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A general method for implementing vibrationally adiabatic mixed
guantum-classical simulations
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An approach for carrying out vibrationally adiabatic mixed quantum-classical molecular dynamics
simulations is presented. An appropriate integration scheme is described for the vibrationally
adiabatic equations of motion of a diatomic solute in a monatomic solvent and an approach for
calculating the adiabatic energy levels is presented. Specifically, an iterative Lanczos algorithm with
full reorthogonalization is used to solve for the lowest few vibrational eigenvalues and
eigenfunctions. The eigenfunctions at one time step in a mixed quantum-classical trajectory are used
to initiate the Lanczos calculation at the next time step. The basis set size is reduced by using a
potential-optimized discrete variable representation. As a demonstration the problem of a
homonuclear diatomic molecule in a rare gas fluid, (N Ar) has been treated. The approach is
shown to be efficient and accurate. An important advantage of this approach is that it can be
straightforwardly applied to polyatomic solutes that have multiple vibrational degrees-of-freedom
that must be quantized. @003 American Institute of Physic§DOI: 10.1063/1.1528891

I. INTRODUCTION dinates. Further, an explicit calculation of the vibrational en-
gray levels is accurate even for strong solute—solvent cou-
g, unlike perturbation theory approaches.

Another potential problem for which mixed quantum-

Quantum-mechanical effects associated with nuclei arg’.
important in a variety of condensed phase systems includinBIIn
proton and hydrogen atom transfer, vibrational relaxation X i ; o .
and dephasing, and spectroscopy. However, except for a fe assical simulations may be useful is vibrational relaxation.

special cases, a fully quantum-mechanical treatment of Sy?_het_moslt_fptr_evale_nt app(rjoach ;or rc]:alculatmtg V|br_at|k()) nal dre—
tems involving more than a handful of atoms is not feasible,2Xaton lEimes in condensed pnase systems 15 based on

Fortunately, in many cases the relevant quantum effects a'%erturbatmn theory in which the relaxation rate, e.g., from

associated with one or only a few atoms. This has motivated ~ 1 tov=0, is given by
the development of mixed quantum-classi@C) and semi- o
classical methods that can account for the relevant quantum koHl(T)=q(T)J’ e'“o{ F(t)F(0))ydt, 1.1
effects in such cases, even in systems consisting of hundreds *
or thousands of atoms. In this paper we present a method fQfere «  is the frequency of the oscillator. The prefactor
carrying out vibrationally adiabatic mixed quantum—classmalq(-r) ensures that detailed balance is satisfied, i.e.,
simulations in condensed phases that is accurate, eﬁiCierlqu(T)=eh‘”°’kak1Ho(T). The classical force—force time
an(_j generalizaple to multip_le degrees—of—freggiom QrOblemscorrelation function(F(0)F(t))y, is calculated by a mo-
This approach is an extension of, and a S|gn|f.|cant IMProVeracylar dynamics simulation in which the oscillator is frozen
ment upon, our previous work that was applicable only 10 jis equilibrium distanceE is the force exerted along the
nonrotating sqlute%. o . o oscillator by the solvent. Thus, the assumption is that the
~ One possible application of vibrationally adiabatic QC rg|axation occurs due to the solvent friction acting on the
simulations is the study of vibrational dephasing in con-gggijjator. This approach has been used extensively, often
densed phasés:° Oxtoby and co-workers have obtained the i, great succesS*°However, it has also been established
dephasing times of diatomic molecules in condensed phasg; some time that perturbation theory can fail for high-
environments by using perturbation theory to calculate thgrequency oscillators in gas-phase collisidhdviore recent
tlme-dgel%endent fluctuations in the vibrational ~energygy,gies have found that the conventional perturbation theory
levels™ ™" A completely classical simulation was used with approach’ gives lifetimes that differ significantly from ex-
rigid molecules so that there was no influence of theperimental measurements in both clustbend liquids??23

quantum-mechanical system on the classical motion. Thighis has been attributed to the potential energy surfices
approach has been widely and successfully used for Weaklé(nd, more significantly, to the need to modify the conven-

coupled solute—solvent systefis*A vibrationally adiabatic ;g4 perturbation theory approach using quantum correc-
QC simulation directly provides the fluctuating frequenciesy;, factors?®-26j.e., by choosing an appropriadéT). How-

of a quantum-mechanical solute from dynamics that includgyer, even when such a modification successfully returns the
response from the quantum masleonto the classical coor-  ¢qrrect rate, the perturbation theory still provides limited and

