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Density functional theory, studied recently by us [J. Chem. Phys. 87, 5449 (1987)] is used to 
study the freezing of hard disks and hard spheres into crystals with hexagonal symmetry. Two 
different numerical techniques are used, namely a Gaussian approximation to the crystal 
density and a more general Fourier expansion of the crystal density. The results from these 
methods are compared with each other, more approximate versions of density functional 
theory, and computer simulations. In addition, we compare density functional theory with 
Landau theories of first order transitions, in which the free energy is expanded as a power 
series, usually in just one order parameter. We find that traditional Landau theory has little 
validity when applied to the freezing transition. 

I. INTRODUCTION 

Classical density functional methods 1-6 have described 
successfully the freezing of monatomic, spherically symmet­
ric systems,7-9 and more recently the freezing of mix­
tures,IO·11 molecular liquids which have orientational de­
grees of freedom, 12.13 and even water. 14 

In a previous paper,8 hereafter denoted paper I, the pres­
ent authors examined in detail two computational tech­
niques for implementing the density functional theory of 
freezing. One method assumes that the crystal phase density 
can be approximated by Gaussians. The other, more general 
method expands the crystal density as a sum of Fourier com­
ponents which are allowed to vary independently, subject 
only to the symmetry constraints of the crystal lattice under 
investigation. In paper I we corrected inconsistencies in ear­
lier versions of the Fourier expansion method, and examined 
carefully the freezing of the hard sphere and Lennard-Jones 
liquids into face-centered-cubic (fcc) crystals using both the 
Gaussian approximation and the corrected Fourier expan­
sion method. Both methods predict similar thermodynamic 
properties for the freezing transition, but the Fourier meth­
od results exhibit significant crystal density anharmonicities 
and anisotropies which are excluded a priori in the Gaussian 
approximation. 

In this paper we compare the density functional theory 
of freezing with Landau theory, which is extremely impor­
tant in the theory of second order phase transitions, but 
which turns out not to be a useful theory of first order transi­
tions such as freezing. In addition, we extend the analysis of 
Paper I to the freezing of hard particles into structures with 
hexagonal symmetry, in both two dimensions (d = 2) to the 
triangular lattice, and in three dimensions (d = 3) to the 
hexagonally close-packed (hcp) lattice. The freezing of hard 
spheres into the hcp structure has been examined previously, 
by YuSSOUffl5 and by Igloil6 using the Fourier method, and 
by Baus and Colot l7 using a variant of the Gaussian approxi­
mation. However, according to paper I, both Fourier meth­
od studies used an inconsistent version of the Fourier expan­
sion, and too few order parameters. In addition, Yussouffl5 

used an unnecessarily complicated and, from our analysis, 
incorrect representation of the hcp order parameters. Ra­
makrishnan,18 Tarazona and co-workers I9,2o and Colot and 
Baus21 have all examined the freezing of hard disks using 
approximate versions of the density functional theory, and 
we compare our predictions with their calculations and ear­
lier computer simulations.22,23 

In Sec. II we summarize the freezing formalism for both 
Gaussian and Fourier methods. In Sec. III we use simple 
mathematical approximations to derive Landau theory from 
density functional theory, and use the Landau free energy to 
try to predict the relative stability of crystal phases. Landau 
expansions have become quite popular recently for studies of 
first order transitions, and a comment on their inconsisten­
cies and pathologies is in order. In Secs. IV and V we collect 
our predictions for two and three dimensional hard particles, 
and compare them with other methods, and collect our con­
clusions in Sec. VI. Since the hcp Fourier freezing formalism 
is more difficult to implement, and seems to have confused 
some workers, we describe complete technical details in the 
Appendix. 

II. DENSITY FUNCTIONAL THEORY OF FREEZING 

Consider a system of classical particles with tempera­
ture T, volume V, chemical potential/L, and interaction po­
tential U(r l ,r2, ... ). The goal of density functional theory 
is to construct a free energy functional from which the struc­
tural and thermodynamic properties of a spatially inhomo­
geneous phase (in this case, the crystal) can be determined. 
This could be accomplished in a variety of ways. Following 
paper I, we choose to expand the functional about a well 
characterized reference state, in this case the equilibrium 
uniform liquid, using thermodynamic perturbation theory. 
The details of how to do this in the grand canonical ensemble 
are given in paper I, and are recapitulated here. 

The equilibrium density per) of the inhomogeneous 
(crystal) phase is the density which minimizes the func­
tional 
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apai[p(r) ] 

= _1_ f dr({p(rl)ln[p(rl)/PL] 
PL V 

- [p(rl) -pd} 

--1-fdrldr2c(lrl-r2I)[p(rl) -pd 
2pL V 

X[p(r2)-pd, (2.1) 

where p - 1= kT, P L is the density of the coexisting, uniform 
bulk liquid phase, and c(r) is the Ornstein-Zernike direct cor­
relation function of the bulk liquid. Note that the dependence 
of the theory on the interaction potential U is contained impli­
citly in c(r), and there is not necessarily a restriction to pair­
wise additive forces. The value of the functional !::$(ij at the 
minimizing density per) is 

POcrystal - PO liquid • A a- [ ( )] = mm ~{J) p r , 
NL p(r) 

(2.2) 

where 0 is the grand thermodynamic potential and N L is the 
average number of liquid particles. 

The central approximation of the theory is that the corre­
lation functions of the crystal are expanded as functional Tay­
lor series about the reference liquid, and truncated after second 
order. The effect of these approximations is discussed in paper I 
and by Haymet and Oxtoby. 24 Various versions of density func­
tional theory differ principally in the choice of reference liquid. 
Our choice avoids consideration of hypothetical liquids with 
densities intermediate between equilibrium liquid and crystal, 
and also extra terms involving the chemical potential differ­
ence. To a given order in perturbation theory, the equilibrium 
freezing transition is located when the pressures (as well as the 
temperatures and chemical potentials) of the crystal and liquid 
are equal, that is, 6/3m = O. 

