p sing,

p„=p cosP — sing, p„=pz sin(t + cosP .Py . . 5'y

p p

Then the SOS is defined by fixing the polar coordinate P.
Again, we have used the scaled variables p, =~~' p,

We conclude this subsection by commenting on the
difference between invariant tori of system II depending
on whether C2&0 or C2 =0. As is well known [8], in the
case of the integrable (nondegenerate) Hamiltonian sys-
tems almost all bounded trajectories are everywhere
dense in the invariant tori to which they belong. It is said
that the motion in the invariant torus is ergodic. In the
case of our system II this is true for almost aH invariant
tori (from the families tv, and tv& ) for which Cz&0. On
the other hand, the trajectories for which Cz=O are not
everywhere dense in the corresponding tori. Instead,
each invariant three-dimensional torus with C2 =O

decomposes into three invariant subsets and trajectories
of H are everywhere dense only in these subsets. One of
these subsets is a two-dimensional torus —an invariant
set of the integrable system IIO—i.e., it is the intersection
of the given three-dimensional torus with the plane z =—O,

p, =O. The other two subsets are three dimensional and
diffeomorphic to the direct products of two circles and a
real line.
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C. Actions corresponding to invariant tori

The invariant tori (one or two; see Sec. II A) that corre-
spond to a given regular point (E,C i, C~ ) E Q„are impli-
citly defined by Eqs. (2), (4), and (5) with the conditions
H =E, I=C &, and J=C2. Three action variables

S&,S2,S3 corresponding to a given invariant three-
dimensional torus are defined [8] as iniegrals (divided by
2ir) of the canonical one-form p dr over three indepen-
dent noncontractible loops belonging to the torus. Since
there are infinitely many ways to choose three-
independent noncontractible loops for a given torus, the
actions are not uniquely defined: the triplet
S=(S„S2,S3) is defined only up to the multiplication
with any matrix X with integer elements for which
~det(X)~ =1, i.e., S'=VS is also a triplet of action vari-
ables associated with the same torus [10]. Consider now
an open neighborhood U of some regular point belonging
to Q, such that UCQ, . Then [8] there exist two
(difFerentiable) maps associated with two families of tori
w& and w2

FIG. 5. SOS's of the invariant level sets of the system IIC

corresponding to (b) —(d) three regular points from the set Q,
and (e) a critical point from the surface e& ~ The location of the
points are given in (a}. The parameters are f, =2.67 and
C2, = 1.1 SOS is defined with /=0. 3ir. All quantities are given
in atomic units.

y;: U —+R: (E,C„C2)—+(S', ,S2,S3), i =1,2,
such that S i,S2,S3 are the action variables of the torus
that belongs to the family w; and corresponds to the reg-
ular point (E,C„C2). It is possible to extend continu-
ously the function g& so that it is defined in the entire
(open) set Qi, i.e., one can define the "global" action
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coordinates that cover the family w, of three-dimensional
tori. These actions, together with the corresponding
canonically conjugate angle coordinates, form global
action-angle coordinates [11] in the subset W, (see the
last paragraph of Sec. II A) of the phase space. Again,
due to nonuniqueness of the action variables, the set of
(global) action coordinates that covers the family w, is
defined up to the multiplication with the integer matrix
with determinant +1. In order to cover the family wz of
tori with the action coordinates one has to extend the
function y2 so that it is defined on Q, Uo. 2UQ2 (recall
that the level sets of the points from the critical surface
o.

2 contain tori of the family w2). However, due to the
fact that the set Qz is not simply connected, such an ex-
tended function y2 is multivalued (or it is not continuous
if it is single valued) [11]. Therefore it is not possible to
define global action coordinates for the family of tori w2
or to introduce the global action-angle coordinates in the
(open) subset W2 of the phase space.