indirect information about how the energy is deposited in the

dElectronic mail: wthompson@ku.edu surroundings and about competition between intramolecular
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vibrational redistribution and vibrational energy transfer.differences’® As discussed in the Introduction, vibrationally
These issues cannot be addressed directly in the perturbatiadiabatic dynamics can be generalized by incorporating
theory approach since the dynamics of the relaxation everonadiabatic transitiort§~>°
itself are not simulated. In this section, we review the mixed quantum-classical
The applicability of mixed QC approaches to calculateequations of motion for a single diatomic solute molecule
vibrational relaxation rate constanfand other quantities with a quantum-mechanical vibration and classical transla-
within the Golden Rule formalism has been called into question and rotation dissolved in a solvent of classical atoms.
tion by Berne and co-workefS:>’ However, they have fo- (The extension to a molecular solvent is straightforwende
cused, in addition to perturbation theory approaches, on spéegin with a purely classical Hamiltonian and “quantize” the
cial systems for which quantum mechanical solutions arevibrational coordinate. The classical Hamiltonian for this
available. These typically involve a harmonic bath and linearsystem can be written as
bi-linear, or exponential coupling. The ability to carry out p? 02 N
wprauonally_ ad_labatlc m|xeq QC §|mulqt|ons allpws fpr a H(r,p; & pe,Q,P)= LS ez+2 .
wider examination of these issues including consideration of 2 2urs {=12m
(1) systems with arbitraryanharmonit vibrational poten- LV(r.eQ) 2.1
tials and solute-solvent couplin(®) methods that go beyond T '
perturbation theory approaches to calculating the rate corwherer is the diatom bond distance,is a Cartesian unit
stant,(3) comparisons of vibrationally diabatic and adiabatic vector e= (e, ,e,,e,) pointing along the diatom bond such
approaches, an@) vibrational quantum state dependence ofthatr=re, andQ=(Q,Q,,...,Qy) are the positions of the
relaxation lifetimes. In these cases, testing QC methods bgolute center-of-mass and the- 1 rare gas atoms. The ori-
comparison with rigorous results can be complicated by thentational vectore is subject to the constrairse=1. The
absence of quantum-mechanical calculations; comparisoreonjugate momenta to these coordinates ane pe
with experimental data and calculations involving systematic= (pex,pey,pez), andP=(Py,P,,...,P\).

approximations must be used instead. At this point we wish to treat the diatom bond distance
One approach, suggested by Tdflthat moves beyond  quantum mechanically while retaining a classical description

the perturbation theory approximaticand allows insight  for all the other degrees-of-freedom. Specifically, we can de-

into the basic mechanism of vibrational relaxation is a direcfine a quantum-mechanical Hamiltonian operaton ithat

calculation of the vibrational relaxation rate constant by adepends parametrically Pe, andQ as

surface hopping simulation. Many approaches for incorporat- 2

ing nonadiabatic dynamics have been developed and could ¢ _ M 5.

be applied to this probler~*>The approach presented here hi(@pe.Q)= 2p VT8, Q). @3

is applicable to this problertfor cases when the vibrational

relaxation lifetime is not too long Several studies have used

a surface-hopping approach with vibrationally diabatic

where the effective potential is
2

~ _ e o

stated®3” and one group calculated vibrational relaxation Ver(Fi8.pe.Q) = 2Mr2+V(r,e,Q). 2.3
lifetimes using a mean-field approach based on diabatic - o ) ) )
state<® Note thatV.4 and h, are implicit functions of time since,

The organization of the remainder of the paper is ade: and Q are classical variables dependent on time. The
follows: Mixed quantum-classical equations of motion for aadiabatic vibrational states are then obtained by solving the
solute with a quantum mechanical vibration in a classicaSchralinger equation for fixe, pe, andQ
solvent are reviewed in Sec. Il. A suitable molecular dynam- ) _ .

€,Pe, r;epe,Q)=En(epe, r;epe,Q).
ics algorithm for integrating these equations is given in the (&Pe:Q)bn(riepe.Q)=En(EPe, Q) dnlriepe.Q)
Appendix. The approach for solving the vibrational Sehro 2.4
dinger equation at each time step in a mixed quantumThe classical Hamiltonian for the remaining degrees-of-
classical simulation is described in Secs. Ill and IV. Resultsreedom, indexed by the vibrational quantum number, can be
are presented and discussed in Sec. V. Finally, some conclugkken as
ing remarks are offered in Sec. VI. N