To date, the functional (2.1) has been minimized by two 
different methods. In one method, the crystal density is as­
sumed to be Gaussian and expanded in the form, 

per) = (7T~)-3/2)' exp[ -IRn _rI2/~], (2.3) 
~} 

where the vectors {Rn} are the real space crystal lattice vectors 
and E is a measure of the width of the Gaussian peaks. If the 
Gaussian peaks are assumed to be nonoverlapping, this choice 
of density25leads to a simple evaluation of the p In P term in Eq. 
(2.1). The integral over c(r), which is thepc(r)p term in Eq. 
(2.1), is evaluated most easily by converting the real space 
integration into a Fourier sum over reciprocal lattice vectors 
(RL V s) {kn }. The Fourier transform of the direct correlation 
function c(k) is related to the experimentally measured struc­
ture factor S(k) via, 

c(lkl) =pfdrelk.rc(r) = 1 __ 1_. (2.4) 
S(k) 

The functional (2.1) for the special case of Gaussian crystal 
density may then be written 

6/3m = 1 - (1 + 7]>[ ~ + InpL + 11n( 7T~)] 

-! 7]2C(0) -! )' c( Ikn I )p2( Ikn I) 
2 2 tt'l 

-i 7]3C(3) (0,0) , (2.5) 

where 'I] is the fractional density change on freezing 

'I] = (Ps - PL )/PL , (2.6) 

andpLPn (kn) is the Fourier component of the crystal density 
corresponding to the (nonzero) RLV kn' 

per) =PL [1 + 7] + J;p(kn )e1kn"r] . (2.7) 

For the Gaussian density (2.3), this component is 

PG(kn ) = (1 +7])exp( -lknI2~/4). (2.8) 

The last term in Eq. (2.5) is the zero wave vector contribution 
to the third order term in the perturbation expansion of !:J.f3(;j, 
not explicitly shown in Eq. (2.1). This term involves the three 
particle direct correlation C 3(rl> r 2 , r 3 ), of which the zero 
wavevector component is given by 

2(0,0) = pi V-I Iv drl dr2 dr3 C\rl,r2,r3) 

= PL ac(o) - c(O) . 
apL 

(2.9) 

The reasons for including this term are discussed in paper I. 
At a fixed liquid density and in the Gaussian approxima­

tion, Eq. (2.5) is a function of two parameters only, the Gaus­
sian width E and the fractional density change '1]. Minimization 
with respect to these two quantities is straightforward. 

The second method uses the Fourier expansion (2.7) but 
allows each nonsymmetry related Fourier component to vary 
independently. This greater generality enables this method to 
seek possible anharmonicities and anisotropies in the crystal 
density. As discussed in paper I, in the absence of information 
about the correlation functions for point defects such as inter­
stitials and vacancies, it is reasonable to assume that the crystal 
( of whatever symmetry) is "perfect" in the sense that there is 
exactly one particle per lattice site, 

i drl p(rl) - Nt> = 0, (2.10) 

where Nt> is the number of atoms per unit cell of volume A.. 
Minimizing Eq. (2.1) subject to the constraint (2.10) 

yields, as shown in paper I, 

In[p(rl)/pd =,1 + Iv dr2c(lrl -r21)[p(r2) -pd ' 

(2.11 ) 

where A is the Lagrange multiplier which enforces the con­
straint (2.10). Inserting the Fourier decomposition (2.7), we 
obtain a set of coupled nonlinear equations for the order pa­
rameters and the Lagrange multiplier, 

p(kj ) + ~j.o = f ~ e-
lkj

'
r 

exp{A +c(O)'I] 

+ ~ C(3) (0,0)7]2 

Equation (2.12) is solved together with the constraint equation 

PL (1 + 77) = Nt>/A. (2.13) 
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to yield the crystal density. In principle, the sum in the inte­
grand ofEq. (2.12) is over an infinite set ofRLVs, but this sum 
is eventually self-truncating because the coefficients e(kn ) tend 
to zero for large amplitude wave vectors. Misleading results are 
obtained if too few vectors are retained in this sum.8 

At the minimum value, the value of the functional is the 
grand thermodynamic potential difference, 

~min = [c(O) - 1]1/ + He(O) + e(3) (0,0)] 1/2 

+ ~e3(0,O)1/3 

+ ~ }' e( Ikn I ),u2(kn ) + A( 1 + 1/). (2.14) 
2t.O 

In this form Af3iij min is minimized with respect to the cell vol­
ume fl., to give the perfect crystal minimum of the functional. 
Using either method, the value of the liquid density is varied 
until the difference in grand potential between the crystal and 
liquid is zero. This means that the pressures of the two phases 
are equal, and since the temperatures and chemical potentials 
of the two phases are equal by construction, this identifies the 
freezing point. These theories are applied to hard particles in 
two and three dimensions in Sees. IV and V below. 

III. COMPARISON WITH LANDAU THEORY 

The simplest theories of phase transitions are those based 
on the free energy expansion introduced by LandaU.26 Within 
this approximation, a set of order parameters {tPn} are chosen 
and the free energy is expanded in a polynomial series about the 
transition point, 

00 

F= L L Am(al,··.,an)tP~'tP~2···tP:n, (3.1) 
m= 1 Q. +a2 '" +q,=m 

where F is the free energy relative to the disordered phase in 
which the order parameters vanish. Equation (3.1) is then 
truncated at low order, typically m = 4 or m = 6, and the 
physics determined by minimizing the resulting expression for 
the free energy. 