Let us now describe the technique we have used to cal-
culate action variables of the tori from the family w&, i.e.,
to construct (numerically) the function yi. As we shall
see in Sec. III only these tori are good approximations for
the (existing) invariant tori of the realistic system I. The
nontrivial part of this calculation is the location of three
independent noncontractible loops y&, yz, and y3 belong-
ing to the torus TE c c from the family w& defined with

the values of integrals of motion (E,C„C2) and Eqs. (2),
(4), and (5). As we know from Sec. II 8, each such torus
contains as a subset (at least one) the invariant two-
dimensional torus TE z c of the two-dimensional inte-

]&

grable system II& deIIined with the values of the integrals
2

of motion (E,C, ) and Eqs. (9) and (10) for C2%0 or Eqs.
(11) and (12) for C2=0. The two independent loops, say,
yi and y2, can be chosen so that they belong to TE c
Therefore, the first step in the calculation is to locate one
independent noncontractible loop y, that belongs to
TE c c . This can always be done with the help of the
suitable foliation of the four-dimensional phase space of
the system II& with the one-parameter family of the

2

three-dimensional leaves. The foliation can always be
chosen in such a way that almost all leaves are either
transversal to the given torus (such leaves are obviously
SOS) or do not intersect it at all. Transversal leaves
(SOS) intersect the torus in one or a finite number of (dis-
joint) circles. Among those SOS's there always exist
some SOS's such that at least one of their intersecting cir-
cles is noncontractible. That is our first noncontractible
loop y &

and the corresponding action S& is the integral of
the canonical one-form (1 2/vr)( pdx+p dy) along yi.
In order to de6ne the suitable foliation of the phase space
of the system IIc, we have introduced two canonical
transformations (that have already been used for the
definition of SOS's; see Sec. II 8) generated by the
changes of conIIigurational coordinates
(x,y) —+(u, u)~(p, g) given in Eqs. (13) and (14). The
leaves of foliation are then defined as the level sets of
coordinate u when Cz =0 and the polar angle (in the u-U

plane) tI) when Cz&0. The SOS's in Figs. 3 —5 contain
noncontractible loops obtained in this way. Qnce we
have located the erst noncontractible loop and the corre-
sponding SOS, the second independent noncontractible
loop is obtained in the following way. In the loop y& we
choose some point 6, as the initial point and integrate
equations of motion corresponding to the Hamiltonian
function Hc, until the trajectory intersects the circle y&

(i.e., crosses the corresponding SOS) at some point 62.
Connecting the points 62 and 6& with the arc belonging
to y& we obtain the second independent noncontractible
loop y2 of the given invariant torus and again the second
action is defined as the integral of the canonical one-form
(1/2m)(p„dx+p~dy) along yz. The ambiguity in the
choice of the arc that connects 62 and 6& leads to
nonuniqueness of the action variables as explained above.
Two values for the second action S2 and S2 correspond-
ing to the two arcs connecting 62 and 6, differ exactly
by the value of the first action S&. The method for the lo-
cation of the third loop is not the same for the cases
C2@0 and C2=0. Consider first the case C2@0. We
again take some point 6& from the loop y& as the initial
point, but now we first integrate equations of motion cor-
responding to Hamiltonian function H, Eq. (2) (of the full
system II). At the beginning the trajectory leaves the
torus T~ c c and we integrate equations of motion until

1' 2

the trajectory returns and intersects the torus TE c & at

some point 63. Starting from that point, we again in-
tegrate equations of motion corresponding to the Hamil-
tonian function Hc, until the trajectory intersects the

loop y& at some point 64. %'e then obtain the third loop
3 by connecting the points 64 and 6

&
with one of the

two arcs that belong to the loop y&. The third action S3
is obtained by the integration of the (full) one-form
(I/2ir)pdr along the loop y3. When C2=0 the trajec-
tories of the Hamiltonian function Ho coincide with
those of H (see Sec. II 8). In this case, in the construc-
tion of the loop y3, the initial trajectory (from 6, to 63),
which leaves the torus TE c c and returns to it, is gen-

crated by the motion corresponding to the function J
treated as a Hamiltonian function.