H t 1 iP =
Il. EQUATIONS OF MOTION n(&Pe.Q:P) ;21

P2
L +(pnl| )
2m] n r n/r

The mixed quantum-classical approach we consider is N p2
simply the standard Born—Oppenheimer approximation, =E 2—J+En(e,pe,Q), (2.5
but applied between a fast vibrational coordinate and slow j=1 em;

rotational and translational ~degrees-of-freedom. Vibrawhere the subscript indicates integration over only this
tionally adiabatic approaches have been used to investigatecgordinate. In order to ensure that the directional veetisr

number of systems including proton transfer normalized we introduce a Lagrange multipféso that
reactions**>49~*2yiprational relaxatiof> and vibration— N

vibration energy transféf They are related to the mixed _ P

; . . . H,(epe:,Q,P)= —+E,(ep.,Q)+ —1).
guantum-classical time-dependent self-consistent field or n(&Pe,Q.P) ,2‘1 2m, n(&Pe, Q) A (ee1)
Ehrenfest  approachd$®=>! but with  important (2.6)
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The resulting classical equations of motion are then given by In the Appendix a rigorous molecular dynamics algo-
rithm for integrating these mixed quantum-classical equa-

b = dHn e =— dHn 2.7) tions of motion is developed. The QC dynamics simulations
“ pe, Ca de, ' results presented in Sec. V use this method.
and I1l. LANCZOS ALGORITHM
In the mixed quantum-classical adiabatic molecular dy-
dH, . dH,, . . X X ) e
(o= Pio=— , (2.89  hamics simulation described in Sec. VA the vibrational
IPja 9Qja states of the diatomic solute must be calculated at each time

step and the Hellmann—Feynman forces evaluated. Thus, a

wherea=x,y,z andj=1,2,..N. . L -
In this QC formulation the vibrationally adiabatic eigen- method is needed to solve the vibrational Sclmger equa-

functions are known and the forces can be calculated by thion that is efficient, since It Is “S?d repeatedly, and suffi-
Hellmann—Feynman theoreth For example ciently accurate to obtain the required forces. Furthermore,

the approach should ideally be applicable to multidimen-

aH, sional vibrational problems. However, we can take advantage
f,(r;)(e' Pe,Q)=— 70 of the fact that only a few of the vibrational states are usually
Ja of interest and that the vibrational potential, and hence the
JER(Q) eigenstates, do not change much from one time step to the
- Q4 next. Given these considerations, we use the iterative Lanc-

zos algorithm® with full reorthogonalization and a special
(¢ choice of the starting vector to obtain the vibrational eigen-
- " values and eigenfunctions. Direct diagonalization of the vi-
brational Hamiltonian would suffice for this one degree-of-
is the force in thea-direction on thejth solvent atom with  freedom problem, however, the present approach should be
the solute in vibrational state. For the directional vector applicable to vibrational problems involving multiple
components, there is an additional component proportionajegrees-of-freedom.
to the Lagrange multiplier Briefly, in the Lanczos scheme an initial vector in the
. basisv, (usually taken as randonis used to build a smaller
V(T.eQ) ’ ¢n> “2he, (M<N) Krylov space basis set by repeated application of
08, ; the Hamiltonian matrix:

(2.9

V(7,e,Q) >
ana " r,

fg;)(e,pe,Q)= - < bn

E'f (en)_Z)\ea' (21@ {VoyH‘Vo,HZ’Vo,Hg‘Vo,...,HMil'Vo}, (31)

where each vector is Gram—Schmidt orthogonalized against
Note that we have chosen to include the rotational kineticg|| previous vectors. Full orthogonalization of the Krylov
energy termp3/(2r?), in the effective potential, Eq2.3.  vectors is not costly for the small number of vectors required
This is certainly not the only possible approach but it has thgor the present applications and it allows us to obtain the
advantage thﬁlt all-dependent terms are included in the vi- eigenfunctions, which are required to calculate the
brational Schrdinger equation, in this case the centrifugal Hellmann—Feynman forces, in addition to the eigenvalues.
potential is incorporated. Hence, an eigenfunction calculatedhe Hamiltonian matrix in this Krylov basis is then diago-
in this approach should be closer to the true eigenfunctiomalized to obtain the eigenvalues.
i.e., that obtained from a fully quantum-mechanical calcula-  This approach has several advantages for vibrationally
tion, along ther coordinate. This means, however, thatadiabatic dynamics(1) It is efficient. The lowest energy
evaluatingdH,/dpe  requires some consideration. Ignoring eigenstates, those that are of interest in the study of vibra-
the action of the orientational kinetic energy on the adiabatid¢ional spectra, are converged rapidly. The fewer vibrational
eigenfunctions, the Hellmann—Feynman theorem gives states that are required, the lower the computational effort. It
will be seen in Sec. V that simulations involving the solution
oH, of the vibrational Schidinger equation millions of times are
9e,(BPe, Q)= 9Pe =< Pn ¢’“> possible with the present approad®) It is tunable. The
“ desired accuracy in the eigenvalues can be specified and the
computational effort scales according($) The result at one
= < &n ¢n> Pe,=B™pe, . (210 time step can be used to accelerate the calculation at the next
r time step. Because the vibrational potentiand hence

