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High-order perturbation expansion of non-Hermitian Floquet theory for multiphoton
and above-threshold ionization processes
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A high-order perturbation theory is presented for efficient and accurate computation of multiphoton and
above-threshold ionization cross sections of atoms and molecules in weak to medium strength laser fields. The
procedure is based on a Raleigh-Schro¨dinger perturbative expansion of the time-independent non-Hermitian
Floquet Hamiltonian. The reduced Green function and generalized pseudospectral discretization techniques are
extended to facilitate the calculation of complex quasienergy resonance states without the need of diagonaliz-
ing the full Floquet Hamiltonian. Explicit expressions are presented for the determination of intensity-
dependent total and partial rates and electron angular distributions. The theory is applied to a case study of
multiphoton detachment of H2 for a range of laser frequencies~corresponding to the absorption of a minimum
of two photons! and laser intensities from 107 to 1012 W/cm2. It is found that a 16th-order perturbative Floquet
procedure provides an excellent description of the two-photon-dominant detachment processes for laser inten-
sity up to 231011 W/cm2. The predicted electron angular distributions are in good agreement with recent
experimental data.

PACS number~s!: 32.80.Rm, 32.80.Fb, 42.50.Hz
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I. INTRODUCTION

As early as 1975, Rescigno, McCurdy, and McK
~RMM! @1,2# have outlined a method for calculating~one-
photon, weak-field! atomic and molecular photoabsorptio
cross sections using a discreteL2 basis set expansion and th
complex scaling technique@3#. The method has the advan
tage that it allows the calculation to be performed directly
the physical energies of interest and relies on no second
cedure to construct the cross section. The most recent a
cation of this procedure includes, for example, the accu
calculation of photoabsorption of Li, involving three activ
electrons and the use of the complex scaling saddle-p
technique@4#. However, the extension of the RMM proce
dure@1,2# to the multiphoton case has not been discussed
far. In principle, the non-Hermitian Floquet formalism@5,6#
can be applied to the calculation of multiphoton absorpt
cross sections of atoms and molecules in both weak
strong fields@6,7#; the procedure, however, involves the d
termination of the complex quasienergy states from
whole Floquet matrix. The motivations of this paper are tw
fold. First, we outline a procedure that works for both we
and intermediate laser intensities but does not require
diagonalization of the full Floquet matrix. Second, t
method will not only provide an extension of the RMM
method to the multiphoton and above-threshold ionizat
regime but also allow the examination of the intensi
dependent behavior of electron angular distributions and
tial rates in multiphoton detachment processes.

Our procedure is based on a high-order Raylei
Schrödinger perturbative expansion of the time-independ
non-Hermitian Floquet Hamiltonian and the use of the
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duced Green-function technique. We note that an earlier
tempt to make the connection of the Floquet matrix appro
with the conventional continued-fraction expansion of res
vant matrix elements has been presented by Maquet, C
and Reinhardt@8# by means of the successive formal iter
tion of the Brillouin-Wigner expansion but no explicit imple
mentation procedure and application has been made. M
over, instead of using theL2 basis set expansion techniqu
as in all the previous RMM-type calculations, we ha
adopted here the complex-scaling generalized pseudospe
~CSGPS! method @9# for the discretization of the Hamil-
tonian and the determination of the complex quasiene
resonances. As demonstrated in various recent atomic
molecular resonance calculations@9–11#, the CSGPS method
is simple to implement and computationally highly efficie
and accurate.

The organization of this paper is as follows. In Sec. II, w
present a high-order perturbative expansion of the n
Hermitian Floquet Hamiltonian and introduce the reduc
Green-function technique for the calculation of the succ
sive higher-order complex quasienergy resonances. In
III, we present the explicit expressions for the calculation
generalized cross sections for multiphoton ionization or
tachment. In Sec. IV, the lowest-order perturbation the
for the electron angular distributions and partial rates
above-threshold multiphoton detachment is presented.
nally in Sec. V, we apply the procedure to the study
intensity- and frequency-dependent multiphoton detachm
of H2. Comparison with the recent experimental data will
made.

II. HIGH-ORDER PERTURBATION THEORY
FOR NON-HERMITIAN FLOQUET HAMILTONIAN

AND COMPLEX QUASIENERGY RESONANCES

In this section, we start from a brief review of the no
Hermitian Floquet formalism@5–7#. Then we present a de

ate
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DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 61 013408
tailed Nth-order perturbative analysis of the non-Hermiti
Floquet Hamiltonian and explicit formulas for the determ
nation of complex quasienergy resonances.

Consider an atomic or molecular system subject to
external time-dependent field. The total HamiltonianĤ(t) is
a sum of the unperturbed HamiltonianĤ (0) and the interac-
tion term Ĥ (1)(t) due to the external field:

Ĥ~ t !5Ĥ (0)1Ĥ (1)~ t !. ~1!

The ~many-body! wave function of the system depends
the coordinates of all particles as well as on time. We sh
use the notationr for all the coordinates. The wave functio
C(r ,t) satisfies the time-dependent Schro¨dinger equation~in
atomic units!:

i
]

]t
C~r ,t !5Ĥ~ t !C~r ,t !. ~2!

If the external field is periodic in time,

Ĥ (1)~ t1T!5Ĥ (1)~ t !, ~3!

whereT is the period, one can seek the solution of Eq.~2! in
the form of the Floquet state:

C~r ,t !5exp~2 i«t !c~r ,t !, ~4!

c~r ,t1T!5c~r ,t !, ~5!

where « is the quasienergy. Expanding the time-period
wave functionc(r ,t) and the external fieldĤ (1)(t) in Fou-
rier series

c~r ,t !5 (
m52`

`

exp~2 imvt !cm~r !, ~6!

