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The interfaces between a bee crystal and its melt are studied by molecular dynamics 
simulation. Three distinct crystal/melt interfaces, (100), (111), and (110) are studied. For all 
interfaces the variation with z, the coordinate perpendicular to the interfacial plane, of the 
single particle density (averaged over the directions perpendicular to z) and the diffusion 
constant are measured. Although the 10-90 widths of the density peak-height profiles differ 
significantly among the three interfaces (6,9, and 7 molecular diameters, respectively), the 
corresponding 10-90 widths of the diffusion constant profiles are nearly identical with a 
common value of about four molecular diameters. This leads to the conclusion that the 
differences in apparent structural width are due primarily to geometric considerations and not 
to differences in average local molecular environments. 

I. INTRODUCTION 

The structure and dynamics of an interface between a 
crystal and its melt are of paramount importance in studies 
of crystal growth near equilibrium. Such an interface lies 
between two condensed phases making direct experimental 
study difficult. I While laboratory estimates of the surface 
excess free energy for a limited number of systems have been 
obtained both directly and indirectly,2-6 experimental data 
concerning the microscopic structure of the interfacial re­
gion is lacking. This experimental difficulty increases the 
role of computer simulation in the development of a suitable 
interface theory. 

Some previous simulations treat the interface as a liquid 
up against a hard wall or rigid crystal face. These include 
hard sphere models7 as well as molecular dynamics simula­
tions.8 The perturbation theory of Abraham and Singh has 
been used to describe this type of interface.9 This approach 
causes the interfacial width to be consistently underestimat­
ed, because it does not take into account the participation of 
the crystal. Several recent simulations have addressed the 
situation in which both the liquid and solid participate in 
forming the interfacial region. 10-15 With the exception of the 
recent simulations of the ice/water interface by Karim and 
Haymet 15 and some simulations of the silicon interfaces, 16 
all of these involve face-centered-cubic (fcc) crystal faces 
and most (except Ref. 11) employ the Lennard-Jones inter­
action potential. The density profiles and diffusion constant 
profiles through the interface, both important for the devel­
opment of theories of crystal growth dynamics, 17 have been 
calculated for several fcc faces. These profiles show that the 
interface is diffuse, with the interfacial region extending over 
7-10 crystal layers perpendicular to the interface. Estima-
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tion of the surface excess free energy has been attempted, but 
has met with limited success to date. 13 

In this paper, we present the first such simulations in­
volving body-centered-cubic (bcc) crystal faces. The moti­
vation for such a study is that bcc is one of the simplest, 
commonly occurring, non-close-packed crystal structures, 
and, as such, is a natural choice for extending the available 
simulation data beyond the close-packed systems. 

The current simulations use the technique of constant 
energy and volume molecular dynamics. 18-23 Specifically, 
the velocity-Verlet algorithm of Swope et al.24 is employed. 
The system under study is one made up of particles interact­
ing via a spherically symmetric, pairwise-additive and pure­
ly repulsive interatomic potential 

v(r) = € (; r (1) 

(In order to prevent excess energy drift, a function of the 
formA + Br 2 was added to the potential [Eq. (1)], where A 
and B were chosen so that both the potential and force are 
zero at the neighbor table cutoff separation of 2.5(1). This 
particular form for the potential was chosen for two reasons. 
First, the inverse-power form of the potential results in scal­
ing relations from which the thermodynamic properties of 
any point on the solid-liquid coexistence line can be calcu­
lated from data at a single point on that line.25 These rela­
tions stem from the fact that the natural energy scale € and 
the natural length scale (1 are not independent because only 
the combination €(1 6 appears in the potential [Eq. ( 1) ] . Sec­
ondly, the sixth power is apparently the highest integer pow­
er (shortest-range) potential that freezes into a bcc solid. 26 
It should be noted that the soft-sphere potential chosen here 
is not intended to represent any specific class of substances in 
the same way that the Lennard-Jones potential is a represen­
tation of the noble gas potentials. It is primarily a convenient 
theoretical model. It is not unreasonable to assume, how­
ever, that the results of these simulations can be used to in­
terpret qualitatively the interfacial properties of simp'le, bcc-
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forming substances, such as the alkali metals. 
The results of these simulations for the bee (tOO), 

(110), and (111) interfaces are presented in Secs. II, III, 
and IV, respectively. (For reference, the details of the inter­
facial packing and the relationship to the bee unit cell are 
illustrated for these three interfacial directions in Fig. 1). 
The principal quantities calculated are (a) the density and 
(b) the diffusion constant profiles as a function of perpen­
dicular distance through each interface, yielding two differ­
ent measures (one structural and one transport) of the inter­
facial width. For the (100) interface, two simulations 
differing in total number of particles are reported to estimate 
system size effects. The details of each simulation are also 
summarized in Table I. In Sec. V, these simulation results 
are discussed with reference to theoretical predictions from 
density functional theory (DFT)27 and recent refinements 
to it. 28-30 In Sec. VI, our conclusions are collected . 

