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The density functional theory of freezing is used to study the liquid to crystal phase transition 
in the hard-sphere and Lennard-Jones systems. An important step in the calculation is the 
parametrization of the solid phase average single particle density per). In this work two 
popular parametrizations are compared. The first method is a general Fourier decomposition 
of the periodic solid density in which the amplitude of each (non-symmetry-related) Fourier 
component is treated as an independent parameter. The second parametrization, which is more 
restrictive but easier to implement, approximates the solid density as a sum of Gaussian peaks 
centered at the sites of a periodic lattice. The two methods give essentially identical results for 
the phase diagrams for the two systems studied, but the crystal density predicted by the 
Fourier method exhibits significant anisotropies which are excluded from the Gaussian 
representation by construction. 

I. INTRODUCTION 

Density functional theory of classical statistical me­
chanics 1-4 has become an important tool in the study of first­
order phase transitions from first principles. In various 
forms the theory has been used to describe and predict the 
freezing of simple liquids into periodic5-15 and quasiperio­
dic16.17 solids, the freezing of binary mixtures, 18,19 the struc­
ture20-26 and dynamics27,28 of solid-liquid interfaces, the liq­
uid to glass transition,29,30 liquid to solid nucleation,31,32 and 
the elastic properties of solids near their melting point. 33 

The primary goal of the freezing theory is to predict the 
thermodynamic conditions at which phase coexistence 
between a solid and a liquid is possible. The thermodynamic 
properties ofthe solid are obtained by calculating the crystal 
phase correlation functions perturbatively from the correla­
tion functions of the bulk liquid. This idea originates in the 
work of Kirkwood and Monroe,34 who developed a canoni­
cal ensemble formalism using the pair correlation function 
g(r). Ramakrishnan and Yussouff 5 (RY) constructed a 
freezing theory using the grand canonical ensemble, and 
Haymet and Oxtoby,20 in the course of studying the struc­
ture of the crystal-liquid interface, recast the RY theory into 
the language of density functional theory and the pair direct 
correlation function c(r). 

Once the properties of the solid are calculated, the freez­
ing point is determined from the condition that the liquid 
and the solid must be in thermal and mechanical equilibri­
um; that is, the temperature, chemical potential, and pres­
sure of the liquid phase are equal to the corresponding solid 
phase quantities. The equality of the temperatures and of the 
chemical potentials are assumed a priori by the use of the 
grand canonical ensemble, in which the natural variables are 
temperature, chemical potential, and volume. The pressures 
are set equal by varying the liquid density until the grand 
thermodynamic potential, flO = - pV /kT, of the solid 
phase equals that of the liquid phase. 

It should be noted that in an exact treatment of the equi­
librium statistical mechanics of freezing there would not be 
two states of a system at the same temperature and chemical 
potential which have different pressures. The density func-

tional theory predicts a range of liquid densities for which 
there is a solid solution, because it assumes that the system is 
either all liquid or all solid; that is, it ignores fluctuations in 
which the two phases coexist within the same sample. This 
mean-field or "homogeneity" approximation and its relation 
to van der Waals theory is discussed in depth by Haymet and 
Oxtoby.35 

In addition to the liquid correlation functions, some in­
formation about the solid phase density must be supplied as 
input. Since the present theory is not able to solve the prob­
lem of "spontaneous translational symmetry breaking," the 
space group symmetry of the solid must be assumed in ad­
vance of the calculation. The equilibrium crystal symmetry 
is determined by performing the calculation for a set of plau­
sible structures and chosing the one with the lowest value for 
the free energy. 