Ĥ (1)~ t !5 (
m52`

`

exp~2 imvt !Ĥm
(1) , ~7!

one arrives at the following set of time-independent coup
equations for the Fourier componentscm(r ):

~Ĥ (0)2mv!cm~r !1 (
n52`

`

Ĥm2n
(1) cn~r !5«cm~r !. ~8!

Equation~8! is an eigenvalue problem for the quasienergy«.
For the special case of electric dipole coupling in the linea
polarized monochromatic field,

Ĥ (1)~ t !52(
j

~F•r j !cosvt, ~9!

the summation in Eq.~8! contains onlyn5m, m61 terms.
In the general case the quasienergy« is complex valued:

«5E2 i
G

2
, ~10!
01340
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whereE ~the real part of the quasienergy! describes the po-
sition of the shifted energy level in the external field, andG
is the total ionization or multiphoton ionization rate. One c
rewrite Eq.~8! in the form of the Floquet Hamiltonian eigen
value problem:

ĤFcW 5«cW , ~11!

wherecW represents the vector composed of the Fourier co
ponentscm(r ), and the Floquet HamiltonianĤF is defined
by the left-hand side of Eq.~8!.

To facilitate solving Eq.~11! for the complex quasiener
gies, we perform the complex-scaling transformation@3#:

r→r exp~ ib! ~12!

~only radial coordinates are affected by this transformati
b is the angle of complex rotation!. Upon this transforma-
tion, the Floquet HamiltonianĤF„r exp(ib)…[ĤF(b) be-
comes non-Hermitian@complex symmetric if the unrotate
Hamiltonian ĤF(r ) is real#, and the wave functions
cm„r exp(ib)… become squared integrable. One can furth
perform an expansion of the Fourier compone
cm„r exp(ib)… on the basis of the angular momentum eige
states, and a basis set expansion~or generalized pseudospe
tral grid discretization@9#! of the remaining functions de
pending on the radial coordinatesr. Then the solution of the
Floquet Hamiltonian problem reduces to acomplex matrix
eigenvalue problem. We shall use the notationHF , H0, and
V for the complex-rotatedtotal Floquet Hamiltonian matrix,
unperturbed Floquet Hamiltonian matrix, and perturbat
matrix, respectively. The notationc will be used for the
complex-rotated eigenvector. The non-Hermitian Floq
formalism and its generalizations have been extensively
plied to the study of atomic and molecular multiphoton pr
cesses in strong fields in the last two decades@5–7,10–12#.

We now extend the Rayleigh-Schro¨dinger perturbation
theory@13# to the non-Hermitian Floquet Hamiltonian matr
eigenvalue problem:

HF~b!c~b!5«c~b!, ~13!

whereHF5H01V. We suppose that the eigenvalue proble
for the unperturbed~complex-rotated! matrix H0,

H0ck
(0)5«k

(0)ck
(0) , k50,1,2. . . , ~14!

is solved, so the unperturbed eigenvalues«k
(0) and eigenvec-

tors ck
(0) are available, the latter subject to the followin

biorthonormalrelation:

^ck
(0)ucn

(0)&5dkn . ~15!

Note that the inner product in Eq.~15! is defined in such a
way that in the coordinate representation only the angu
part ofck

(0) is complex conjugated but not its radial part. L
k50 correspond to the state under consideration~the theory
is not restricted to the ground state,k50 can correspond to
any state!. Then the perturbed eigenvectorc0 and eigenvalue
«0 for this selected state can be written as
8-2
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HIGH-ORDER PERTURBATION EXPANSION OF . . . PHYSICAL REVIEW A 61 013408
c05c0
(0)1 (

n51

`

c0
(n) , ~16!

«05«0
(0)1 (

n51

`

«0
(n) . ~17!

The expansions~16! and ~17! are the perturbation theor
expansions, and the terms«0

(n) and c0
(n) represent thenth

order of the perturbation theory. The expansions~16! and
~17! are unique provided the following biorthonormal rel
tion is satisfied:

^c0uc0
(0)&51 ~18!

or

^c0
(n)uc0

(0)&50, n51,2 . . . ~19!

~the corrections to the eigenvector are biorthogonal to
unperturbed eigenvector for any order of the perturbat
theory!. Substituting Eqs.~16! and ~17! in Eq. ~13! and col-
lecting the terms of the same order, one arrives at the
lowing recursive procedure to calculate the quantities«0

(n)

andc0
(n) :

~H02«0
(0)!c0

(n)5^c0
(0)uVuc0

(n21)&c0
(0)2Vc0

(n21)

1 (
m51

n21

«0
(m)c0

(n2m) , ~20!

«0
(n)5^c0

(0)uVuc0
(n21)&, n>2. ~21!

The recursive procedure starts with the initial terms forn
51 which are as follows:

~H02«0
(0)!c0

(1)5^c0
(0)uVuc0

(0)&c0
(0)2Vc0

(0) , ~22!

«0
(1)5^c0

(0)uVuc0
(0)&. ~23!

The inhomogeneous equations~20! and ~22! can be solved
with the help of the reduced Green-function matrixG. It is
defined by the following expansion on the basis of the
perturbed eigenvectors:

G5 (
kÞ0

uck
(0)&^ck

(0)u

«k
(0)2«0

(0)
. ~24!

Note that the term withk50 is missing in the sum in Eq
~24!, soG is a regular matrix in the case when the eigenva
«0

(0) is not degenerate. The reduced Green matrixG can be
easily constructed if all the eigenvectors and eigenvalue
the unperturbed~complex-rotated! Hamiltonian matrixH0
are available. Using the matrixG to solve Eqs.~20! and~22!,
one can write

c0
(1)52GVc0

(0) , ~25!
01340
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c0
(n)52GVc0

(n21)1 (
m51

n21

«0
mGc0

(n2m) , n>2. ~26!