These th~ries have been extremely successful for second 
order transitions, both in meanfield theory and as the starting 
point for renormalization group analysis, because often the 
higher order terms in the expansion (3.1) can be shown to be 
"irrelevant" in the formal sense.27,28 

It is a much more risky proposition to use this expansion 
for first order transitions such as freezing. Often the choice of 
order parameters deemed to be relevant (in any sense) is moti­
vated by convenience rather than physical reality. Usually the 
density change on freezing is completely ignored, although it 
often dominates the physics of first order phase transitions. 
Furthermore, we show here that the higher order terms in the 
expansion (3.1) are just as large as, say the m = 4 term, and 
omitting them leads to qualitatively incorrect physics. 

In an important paper, Alexander and McTague29 used a 
Landau free energy, with the fourth order term approximated 
by the square of the second order term, to study the freezing 
transition. They concluded that for systems which have small 
density changes on freezing, and small latent heats, freezing to 
a bee phase is favored over fcc. Their argument, which we 
claim is incorrect, both quantitatively and qualitatively, may be 

summarized as follows. Let the free energy of the inhomogen­
eous phase relative to the bulk liquid be given by 

F=F2 +F3 +F4 +"', (3.2) 

where Fn is the nth order term in the Landau expansion, and 
the order parameters are the Fourier components of the crystal 
density, just as in See. II above. The quadratic term has the 
form 

F2 = L A2(k)AP-k , (3.3) 
k 

where A (k) depends only on the magnitude of the wave vector 
since the liquid is isotropic. Alexander and McTague argue 
that as the transition is approached, A2 (k) has a minimum at 
some wave vector Ikl = q, and that at the freezing point it 
becomes favorable to form a crystal with reciprocal lattice vec­
tors of this magnitude. Neglecting all other Fourier compo­
nents, they assume that the order parameter 

P~ = }' P~ (3.4) 
Ikl=q 

dominates the transition, and proceed to evaluate the possible 
third order terms which can be constructed from this order 
parameter. The third order term has the form 

F3 = A 3 (q) Ik# q Ik~ q Ik~ q c5(kl + k2 + k3 )A,Pk,Pk3 ' 

(3.5) 

where the c5 function constrains the three RL Vs to form an 
equilateral triangle of side length q, as required by the invar­
iance properties of F3 • Thus, if one identifies q as the amplitude 
of the nearest neighbor RLVs in a crystal, only certain lattice 
symmetries (such as bee, but not fcc) have nonzero third order 
contributions to the free energy. 

The simplest such symmetry is six vectors which form a 
hexagon. This is the first RL V set for the d = 2 triangular 
lattice as well as for d = 3 hexagonal lattices such as hcp. The 
next such symmetry is 12 vectors forming an octahedron, 
which is the first RL V set of the bee real space structure. The 
only other case is 30 vectors forming an icosahedron, which of 
course is not a subset of any periodic lattice but which has 
obvious appeal for the study of icosahedral quasicrystals.30,31 
Simple geometric analysis shows that the third order coeffi­
cient is most negative for the octahedron case, leading Alex­
ander and McTague to conclude that the bee structure is fa­
vored uniquely by the third order term. 

Inspired by Alexander and McTague,29 a number of auth­
ors have used a similar analysis to study the stability of quasi­
crystals in single30 and multicomponenf l systems. Klein and 
Leyvraz32 have studied nucleation near the meanfield spinodal 
line, and Shih et al.33 have constructed a Landau theory of the 
bee crystal-liquid interface, studied earlier with density func­
tional theory by Oxtoby and Haymet. 34,35 Despite the many 
approximations detailed below, some authors have tried to 
claim a generality of results from Landau theory, similar to 
second order phase transitions. We show explicitly that this is 
incorrect. 

We attempt to summarize here the problems with the tra­
ditional Landau analysis of first order transitions. Alexander 
and McTague want their analysis to be valid for transitions 
where the first-order character is "not too pronounced". This is 
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the only possible justification for neglecting the zero-wave­
vector-order parameter, the fractional density change on freez­
ing, yet even this is incorrect. Even for alkali metals this term 
makes a large contribution to the properties of the transition. In 
the incompressible limit,36 the fractional density change does 
vanish but the zero-wave-vector coefficient c(O) tends to nega­
tive infinity in such a way that the product 1]c(O) is finite, and 
this term contributes to the free energy. 

The Landau analysis would also predict that the hcp struc­
ture is much more stable than the fcc structure, since its RL V s 
contribute to a third order term. This is obviously false, since 
for simple substances such as the inert elements, the fcc and hcp 
structure are known to be separated by tiny free energy differ­
ences. For hard spheres there is no significant difference in free 
energy according to full density functional theory, as shown in 
Sec. V. 

The appeal of the Alexander-McTague approach is that it 
reduces the seemingly unmanageable dependence of the free 
energy upon all the Fourier components of the single-particle 
density to a dependence upon a single component. Indeed, 
when the freezing transition is investigated experimentally, 
only a single Fourier component of the density PK need be 
observed in order to locate the transition point. From the 
standpoint of density functional theory, it is possible to reduce 
the free energy functional C 2.1 ) to a function of any givenp K by 
partial minimization with respect to all other Fourier compo­
nents. However, because the other Fourier components playa 
great role in determining the form of this single parameter free 
energy, the shape of the resultant functional cannot be predict­
ed on the basis of the symmetry of the given P K alone, as is 
assumed by Alexander and McTague. It is this assumption 
(unjustified, in our opinion) which is removed by density func­
tional theory. The reciprocal lattice is not made of just nearest 
neighbor RLVs, but an interlocking network ofRLVs which 
obey the symmetry constraints of the crystal. Some Fourier 
components of the crystal density lower the free energy with 
respect to the uniform liquid, but others raise it, and the actual 
transition represents a delicate balance between these compet­
ing effects. In other words, some Fourier components which 
are necessary to form the crystal actually cost free energy, but 
this is compensated by other Fourier components which lower 
the free energy. Usually the zero wave vector component low­
ers the free energy, but in some substances such as water l4 

which expand on freezing, it disfavors the crystal, and the 
network of nonzero vectors must compensate for this. 