In addition to the symmetry, the actual shape of the 
single particle density about the lattice sites must be parame­
trized. Two parametrizations are used extensively in density 
functional freezing calculations. The easiest to implement is 
a quasiharmonic approximation whereby the density about 
each lattice site is assumed to be isotropic and Gaussian. In 
this Gaussian method, introduced by Jacobs,9 there are only 
two parameters which describe the solid density: the lattice 
spacing and the Gaussian width. The other method used in 
the original calculations by Ramakrishnan and Yussouff,5 

and Haymet and Oxtoby,20 is a general Fourier decomposi­
tion where each nonsymmetry-related Fourier component 
of the solid density is treated as an independent variable. 
This Fourier method is less approximate and more difficult 
to implement than the Gaussian method, but of course it has 
the added ability to explore possible anharmonicities and 
anisotropies of the density. The principal purpose of this 
paper is to compare and contrast the difference in the freez­
ing results obtained using these two methods. 

In addition, we assume here that there is exactly one 
particle per lattice site. This is the "perfect crystal" assump­
tion, discussed by Haymet and Oxtoby.35 The Gaussian 
method calculations of Jones and MohantylO on the hard­
sphere system permit the lattice sites to be partially occu­
pied, and any deviation from the perfect crystal condition is 
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interpreted as indicating the presence of defects (vacancies 
or interstitials). Since the input to the theory contains no 
information about defect-defect or defect-particle correla­
tions, it seems unrealistic to expect it to yield any informa­
tion about equilibrium defects in the solid. 

The density functional theory of freezing is summarized 
in Sec. II, but it is by no means comprehensive and the reader 
is encouraged to consult one of the reviews 1-4 for a more 
complete treatment of the subject. Sections III and IV dis­
cuss the details of the Gaussian and Fourier methods, re­
spectively. Freezing results for hard spheres are presented in 
Sec. V and those for the Lennard-Jones system in Sec. VI. 

II. THE DENSITY FUNCTIONAL THEORY OF FREEZING 

Consider a system of classical particles of mass m with 
temperature T, volume V, and chemical potential J.L. The 
particles interact via a potential energy U(rl, ... ,rn ) and feel 
an external single particle potential ifJ (r). Defining a dimen­
sionless single particle effective potential by 

u (r) = pJ.L - pifJ(r), (2.1 ) 

we write the grand canonical partition function 

ZG = exp( - PO) 

= "" -- dr "'dr '" 1 f 
N~O N1A3N I N 

xexp{ -pU+ itl u(ri)}, (2.2) 

where PO = - pV IkBT, P = lIkBT, and 
A = (Ph 2/21Tm) 1/2. 

The free energy PO is a natural functional of u (r) with 

8pO 
--= 
8u(r) 

where 

-p(r), 

p(r) = (tl 8(r - r i ) ) 

(2.3 ) 

(2.4) 

and the ( ... ) denote a grand canonical equilibrium average. 
One of the principal results of density functional theory is 
that there exists a functional PO([u(r»),[p(r)]) which, 
when minimized with respect to p(r) at fixed u(r), gives 
PO[u) t,2: 

PO[u] = minp(r) {BO( [u ],[p])}. (2.5) 

The function p (r) which minimizes pO is identified as the 
true equilibrium single particle density defined by Eq. (2.4). 

The functional pO ( [u], [p] ), relative to some reference 
state characterized by potential Ur (r) and density Pr (r), can 
be written as the sum of an ideal gas term, fl/3 Oideal' and a 
term which reflects the interparticle interactions, fl/30int: 

fl/30 =PO([u],[p]) -poqur],[Pr]> 

(2.6) 

with 

and 

~Oideal = L dr{p(r)ln[p(r)lpr(r)] 

+p(r)[u(r) -ur(r)] 

- [p(r) - Pr (r)]} (2.7) 

The functions C (n) (rt, ... ,rn ) are the n-particle direct corre­
lation functions of the reference state and are defined by 

C ;n) (rl, ... ,r,,) = 8(n) {L dr Pr (r) [lnpr (r) - 1] 

-F[Pr]}/8Pr(r l ) ... 8Pr(rn ), (2.9) 

where the Legendre transform of PO [u], 

F [p] =pO[u) + L dr p(r)u(r), (2.10) 

is P times the Helmholtz free energy A minus the average 
total external potential energy 

(2.11 ) 