Thus, the equations of motion involve an effective rotational€igenfunctions change little between time steps, the eigen-

constantB(™, obtained from an average over the vibrationalfunctions obtained at timecan be used to initiate the Lanc-
eigenfunction. Finally, for the solvent atom coordinates, weZ0S Scheme at time+ 6t by using the starting vector

oh,
ap

,LLI'z

have simply 1 Nstates
Vo(t+ 6t) = t), 3.2
dH, B Pja ol ) Nstatesngl a0 @2

9ja= =—. (2.12 . I :
9P, m, whereNg.e5iS the number of vibrational states of interest.
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IV. POTENTIAL-OPTIMIZED DVR FXa=SuXas  @=12...Noo, (4.9

As emphasized in Sec. Ill, it is critically important to giving the Npg eigenvaluess, which are the grid points in
optimize the efficiency of the calculation of the diatom vi- the PO-DVR andVpq corresponding eigenvectogs, which
brational states since it must be repeated at least once eveaye the PO-DVR basis functions. As usual, the potential en-
time step and hence thousands or millions of times during &rgy matrix in the PO-DVR is approximated as diagonal,
simulation. One approach to this problem is to reduce thavith the matrix elements \(°9), z;=V(r=s,)d, 5. The
size of the basis set as much as possible without sacrificinkinetic-energy matrix can be obtained by transforming the
accuracy. For the one-dimensional vibrational system considnatrix in the raw basis, so that
ered here the basis set size is significantly reduced by using a Neaw Naaw
potential-optimized discrete variable represen_téﬁé?l(PO- (TP = (xalTlxs) = > > (xale)eilTle)

DVR). This is an improvement upon our previous work us- j=1 i=1

ing a sinc-function DVR basisOriginally, PO-DVRs were x(ilxs) 4.5
developed to optimize the one-dimensional bases used in Pilxp) '
solving multidimensional vibrational problems with direct invoking a completeness relation for the sinc-function DVR
product basis sets. Here we use a PO-DVR for a differenbasis. Note that the kinetic-energy matrix in the raw basis,
purpose: to optimize the one-dimensional basis for repeate(ctpj|'i'|<pi>, is already calculated and, since from the diago-
solution of the Schidinger equation. The approach is as fol- nalization ofr we obtain

lows. N
PO
A “raw” basis is chosen, consisting of a large number of _ be 46
basis functions. We choose@to «) sinc-functiori’ discrete X kz’l o, (4.

variable representatich®® as the raw basis set. In this basis, we have
closed form analytical expressions for the kinetic energy ma-

trix elements are availableand the potential energy matrix ‘
is approximated as diagonal, with each matrix element equal <¢j|Xa>:gl bi( el ‘//k>:k21 bicy, (4.7)

to the potential energy at the corresponding grid point. The

Hamiltonian matrix in this basigd®*W is thus easily evalu- from Eq. (4.2. Thus, everything necessary for calculating
ated. It is necessary to choose a reference potential, the offgé kinetic-energy matrix in the PO-DVR basis is already in
for which the PO-DVR basis will be optimized. We simply hand.

take the vibrational potential for the diatomic molecule atthe ~ The use of the PO-DVR reduces the size of the Hamil-
first step of the QC simulation. There is no reason to believéonian matrix that must be diagonalized to obtain the vibra-
that this is the optimum choice but in applications to thistional energy levels and eigenfunctions. In addition, it im-

Npo Npo

point it has worked quite well. proves the efficiency of the calculation by significantly
Once the Hamiltonian matrix in the raw basis is calcu-reducing the number of potential evaluatigfr®m Ngay to
lated, the vibrational Schdinger equation Npo). This may, in some circumstances, represent the greater
savings. One of the important benefits of this approach is that
HRAY. g =Enifn, n=12,...Nraw, (4D it can be straightforwardly applied to multidimensional sys-

tems such as polyatomic molecules. Furthermore, as de-
scribed here the PO-DVR is optimized for the lowest energy
siates and thus may be tuned to fit the number of energy

is solved for the energy eigenvaluds,, and eigenvectors,
¥, The eigenvectors corresponding to the low&st en-
ergy eigenvalues are then used as a new, smaller basis .
which the matrix of the position operator can be calculatedStat€s of interest.
That is, if the raw basis functions are denoted{hy;) Nraw