Now we take into account the structure of the unperturb
~complex-rotated! Floquet Hamiltonian matrixH0. First, it is
a block-diagonal matrix with respect to the Floquet Four
index m @see Eq.~8!#:

@H0#mm85~h02mv!dmm8 , ~27!

where h0 is the field-free atomic~molecular! Hamiltonian
matrix andv is the external field frequency. The theory ou
lined above is exact for the general many-body problem. T
following details~to the end of this section! apply only for
the one-electron problem where the unperturbed Hamilton
possesses spherical symmetry. Extension to the ma
electron case is straightforward. When using the angular
mentum eigenstates basis set described above, the at
Hamiltonian matrixh0 is also block diagonal, each bloc
corresponding to the angular momentuml:

@h0# l l 85h0,ld l l 8 ~28!

(h0,l is the radial Hamiltonian matrix for the angular mome
tum l ). Thus the eigenvalues and eigenvectors can be e
merated with three indexes, the first of them correspond
to the atomic radial eigenstate (j ), the second one to the
angular momentum (l ), and the third one to the Floque
Fourier index~m! ~we assume that the external perturbati
possesses the axial symmetry like in the case of linearly
larized laser field, so the projection of the angular mom
tum onto the field axis is conserved and equal to that of
initial unperturbed state!. Hence in the perturbation theor
expressions above one has to make the following subs
tions:

«k
(0)[« j ,l ,m

(0) , ~29!

ck
(0)[c j ,l ,m

(0) . ~30!

The eigenvalues« j ,l ,m
(0) are related to the eigenvaluesEj ,l of

the atomic Hamiltonianh0 @see Eq.~27!#:

« j ,l ,m
(0) 5Ej ,l2mv. ~31!

We assume that the initial statec0
(0) corresponds toj 5 j 0 ,

l 5 l 0, and m50. Consider the vector space of dimensi
N3L3M whereN is the number of radial eigenstates~the
number of radial grid points when using pseudospectral
cretization!, L is the number of angular momentum block
andM is the number of photon blocks retained in the Floqu
Hamiltonian matrixH0. Then the eigenvectorsc j ,l ,m

(0) have a
block structure in this space just like the structure of t
matrix H0:

@c j ,l ,m
(0) #m85c j ,l

(0)dmm8 , ~32!

@c j ,l
(0)# l 85f j ,l

(0)d l l 8 . ~33!
8-3
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Here the vectorsc j ,l
(0) andf j ,l

(0) have dimensionsN3L andN,
respectively. The vectorf j ,l

(0) is a field-free atomic radia
eigenvector corresponding to the angular momentuml and
the radial quantum numberj. Substituting the expression
~31!, ~32!, and ~33! into Eq. ~24!, one arrives at the block
diagonal structure of the reduced Green-function matrixG:

@G# j lm, j 8 l 8m85 (
i 50

N21
@f i ,l

(0)# j@f i ,l
(0)# j 8

Ei ,l2«0
(0)2mv

dmm8d l l 8 . ~34!

Here @f i ,l
(0)# j are the components of the unperturbed atom

radial eigenvector, the indicesm and m8 span the interval
@Ms ,M f # ~such thatM f2Ms115M and the pointm50 is
included!, the indicesl and l 8 vary within the interval@0,L
21#, and the indicesj and j 8 vary within the interval@0,N
21#. Equation ~34! is valid in general except for them
50, l 5 l 0 case. In this special case the sum does not incl
i 5 j 0:

@G# j l 00,j 8 l 005 (
i 50
iÞ j 0

N21 @f i ,l 0
(0) # j@f i ,l 0

(0) # j 8

Ei ,l 0
2«0

(0)
. ~35!

As one can see, the reduced Green-function matrixG has a
simple block structure that facilitates performing matr
vector multiplication in Eq.~26!. The dimension of this ma
trix can be decreased by a factor 2 if the perturbation ha
definite spatial parity, as is the case for the dipole interac
with the external field. In this case the perturbation matrixV
couplesm with m61 and l with l 61. For example, if the
unperturbed state hasl 50, then even Floquet blocks of th
reduced Green-function matrix contain only even angu
momenta, and the odd Floquet blocks contain only odd
gular momenta. For the linearly polarized external field w
the field strengthF and frequencyv, the perturbation time-
dependent operator is2(F•r )cosvt. The photon and angu
lar blocks of the corresponding complex-rotated matrixV
appear as follows:

Vlm,l 8m85
2Frexp~ ib!

2A~2l 11!~2l 811!
~ ld l ,l 8111 l 8d l ,l 821!

3~dm,m8111dm,m821!. ~36!

The radial structure of the matrixV depends on the basis s
used to expand the radial functions. For the pseudospe
discretization of the radial coordinater @9#, the matrixV is
diagonal with respect to the radial indexj:

Vjlm, j 8 l 8m85
2Fr jexp~ ib!

2A~2l 11!~2l 811!
d j j 8~ ld l ,l 8111 l 8d l ,l 821!

3~dm,m8111dm,m821!, ~37!

r j being the radial pseudospectral grid points.
With the reduced Green-function matrixG defined by

Eqs.~34! and~35!, and the perturbation matrixV defined by
Eqs.~36! and~37!, one can construct thenth-order correction
01340
c
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to the quasienergy eigenvector according to Eq.~26! and the
n-order correction to the complex quasienergy according
Eq. ~21!.

III. PERTURBATIVE EXPRESSIONS FOR GENERALIZED
CROSS SECTIONS IN MULTIPHOTON IONIZATION

OR DETACHMENT PROCESSES

Due to parity restrictions for the dipole interaction, th
power series~17! for the perturbed complex eigenvalue«
contains only even powers of the external fieldF and can be
written as follows:

«05«0
(0)1 (

n51

`

a2nF2n. ~38!