III. RKI.ATIQN BETWEEN SYSTEMS I AND II

The analysis of the topological structure of the phase
space has shown that all trajectories of the Hamiltonian
system II are bounded; almost all of them are contained
in three-dimensional invariant tori that form two three-
parameter families w& and w2. Our main goal in this pa-
per is to use system II as the approximation for the
motion of system I, i.e., of the hydrogen atom in the cir-
cularly polarized (microwave) fields. As we mentioned in
the Introduction, such an approach is justified only for
those trajectories of system II for which the di6'erence be-
tween two Hamiltonian functions, Eq. (3), is small. This
is obviously not true for the trajectories that belong to
the invariant tori of the family w2, i.e., those that lie in
the subset 8'2 of the phase space. Indeed, the trajectories
of system. I that lie in 8'~ are unbounded, i.e., they corre-
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spond to scattering-ionizing motion. On the other hand,
the trajectories belonging to tori from the family m, are
located in the vicinity of the nucleus (see Sec. II) and for
them, if co is sufficiently low, the difFerence between two
Hamiltonian functions is a small perturbation. In other
words, in the region 8', of the phase space and for low
frequencies, system I can be viewed as near integrable,
i.e., as the system obtained by a perturbation of the inte-
grable system II. Therefore, according to the
Kol'mogorov-Arnol'd-Moser (KAM) theorem [8], the
majority of trajectories of system I that lie in 8', are reg-
ular, i.e., they are contained in the invariant tori that can
be viewed as slightly deformed tori of the integrable sys-
tem II. Only the small portion (proportional to the per-
turbation parameter, in this case co /18) of the subset W,
is 611ed by irregular trajectories not contained in invari-
ant tori. For given parameters f and co we define
w„,=w„,(f,co) to be a collection of invariant tori from
the family w i with the following property: if
Tz c c Hw„, [then (E,C&, C2)&Qi] and if (S&,S2,S3)
are the corresponding action variables, then there exists a
nearby-lying invariant torus T„, of the (nonintegrable)
system I that can be obtained by slight deformation of
TE z & and that has the same values for the action vari-

1~ 2

ables. Let Q„, and W„, denote the corresponding sub-
sets of Q, and I', respectively. According to the KAM
theorem we have that v(Qi/Q„, )/v(Qi )-ro /18, where
v is a measure defined on the set Q. An analogous rela-
tion holds for the sets 8'„, and 8', . In order to estimate
the "size" of the set Q„,=Q„,(f, ai) we have to compare
the SOS of systems I and II for various values of parame-
ters f and co. Due to the scaling property (see the intro-
duction to Sec. III) we can set co= 1 and vary only the
scale parameter f, =fco ~ . In Fig. 6 we show the
SOS's (defined with u =0 and u )0) that correspond to
invariant tori of systems I [Figs. 6(d) and 6(e)] and II
[Figs. 6(b) and 6(c)] for the motion in the plane of polar-
ization (z=0, p, =0) for which C2=0. The correspond-
ing values of the scaled invariants E, and Ci, of system II
are given in Fig. 6(a). The scaled parameter f, =2.67
corresponds to the typical values of the ionization thresh-
old field in the experiment of Fu et al. [3], i.e.,
f, =2.67~co=8.5 CxHz and f=193 V/cm. The chosen
scaled energies E, = —2 [Fig. 6(b)] and E, = —1 [Fig.
6(c)] formally correspond to the states of the unperturbed
hydrogen atom with the principal quantum numbers
n =46 and 65, respectively. In Figs. 6(d) and 6(e) we see
that (for these values of the parameters) the motion of
system I is almost completely regular and that the invari-
ant tori of the two systems practically coincide. Also we
see that almost all tori of the family w, (of system II ), for
which E, = —2 and E, = —1, belong to the collection
m„„with the exception of the tori located very close to
the separatrix, i.e., whose corresponding points
(E„Ci„Cz,=0) lie in the very small vicinity of the criti-
cal surface e, of the set Q, . For these tori the corre-
sponding motion of system I is unbounded, i.e., ionizing
motion. Similarly, Fig. 7 shows, for the case f, =1.35,
several SOS's of the two systems. We see that for higher

O2—
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Es
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cL p- p.
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2Q
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-0.5.
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-1
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FIG. 6. SOS's, defined with u =0 and si )0, that correspond
to several invariant tori of (d) and (e) system I and (b) and (c)
system II for the motion in the plane of the polarization (z =0,
p, =0). The points from the set Q that correspond to tori (fami-

ly m& ) of system II are shown in (a). The scaled energies of the
tori of the system II are (b) E, = —2 and (c) E, = —1. The
scaled field intensity is f, =2.67. All quantities are given in

atomic units.