. . . . I701=1 V. SIMULATION RESULTS
with DVR grid pointsr;, the solution of the Schdinger

equation yields the coefficients' defined by A. Simulation details
Nraw Except where otherwise indicated, the simulations were
| )= E C?l(Pj)- (4.2) carried out with a single Nsolute molecule and 255 argon
i=1 solvent atoms in a cubic box of length 22.92 (8iving a

density of 1.41 g/c) with periodic boundary conditions.
The interaction potential is taken to be a sum of pairwise
terms. The N potential is taken to be a Morse function with
Nraw D=9.755eV,a=2.75A"1, andr,=1.094 A. The remain-
(D =(dtly= 2 ciejry, k,1=1,2,...Npo, ing interatomic potentials are of Lennard-Jones form, with
=1 (43 373K oy=331 RS €,=124.96K, and oa
' =3.42 A. The usual combination formulas are used, e.g.,
where we have assumed that the coefficies)tsare real. ey_a = Venea and oy_a=(ont 0a)/2. The interactions
Note thatNpo<Ngawy (Or ideally Npg<Ngaw) SO that this are truncated at a radius of 11 A.
matrix representation of involves a significantly smaller The simulations are initiated from an FCC lattice. The
basis than the raw one. system is propagated under completely classical dynamics
The position matrix is then diagonalized, (with a frozen N bond distancefor 25 ps(with a time step

Then, the matrix elements of the position operatoican be
calculated by
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The sinc-function discrete variable representation, the
“raw” basis used (see Sec. Iy, has evenly spaced grid
points®’ here the spacing i2q=0.01079 A. An energy
cutoff is used in which all grid points at which the potential
energy(relative to the minimumis greater thatV =5 eV
are discarded. The resulting grid has 60 points. The number
of PO-DVR basis functions is taken as input.

The convergence of the Lanczos algorithm is determined
by monitoring then=3 vibrational level; if the fractional
change between Lanczos iteratiodsand M + 1 in this ei-
genvalue 5= (EJ "*—EY)/EJ ", is less than k10" °the
eigenvalue calculation is stopped.

The instantaneous temperature and total energy are plot-
ted as a function of time in Fig. 1 for a run of 1 nst(
=2 fs) using 15 PO-DVR basis functions. The average tem-
perature during the run is 86.3 K. Note that the total energy
displays little drift (a linear fit to the total energy gives a
slope of 2.453% 10’ a.u./ps). The molecular dynamics in-
tegration algorithm given in the Appendix may not be opti-
mally efficient, however, this demonstrates that long-time
dynamics are accessible and that the method is stable. For
reference, with a time step of 2 fs this simulation involved

FIG. 1. The instantaneous temperature and total energy are shown asthe calculation of the Nvibrational states-1.5X 1P times.
function of time for a mixed quantum-classical simulation gf(iN=0) in

liquid Ar.

of 6t=2.5 fs) atT=300 K. The system is then equilibrated

B. Adiabatic energy levels

The three lowest vibrationally adiabatic energy levels of

under the mixed quantum-classical dynamics for 10 fts ( N, are shown as a function of time in Fig. 2 for the 1 ns
=21s). In the classical and QC equilibration dynamics, thesimulation of N(n=0) in liquid Ar described in Sec. V A.

velocities are rescaled to keep the temperature withili® K
of the desired value for the first 12.5 and 5 ps, respectivelyof the simulation and a 15 ps interval.

The dynamics are then propagated in an NVE ensemble dur-
ing which the data is collected for analysis.

E, (em”)

E, (cm'l)

1162

| 1
400 600
Time (ps)

|
0 200

]
800

1000

Plots of the energies are given over both the entire run time

We focus first on the gross features of the energy levels
over the entire simulation. It is immediately apparent that the

I | !
506 509 512
Time (ps)

1
00 503 515

FIG. 2. The vibrationally adiabatic energy levels of (duantum numberns=0,1,2) are shown as a function of time for a mixed quantum-classical simulation
of N,(n=0) in liquid Ar. Results are presented for the entire 1 ns simulation run and a 15 ps time interval in the middle of the run.
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scale of the energy level fluctuations increases with the vi- ! T
brational quantum number. The=0 vibrational energy 5
modulations span a range of 6.5 ¢ compared with 13.8
and 33.8 cm? for then=1 andn=2 levels, respectively. 0.2
Thus, the influence of the Ar solvent on the vibrational en- -
ergy increases with the vibrational quantum numibeiThis
can be attributed to the larger effective size of thehbl-
ecule in the vibrationally excited states. Another feature of.§ 0.1
the energy level fluctuations is the asymmetry about the&
mean. Then=0 energy level fluctuations are roughly sym-
metric about the mean energy. In contrast, tirel and 2 I ,'
energy levels exhibit significant asymmetry with fluctuations g \ L
to higher vibrational energies predominating. This difference 2320 2330 2340 2350
between the=0 andn>0 vibrational states reflects the fact E, . -E, (cm?)
that the solvent is interacting with thne= 0 vibrational state. . o -

. . . . . FIG. 3. The normalized distributions of the energy ggps(solid lines and
The energies of the hlgher vibrational states, which CorreElz (dashed linesare shown, obtained from the 1 ns QC simulation of
spond to an effectively largerj\Nmolecule, are more likely to  N,(n=0) in liquid Ar. Results are shown fakpg= 10 (squaref 12 (tri-
be shifted to higher energies by these interactions. angles, and 15(circles with lines.