The coefficientsa2n represent hyperpolarizabilities and d
pend on the frequency of the external field. They are r
numbers forn,n0 and complex numbers forn>n0 where
n0 is the minimal number of photons required for electr
detachment. The coefficientsa2n can be represented a
2nth-order corrections to the quasienergy«0

(2n) if one as-
sumesF51 in the definition of the perturbation@see, e.g.,
Eqs.~36! and ~37!#:

a2n5«0
(2n)uF515^c0

(0)uVuc0
(2n21)&uF51 . ~39!

Note that our coefficienta2 is related to the conventiona
dipole polarizabilitya as follows:

a252
1

4
a. ~40!

The real part of the complex quasienergy« in Eq. ~38! yields
the shift of the energy level in the external field whereas
imaginary part describes the~multiphoton! ionization or de-
tachment rate~the rateG is equal to minus doubled th
imaginary part of«).

The photon fluxJ corresponding to the electric fiel
strengthF and frequencyv is calculated according to

J5
cF2

8pv
, ~41!

c being the velocity of light. The generalized cross sect
s (n0) of n0-photon-dominant detachment is defined as
ratio of the total~multiphoton! ionization or detachment rat
G andn0th power of the photon fluxJ:

s (n0)5
G

Jn0
. ~42!

Note that the expression~42! is valid for both weak and
strong fields. In the weak field limit,s (n0) becomes indepen
dent of the field intensity, and only the term withn5n0 in
8-4
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the right-hand side of Eq.~38! is to be included. The detach
ment rateG in this limit can be written as follows:

G522F2n0Im~a2n0
!, ~43!

and the generalized cross sections (n0) can be expresse
through the hyperpolarizability coefficienta2n0

:

s (n0)522S 8pv

c D n0

Im~a2n0
!. ~44!

The generalized cross sections may be expressed in t
of the matrix elements involving the unperturbed~complex-
rotated! initial-state wave function, reduced Green functio
and the perturbation operator. For example, the one-
two-photon~weak-field! ionization or detachment cross se
tions are given by

s (1)5
16pv

c
Im~^c0

(0)uVGVuc0
(0)&uF51!, ~45!
-

on
tiv
he
-
ns

t

01340
ms

,
d

s (2)52S 8pv

c D 2

Im~^c0
(0)uVGVGVGVuc0

(0)&uF51

2^c0
(0)uVGVuc0

(0)&^c0
(0)uVG2Vuc0

(0)&uF51!. ~46!

Note that Eqs.~45! and ~46! are not restricted to the pertur
bation form~36! and can be applied to many-body system
as well. Equation~45! reproduces, in a different notation, th
result obtained by Rescigno and McKoy@1# for the one-
photon case. Expression~46! is the generalization of RMM
theory to the two-photon case, and so on. For the o
electron system with the spherical-symmetric unperturb
Hamiltonian, the reduced Green-function matrixG and the
perturbation matrixV are given by Eqs.~34! and ~36!, re-
spectively. The~bra! radial wave functions in Eqs.~45! and
~46! must not be complex conjugated, and the radial integ
tions are performed with the complex-rotated unperturb
wave function c0 corresponding to the complex-rotate
Hamiltonian H0. For example, in the case of one-photo
detachment of the initials state ~the unperturbed radia
eigenfunctionf j 0,0 and unperturbed energyEj 0,0), the cross
section ~45! can be recast in a simple form involving th
radial integrations only:
s (1)5
4pv

3c
ImS (

i 50

N21 ^f j 0,0
(0) ur exp~ ib!uf i ,1

(0)&^f i ,1
(0)ur exp~ ib!uf j 0,0

(0) &

Ei ,12Ej 0,02v D . ~47!
ec-
l.
c-

ex-
nt

ve-
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r
rgy
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Again, it is assumed in Eq.~47! that the inner products in
volve the complex-rotated radial eigenfunctions^fu without
complex conjugation.

IV. LOWEST-ORDER PERTURBATION THEORY
FOR THE ELECTRON ANGULAR DISTRIBUTIONS

IN ABOVE-THRESHOLD DETACHMENT
OF NEGATIVE IONS

We consider the electron energy and angular distributi
for a multiphoton above-threshold detachment of nega
ions such as H2, which can be accurately described by t
one-electron model potential@14#. The general nonperturba
tive expression in our previous Floquet calculatio
@12,15,16# will be employed:

dGn

dV
5~2p!22knuAnu2. ~48!

Here,

kn5A2@Re«2~2v!22F21nv# ~49!

is the electron drift momentum, and then-photon detachmen
amplitudeAn is defined as follows~linear polarization of the
external field is assumed!:
s
e

An5~2p!21E
2p

p

dt exp@ int2 i ~2v!23F2 sin~2t!

1 i ~kn•F!v22 cost#E dr exp@2 i ~kn•r !

1 i ~r•F!v21 sint#W~r !c~r ,t/v!, ~50!

F andv being the laser field strength and frequency, resp
tively, W(r ) being the electron-core interaction potentia
The vectorkn has the direction under which the ejected ele
trons are detected. Expression~48! is valid in the general
nonperturbative case. Instead of using the perturbative
pansion of Eq.~48!, which can be tedious, we shall prese
here only thelowest-orderperturbation theory~LOPT! for
the electron angular distributions in the multiphoton abo
threshold detachment processes, which is useful in
weaker field regime. That means we expand Eq.~48! in
power series ofF and retain only the lowest power ofF for
each numbern of absorbed photons. Obviously, then-photon
detachment amplitudeAn within this approximation scales
with the factorFn. To obtain the LOPT approximation fo
An , note that the Fourier components of the quasiene
wave functionc(r ,t) within LOPT also scale with the ap
propriate power ofF, so the following equation holds:

c~r ,t !5 (
m52`

`

F umuxm~r !exp~2 imvt !. ~51!
8-5
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Here the functionsxm(r ) do not depend onF. They can be
represented as a series on the basis of the Legendre po
mials depending on the angleq betweenr andF:

xm~r !5(
l 50

`

Al 11/2 xm,l~r !Pl~cosq!. ~52!