IV. DKTERMINATK)N 43I' IQNIZATIGN
THRESHOLD FIELDS: ADIABATIC APPROACH

We treat ionization of the hydrogen atom by circularly
polarized microwave Geld as an adiabatic process, i.e., we

energies E„the vicinity of the separatrix filled by tori of
family w, not belonging to w„, is larger [compare Figs.
7(c) and 7(e)]. An extensive comparison of the SOS's for
various values of parameters has shown that for all values
of f, the set Q„, practically coincides with Q, except for
the narrow strip near the critical surface e][. Let the sur-
face e„, be the boundary of the set Q„,. Our empirical
comparison of SOS's has revealed that for any f, the por-
tion of e„, corresponding to lower energies, i.e.,
E, (—1.5 [or equivalently co( E) ~ (0.55]—practical-
ly coincides with e&, so that for these energies the critical
surface e, corresponds to the boundary between bounded
(regular) and unbounded (ionizing) motion of system I.
For higher energies the surface e„.;, curves away from the
surface e, and the volume of the subset 8', g W„, of the
phase space 611ed with irregular and/or unbounded tra-
jectories of system I becomes larger.
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tori are parametrized by the corresponding values of the
integrals of motion (Eo, l„A, ). For fixed energy Ep &0,
the z projection of the anpular momentum takes values
from the interval —1/1/ —2Eo to 1/Q —2Eo, while for
given Eo and I„the z projection of the Runge-Lentz vec-
tor takes the values from the interval —1+ ~l, ~1/ —2Eo
to 1 —~l, ~Q —2Eo i.e., there is a one-to-one correspon-
dence between the tori that foliate the energy shell Eo
and the points that belong to the open subset (the interior
of the parallelogram defined above) of the l, -A, plane; see
Fig. 8. Note that the points that belong to the closure of
the parallelogram are all critical points of the corre-

1 1sponding energy-momentum map. Therefore, the initia
state can be described with a distribution function defined
on the set of all possible pairs (l„A, ) for the given value
of the initial energy Eo. It is not hard to show that the
distribution function corresponding to the microcanoni-
cal ensemble Eq. (16) is given by

dw(/„A, ) =( Eo/2)—'i dl, d A, , (17)

0.5

cL Q- 0

-0.5 .

-0.5 0 0.5 1

V

-1
-0.5 0.5

FIG. 7. Same as in Fig. 6 but for f, = 1.35 and (b) E, = —1.5
and (c) F., = —O. S.

assume that the hydrogen atom is initially prepared in
the bound state with a given energy Eo & 0 (or principa 1

quantum number no = 1/Q —2Eo) and that the mi-
crowave field is slowly switched on. More precisely, the
field intensity f is turned on adiabatically from zero to
some final value f i during the time period T, i.e. ,
f(O)=O, f(t)=fi for t ~ T, and 0&f(t)/f i &&co for
0&t & T))1/co. However, the field switching time T is
still much shorter then the quantum tunneling time scale.
This is consistent with the experimental conditions.
From the standpoint of classical mechanics the initial
state is then described by the microcanonical ensemble o1 f
uniformly distributed phase-space points on the energy
shell Eo or, in other words, the probability distribution of
the phase-space points (r, p ) in the initial state is

dw(r, p)=constX5(E„—Ho(r, p))drdp, fdw=1,

1+3,
S =

2( 2E )
1/2

1 —A,
S =

2( —2E, )
~

(19)

S3=l, . (20)

0.8 0.8

0.6

0.4 0.4

0.2 0.2

0 0

-0.2 -0.2

-0.4 -0.4

i.e., the probability distribution of the phase-space points
of the microcanonical ensemble Eq. (16) corresponds to
the uniform distribution of the corresponding tori (that
foliate the energy shell) when parametrized by I, and A, .

Given the values of the integrals of motion (Eo, /„A, ),
let T denote the initial invariant torus. The corre-Eo, l, , A

sponding action variables are determined by the formulas

2

(16)
-0.6 -0.6

where Ho is the Hamiltonian function of the unperturbed
hydrogen atom. The hydrogen atom is a highly degen-
erate integrable dynamical system and all its trajectories
are periodic. However, since in the rotating frame the
Hamiltonian function of the unperturbed hydrogen atom
takes the form [see Eq. (1)] Ho —col„ it is convenient to
view the initial five-dimensional energy shell as foliated
by a two-parameter family of invariant tori correspond-
ing to, apart from the Hamiltonian function Ho, two ad-
ditional integrals of motion: the z projections of the an-
gular momentum and the Runge-Lentz vector. These