Using the calculated energy levels presented in Fig. 2,

the average MNfundamental frequency in the simulation is
{wo1)=2359.8 cm?, giving a blue-shift of 1.9 cm* rela-
tive to the gas phase frequendipr this potential of wg;
=2357.9 cm?!. The “hot band” average frequency is
(w1 =2323.5 cm?, representing a blue-shift of 2.1 ¢rh
from the gas phase value of 2321.4¢hm [Note that this
(w1,) value is obtained from a simulation of,th=0), so it
is not precisely the transition frequency relevant to, e.g., th
hot band in the Raman spectrudm.

0.15 -

bility Density

0.05 -

|
2360 2370

ergy was found by Herman and Berne in Monte Carlo simu-
lations of B, in Ar.%°

The transition energy distributions obtained from 1 ns
simulations at 85 K with\/po=10 and 12 are also shown in
Fig. 3 for comparison with theéVoo=15 results. The distri-
butions obtained for these three sizes of the PO-DVR basis
set are very similar; only minor quantitative differences are
Bbserved. This indicates that an accurate solution of the vi-
: ) . brational Schrdinger equation can be obtained with a basis
A look at the details of the modulation of the vibrational consisting of only 10 functionésee also Sec. VD For ref-

energy levels is provided by the plots over the 15 ps timeerence, the average frequentyiue?) shift obtained in the
interval, shown in Fig. 2. Specifically, the fluctuations of thecalculation with Nog=10, 12, and 15 is 1.98, 1.92, and
E, andE; levels caused by the Ar solvent occur relatively in 1 g3 cnrt  respectively. T ' ’

phase. In contrast, the modulations of the ground state en-
ergy Eg do not occur in phase with those of the higher vi-
brational states. In fact, it appears that the fluctuatioris,in
are to some degree anticorrelated with thos& pfandE,, In systems for which the vibrational relaxation lifetime
i.e., Eq peaks wheree; andE, are at a minimum and vice is sufficiently short (N in Ar is not such a systeinthe vi-
versa. The calculated vibrational frequencies as a function dfrational relaxation may be explicitly simulated by a surface-
time can be used to obtain the pure dephasing times, e.chppping or classical mapping algorithiitdowever, see Sec.
using the theoretical approaches of Katand Oxtoby’!® | for a caveal. However, these approaches require knowl-
(For systems like Min Ar, the energy relaxation timd;; is  edge of the nonadiabatic coupling, a quantity provided by the
much longer than the pure dephasing time so that the totdnixed quantum-classical approach presented here. The vi-
dephasing time is dominated by pure dephasihg; T3 .) A brationally nonadiabatickinetic) coupling due to solvent
study of dephasing times using vibrationally adiabatic Qcatomj,

C. Nonadiabatic coupling

simulations is underway and will be given elsewhere. _ ad,
The normalized probability distributions of the—01 djnr,n(e,pe,Q)=<¢n' £>
and 1—2 transition energies obtained from the 1 ns simula- 1
tion at 85 K with NVpo=15 are shown in Fig. 3. The anhar- (b |V(F;6Pe,Q)/Q;| dr)y

momcnyﬁin the vibrational potential is evidenced by the E(6p..0)—E, (6ps.0) (5.9
~36 cm - shift of E4, to lower energies fronky;. The two

distributions are qualitatively similar. They are both asym-can be obtained directly since the vibrational wavefunctions
metric, with a single peak that decays more slowly at higheP'® explicitly and accurately calculated. In. Fig. 4 the total
frequencies. The distribution dy; can be compared with C€oupPling summed over all solvent atoms, given by

that from our previous simulations of nonrotating N Ar at N

150 K1 An asymmetric distribution was also observed in that Dy o= E dL, aPy/my, (5.2
case; that distribution is wider with a full width at half maxi- =1

mum or 4.4cm’ compared to 3.5cmt for the present is plotted as a function of time in the 1 ns simulation at 85 K.
case. A similar asymmetric distribution in the transition en-The coupling is roughly symmetric about zero. At the vast
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FIG. 4. The total nonadiabatiginetic) coupling between vibrational states FIG. 5. The percent errofsee text in the transition energie€; (solid
n=0 andn=1 [see Eq(5.2)]. line), E;, (dashed ling and E,; (dot—dashed linefor a simulation of
N,(n=0) in liquid Ar.