Inserting Eqs.~51! and~52! into Eq.~50!, making the expan-
sion in powers ofF and retaining only the lowest power fo
each n, one obtains the following LOPT result for th
n-photon detachment amplitudeAn :
m

or

m

01340
no- An5Fn(
l 50

n

an,l Pl~cosu!, ~53!

with u being the angle betweenkn and F. Due to definite
parity of the perturbation, the sum in Eq.~53! contains only
even or odd angular momental, depending on the number o
absorbed photonsn and the initial state parity. The partia
angular amplitudesan,l are defined as follows:
an,l54p~2l 11! (
n150

n

(
n250

n

(
n350

n

(
m50

n

dn,2n11n21n31m

~21!n2i n3 ~kn
0!n3

n1!24n11n21n3v3n11n212n3

3(
l 2

(
l 3

~2l 211!~2l 311!

~n22 l 2!!! ~n21 l 211!!! ~n32 l 3!!! ~n31 l 311!!!

3 (
l 150

n

~2l 111!i 2 l 1S l l 1 l 3

0 0 0D 2

(
l 450

n S l 1 l 2 l 4

0 0 0D 2

Al 411/2E
0

`

dr r 21n2 j l 1
~kn

0r !W~r !xm,l 4
~r !. ~54!
ing

ion

s.
this
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In Eq. ~54!,

S l 1 l 2 l 3

0 0 0D
stands for the Wigner 3j symbol; j l(x) is the spherical
Bessel function. The sums overl 2 and l 3 span the intervals
from 0 to n2 and from 0 ton3, respectively. They include
only even values for evenn2 andn3, and only odd values for
oddn2 andn3, respectively. The ejected electron momentu
kn

(0) within LOPT is defined as

kn
(0)5A2~«01nv!. ~55!

The integration with respect to the radial coordinater in Eq.
~54! is performed along the real axisr, so the back-rotation
procedure@17# can be used to obtain the wave function f
real values of the radial coordinate. Although Eq.~54! con-
tains multiple summations, it is easy to program and co
pute. In the one-photon case, an explicit form of Eq.~54! for
the initial s state reads as

a1,15 ipA2F k1
(0)

v2 E0

`

dr r 2 j 0~k1
0r !W~r !x0,0~r !

1
1

vE0

`

dr r 3 j 1~k1
0r !W~r !x0,0~r !

2A12E
0

`

dr r 2 j 1~k1
0r !W~r !x1,1~r !G . ~56!
-

The LOPT angular distributions are calculated accord
to the following expression:

dGn

dV
5

kn
(0)

~2p!2
F2nU(

l 50

n

an,l Pl~cosu!U2

. ~57!

The partial ratesGn corresponding to absorption ofn photons
can be obtained by the integration of Eq.~57! over the whole
angular range:

Gn5
kn

(0)

2p
F2n(

l 50

n
2

2l 11
uan,l u2. ~58!

V. A CASE STUDY: CALCULATIONS OF COMPLEX
QUASIENERGIES AND ELECTRON ANGULAR

DISTRIBUTIONS FOR MULTIPHOTON DETACHMENT
OF H2

We have performed the calculations for the negative
H2 described by an accurate one-electron model@14#. It re-
produces both the exact experimental binding energy@18#
and the low-energye2H(1s) elastic scattering phase shift
The one-photon detachment cross sections based on
model potential are in excellent agreement with earlier ac
rate two-electron calculations@19,20#. Using this model po-
tential, Wanget al. @21# have performed detailed nonpertu
bative Floquet studies of the frequency- and intens
dependent multiphoton detachment of H2 and their results
were in good agreement with the experimental data of T
et al. @22#. Our recent nonperturbative Floquet study of t
electron angular distributions associated with the abo
threshold multiphoton detachment of H2 by 1064-nm laser
8-6
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HIGH-ORDER PERTURBATION EXPANSION OF . . . PHYSICAL REVIEW A 61 013408
field @16# and that of the two-photon angular distributio
near one-photon threshold@12#, again using this model po
tential, is also in good harmony with the recent experimen
work of Zhaoet al. @23# and of Præstegaardet al. @24#, re-
spectively. In our recent nonperturbative Floquet stud
@12,16,21#, the CSGPS method@9# is used for the discretiza
tion and solution of the non-Hermitian Floquet Hamiltonia
The CSGPS method is found be both accurate and comp
tionally highly efficient and is applicable to both low-lyin
and highly excited atomic and molecular resonance st
@9–11#. A detailed description of the uniform and exteri
complex-scaling pseudospectral discretization can be fo
elsewhere@12#. In the present calculations we make use
the uniform CSGPS method.

Up to 100 radial grid points is used for CSGPS discre
zation, which is sufficient for full convergence of the com
plex quasienergies and eigenvectors to machine precis
For the highest~16th! order of the perturbation theory use
in the present calculations, the number of angular mome
needed is 9 (l 50 –8!. In the range of the validity of the
perturbative method discussed here, the high-order pertu
tive Floquet procedure is computationally far less demand
than the full nonperturbative Floquet approach, since o
the diagonalization of several unperturbed matrices~of dif-
ferent angular momentum! of small dimension~up to 100
3100) is needed. Moreover the same matrix information
be stored and used for the construction of the reduced Gr
function matrices for different laser frequencies. In additi
to the computational advantage, the perturbative Floquet
proach also allows the examination of the intensi
dependent behavior of multiphoton processes order by or

First, we have performed the calculations to determine
range of the laser field intensities where the perturba
theory applies. We have calculated the complex quasie
gies and partial detachment rates for the fixed wavelen
l51.908mm (v50.02388 a.u.!, used in experiment@24#.
This wavelength corresponds to the two-photon-domin
detachment case (n052). The calculations have been pe
formed for several intensities of the external field, using
present perturbative approach and nonperturbative Flo
method employed in our previous studies@12,16#. The re-
sults are shown in Table I for the complex quasienergies
in Table II for the partial rates. For the complex quasien
gies, the full high-order perturbation theory of Sec. II w
applied ~maximum to the 16th order for higher intensitie!
whereas for the partial rates the LOPT of Sec. IV was us
As one can see from Table I, the high-order perturbat
description is excellent for the intensities as high as
31011 W/cm2. For the highest intensity presented (
31011 W/cm2) here, the 16th-order perturbative result
converged to five digits of accuracy for the level shift a
within 0.03% for the width. This intensity is about the stro
gest intensity considered in the experiments@22# and @24#.