In this calculation, the reference system is taken to be 
the equilibrium liquid phase at a uniform density P r (r) = p L 

which has the same chemical potential as the solid phase 
represented by per). The external potential of both systems 
is set to zero. These two conditions imply 

(2.12) 

It should be noted that it is not necessary that the coexisting 
liquid be used as the reference system. Igloi and Hafnerl2 use 
a uniform reference liquid which has a different chemical 
potential than the coexisting liquid and solid phases. The 
reference liquid is chosen so that the minimized fl/30 is a 
minimum with respect to the reference liquid density. This 
criterion yields a reference liquid density which is slightly 
lower than the coexisting liquid density. Baus and Colotll 

chose a reference density with the requirement that the first 
peak in the structure factor S(k) coincides with the position 
of the first reciprocal lattice vector of the solid phase. 

Assuming that the solid correlation functions can be 
well described by those of the liquid, the expansion in 
fl/30int is retained only to second order in the density differ­
ence p(r) -PL' Identifying C(2)(r l,r2) as the Ornstein­
Zernike two-particle direct correlation function, 
c( Irl - r21), we obtain the following expression for fl/30: 

- fl/30 1 f {p fl/3m = --= -- drl (rl)ln [p(rt)lpL] 
PL V PL V 

- [p(r t ) -pd} --l-fdr l dr2 
2pL V 

xc( Irl - r2 1) [p(r l ) - pd [p(r2 ) - pd· 
(2.13 ) 

After the functional (2.13) has been minimized using 
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one of the procedures outlined in Secs. III or IV, the liquid 
density is varied until the value of !1f3w = !1f3wmin is zero; 
this identifies the freezing point unambiguously. 

III. THE GAUSSIAN APPROXIMATION 

A simple parametrization for the solid density is based 
on the fact that the potential energy of a particle about its 
crystal lattice site is approximately harmonic. The density 
can be then represented by a sum of Gaussians at each lattice 
site: 

p(r) = (1TC)-3/2 L exp[ - (IRn -rl)2/c], (3.1) 
{Rn} 

where the vectors {Rn} are the real-space crystal lattice vec­
tors and E is a measure ofthe width of the Gaussian peaks. 

Following Tarazona,14 Jacobs,9 and Jones and Mo­
hanty,1O !1f3w takes on a simple form if the Gaussians are 
assumed to be nonoverlapping. This assumption, necessary 
for the evaluation of the plnp integral in !1f3 Wideal , is accurate 
to a very high degree for the range of solid densities and 
Gaussian widths which are considered in all calculations 
contained in this paper. The integral over e( Irl - r2 1) is 
more convienently evaluated by decomposing the Gaussian 
density in a Fourier series since the integral becomes a sum 
over reciprocal lattice vectors and e(r) is replaced by its 
Fourier transform, e(k), which is easily obtained from ex­
periments and computer simulations via the structure fac­
tor, S(k): 

e( Ikl) = pI dr e,k-re(r) = 1 - _1_. (3.2) 
S(k) 

Substituting the parametrization (3.1) into Eq. (2.13) then 
gives 

!1f3w = 1 - (1 + 17) [5/2 + InpL + 3/2In(1Tc)] 

1 1 
- -172e(0) - - L Ji2( Ikn I )e( Ikn I) 

2 2 {k
n

} 

- ! 173e(3)(0,0), (3.3) 

where 17 is the fractional density change on freezing, 

17= (PS-PL)/PL' (3.4) 

andpLJi(kn ) is the Fourier component of the density corre­
sponding to the (nonzero) reciprocal lattice vector kn' 

p(r) = PL [ 1 + 17 + L Ji(kn )e'kn·r l (3.5) 
{kn} 

For the Gaussian density, Eq. (3.1), 

JiG (kn ) = (1 + 17) exp( - Ikn 1
2c/4). (3.6) 