More explicitly, one can calculate from first principles the 
coefficients in the Landau expansion, and show that the coeffi­
cients in the quadratic term are comparable for many wave 
vectors. Expanding the crystal density as 

per) =PL(1 +1])[1 + ~'tPkelk.r], (3.6) 

where the prime indicates that only nonzero vectors are includ­
ed in the sum, we may expand the functional [Eq. (2.1)] to 
quadratic order to obtain 

1 
t:.{3iiJ = 2, [1 - C(0)]1]2 

1 +- L' n j [1-cClkj l)]tP:+ .. ·, (3.7) 
2 j 

where i labels a set of symmetry related RLVs and nj is the 
number of elements in RL V set i. Notice that the Fourier ex­
pansion (3.6) differs from expansion (2.7) in that the order 
parameters are scaled by the solid density rather than the liquid 
density. This change greatly simplifies the Landau expansion of 
Eq. (2.1). For hard spheres near the freezing point (PL 
= 0.95), the quadratic coefficients for the first five RL V sets of 

a hypothetical bee hard sphere crystal are 

A 2 (OOO) =![ 1 - c(O)] = 31, 

A 2 (11O) = 6[ 1 - c(k l )] = 2.46 , 

A2(200) = 3[ 1 - c(k2 )] = 5.01 , 

A 2 (211) = 12[ 1 - c(k3 )] = 8.52, 

A2 (220) = 6[ 1 - c(k4 )] = 6.05, 

(3.8) 

where A 2 (hkl) is the quadratic coefficient corresponding to the 
RL V set containing the RL V (hkl). 

In fact, Landau theory with just one order parameter is 
unable to predict freezing at all! Expanding the functional 
(2.1) in terms of the fractional density change 1] and the order 
parameter for the first nonzero RLV 1,61 gives 

I 
~(1],tP) = 2, [I - c(O)] 1]2 -1] + (1 + 1])ln(1 + 1]) 

-! (1 + 1])2c(k l )!(2)t,6i 
2 

+ (1 + 1]) f (- !)n!(n) tP~, (3.9) 
n=2 n - n 

where the function! (n) is defined as the number of different n­
gons which can be formed from members of the first RL V set. 
The values of! (n) for n equals two to six are displayed in Table 
I for both the bee (1,61 = 1,6110) and fcc (1,61 = 1,6111) cases. The 
terms involving 1] can be further expanded as 

00 ( I )n 
-1] + (1 + 1])ln(1 + 1]) = L ; 1]". (3.10) 

n=2 n -n 
For the two-order parameter theory, the bee expansion (fourth 
order in both order parameters) yields only the liquid mini­
mum unless the coefficient c(k l ) is allowed to assume a com­
pletely unphysical value c(kl ) > 14/15 = 0.933, which corre­
sponds to a liquid structure factor S(kl ) > 15. At this 
unphysical minimum the fractional density change vanishes, 
1] = O. There is no change in this result even if the 1,6110 expan­
sion is taken to sixth order and the 1] expansion is taken to 
infinite order. For the fcc expansion there is only the liquid 
minimum, for any values of the coefficients c(O) and c(k l ), 

and this remains true even if all higher order terms in both 
order parameters are included. 

We conclude that analysis of freezing transition must in­
clude all relevant order parameters. Fortunately there is at least 
one way to do this, as shown in Sec. II, and there is absolutely 
no need to apply unnecessary mathematical approximations, 
such as expanding the logarithms in Eq. (2.1) to obtain a pow­
er series, when the full functional is tractable. We note further 
that some analyses which appeal to Landau theory confuse the 
grand functional (2.1) with the canonical (Helmholtz) free 
energy which always contains linear terms in 1]. There is little 
point in correcting these problems since theories which rely on 
polynomial expansions have little validity, even qualitatively. 
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IV. FREEZING OF HARD DISKS 

We have applied the Gaussian and Fourier space methods 
of freezing to the hard disk system despite the absence of a 
"true" two-dimensional crystal. The equations used by the two 
methods in two dimensions are essentially the same as used in 
three dimensions and will not be reproduced here. In this pa­
per, we are concerned only with hard particles, hard disks in 
this section and hard spheres in the next. The interaction poten­
tial for these systems is given by 

u(r) = too, r< 1, (4.1) 
0, r>1 

where the particle diameter u has been used as the length scale 
both here and through out this paper. The liquid direct correla­
tion function, which is the principal input to the calculation, 
has been obtained both from an ansatz developed by Leuth­
eussei37 and from an ansatz developed by Colot and Baus.21 

Both ansatzes are developed to fit solutions of the Ornstein­
Zernike equation with aPercus-Yevick closure. Figure 1 com­
pares the deviations of the two approximate expressions, evalu­
ated at k = 0, from the exact solution as given by Lado.38 It is 
worth restating that in even dimensions the Percus-Yevick 
equation of hard particles has not been solved analytically. 
While both ansatzes behave well at low to moderate densities, 
the Colot-Baus c(k) is superior at solidlike densities. 