-0.8 -0.8

I

-0.5 0.50-0.50.50

tz

FIG. 8. (a) Set of all possible values of (I„A,) corresponding
to tori that foliate the energy shell of the (unperturbed) hydro-
gen atom with E0= —1.410. The line i, is the solution of the
Eq. (21) for co=1 and f~ =1.35. The probability of ionization
(proportional to the "ionized" area) is w =0.490. (b) Same as (a)
but for E0= —1.397. Then w =O.S22. All quantities are given
in atomic units.
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Note that the energy in the rotating frame is
E„,(f=0)=ED —col, . Suppose now that the circular
field is adiabatically switched on. Due to the near in-
tegrability of the system I, i.e., of the Hamiltoman func-
tion H„„Eq. (1), described in the previous sections, the
majority of the tori will survive perturbation even for
large values of f. As f adiabatically increases the initial
torus TE I „deforms and forms a one-parameter family0~z z

TE I z (f ), while preserving the values of its actions,

Eqs. (18)—(20), since they are adiabatic invariants [8].
Eventually, for some value of the field f, =f, (Eo, I„A, )

the torus "breaks up" and the corresponding trajectories
become unbounded; this is interpreted as the ionization
of the hydrogen atom. Now we shall us the correspon-
dence between the tori of systems I and II (see Sec. III):
given the values of the parameters f and co to any invari-
ant torus of system I corresponds the nearby-lying invari-
ant torus of system II, which has the same values of the
actions. Therefore, to each initial invariant torus of the
unperturbed hydrogen atom, i.e., to each corresponding
triplet (Eo, I„A, ), we can associate a curve
(E(f ), Ci (f ), Cz(f ) ) (in the set Q, ) defined with the con-
dition that the invariant tori (from the family w, ) that
correspond to the points from that curve have the same
values for action variables as the initial torus, i.e., that
(S„S2,S3)=yi{E(f),Ci(f ),C2(f )). The corresponding
one-parameter family of invariant tori TE(f) c (f) Q (f) is

obtained by the continuous deformation of the torus
Tz(0) c (0) c (o) when the parameter f in the Hamiltonian

function H, Eq. (2), is adiabatically increased. The pa-
rameter f can be increased until it reaches the point of bi-
furcation f, =f,(Si,S2,S3 ) =f, (Eo,I„A, ) for which the
curve (E(f ), C, (f ), Cz(f ) ) intersects the critical surface
ei (i.e., for which the corresponding torus meets another
invariant torus, of the family w2', see Sec. II B). Suppose
now that for each f& [0,f, ) the corresponding torus
TE(f ) c (f ) c (f ) belongs to w„„i.e., it corresponds to the

invariant torus of system I; see Sec. III. In that case the
field intensity f, for which the invariant torus of system
I breaks up can be approximated with the bifurcation
point f, of the corresponding invariant torus of system
II, i.e., we can write

f, =f,(S„S2,S3)=fc(EO,I„A, ) . (21)

In summary, the method we have used to calculate the
field intensity f, for which the given initial invariant
torus of the unperturbed hydrogen atom breaks up is the
following. First, from the given values of the integrals of
the motion (Eo, I„A, ) we calculate, using Eqs. (18)—(20),
the corresponding action variables (Si,S2,S3). Then, for
each f we calculate the inverse of the function y„Eq.
(15), at the point (Si,S2,S&), thus locating the continu-
ous curve (E(f),C, (f),C2(f)) in the set Q, together
with the point f, at which the curve intersects the criti-
cal surface e, . If all points (E(f),C, (f ), C2(f )) belong
to the set Q„,C Q „we identify the bifurcation point f,
with f, .

Let us now fix the field intensity f, and the initial en-

LD/ (Eo ) = ( Eo/2) p/ (Eo ) (22)

To be consistent with the experiment we define the ion-
ization threshold field (see Ref. [3]) as the field intensity
for which half of the initial ensemble is ionized. That is,
given the energy Eo of the initial hydrogenic state, the
ionization threshold field is defined as the intensity of the
field f,h for which

w/ (Eo ) = —,
' (23)

Following the method presented in this section we have
been able to calculate (classical) ionization threshold
fields for initially highly excited states of the hydrogen
atom. The results are given in the Table I. In Fig. 9 we
give the ionization thresholds fields as a function of the
initial principal quantum number of the hydrogen atom
no = I/Q —2EO for co=8.5 GHz and 22 (no (55.