II. SIMULATION RESULTS FOR THE (100) INTERFACE 

A. Smaller (100) simulation-2160 particles 

FIG. I. Illustration of the (100), (110), and (111) interfaces in relation to 
the bcc unit cell. The quantity d.", is the distance between the. and X 
crystal planes for each interface. 

Two separate simulations of the (100) interface (one of 
2160 particles and a larger one of 3430 particles) have been 
performed, in order to serve as a partial test of system size 
effects. The smaller (100) interfacial system was built from 
five blocks of 432 particles each for a total of 2160 particles. 
The details of this simulation were summarized earlier in a 
conference proceeding31 but will be expanded here for the 
sake of completeness. Three of the blocks were set up in a bcc 
solid configuration with the z axis perpendicular to a (100) 
crystal face. The solid had a density pu 3 = 0.7 with an aver­
age temperature of kT IE = 0.1. The two remaining blocks 
consisted ofliquid equilibrated at the same average tempera-

TABLE I. Summary of the liquid!crystal bcc interface simulations. 

Parameter ( 1(0) ,mall (1 00 ) (uge (10) (111) 

Total number of particles 2160 3430 3500 3600 
No. of initial crystal particles 1296 2058 2100 2160 
No. of initial liquid particles 864 1378 1400 1440 
x direction box length (a) 8.5139 9.9329 9.9329 10.0337 
y direction box length (a) 8.5139 9.9329 10.0337 10.4274 
z direction box length (a) 42.8834 50.0214 50.5418 49.5175 
Volume of box (a 3

) 3108.47 4935.22 5037.18 5180.79 
xy cross sectional area (a 2) 72.486 98.622 99.664 104.625 
No. ofparticles/crystal plane 36 49 70 30 
Density of each crystal plane 

(particlesl a 2) 0.4966 0.4966 0.7024 0.2867 
Distance between crystal planes 

. (a) 0.7095 0.7095 1.0034 0.4096 
No. of bins for density profile 1300 2000 2000 2000 
No. of bins for diffusion profile 30 60 60 60 
No. of part iclesl diffusion bin 70 57 58 60 
Length of run for averages 

(time units) 100 80 40 160 
Average temperature 
(in units of Elk)a 0.100(2) 0.097(3) 0.097(3) 0.097(2) 
10-90 width-density (a)a 5.7(5) 6.4(5) 9.0(5) 7.0(5) 
10-90 width-diffusion (a)a 3.9 3.8 3.9 4.0 

a The quantity in brackets is the estimated error in the last digit shown. 
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ture but with a density PLa 3 = 0.687. The values of the tem­
perature and densities were chosen so that system lies on the 
phase coexistence line as estimated by Monte Carlo simula­
tion of the bulk properties of inverse-power potentials. 26 The 
blocks were placed end to end in the z direction with the 
three solid blocks in the middle and a liquid block on each 
end. Periodic boundary conditions were then applied in all 
three Cartesian directions. If the simulation were turned on 
fully at this point, the interface would not be stable because 
the liquid has not been equilibrated next to a solid block. 
This results in high energy interactions at the interface. In 
order to create a stable interface, the following procedure 
was adopted. First, the solid particles were held fixed while 
the liquid particles were allowed to evolve for 5400 time 
steps of length Of, where 

Of = 0.01 (ma 2/E) 1/2. (2) 

(For example, if one uses the reasonable values for a liquid 
metal of 100 K, 3.5 A and 30 amu for Elk, a and m, respec­
tively, the reduced time step used above corresponds to ap­
proximately 20 fs). During this part of the preparation, the 
liquid temperature was rescaled periodically to the coexis­
tence temperature. The solid atoms were then given their 
original velocities and allowed to move. The system was then 
equilibrated for 1000 time steps. The system at this point had 
a relatively flat temperature profile through the interface, 
which is one condition for phase coexistence. The average 
reduced temperature (kT IE) for this (100) interfacial sys­
tem was 0.100 with fluctuations on the order ofO.D02. 