The last term in Eq. (3.3) does not come from Eq. 
(2.13), but is the zero wave vector contribution of the term 
in Eq. (2.8) where n equals 3. This term involves the three­
particle direct correlation function of the liquid, which is in 
general unknown. When evaluating this integral using the 
Fourier decomposion, the only Fourier components of 
C (3) (r l ,r2,r3) which contribute are those whose three wave 
vectors form a closed triangle; so, we can define the Fourier 
transform of C (3) as 

e(3)(k l ,k2 ) =piV- 1 Iv dr1 dr2 dr3e,k"r'e'k"r, 

Xe-i(k, +k')'r,C(3)(r
l
, r

2
, r3)· (3.7) 

Accurate values for e(3) (kl, k2) where both kl and k2 are 
nonzero are difficult to obtain, but if one or both of the wave 
vectors are zero, then the triplet term can be calculated as a 
density derivative of the two-particle function 

e(3)(k,0) =P ae(k) _ e(k). (3.8) 
ap 

Only the e(3) (0,0) term is included in Eq. (3.3) since Hay­
met6 has shown that, at least in the case of hard spheres, as 
the magnitude of k increases the terms with one nonzero k 
oscillate in sign in such a way that their contributions to the 
freezing results tend to cancel each other. 

At a given liquid density, !1f3w for the Gaussian solid, as 
given by Eqs. (3.3) and (3.6), is a function of only two pa­
rameters, E and 17. Minimization with respect to these two 
quantities is straightforward. 

IV. THE FOURIER EXPANSION 

This minimization procedure utilizes the Fourier ex­
pansion for the solid density, Eq. (3.5), but unlike the Gaus­
sian method which has only two parameters, each non-sym­
metry-related Fourier component is allowed to vary 
independently. Since this decomposition spans the space of 
all possible density functions consistent with the crystal 
symmetry, the Fourier method is much more general than 
the Gaussian method and can address possible anharmonici­
ties and anisotropies of the solid density. This greater gener­
ality together with the variational theorem for !1f3w leads to 
the conclusion that for a given liquid density the minimum 
value of !1f3w calculated with the Fourier method should be 
less than or equal to the corresponding Gaussian method 
value: 

/\.QWFOUrier(p ),(/\.QwG!'ussian(p ) 
~ mm L "'~ mm L . (4.1 ) 

As illustrated in Fig. 1, Eq. (4.1) together with the nega­
tivity of the slope of !1f3wmin VSPL (the solid becomes more 

Fourier 

FIG. 1. A schematic diagram of the relative positions of the MWm;n (PL) 

curves for the Fourier and Gaussian methods. The density at which each 
curve crosses zero (the dotted line) is the predicted liquid freezing density 
for that method. 
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stable at higher densities) implies that the Fourier method 
will give a liquid freezing density which is less than or equal 
to the Gaussian freezing density. 

All calculations to date which use the full Fourier de­
composition6-8.12 determine the Fourier components of the 
minimum density by solving the extremum equation 

oM@ = 0, (4.2) 
op(r) 

which together with Eq. (2.13) yields 

In[p(rl)/pd = L dr2 c( Irl - r21) [p(r2) - pd· 

(4.3 ) 

Equation (4.3) can be solved by exponentiating both sides 
and projecting out the individual Fourier components. The 
functional M@ can be evaluated at its extremum by substi­
tuting Eq. (4.3) into Eq. (2.13), giving 

M@min=-_l_{ drdp(rl)-pd 
PLV Jv 

+ _1_ ( dr l dr2 c( Irl - r21) 
2pL V Jv 

X [p(r2) -pd [p(rl) +pd· (4.4) 

Equation (4.3) is a necessary condition for the true min­
imum but is not a sufficient one, since a saddle point or maxi­
mum satisfies the same equation. In fact, it has been discov­
ered that the true minimum solution lies off of the perfect 
crystal constraint. Since all previous uses of this method as­
sume a perfect crystal (or at least make some other connec­
tion between Ps and the lattice constant alaI) when imple­
menting Eq. (4.3), the density obtained, while satisfying the 
extremum condition, cannot be the true minimum. The den­
sity obtained by this procedure is not even the minimum on 
the perfect crystal constraint surface. Evidence of this can be 
seen in the observation that the Gaussian method, which is a 
true constrained minimization, gives a lower freezing den­
sity than the Fourier method, a fact which contradicts condi­
tion (4.1). 