In two dimensions (d = 2), we considered two lattice 
types: the square and the triangular. For the square lattice, the 
unit real space vectors are 

a1 =di 

and 

a2 =dj; 

and, for the triangular case: 

a1 =di 

and 

~ = - (d 12)i + (..j3d 12)j, 

(4.2) 

(4.3) 

where i and j are the Cartesian unit vectors in the orthogonal x 
and y directions, respectively. The average nearest neighbor 
separation is given by d. A crystal is said to be perfect if the 

t\I 
o 

2.5 

><: 0.0 
.---.. 
o ......., 
u 
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FIG. 1. The deviation of the zero wave vector hard disk direct correlation func­
tion c( k = 0) for the ansatz of Colot and BallS (Ref. 17) (circles) and for the 
ansatzofLeutheusser (Ref. 37) (squares) from the exact (numerical) solution 
of the Percus-Yevick equation by Lado (Ref. 38), as a function of liquid den­
sity. 

density is constrained so that the number of particles is equal to 
the number of particle sites; otherwise, the crystal is said to be 
"imperfect". The degree to which a crystal is imperfect can be 
indicated by the quantity A which is defined as the number of 
particles divided by the number of particle sites. The Suther­
land-Lindemann39 ratio L is defined to be the average root­
mean-square deviation of a crystal particle from its average 
equilibrium position divided by the nearest neighbor distance, 
d. 

We were unable to find solutions for the square lattice over 
a wide range of density using the Gaussian method. This indi­
cates, as expected, that the square lattice is unstable, and that 
this is a positive feature of our density functional theory. For 
the triangular crystal, stable solutions do exist, and in Table II 
we present the equilibrium densities, Gaussian width E, imper­
fect crystal parameter A, and Sutherland-Lindemann ratio L, 
along with the results of more approximate density functional 
theories,I8-21 which will be discussed in Sec. V. 

We present results for both Gaussian and Fourier methods 
and, although the formalism outlined in Sec. II deals only with 
the perfect crystal case, we include both perfect and imperfect 
cases for comparison. We do not recommend the imperfect 
crystal calculation because it does not include any input con­
cerning the vacancies it claims to describe.40 We also include 
the perfect crystal Gaussian result for the Leutheusser direct 
correlation function. We have used 40 order parameters for the 
Gaussian method and 50 for the Fourier space method. The 
Gaussian approximation with the Baus-Colot c(k) predicts a 
liquid coexistence density of 0.8961, a Gaussian width of 
0.08603, and a fractional density change of 0.0588. The Fourier 
method with the same c(k) predicts a liquid coexistence den­
sity of 0.8784 and a fractional density change of 0.0878. The 
predicted liquid coexistence densities are very close to the simu­
lation resulf2 of 0.88. The predicted fractional density changes 
are somewhat larger than the value of 0.05 measured by the 
simulation, but considering the neglect of fluctuations inherent 
in any mean field theory, this is as one would expect. 

One of the advantages of the Fourier method is its ability 
to give nonisotropic densities; hence, we show in Fig. 2 the 
Jacobian weighted density, 21Trp(r), in the (1,0) and (1,1) 
directions for both Fourier and Gaussian solutions. 

V. FREEZING OF HARD SPHERES: HCP VS FCC 
CRYSTALS 

In this section, we discuss the results of our calculations 
(both Gaussian and Fourier) for the freezing of the hard 
sphere liquid into an hcp crystal and compare them to our 
previous results for the fcc crystal in paper I. We also compare 
our results to those of other researchers8.13.16,19,40,44.45,48 who 

TABLE I. Values of the functionf(n) in Landau theory. 

n fbcC(n) free (n) 

2 12 g 

3 48 0 
4 540 216 
5 4320 0 
6 42240 8000 
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15.0 1'1 = (1/3)a1 + (2/3~ + (1/4)a3' 

10.0 

5.0 

0.0 
0.0 0.1 

ria 
0.2 

FIG. 2. The Jacobian weighted hard disk crystal density from the Gaussian 
approximation, which assumes an isotropic density (dashed line), and from 
the Fourier expansion method (solid lines) along the (1,0) direction (upper 
solid line) and along the (1, 1) direction (lower solid line). 

have investigated the hard sphere liquid to crystal transition 
with density functional theories. 

The technical details of applying both the Gaussian and 
Fourier space methods to the hcp lattice are contained in the 
Appendix. A few definitions are necessary for our subsequent 
discussion. The hcp unit cell is defined by 

8z = - (a/2)i + (.j3a/2)j, (5.1 ) 

and 

a3 =ck, 

where i, j, and k are the Cartesian unit vectors in the orthogonal 
x, y, and z directions, respectively. The average nearest neigh­
bor separation is given by d = a; the separation of neighboring 
hexagonal planes, by c/2. In an ideal hcp lattice, the ratio of c to 
a is (8/3) 1/2 • Each unit cell of this lattice contains two particle 
sites displaced from the origin of the unit cell by 

TABLE II. Freezing of hard disks. 

Liquid Solid Gaussian 
density density width 

Density 
Functional theory 

Gaussian-B21 0.8961 0.9488 0.08603 
Fourier space_B21 0.8784 0.9555 
Gaussian-L37 0.9250 0.9839 0.06062 
eolot et al.2 1 0.908 0.928 0.1302 
Tarazona19 0.8016 0.8042 
Mederos et al.2O 0.8062 0.8070 

Simulation 

Alder et al.22 0.880 0.9121 
Hoover et aU3 0.878 0.9218 

Imperfect crystal 

Gaussian-B21 0.868 0.9000 0.0627 
Fourier space_B21 0.8622 0.9077 

Fractional 
density 
change 

0.0588 
0.0878 
0.0637 
0.0220 
0.0032 
0.0015 

0.0365 
0.0499 

0.0369 
0.0528 

and (5.2) 

1'2 = (2/3)a1 + (1/3~ + (3/4~. 
In this work we use the analytic solution by Wertheim41 and by 
Thiele42 of the approximate Percus-Y evick43 integral equation 
for the liquid direct correlation function, 

_ {(1 + !sr)AI + 6SrA20 r< 1, (5.3) 
c(r) - 0, r> 1, 

where the packing fraction, S = (1T/6)pv Al = (1 + 2S)2/ 
(1 - S)4, A2 = - (1 + s /2)2/(1 - S)4. 