As observed in the experiment [3] (on the Rydberg
states of sodium), the threshold fields for ionization of the
hydrogen atom in circularly polarized microcanonical
fields practically obey the scaling law f,i, =1/cn o charac-
teristic for the classical static-field case. We found that
for the hydrogen atom, c is almost a constant, c =6. The
change of the parameter c (5.784—5.857) is not observable
in the scales of Fig. 9. These results are similar to those
for the case of the restricted motion in the plane of polar-
ization [5], where the same threshold law was obtained,
but with the parameter c taking values from the interval
5.973—6.100.

TABLE I. Calculated ionization threshold fields for initially
highly excited states of the hydrogen atom.

no = 1/Q —2EO f,h (V/cm) c= 1/f, hno (a.u. )

23.838
30.083
34.178
39.133
46.258
54.755

2752.097
1084.784
650.870
378.445
193.092
97.631

5.784
5.785
5.788
5.791
5.814
5.857

ergy Eo. Then the solution of Eq. (21) defines a curve in
the I,-A, plane that may have a nonempty intersection
(we denote it with i, ) with the set of all possible pairs
(I„A, ) for the given energy Eo. Examples are given in
Figs. 8(a) and 8(b) for co = 1,f~

= 1.35, and
Ep = 1 410 1 397. Clearly the points that belong to
the curve i, correspond to initial invariant tori that break
up when the field intensity reaches the given value f, .
The curve i, divides the set of pairs (I„A, ) into two sub-
sets, one of which, as indicated in Figs. 8(a) and 8(b), cor-
responds to initial tori that have already been "broken"
(or "ionized") for the field intensity less than f, , while
the other subset corresponds to initial tori that will be
broken for greater field intensities.

As follows from Eq. (17), the volume of this ionized
subset p& (Eo) is proportional to the ionization probabili-

ty wI (Eo ) of the initial (hydrogenic) state with the ener-

gy Eo for the field intensity f, , i.e.,
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10—

FIG. 9. Ionization threshold field as a func-
tion of the principal quantum number no cor-
responding to the initial state of the hydrogen
atom. The frequency of the microwave field is
co=8.5 GHz.

5.784&c(a.U. )&5.857

30
10 10

For comparison we have also calculated [12] the ion-
ization field thresholds for the hydrogen atom in the case
of the static field where the scaling law is exact. The re-
sult e„=5.783 is very close to the values obtained in the
case of the circularly polarized microwave field; see Table
I.

In conclusion, we comment on the relation between
our result and the experiments. In the experiment on the
ionization of highly excited states of the sodium atom in
circularly polarized microwave fields [3], the threshold
law f,h/16no obtained was close to the static-field case.
These ionization threshold fields are therefore consider-
ably higher than those in the case of the linearly polar-
ized field where f,h=1/3no. On the other hand, the
threshold field for the hydrogen atom in linearly polar-
ized field is I/9n0 [3]. Hence it was expected that in the
case of the hydrogen atom and the circular field the
threshold fields should be above I/9no and close to the
static-field values. Our result is in accord with such ex-
pectations; moreover, it is in excellent agreement with
preliminary experimental results [6].
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APPENDIX: ANALYTICAL EXPRESSIONS
FOR THE CRITICAL POINTS

All equations in the Appendix are formulated in scaled
variables. Let us fix the scaled field intensity f, . Consid-
er first the intersection of the set Q, with the plane

Cz, =0. When f, )(—', ) the curves l„l2,13,o„oz and

the segment F, A of the curve ez in Fig. 1(a) are all
parametrized by the same pair of equations

E, = —28/3+9f, /g —1/(28 ),
C„=—28'/9 —2/( 38)

and each has its own range of the parameter 0

—~ &8, — « 8 &0&8 &8~ &8, «8, &(—3)'~'&8, &8~
1 3 2

S S

8F =+3f,r~/4 r~/3—
+[(+3f,r+/4 r+/3) +r+]'~—

and r+ is the positive root of the cubic equation

Sr /9+f, r 1=0 . —

I

When f, & ( ~4)2~3 the curves l2 and l3 do not exist, the tri-
angle AI'28 is reduced to a point I'2, and for the range of
0 that corresponds to ez we have

OF &I9, &8~ .