The correct way to implement the Fourier method with­
in the perfect crystal approximation is to do a constrained 
minimization with a Lagrange multiplier. This involves de­
fining a new functional, l!..@'[p], which is l!..@[p] minus a 
Lagrange multiplier A times a term which is zero when the 
constraint is satisfied: 

M@'[p]=-I-{drl{p(rl)ln[p(rl)/PL] 
pLl!.. Jt. 

1 
- [p(rl) -pd} ---

2pLl!.. 

xLI drl dr2c(lrl -r21) 

X [p(rl) -pd [p(r2) -pd 

-~[l drIP(r l) -Nt.], (4.5) 
pLl!.. t. 

where l!.. is the volume of the unit cell and Nt. is the number 
of particle sites per unit cell. The perfect crystal condition is 

expressed by the constraint equation 

1 dr l p(rl) - Nt. = 0; (4.6) 

that is, there are no partially occupied sites. The minimiza­
tion of M@ subject to the constraint is accomplished by 
solving the equation 

oM@' =0 
op(r l ) 

simultaneously with Eq. (4.6). 
Minimizing Eq. (4.5) we obtain 

(4.7) 

In[p(rl)/pd = A + L dr2 c( Irl - r2J) [p(r2) - pd 

(4.8) 

with 

M@:"in=-_I-i dfl [P(fl)-Pd 
pLl!.. t. 

+_1_ (idfldf2c(lfl-f21) 
2pLl!.. Jv t. 

X [p(r2) - pd [p(fl ) + pd 

+~i drIP(rl )· 
pLl!.. t. 

(4.9) 

Exponentiating both sides of Eq. (4.8) and converting 
the real-space integration into a Fourier space sum over reci­
procal lattice vectors yields the following equation for the 
solid density: 

per) = PL exp{A + c(O)7] + !c(3) (0,0)7]2 

+ L c(lknJ)/l(kn )e·1<n. r}, 
{kn} 

(4.10) 

where the c3 (0,0) term appears for the reasons discussed in 
the previous section. To solve this equation for A and the 
Fourier parameters 7] and Vtn} the sum is truncated after a 
finite number of reciprocal lattice vector sets, nmax ' which is 
large enough to give convergence in the freezing results. The 
Fourier components of both sides are then projected out to 
yield a set of nmax ' nonlinear equations 

/l (kj ) + Ok
J
•o 

= 1 ~ e - .1</r exp{A + c(O)7] 

+~(3)(0,0)7]2+ L C(lkn)/l(kn)e·kn.r}, (4.11) 
2 {kn} 

where /l(k = 0) = 7]. Equation (4.11) together with the 
constraint equation 

Nt. 
PL(1+7])=T (4.12) 

can now be solved to determine the solid density. The func­
tional M@'min is evaluated using Eq. (4.9) which after 
Fourier decomposition becomes 
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al/w;"in = [c(O) - 1]" + Hc(O) + c(3)(0,0)],,2 

+ !C(3) (0,0),,3 

1 
+- I c(lkn l)1L2(kn ) +A(l +n). (4.13) 

2 {k.} 

In this form, !1f3W;"in is minimized with respect to the 
unit cell volume a to give the perfect crystal con trained min­
imum of !1f3w. 

Note that the truncation in Eq. (4.10) is justified by the 
fact that the product c(kn )1L(kn ) approaches zero for large 
amplitude wave vectors. The convergence of the sum in Eq. 
(4.10) is much faster than in Eq. (3.5) where the orderpa­
rameters lL(kn ) appear alone. Also, the density calculated 
from a falsely truncated Eq. (3.5) can have large negative 
regions unlike Eq. (4.10) which is inherently positive. As 
shown previously,36 only Eq. (4.10) yields the correct crys­
tal density. 

v. HARD-SPHERE RESULTS 

The hard-sphere system is the standard first testing 
ground for density functional theories of freezing. The sys­
tem has several advantages, and a crucial disadvantage. 
First, the freezing line of the phase diagram depends only 
upon the density, and not upon both the density and the 
temperature as in most other systems. This simplifies the 
study since the entire phase diagram is determined from only 
one freezing calculation. Another advantage is that approxi­
mate but accurate liquid structure information is available in 
analytic form. Unfortunately, the unphysical discontinuity 
in the direct correlation function introduces a pathology into 
the formalism. 