In the Gaussian method, a constrained minimization of 
the functional (2.5) is performed. For the fcc crystal, thefunc­
tional is minimized with respect to the Gaussian width E and 
the fractional density change, 'TJ. The hcp lattice requires the 
additional minimization of the functional with respect to the 
distortion of the hcp c/ a ratio from its ideal value of (~) 1/2. 

Our hcp results are identical to our fcc lattice results with­
in numerical accuracy and are summarized in Table III along 
with fcc results of other researchers. The c/ a ratio for the low­
est free energy crystal is found to be exactly the ideal lattice 
value. 

We also allow the Gaussian density to have a different 
width parameter in the z direction than in the x and y direc­
tions. Unlike fcc, this anisotropy is not forbidden within the 
hcp symmetry. The minimum value of the free energy occurs 
when the two width parameters are equal (that is, for a spheri­
cal Gaussian density). The equations necessary for this modifi­
cation are straightforward generalizations of the Gaussian 
equations derived in Sec. II. 

In addition to the hcp and fcc lattices, we investigated the 
stability of the body centered cubic (bee) lattice. We were not 
able to find any stable or metastable solutions for this lattice 
over a wide range of densities. This is physically correct, and an 
encouraging feature of density functional theory. 

Based on physical intuition, one expects that both lattices, 

Lindemann 
ratio 

0.0780 
0.0923 
0.0560 
0.117 

"Defect 
density" 

0.0579 0.914 
0.0701 0.922 
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hcp and fcc, will give very similar results. On the other hand, 
the lattice sums in the two functionals, ll.fJ(jj fcc and ll.fJ(jj heI' 

converge in different ways and, from this point of view, it is 
rather surprising that numerically indistinguishable results are 
obtained. Figure 3 shows the value of ll.fJ(jj as terms are added 
in the lattice sum in Eq. 2.5 plotted against the magnitude of the 
lattice vector of the last term added, k1ast• Note that if the two 
summations are truncated at some wave vector before they 
have converged, the resulting free energies, and hence relative 
stabilities, would not necessarily be equal for the two lattice 
types. 

The crystal density is periodic in nature, and hence, is rep­
resented by a discrete Fourier sum. Thus, the Fourier trans­
form of the direct correlation function c(k) is sampled at dis­
crete magnitudes of the reciproca11attice vectors in the lattice 
sums, as shown in Fig. 4. Note that the hcp sum selects differ­
ent wave vector magnitudes than the fcc sum. Consequentially, 
errors in the input liquid structure c (k) which would go unno­
ticed when considering one lattice type could cause serious er­
rors in the free energy of a different lattice type. Figures 3 and 4 
also show that, due to the lower symmetry of the hcp lattice, 
calculations of free energy for this lattice require many more 
sets of reciproca1lattice vectors in the lattice sum than would be 
necessary in the fcc case. In our calculations, 500 sets were used 
in the hcp case and 200 sets in the fcc case. 

The justification for assuming a Gaussian form for the 
crystal density is the knowledge that the full (Fourier) solution 
is nearly Gaussian, as is the case for fcc hard spheres (Table 
III). Using the minimized Gaussian density as an initial guess, 
we have attempted to solve the Fourier method equations 
(2.12)-(2.14) (also see the Appendix), using the Newton­
Raphson method. For a fixed bulk solid density we find a well­
defined minimum in the ground potential. However, we have 
not completed the minimization with respect to the bulk crystal 
density. 

At the coexisting liquid and crystal densities (p L 

= 0.9836,ps = 1.1242) of the fcc Fourier method calculation, 
the hcp Fourier method yields a (dimensionless) grand poten­
tial of - 0.12. Given the approximations in our theory, we 

3.0 
) 

" 

2.0 
t:l ·s 

13 1.0 Q:l. 
<l 

0.0 

-1.0 
40. 80. 
k/a 

FIG. 3. The value of the grand thermodynamic potential dilference ll/ku as 
more terms are added to the lattice sum, for both the fcc lattice (solid line) and 
the hcp lattice (dashed line). Note that the fully converged results at the ex­
treme right-hand side of the figure contain 200 and 500 RL Vs, respectively. 

0.5 

.......... 
CO.O 

CJ 

-0.5 

5 10 15 20 
k/a 

FIG. 4. The Fourier transform of the hard sphere liquid direct correlation func­
tion near freezing (p L = 0.985). The vertical lines show the magnitudes of the 
fcc and hcp reciprocal lattice vectors (RL Vs). The length of the lines is propor­
tional to the weighting factor nJ"" where n, is the degeneracy of the RLV sym­
metry set .. i .. and/. is the corresponding geometric structure factor defined in 
the Appendix (A 2). Note that/. = 1 for all fcc RLVs, and that/. forthehcp 
vectors can be negative. 

conclude that the two close-packed structures, of hard spheres 
fcc and hcp, have approximately the same stability. 

There have been a number of predictions of the hard 
sphere liquid to crystal transition by other researchers who 
have produced a variety of results as seen in Table III. It is of 
interest to see how variations on the techniques used in this 
paper change the predicted coexistence point. We have restrict­
ed the entries in the table to results which seem well converged; 
for instance, we have avoided early papers where the Fourier 
series was truncated at a small number of order parameters. 
Notice that the bulk of these entries employ the Gaussian ap­
proximation which, although lacking in generality, is much 
easier to apply. 