majority of times in the trajectory, the magnitude of the cou-
pling is small; at~84% (~98%) of the time steps the cou- The key measure of the computational effort in solving
pling is less than or equal to one-terfine-fourth the larg-  the vibrational Schidinger equation is the number of Lanc-
est coupling value. Relatively large values of the couplingzos iterations required to converge the eigenvalues. In the 1
are reached infrequently. The distribution of coupling valuess simulation of N(n=0) at 85 K with NVpo=15 the aver-
may be useful in developing simple models of vibrationalage number of Lanczos iterations required was 6.1 and the
relaxation in condensed phases. largest number of iterations at any step was 8. For the one-
Note that since this coupling is responsible for vibra-dimensional vibrational problem examined here the Hamil-
tional relaxation, these simulations can provide insight intotonian matrix is not sparse as it would be for a system with
the solute—solvent configurations and motions that lead tonultiple degrees-of-freedom. Thus, no sparsity of the Hamil-
the greatest probability of vibrational relaxation. Specifically,tonian matrix is exploited even though the iterative Lanczos
the results of these simulations include the solvent atom poalgorithm is designed to take advantage ofahd a DVR
sitions and momenta and the solute vibrational wave funcbasis in multiple degrees-of-freedom provides This fea-
tion as a function of time. Thus, it may be possible to gain aure of the present approach means that the extension to tri-
greater understanding of the origin of large nonadiabatic couatomic and polyatomidwith approximations solute mol-
pling (as well as the modulations of the energy leyddg  ecules is straightforward and feasible. While solution of the
examination of these mixed quantum-classical trajectoriepresent one degree-of-freedom problem by direct diagonal-
leading to insight into the molecular-level mechanisms ofization of the vibrational Hamiltonian matrix is possible, it
dephasing and vibrational relaxation. This analysis is curwill be inefficient and likely not feasible for a multiple

rently underway. degree-of-freedom vibrational problem. This is a key moti-
vation for the present approach. Testing of this method for
D. Accuracy and efficiency multiple degrees-of-freedom vibrational problems is cur-

The absolute value of the percent error in the first threerently underway.

transition energie€,, E;», andEy; are shown in Fig. 5 as

a function of time for a 100 ps simulation of,(h=0) at 85 VI SUMMARY
K with NMpo=15. In this simulation the vibrational eigenval- An accurate, efficient, generalizable method for carrying
ues were recalculated every 200 time stef¥ f9 using the  out mixed quantum-classical dynamics is presented. Specifi-
“raw” sinc-function DVR basis (Vspyr=60) and direct di- cally, a Lanczos scheme, with careful choice of the starting
agonalization. The resulting transition energies were taken agector, is used to calculate the vibrationally adiabatic energy
the “exact” values for calculating the error. The error is ex- levels at each step in a QC trajectory. The basis set size is
tremely small for all the transition energies but increases byeduced by using a potential optimized discrete variable rep-
a factor of~10 for each increment in the vibrational quan- resentation. Furthermore, a stable molecular dynamics algo-
tum numbem. All the transition energies exhibit sharp peaksrithm is presented for integrating the mixed quantum-
in the error, five appear in this time interval. However, theclassical equations of motion.

error in any transition energy is never larger than 1.5  This approach is tested on the problem of an riol-

X 10 %%. (For reference, the errors in t®),;, E;», andE,;  ecule with a quantum-mechanical vibration and classical
transition energies witbVpo= 10, not shown, are less than translation and rotation dissolved in a classical Ar solvent.
8x10 "%, 3x10 %%, and 910 °%, respectively. The QC molecular dynamics were simulated for 1 ns and the
Thus, the PO-DVR and Lanczos scheme provide a very aadiabatic vibrational energy levels and vibrationally nonadia-
curate solution of the vibrational Scliimger equation in  batic coupling calculated as a function of time. These quan-
these simulations. tities are important in studies ¢pure vibrational dephasing
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and vibrational relaxation. The mixed quantum-classicalNote that Eq.(A10) must be solved self-consistently since
method presented here may be applied not only to studthe effective rotational constaBi(t+ 6t/2) as defined in Eq.
these problems but also spectroscop¥f''t*3and reaction (2.11) depends on the coordinatex{t+ 5t/2) and Q(t
dynamicé*®4%-42%in condensed phase systems. A key ad-+ 6t/2) through the eigenfunctiohp,(e,pe,Q)). The solu-
vantage is the physical insight available from the QC trajection of Eq.(A10) can be obtained by solving the vibrational
tory consisting of solvent positions and momenta and theéschralinger equation at these updated positions and calcu-
vibrational wave function as a function of time. In addition, lating the effective rotational constant using the resulting
it can be straightforwardly applied to solutes with multiple eigenfunctions. This provides a new estimatee@f+ 6t/2)

vibrational degrees-of-freedom. which can be compared with the input and this procedure is
repeated until the input and outpeft + 6t/2) are the same to
ACKNOWLEDGMENTS within a specified tolerancéas measured, for example, by