Particles in the hard-sphere model interact via the 
spherically symmetric pairwise additive potential 

u(r) = {oo
o 

r < 0' 5 1 r :> 0" ( • ) 

For the remainder of this section the following reduced units 
will be used: reduced radial distance r* = riO', and reduced 
density p* = pif. 

The hard-sphere two-particle direct correlation func­
tion c(r) used in this and earlier calculations is the exact 
analytic solution to the Percus-Y evick37 equation. This 
c(r), derived by Wertheim and Thiele,38 is given by 

{
(I + !tr*3)AI + 6Sr*A2 r* < 1 

c(r*) -
- 0 r*:>l' 

(5.2) 

where the packing fraction S = 1rp* 16, Al = (1 + 2S)2 I 
(1-s)4,andA2 = - (1 +S/2)2/(l-S)4. 

TABLE I. Freezing parameters for hard spheres. 

Method 

Fourier 
Gaussian 
Simulation (Ref. 39) 

Liquid 
density 

PL 

0.9836 
0.9850 
0.94--0.96 

Crystal 
density 

Ps 

1.1241 
1.1258 
1.06-1.08 

80. 120. 
n 

160. 

FIG. 2. The convergence of M(,j_ (PL) vs the number n .... of order pa­
rameters included in the hard-sphere calculation. The liquid density and 
unit cell volume used are such as to give a freezing solution at nmax = 161. 

The system is assumed to freeze into a face-centered­
cubic (fcc) crystal. This is the crystal structure seen in the 
computer simulations.39 Whether the equilibrium hard 
sphere crystal is in fact fcc or the closely related hexagonal­
close-packed (hcp) structure is at present unresolved. Pre­
liminary calculations by the authors show that, at least for 
the Gaussian method, the difference in the freezing param­
eters between hcp and fcc is negligible for the hard-sphere 
system. 

The Gaussian calculation uses 200 sets ofreciprocallat­
tice vectors, whereas 161 sets are used for the Fourier calcu­
lation. Figure 2 illustrates the convergence of !1f3w' min using 
the Fourier method at the calculated freezing density. The 
calculated freezing parameters for both methods are dis­
played in Table I together with the computer simulation re­
sults. The quantity L is the Sutherland4°-Lindemann41 ra­
tio, which is defined to be the average root-mean-square 
deviation of a crystal particle from its lattice site divided by 
the nearest neighbor distance dnn , 

(5.3 ) 

where the integral is over one crystal density peak. For the 
Gaussian approximation, it can be shown that 

(5.4) 

The empirical "rule" (which actually describes a crystal "in­
stability") states that a crystal melts when L exceeds 10%, 
and this turns out to be true for many simple materials. Us­
ing this standard, the Fourier value of L is closer to 10% 

Density 
change 

7J 

0.1429 
0.1430 
0.1 

Gaussian 
width 

€ 

0.0520 

Lindemann 
ratio 

L 

0.065 
0.059 
0.14 
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b ......... .... 
'--' 

Cl.. 
N .... 

t::: 
~ 

20. 

10. 

o. 
0.00 0.05 0.10 0.15 

ria 
FIG. 3. The quantity 41Trp(r) at the hard-sphere Fourier freezing point in 
three different crystal directions: [1(0) (solid line), [110) (dashed line), 
and [111) (dotted line). 

than the Gaussian value, but it is still quite low. 
The results presented in Table I show that the Fourier 

and Gaussian methods give nearly identical results for 
PL' Ps, and 1]. The difference inL indicates that the shape of 
the solid density peaks are measurably different. The Gaus­
sian density is constrained to be isotropic, whereas the Four­
ier density is not so constrained. Figure 3 shows the Fourier 
density multiplied by the Jacobian factor 41rr in three differ­
ent crystal directions: [1 DO], [110], and [111]. Figure 4 
shows the difference between these densities and the (isotro­
pically constrained) Gaussian density. 