13 • •• 
The work of McCoy, Singer, and Chandler IS most SImI-

lar to our own differing only in that they do not include the 
C(3)(0,0) term. Following the Fourier space methodology of 
paper I, they found coexistence in the fcc lattice and, by using 
the Gaussian method, found coexistence in both the fcc and 
hcp lattices. Again, fcc and hcp crystals are found to have virtu­
ally identical stability. Jones and Mohanty40 had previously 
applied the Gaussian method to the imperfect crystal fcc and 
bee lattices [also without the c(3)(O,O) term]. As in our calcu­
lation, they failed to find a solution corresponding to a bee 
solid. Notice that omission of the c(3)(O,O) term lowers the 
liquid density and increases the fractional density change to 
nearly twice the experimental value. 

In addition to omitting the c(3)(O,O) term, Baus and Co-
10t17 make use of a hypothetical reference liquid, with a uni­
form density intermediate between the liquid and crystal den­
sity. This reference density is chosen arbitrarily by requiring 
that the first peak of its c (k) coincide with the smallest recipro­
cal lattice vector of the crystal lattice. The resulting density is 
much higher than equilibrium liquid densities. The corre­
sponding direct correlation function is found by extrapolating 
conventional liquid state theory to these higher densities. This 
procedure gives adequate predictions for the coexistence prop­
erties, but it is not clear how the method can be applied to 
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TABLE III. Freezing of hard spheres 

Fractional 
Liquid Solid Gaussian density Lindemann Defect 
density density width change ratio density 

Density 
Functional theory 

Laird et al.(F)" 0.9836 1.1241 0.1429 0.065 
Laird et al.(G)" 0.9850 1.1258 0.0520 0.1430 0.059 
McCoy et al.(G) 13 0.9676 1.150 0.04508 0.189 0.052 
McCoy et al.(F) 13 0.965 1.148 0.190 
Igloi etal.(F)16 0.975 1.076 0.104 0.070 
Tarazona(G)19 0.9433 1.0609 ::::::.13 0.125 ::::::.14 
Baus et al. (G )4~ 0.993 1.083 0.066 0.091 0.074 
Curtin et al.(G)47 0.892 1.025 0.0598 0.149 0.104 

Simulation 

Hoover et al.44 0.94-0.96 1.04-1.05 0.08..{).11 0.14 

Imperfect crystal 

McCoy et al. (F) 13 0.944 1.0501 
Jones etal.(G)40 0.9461 1.0525 0.0415 

systems which do not have accurate liquid state theories that 
can be extrapolated to such high densities. This method pre­
dicts correctly that the square lattice is unstable. Crystal-like 
solutions for the bee symmetry were found only at unphysically 
high densities. However, the fcc lattice was found to have coex­
istence properties identical to the ones found for the hcp lattice, 
and the preferred hcp lattice was found to be ideal. 

Igloi and Hafnerl6 expand the free energy functional in a 
Taylor series about a hypothetical reference liquid rather than 
about the equilibrium liquid. Their reference density is chosen 
to give the lowest liquid coexistence density. They claim that 
this choice reduces the effect of higher order terms in the Tay­
lor series. The most recent results ofIgloi 16 on both the fcc and 
hcp lattices using a Fourier space method show no significant 
difference between the two lattices. It will be interesting to test 
this method using the correct k = 0, perfect crystal Fourier 
space method. 

Finally, Tarazonal9 has introduced a method, related to 
methods used in the theory of the inhomogeneous electron gas, 
which incorporates higher order terms in the density expan­
sion. Curtin, Ashcroft, and Runge46,47,48 have refined this the­
ory. Here the liquid and solid chemical potentials are not re­
quired to be equal at all points in space. Instead, only the 
spatially averaged chemical potentials are equal. It is interest­
ing that their coexistence densities tend to be lower than the 
simulation results, while the previously discussed theories tend 
to give densities which are higher than simulation. Another 
difference is that the direct correlation function used in a Tara­
zona type theory is that of a very low density liquid. As dis­
cussed by the authors, a surprising feature of this theory is that 
it predicts a stable hard sphere bee crystal, which is known 
never to be stable. 

In summary, we believe that density functional theory can 
predict accurately the freezing transition in a simple liquid, and 
that the version presented in paper I and developed here is 
consistent and well founded. 

0.112 0.897 
0.112 0.0477 0.898 

VI. CONCLUSIONS 

In this paper we have shown that the density functional 
theory developed in paper I can be used to predict the freezing 
of hard particles in two and three dimensions. In contrast, tra­
ditional Landau theory does not predict the quantitative or 
qualitative features of the transition. 

The implementation of the full, Fourier space freezing the­
ory for crystals with a basis of more than one atom is more 
intricate, but as shown in the Appendix, it may be accom­
plished by using standard crystallographic methods. We have 
established a technique for comparing the relative stability of 
different crystal structures, and further applications are under­
way. 
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APPENDIX 

Performing the Fourier analysis to minimize Eq. (2.1) is 
relatively straightforward for systems with one particle per 
Bravias lattice site (such as fcc, bee, simple hexagonal, etc.). 
When there is more than one particle associated with a lattice 
site the procedure becomes more complicated. For such sys­
tems, the Fourier expansion of the solid density can be written 

(AI) 

where the atomic structure factors ILk are determined by the 
shape of the density peak about each particle site and the geo­
metric structure factors Ik are determined by the n .. atomic 
basis vectors Ti (i = I,n .. ) associated with each Bravias lattice 
site: 
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(A2) 

Two reciprocal lattice vectors (RLV s) k n and k m are said 
to be in the same symmetry set if their corresponding atomic 
structure factors are required to be equal by symmetry. All 
vectors kn in a symmetry set have the same magnitude. If we 
order the symmetry sets by magnitude (some sets will have the 
same magnitude, in which case the order is arbitrary) and in­
dex them by the integer i, we can write the expansion (AI) as 

per) =PL[l +1]+ L,u;/;r;(r)], (A3) 
;#0 

where,u; is the value of the atomic structure factor shared by 
the members of the set i and /; is the value of the geometric 
structure factor for a specific RL V k; chosen to represent the 
set i, and 