- - Ae:|eoutpu(t+é)‘t/z)_anput(t"_‘5\':/2)|2)-
The author thanks Professor Brian B. Laird for several Next, advance the momenta a full time step frono t

useful discussions. The computer facilities of the Kansas+8t:
Center for Advanced Scientific Computing were used to
carry out some of the calculations. Acknowledgment is made ot
to the donors of The Petroleum Research Fund, administered Pia(t*00)= Pja(D)+ j{fia[pe(t)P(t)’
by the ACS, for support of this research.
e(t+ 6t/2),Q(t+ 6t/2)] + fj,[ pe(t+ 1),

APPENDIX: MOLECULAR DYNAMICS ALGORITHM P(t+ 8t),e(t+ 8t/2),Q(t+ st/2)]}, (A11)

Standard molecular dynamics algorithms, e.g., the Verlet
integrator, cannot be straightforwardly applied to the classi- P (t+80)=p, (1)+ ﬂ{? [pa(t),P(t),e(t+ 5/2)
cal Hamiltonian in Eq.(2.6) due to the presence of the Ca Ca 2 b te el ’
pﬁ/(Z,urZ) term; the Hamiltonian involves terms mixed in _
the momenta and coordinates. There are a number of ap- Q(t+dt/2)] +fe [pe(t+6t),P(t+dt),
proaches for obtaining a stable integration algorithm, here

we present one based on the implicit Euler metfoBor e(t+ot/2),Q(t+ 5t/2)]} — 25tk e, (t+ 6t/2). (A12)
equations of motion given by These equations also must be solved self-consistently since
a=9(p,q) p="f(p,q), (A1)  the forcesf, and?ea depend uporp, through the vibra-
the Euler method is given BY52 tional eigenfunction. This is done using an analogous itera-
tive approach as described for solving E410) with two
i+ ot=0et+ StALPe, G+ atl (A2)  measures of convergence taken A3_= | Pe,inpuft + Ot)
Pt+st=Pt T &f[pt,qt+6t], (A3) _pe,outpu(t+5t)|2/|pe,outpu(t+5t)|2 andAP:|Pinput(t+5t)

— Poutpul t+ 8t) |2/ |Poupuf t+ 8t) |2, The method for deter-

and also has an associated adjoint mining \ is given below.

Pit st=Pi+ St Pes s, 0], (A4) Finally, update the coordinates frotw- 5t/2 to t+ 6t
=0+ ot .a:]. A5 ot P, (t+ 6t
Ot+ 5t= e+ StYLPr+ 51,1l (A5) Qja(t+5t):Qja(t+5t/2)+§ i (m. ), (A13)

An algorithm can be obtained by combining the Euler ]

method fort—t+ 6t/2 and its adjoint fort + 5t/2—t+ 6t. St

This gives e,(t+ 8t)=e,(t+ 6t/2)+ > B(t+6t/2)pe (t+ot).
(Al14)

ot
Gu+ 2= At T 5 9LPe, At vl (A6) _ o
These equations are explicit.

St We can use EqA14) to determine the Lagrange multi-
Pt ot= Pt E{f[pt (it s2) + fPea ot -G+ s2l}, (A7) plier N by requiring thafe(t+ 6t)|?= 1. Defining the vector

ot
ot — - -
Qi+ 6t= i+ st ?g[pwm’QHm/z]- (A8) e(t+dt) =e(t+ )|, o=e(t+a/2)+ 2 B(t+ot/2)

In this case, from Eqg92.7)—(2.12) this algorithm gives the X[ pe(t) + Ste(t+ 6t/2)], (A15)
following procedurgsuppressing the vibrational state Igbel

First, advance the coordinates frdnto t+ 5t/2 we have
St P (1) e(t+ 8t) =ey(t+ 8t) — N St*B(t+ St/2)e(t+ 8t/2).
Qjalt+0/2) = Qju(t) + 5 — =, (A9) (A16)

J It is not hard to show then that requiring theft+ 6t) is

normalized leads to a quadratic equation\iwith the solu-

ot
eu(t+ SUU2)=e, (1) + - B(t+ 8t/2)pe (1). (A10) o0
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D
= BN, B(t+ ot/2)

N1/ No— 1)}1/2}
— 05z |

(A17)

where D=ey(t+ 6t)-e(t+ 6t/2), No=|eg(t+ 6t)|?, and
N,,=|e(t+ 6t/2)|2. Note that the root of the quadratic equa-
tion with the negative sign is chosen so that wheg= 1,
A=0. This expression is used to calculaten Eq. (A12);
note that it only involves quantities at- 5t/2 except for
pe(t+ 6t), which is obtained iteratively.

N

1-[1-

We note that for all the simulations presented here, the,

iterative solutions of both Eq€A10) and (A12) are com-
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