VI. LENNARD-JONES RESULTS 

Lennard-Jones particles42 interact via the spherically 
symmetric, pairwise additive potential 

(6.1 ) 

where E is the depth of the attractive well and a is a measure 
of the particle size. This potential mimics the characteristics 

3.0 

b 
~ ......... .... 
'--' 

'-' 
Cl.. 
I ......... 0.0 .... 

'--' r.. 
Cl.. 

L.......i 

N .... 
t::: 
~ 

-3.0 
0.00 0.05 0.10 0.15 

ria 
FIG. 4. The quantity 41Tr[PF(r) -PG(rl] at the hard-sphere freezing 
point in three different crystal directions: [100) (solid line), [110) (dashed 
line), and [111) (dotted line). PF(r) = Fourier method density. PG (r) 
= Gaussian method density. 

of the interaction potentials of rare gas elements and even 
more complicated molecules, namely an r- 6 attraction at 
large distances and a steep repulsive wall at small distances. 
For the remainder of this section the following reduced units 
will be used: reduced distance r* = ria, reduced density 
P* = pUJ, and reduced temperature T * = k BTl E. The liq­
uid direct correlation function c(k) is obtained by Fourier 
transformation of an analytic fit to the Lennard-Jones pair 
correlation function g(r) obtained by Goldman43 from an 
analysis of computer simulation data. Because this pair cor­
relation function is only accurate for r S. lOa, the transform 
c(k) obtained from it is badly behaved at small k. In light of 
this fact, c(O) and c3 (0,0) were obtained directly from a 33-
parameter equation of state fit by Nicholas et al.,44 using the 
same computer simulation data base used in the g(r) fit. 

The only exception to the above input is near the triple 
point. The qualities c (0) and c3 (0,0) are calculated using the 
mean spherical approximation45 (MSA) for c(k). This was 
done because the equation of state fit gives inaccurate values 
of these quantities near the triple point leading to a disap­
pearance of the freezing solutions below T* = 0.8. 

As for hard spheres, an fcc structure is assumed for the 
Lennard-Jones crystal. A total of 140 reciprocal lattice vec­
tor sets are used in both the Fourier and Gaussian calcula­
tions. The Lennard-Jones calculations exhibit faster conver­
gence than the hard spheres calculations because the c(k) 

for hard spheres is much more long ranged than its Lennard­
Jones counterpart (see Fig. 5), due to the Fourier transform 
of the unphysical discontinuity in the hard sphere c(r). The 
freezing parameters for both the Fourier and Gaussian 
methods are displayed for a variety of temperatures in Table 
II. As for hard spheres, the freezing parameters calculated 
by the Gaussian method are very nearly identical to the 
Fourier method results. Figure 6 is the phase diagram of the 
Lennard-Jones system, and it includes the present calcula­
tion, coexistence data from both computer simulations of 
Lennard-Jones particles46 and experiments on argon47

•
48 

(a = 3.405 A and €IkB = 119 K) as well as the gas-liquid 
coexistence line calculated from the equation of state using 
the Maxwell construction. The theory compares quite well 

1. 

......... 
~ O. 
() 

-1. 
o. 30. 

ka 
60. 

FIG. 5. The structure function c(k) forthe Lennard-Jones (T* = 1.3) and 
hard-sphere (the more slowly decaying curve) liquids at their respective 
freezing densities. 
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TABLE II. Freezing parameters for Lennard-Jones system. 