The curve ei in the Fig. 1(a) is determined with
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E2
Cl, = — +f„( 3—f—,r+ )/'(2r+) &E, &

9f,
while for the segment of e2, on the right from the point A
(or Fz ), we have

E2
C1s

4
&E, &~ if f, &(—,')' ',

s

( 3—+f r )l(2r )&E & ~ if f &( —,')
Now we shall formulate equations that define critical
points for which C2, %0. Let XC:R be the set of all
points (p, P, z ) that satisfy the equation

a4(p, g)z +a&(p, P)z +az(p, P)z

+a, (p, P)z+ao(p, g) =0,

where

a4(p, g)=p (1+4cos P+3cos P),
az(p, P) = —~p sing cosg(1+cos P)+3f,p sing(1+ —", cos P+ —", cos P),
a2(p, g)= —2f,p cosg(3+cos P 4cos —P)+ 'f, p (1—+13cos P+7cos P —21cos P) —2p(1+cos P —2cos P),
a&(p, P)= ', f,p sin—P(1+cos P) 3f,p —singcosg(2+3cos2$ —Scos P)

+—',p sinPcosP[ —,", sin P+f, ( —", cosP+15cos P ~4' cos P)]—3f,psing(1+3cos P —4cos P),
ao(p, g) =f,p" sin icos P 9f,p cos—P sin P+2f p sin P cosg( 1+—",f, cos P) 9f,p—sin P cos /+sin P,
and for which

sing%0, 6p z cosP 4p sing—+9f,p sing cos$%0, p(p, P,z) =p z + ,'f,p z sing &—0 .

holds. Then, the map defined with the equations

E, (p, g,z)=
2 z + f, . ——pcotP z+ —p 3f,pcosg—+ f, cos P+ f, ——,—1+cos P 2 9+15cos P 8 4 27 2 2 9 2 1

sin2$ ' 4sing 3 9 8 8 '
p

Spcosg(1+cos P)C„p, ,z = 3'33 sin

21+9cos P 7+13cos P z

9sin P
'

sin P

+ Ip~cotg —f,p2 . + ,' f,p c to/(9 +—39c oPs) ——,
' cot/ z2 3+29 cos

,', p4+~4f, p cosP —6f,—pzcos P+( —,'+9f, cos P)p —3f, cosP,

C2, (p, g, z ) =+&p(p, P, z )

maps the set Xonto the set of all critical points that belong to surfaces o „orz,e„and ez and for which C2, WO.

Finally, we have to give the formula for the critical curve lz. We first define the set Y&R as the set of all points
(p, P) that satisfy the equation

( ', p)cos P+ ' f,—p—cosP p~=O— —

and inequalities

p(p, P)=p( ', p f, cosP)tan $—&0—, cosg&0, 0&p&p,„
where

—
( 9 )I/3 if f ) ( 4 )2/3

p,„=r if f, &(—,') /

Then the map defined with the equations

E, (p, P) =— ——p2 — f, + f,p cos—P ——, —4 p' 8, I p 3 1

9 cos~p 9 2 'cosP 2 '
p
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FIG. 10. Plot of the common

subset of the critical surfaces o
&

and e2 for the case f, =2.67. (a)
Projection onto the E,-C &,

plane. (b) Projection onto the
E,-C2, plane. (c) Projection
onto the C&,-C2, plane. All
quantities are given in atomic
units.

P' 16 P4
C„(p,g)= ,'f, p —co—sP+f, (1+ '~4p )cosP+ ',f,p 4p— ,', p—2f—, —P —+

cos

Cz, (p 0)=+2&I (p -4»'cot%

maps the set Y onto the critical curve 14.
It appears that the common subset of the critical surfaces cr, and e2 is a nonsmooth but continuous curve; the points

I'&, g&, and gz in Figs. 1(a)—1(c) belong to that curve. This curve is determined by the same equations (given above) as
the critical curve 14, except that for the domain of points (p, P) one has

cosg&0, 0&p&r+ .

In Figs. 10(a)—10(c) we give the plots of that curve for the case f, =2.67. We see that the point G in these figures corre-
sponds to maximal value CzG =C2G(f, ) for which the regular set Q, has a nonempty intersection with the C2 planes;
see Sec. II A and Figs. 1(a)—1(c).
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