We have also studied the higher-intensity cases. For l
intensity larger than 431011 W/cm2, the 16th-order pertur-
bative calculation is not sufficient to achieve full converg
results. For even higher intensity, other high-order resum
tion technique~such as Pade´ approximation! may be used to
facilitate the convergence but this is not the focus of t
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paper. Alternatively one can simply extend the nonpertur
tive Floquet method for stronger field cases. We also n
that the perturbative Floquet approach should be applica
to significantly larger intensity for neutral atoms and mo
ecules since the electron-binding energies there are ord~s!
of magnitude larger than those of negative ions.

Table I contains also the LOPT results for the comp
quasienergies~corresponds to the fourth-order perturbati
theory for the two-photon detachment!. As shown, the LOPT
is adequate for laser intensity up to 109 W/cm2, but it begins
to show deviation from the nonperturbative results as
laser intensity approaches 1010 W/cm2. At the intensity
1011 W/cm2 the discrepancy between LOPT and nonpert
bative quasienergies is already quite significant, and
LOPT description of the total detachment rates becom
completely inadequate.

Table II shows the comparison of the partial rates cal
lated by the LOPT and nonperturbative Floquet meth
Similar to the total rates, the LOPT is excellent for las
intensity less than 109 W/cm2 but becomes inadequate fo
intensity larger than 1010 W/cm2.

In Figs. 1 and 2 we present the~weak-field! generalized

TABLE I. Complex quasienergies for two-photon-dominant d
tachment of H2 by 1.908-mm radiation calculated for several inten
sities of the external field.~A!, high-order perturbation theory~the
notation Aq denotes perturbative calculation ofqth order, LOPT
corresponds to fourth order!; ~B!, nonperturbative Floquet calcula
tion. The numbers in square brackets indicate the powers of 10

Laser
intensity
(W/cm2) Method Quasienergy~a.u.!

108 LOPT 22.773335949@202#2 i2.427@211#

A6 22.773335949@202#2 i2.426@211#

B 22.773335949@202#2 i2.426@211#

109 LOPT 22.773516217@202#2 i2.42653@209#

A8 22.773516217@202#2 i2.42386@209#

B 22.773516217@202#2 i2.42386@209#

1010 LOPT 22.775292889@202#2 i2.4265331@207#

A10 22.775293498@202#2 i2.4000243@207#

A12 22.775293498@202#2 i2.4000245@207#

B 22.775293498@202#2 i2.4000245@207#

1011 LOPT 22.790459699@202#2 i2.426534740@205#

A12 22.790985494@202#2 i2.185196502@205#

A14 22.790986912@202#2 i2.184610731@205#

A16 22.790986518@202#2 i2.184791228@205#

B 22.790986607@202#2 i2.184747633@205#

231011 LOPT 22.801767543@202#2 i9.706143057@205#

A12 22.805327632@202#2 i7.969182454@205#

A14 22.805509145@202#2 i7.894203597@205#

A16 22.805408401@202#2 i7.940410991@205#

B 22.805445135@202#2 i7.922490583@205#
8-7
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TABLE II. Partial detachment rates for above-threshold multiphoton detachment of H2 by 1.908-mm
radiation calculated for several intensities of the external field using LOPT~A! and nonperturbative Floque
approach~B!. The numbers in square brackets indicate the powers of 10.n is the number of photons
absorbed.

Laser intensity Method Partial detachment rates~a.u.!
(W/cm2) 2 3 4 5

107 A 4.853@213# 2.213@218# 8.283@224# 3.056@229#

B 4.853@213# 2.213@218# 8.283@224# 3.054@229#

108 A 4.853@211# 2.213@215# 8.283@220# 3.056@224#

B 4.852@211# 2.213@215# 8.283@220# 3.056@224#

109 A 4.853@209# 2.213@212# 8.283@216# 3.056@219#

B 4.846@209# 2.211@212# 8.277@216# 3.054@219#

1010 A 4.853@207# 2.213@209# 8.283@212# 3.056@214#

B 4.778@207# 2.191@209# 8.223@212# 3.037@214#

1011 A 4.853@205# 2.213@206# 8.283@208# 3.056@209#

B 4.165@205# 1.996@206# 7.652@208# 2.847@209#

231011 A 1.941@204# 1.771@205# 1.325@206# 9.779@208#

B 1.434@204# 1.433@205# 1.118@206# 8.341@208#
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cross sections of multiphoton detachment calculated acc
ing to Eq. ~44!. The calculations were performed for thre
and eight-photon detachment frequency ranges. Our pre
LOPT-Floquet results are in complete agreement with
previous calculations by Laughlin and Chu@14# obtained
with the use of conventional perturbation theory a
Dalgarno-Lewis procedure@25#, using the same model po
tential for H2 @14#. The agreement demonstrates the num
cal accuracy and convergence of the present perturba
Floquet procedure.