~ Aj 11< .• r 
r;(r)=£...-e> . 

kj /; 

(A4) 

Using expansion (A4) together with the fact that the geo­
metric structure factors for two RL V s in the same symmetry 
set can differ only by a phase factor, the Gaussian method 
expression for the functional (2.1) becomes 

llf3iij = 1 - (1 + 1])[~ + InpL + ~ In(11'E2
)] 

--2
1
1]2C(O) --2

1 L n;c(lk;I)f~,u~ 
;#0 

(AS) 

where n; is the number of RL V s in set i. The Fourier method 
equations (2.12) become 

,u; + 6;,0 = _1_ f drr; (r)exP{A + c(O)1] 
n;/;!1 Ja 

+ !C(3l(O,O)1]2 + L C(lkjl),ujijrj(r)}, 
2 yo 

(A6) 

where the equations for each member of the symmetry set i 
have been combined into one equation for ,u;. 

The hcp lattice is a simple example of crystal structure 
with a multipartic1e atomic basis. The hcp unit cell is defined by 
the real space vectors aI' a2, and a3 defined in Eq. (5.1). The 
volume of the unit cell !1hcP is given by 

!1hcp = ~ a2e. (A7) 

The ideal hcp crystal has a e/ a ratio equal to (8/3) 1/2 although, 
in general, this value is not constrained by symmetry. The 
atomic basis set contains two vectors: 

71=G,-~,D 
and (A8) 

where the fractional coordinate (x,y,z) = xal + ya2 + Z83 • 

The reciprocal lattice vectors are 

(hkl) =haT + ~ + lar (A9) 

with 

and 

'" _ 211' (. + {3 .) a l -- I -J , 
a 3 

'" 411'{3. 82 =--J, 
3a 

ar = 211' k, 
c 

(AlO) 

where i, j, and k are the standard Cartesian unit vectors. The 
magnitude of the RLV (hkl) is given by 

Ikhkll= 2: [~(h2+hk+k2)+(~/rr/2. (All) 

Equation (A2), together with the atomic basis (A8), gives the 
following expression for the geometric structure factor for 
RLV (hkl): 

{ [
2(h-k) I]} 

hkl = cos 11' 3 + "2 . (A12) 

Note that the geometric structure factors vanish for RL Vs with 
h - k = 0 (mod 3) and lodd. These vectors are called system­
atic absences and do not contribute to the Fourier sums. 

There are three real space symmetry elements that deter­
mine the hcp reciprocal space symmetry sets. The first is a 
center of inversion at the origin: 

p(x,y,z) =p( - x, - y, - z) . (A13) 

The effect of this symmetery on the reciprocal space is that the 
atomic and geometric structure factors associated with RL V 
(hkl) are equal to the corresponding quantities for the vector 
(h,k,7) (the symbol h is standard crystallographic notation for 
"minus" h). Since in general 

(A14) 

where the'" denotes complex conjugation, the center of inver­
sion at the origin guarantees that the structure factors are real. 

The center of inversion involves only a simple point group 
operation (inversion). The other two elements involve com­
pound symmetry operations that are combinations of point 
group operations and spatial translations. To see how such 
symmetries of the real space crystal affect the structure factors 
consider a hypothetical compound operation S = TP, where P 
is a point group operation (rotation, inversion, reflection or 
improper rotation) and T represents a translation by a vector t. 
The real space symmetery S implies a relation between the 
structure factors corresponding to RL V (hkl) and the RL V 
formed by applying the inverse of P to the vector (hkl), p- I 

(hkl). The atomic structure factors for the two vectors are 
equal; 

,u(hk/) = ,ur'(hkl) . (A15) 

The geometric structure factors for RL Vs (hkl) and P -\ (hkl) 
differ by a phase factor determined by the translational compo­
nentofS: 
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(AI6) 

The two other symmetery operations needed to define the 
symmetry sets are (I) a sixfold screw axis corresponding to a 
rotation by 1T'13 radians about the z axis followed by a transla­
tion by half a unit cell in the z direction: 

p(x,y,z) = p(x - y,x,z + 112) , (AI7) 

and (2) a glide plane corresponding to a reflection across the 
plane x = y also followed by a translation by half a unit cell in 
the z direction: 

p(x,y,z) = p(y,x,z + 112) . (AI8) 

Using relation (A16), the sixfold screw axis implies that 

h.kl = ic. k,h + k,l) e
i1r1 

, 

=ic.k,h+ k,l) ( - Ii. (AI9) 

Similarly, the presence of the glide plane implies that 

ic.hkl) = ic.khl) ( - Ii. (A20) 

It is important to note that another choice of origin besides the 
one used to define the atomic basis vectors (A8) would un­
necessarily complicate the relations between the structure fac­
tors in a symmetry set due to the lack of one or more of the 
above symmetry elements. 

As a consequence of the above symmetries, the RL Vs 
(hkl) such that O<.h<.k, k> I and 1>0 each represent a unique 
symmetry related set of vectors. The entire reciprocal lattice 
can be derived from this set by application of the above three 
symmetery operations. Ordered by magnitude these vectors 
represent the sets summed over in Eq. (A3). 

Because of the symmetry of the crystal, the integrations 
contained in Eq. (A6) do not have to be performed over the 
entire unit cell. A region of minimum volume which can be 
integrated over to yield correct results is called an asymmetric 
unit. For hcp, the asymmetric unit is the volume defined by the 
triangular prism with verticies: (0,0,0), (113,213,0), 
(2/3,113,0), (0,0,114), (1/3,2/3,114), and (2/3,113,114). 
The volume of this region is 1I24th of the volume of the unit 
cell. 
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