Liquid Crystal Density Gaussian Lindemann 
Temperature Method density density change width ratio 

T PL Ps 

0.72 Fourier 0.78 0.954 
1.00 Fourier 0.877 1.017 

Gaussian 0.880 1.020 
l.l5 Fourier 0.916 1.047 

Gaussian 0.918 1.050 
1.30 Fourier 0.947 1.074 

Gaussian 0.949 
1.60 Fourier 1.000 

Gaussian 1.002 
1.80 Fourier 1.030 

Gaussian 1.033 
2.00 Fourier 1.058 

Gaussian 1.060 
2.50 Fourier l.l17 

Gaussian l.l20 
2.74 Fourier l.l42 

Gaussian l.l44 
3.00 Fourier l.l68 

Gaussian 1.170 

with experiment, with the possible exception of predicting 
too high a value for the fractional density change 1]. 

The Lennard-Jones system yields a much more isotropic 
Fourier solution for the crystal density than hard spheres 
(Fig. 7) but still displays a significant deviation from the 
Gaussian density (see Fig. 8}. The values of the Lindemann 
ratios have the same Fourier to Gaussian relationship as 
hard spheres but are closer to the empirical value of 10%. 

VII. CONCLUSIONS 

There are a number of important technical conclusions 
from our study. First, we have demonstrated the correct im­
plementation of the Fourier expansion of the crystal density, 
and the consistency of the subsequent minimization of the 

w 
'-..... 
E-< 
~ 

3.0 

2.0 

/ 

1.0 
I 

0.0 
0.0 0.5 1.0 1.5 

FIG. 6. The Lennard-Jones phase diagram displaying: the Fourier and 
Gaussian method density functional results (solid line); Monte Carlo simu­
lation results (Ref. 46) (circles); experimental data for argon (Ref. 47) 
(squares); and the liquid-vapor coexistence line calculated from the Nicho­
las et al. (Ref. 44) equation of state by Maxwell construction (dashed line). 

1.077 
1.123 
1.126 
1.153 
1.157 
l.l81 
l.l85 
1.243 
1.248 
1.270 
1.273 
1.298 
1.302 

'T/ t: L 

0.223 0.083 
0.159 0.086 
0.159 0.0677 0.074 
0.143 0.087 
0.144 0.0672 0.074 
0.134 0.087 
0.135 0.0670 0.Q75 
0.123 0.088 
0.124 0.0667 0.076 
0.1l9 0.089 
0.120 0.0662 0.076 
0.1l2 0.090 
0.118 0.0660 0.076 
0.112 0.090 
0.1l4 0.0655 0.077 
0.112 0.090 
0.113 0.0652 0.077 
0.1l2 0.090 
0.113 0.0647 0.077 

grand potential i::J.{3fl. Secondly, we show that while the 
Fourier expansion and Gaussian approximation yield very 
similar phase diagrams for hard spheres and the Lennard­
Jones system, there are measurable differences in the crystal 
densities predicted by the theory. This is shown to occur 
even in closed-packed crystals, where the Gaussian approxi­
mation, which forces crystal denisty isotropy, is presumably 
most correct. Even larger differences between the two meth­
ods are expected in more "open" crystal structures, such as 
body-centered-cubic (bcc) and the diamond lattice. 

In the present calculations, properties which are direct­
ly related to the shape of the crystal density, such as the 
Lindemann ratio, display the greatest difference between the 
Fourier expansion and the Gaussian approximation. It 
would be worthwhile to examine by computer simulation the 
predicted anisotropy in the hard-sphere fcc crystal. Work is 
underway to study the difference between fcc and hcp close-
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"<!' 

10. 
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o. 
0.0 0.1 

ria 
0.2 

FIG. 7. The quantity 41T~p(r) atthe Lennard-Jones, Fourier freezing point 
(T* = 1.3) in three crystal directions: [110] (dashed line), [100] and 
[Ill] (solid line). 
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FIG. 8. The quantity 41Tr[PF(r) - PG(r)] at the Lennard-Jones freezing 
point (T· = 1.3) in three different crystal directions: [110] (dashed line), 
[loo] and [Ill] (solid line). PF(r) = Fourier method density. PG(r) 

= Gaussian method density. 

packed crystals, and a variety of other substances and crystal 
types. 
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