The dependence of the complex quasienergies on the
tensity of the laser field is determined by the coefficientsa2n

FIG. 1. Generalized cross sections (3) of three-photon detach
ment of H2 ~in units of 10279 cm6 s2) as a function of photon
energy~in units of cm21).
01340
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ent
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@see Eq.~38!#. For the frequency range corresponding to t
two-photon-dominant case (n052), the coefficientsa2n are
listed in Table III. The imaginary part of the coefficienta4
can be used for calculations of the two-photon generali
cross section according to Eq.~44!. Note that imaginary parts
of higher hyperpolarizability coefficients (a6 to a10) are of-
ten positive. That means the contribution to the total deta
ment rate from the particular above-threshold detachm
rate is overridden by the negative higher-order correction
the above-threshold rates for lower number of photons
sorbed. For example, the positive imaginary part ofa6
means that the contribution to the total rate from the thr

FIG. 2. Generalized cross sections (8) of eight-photon detach-
ment of H2 ~in units of 102230 cm16 s7) as a function of photon
energy~in units of cm21).
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TABLE III. Hyperpolarizability coefficientsa2n for multiphoton detachment of H2. The frequency range
corresponds to the minimum of two absorbed photons. The numbers in square brackets indicate the
of 10.

Laser Coefficientsa2n ~a.u.!
frequency

~a.u.! a2 a4 a6 a8 a10

0.014 25.639@01# 28.598@06# 22.544@12# 21.389@18# 22.832@25#

2 i3.508@06# 1 i7.707@12# 1 i1.153@19# 1 i3.579@25#

0.015 25.717@01# 23.859@06# 26.815@11# 22.104@17# 22.462@22#

2 i6.437@06# 1 i1.009@12# 1 i1.531@17# 1 i9.518@22#

0.017 25.902@01# 22.690@05# 21.724@11# 14.736@15# 24.117@21#

2 i5.900@06# 1 i5.136@11# 2 i4.337@16# 12.687@21#

0.019 26.134@01# 11.425@06# 22.241@11# 11.914@16# 21.283@21#

2 i5.019@06# 1 i3.587@11# 2 i1.972@16# 1 i7.472@20#

0.021 26.431@01# 12.508@06# 22.510@11# 11.661@16# 29.092@20#

2 i4.132@06# 1 i2.272@11# 2 i9.433@15# 1 i5.188@20#

0.023 26.824@01# 13.284@06# 22.593@11# 11.572@16# 21.007@21#

2 i3.313@06# 1 i1.415@11# 2 i5.669@15# 1 i4.123@20#

0.025 27.374@01# 14.025@06# 22.928@11# 12.060@16# 21.798@21#

2 i2.613@06# 1 i9.160@10# 2 i4.420@15# 1 i4.225@20#

0.027 28.263@01# 15.440@06# 25.354@11# 18.156@16# 21.821@22#

2 i2.045@06# 1 i6.639@10# 2 i5.775@15# 1 i1.210@21#
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photon above-threshold detachment is completely reve
by the negative six-order contribution to the two-photon d
tachment rate.

The LOPT partial angular amplitudesan,l @Eq. ~54!# for
the same frequency range corresponding ton052 are pre-
sented in Table IV. Also shown are the weights in the par
detachment rateGn of the electrons ejected with the partic
lar angular momentuml. For the two-photon detachmen
one can see how the weights ofs andd electrons vary as the
frequency increases. At the beginning of the frequen
range, for the frequencies close to the two-photon thresh
~0.013 87 a.u.!, the weight of thes electrons is almost 100%
in accordance with the Wannier threshold law. With the f
quency increasing, the weight ofd electrons also increase
and at the end of the frequency range, in the vicinity of
one-photon threshold~0.027 73 a.u.!, the situation is almos
reversed. Thed electrons constitute about 95% of the to
population after two-photon detachment. This result was a
obtained in our previous nonperturbative Floquet calculat
@12# ~for the intensities equal or less than 1011 W/cm2) and
confirmed experimentally@24#. The tendency is preserve
for higher frequencies where one-photon detachment is
sible. Our previous nonperturbative Floquet calculations
multiphoton detachment by 1064-nm radiation~well above
the one-photon threshold! @16# also give about 90% ofd
electrons in the two-photon above-threshold rate.
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For the above-threshold detachment~corresponding to
three to five photons absorbed!, the variation of the different
angular momenta populations is not monotonous within
frequency range between the two-photon and one-pho
thresholds. In general, the weight of the lowest angular m
mentum increases at the beginning of the frequency ran
reaches its maximum, and then decreases as the frequ
approaches the one-photon threshold. The behavior of
highest angular momentum population is opposite; firs
decreases, reaches its minimum, and then increases. On
notice that for all above-threshold channels~three to five
photons absorbed! the weight of the highest angular mome
tum is larger at the high-frequency end of the interval than
the low-frequency end.

In summary, we have presented a high-order perturba
Floquet approach for the calculation of the complex quasi
ergies and electron angular distributions. The method d
not require the diagonalization of the full Floquet Ham
tonian matrix, and the block structure of the unperturb
Floquet Hamiltonian matrix greatly facilitates the calcul
tions. The comparison of the perturbative and nonpertur
tive results in the model potential H2 calculations shows tha
the high-order perturbation theory description of the to
detachment rates is adequate for weak and medium st
laser fields~up to the intensity 231011 W/cm2 for the two-
photon-dominant frequency range!. The LOPT description of
8-9



m
e partial

DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 61 013408
TABLE IV. Partial angular amplitudesan,l for the above-threshold detachment of H2. The frequency range corresponds to the minimu
of two absorbed photons. The column ‘‘%’’ shows the percent weight of the electrons with the particular angular momentum in th
detachment rateGn . The numbers in square brackets indicate the powers of 10.

Laser Number of photons absorbed
frequency 2 3 4 5

~a.u.! l a2,l % l a3,l % l a4,l % l a5,l %

0.014 0 17.663@04# 99.9 1 14.906@06# 17.2 0 11.149@09# 10.2 1 11.961@11# 31.7
2 i1.075@04# 2 i6.294@06# 2 i4.849@08# 1 i9.929@11#

2 25.796@03# 0.01 3 13.419@04# 82.8 2 16.563@09# 59.4 3 24.443@11# 56.3
2 i0.416@00# 2 i2.670@07# 1 i1.449@09# 1 i2.012@12#

4 16.453@09# 30.4 5 21.440@09# 12.0
1 i1.416@07# 1 i1.191@12#

0.015 0 15.437@04# 92.6 1 19.916@06# 34.7 0 19.794@08# 12.1 1 21.290@11# 39.3
2 i2.321@04# 2 i5.235@06# 1 i3.370@08# 1 i7.621@11#

2 23.738@04# 7.4 3 13.951@04# 65.3 2 14.387@09# 58.5 3 25.242@11# 49.5
2 i2.277@01# 2 i2.351@07# 1 i2.594@09# 1 i1.216@12#

4 14.842@09# 29.4 5 22.171@09# 11.2
1 i1.422@07# 1 i7.880@11#

0.017 0 12.858@04# 62.3 1 18.364@06# 39.2 0 15.220@08# 17.3 1 22.040@11# 46.1
2 i2.188@04# 2 i3.631@06# 1 i4.781@08# 1 i3.229@11#

2 26.264@04# 37.7 3 15.229@04# 60.8 2 12.095@09# 53.2 3 23.054@11# 42.5
2 i1.047@02# 2 i1.735@07# 1 i1.821@09# 1 i4.696@11#

4 12.770@09# 29.1 5 22.569@09# 11.4
1 i1.299@07# 1 i3.643@11#

0.019 0 11.561@04# 37.5 1 15.651@06# 36.2 0 12.555@08# 19.6 1 21.302@11# 49.4
2 i1.657@04# 2 i2.520@06# 1 i3.411@08# 1 i1.327@11#

2 26.575@04# 62.5 3 15.821@04# 63.8 2 11.073@09# 48.5 3 21.490@11# 38.1
2 i1.780@02# 2 i1.256@07# 1 i1.049@09# 1 i1.998@11#

4 11.633@09# 31.9 5 21.543@09# 12.5
1 i1.115@07# 1 i1.788@11#

0.021 0 18.710@03# 22.4 1 13.622@06# 31.4 0 11.217@08# 19.8 1 27.299@10# 50.3
2 i1.187@04# 2 i1.768@06# 1 i2.146@08# 1 i5.420@10#

2 26.120@04# 77.6 3 15.767@04# 68.6 2 15.833@08# 44.4 3 27.174@10# 35.4
2 i2.269@02# 2 i9.102@06# 1 i5.838@08# 1 i9.180@10#

4 19.950@08# 35.8 5 21.091@09# 14.3
1 i9.007@06# 1 i9.275@10#

0.023 0 14.873@03# 13.4 1 12.264@06# 26.0 0 15.631@07# 18.6 1 23.920@10# 49.3
2 i8.251@03# 2 i1.259@06# 1 i1.288@08# 1 i2.180@10#

2 25.442@04# 86.6 3 15.336@04# 74.0 2 13.330@08# 40.4 3 23.460@10# 33.7
2 i2.539@02# 2 i6.666@06# 1 i3.211@08# 1 i4.495@10#

4 16.256@08# 41.0 5 27.161@08# 17.0
1 i6.993@06# 1 i5.045@10#

0.025 0 12.666@03# 07.7 1 11.371@06# 20.5 0 12.450@07# 16.1 1 22.052@10# 46.1
2 i5.527@03# 2 i9.118@05# 1 i7.460@07# 1 i8.294@09#

2 24.750@04# 92.3 3 14.743@04# 79.5 2 11.982@08# 36.3 3 21.658@10# 32.9
2 i2.650@02# 2 i4.947@06# 1 i1.733@08# 1 i2.323@10#

4 14.049@08# 47.6 5 24.655@08# 21.0
1 i5.337@06# 1 i2.863@10#
013408-10
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TABLE IV. ~Continued!.

Laser Number of photons absorbed
frequency 2 3 4 5

~a.u.! l a2,l % l a3,l % l a4,l % l a5,l %

0.026 0 11.928@03# 5.6 1 11.043@06# 17.8 0 11.542@07# 14.3 1 21.462@10# 43.4
2 i4.414@03# 2 i7.818@05# 1 i5.567@07# 1 i4.872@09#

2 24.423@04# 94.4 3 14.430@04# 82.2 2 11.552@08# 34.1 3 21.134@10# 32.7
2 i2.661@02# 2 i4.284@06# 1 i1.250@08# 1 i1.701@10#

4 13.290@08# 51.6 5 23.803@08# 23.9
1 i4.641@06# 1 i2.188@10#

0.027 0 11.350@03# 3.8 1 17.702@05# 15.0 0 19.160@06# 12.0 1 21.019@10# 39.5
2 i3.413@03# 2 i6.750@05# 1 i4.051@07# 1 i2.666@09#

2 24.116@04# 96.2 3 14.117@04# 85.0 2 11.227@08# 31.8 3 27.565@09# 32.9
2 i2.651@02# 23.723@06# 1 i8.779@07# 1 i1.259@10#

4 12.690@08# 56.2 5 23.077@08# 27.6
1 i4.038@06# 1 i1.687@10#
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the partial detachment rates and angular distributions is v
for lower intensities~approximately, up to 1010 W/cm2).

In conclusion, the present perturbative Floquet appro
provides an accurate description and a computationally
cient procedure for the calculation of multiphoton a
above-threshold ionization cross sections in weak and
dium strong fields. It should be applicable to a wide range
atomic and molecular multiphoton processes. Application
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the procedure to the study of two- and three-active-elect
systems is in progress.
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