Once a stable interface was created by the above proce­
dure, the simulation was run for 10 000 more time steps (200 
ps using the above typical parameters) to collect averages. 
This 10 000 step run was built from five successive runs of 
2000 steps each. Analysis of the smaller runs showed that the 
interface was stationary for the entire period over which the 
averages were taken, thus ruling out the possibility of artifi­
cial interfacial broadening due to translational motion of the 
interfacial region. Similar analyses of the simulation runs for 
the other interfaces studied in this work yielded the same 
conclusion. The density profile for the (100) interface was 
calculated by dividing the z direction into 1300 bins, count­
ing the number of particles in each bin, and dividing by the 
volume of the bin. Since the simulation involved two inter­
faces, one on each side of the solid, a center of symmetry was 
found so that the profile could be folded over to give an 
average of the two interfaces. The results of this procedure 
can be seen in Fig. 2. One measure of the width of the inter­
face is the 10--90 width of the height of the density peaks. The 
10--90 width of any interfacial order parameter is the dis­
tance over which the value of the quantity changes from 
10% to 90% of its value in the bulk solid as one traverses the 
interface from the liquid into the solid. A more standard 
measure is the 10--90 width of the bulk density change, but, 
because the fractional density change for this system is only 
1.3%, this profile cannot be resolved in the present simula­
tions, given the fluctuations in the measured density profile. 
The 10--90 width of the peak heights will probably be greater 
than that for the bulk density change alone, because there is 
some preliminary theoretical evidence that the profiles of the 
nonzero wave vector Fourier components of the density are 
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FIG. 2. The equilibrium reduced density profile d'p(z), averaged over the 
perpendicular directions, of the meJt!bcc ( 1(0) crystal face (N = 2160), as 
a function of distance z/O'. 

somewhat broader than (and shifted relative to) that of the 
zero wave vector component (the bulk density change).27 
For the (100) interface this 10--90 width is measured to be 
about 5.7a (just over 8 lattice planes). 

The variation of the diffusion constant through the in­
terface was calculated by dividing the z direction into 30 bins 
(about 70 particles per bin) and calculating the average iso­
tropic mean squared displacement as a function of time for 
the particles assigned to each bin. The diffusion constant for 
a given bin is then calculated from the Einstein relation 

D = lim ([r(t) - reO) F> . 
1-00 6kT 

(3) 

The measured diffusion profile as a function of distance from 
the solid center is shown in Fig. 3. As a test, the x-y and z 
components of the mean squared displacement were calcu­
lated separately for this interface, and were found not to 
differ measurably. The limiting liquid value of D 
(0.011 59 ± 0.000 01) was obtained in a separate 686 parti­
cle simulation of the bulk liquid. Note that bulk liquid diffu­
sion constants are known to be somewhat system size depen­
dent. 32 Figure 4 shows the mean squared displacement 
curves used to calculate the diffusion profile. These curves 
were calculated using 50 time origins separated by 20 time 
steps. Least squares linear regression was used to determine 
the slope. In each case, the 2a error in the slope was less than 
10-4

• An eyeball estimate of the 10--90 width of this diffu­
sion profile gives about 3.9a or 5.5 lattice planes. Even con­
sidering the large error in this estimation, the diffusion width 
is significantly smaller than that of the density profile. 

B. Larger (100) simulation-3430 particles 

This (100) interface was built of five blocks (three solid 
and two liquid) of 686 particles each for a total of3430 parti-
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FIG. 3. The measured diffusion constant [(Eif/m) 1/2X 103
) in subregions 

of the (100) interface (N = 2160). The upper dotted line is the equilibrium 
bulk liquid value. 

cles. The magnitude of the size difference between this simu­
lation and the smaller one described in Sec. II A above is 
characterized by the difference in the x-y cross section, the z­
direction length and the total volume (see Table I for these 
values). The densities of the two simulations are identical as 
are the temperatures (within simulation error). The method 
of equilibration was the same in both simulations. 

Following equilibration, this larger (100) system was 
evolved for 8000 time steps to collect averages. The density 
profile was obtained as described in Sec. II A, except that 
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FIG. 5. The equilibrium reduced density profile crp(z), averaged over the 
perpendicular directions, of the meltlbcc ( 1(0) crystalface (N = 3430), as 
a function of distance z/ u. 

1200 bins were used for the z-direction partition, and the 
resultant p(z) is shown in Fig. 5. The 10-90 width of the 
peak heights is just over nine lattice planes, which corre­
sponds to about 6.40" units. A comparison of the density 
profiles for the smaller and larger ( 100) simulations (Figs. 2 
and 5, respectively) shows that the two interfaces are essen­
tially identical. On a finer level, the profile of the smaller 
system is more rounded and slightly less broad than that of 
the larger system. This width difference is seen in the differ­
ence between the 10-90 peak-height widths of the two sys­
tems (nine vs eight lattice planes). However, given the un­
certainty of the observered interface width due to the 
statistical fluctuations of the peak heights, the significance of 
this difference is not clear. Given the general lack of know 1-
edge as to the magnitude of the system-size effects on interfa­
cial simulations, a clearer picture of the influence of these 
effects on our results for the current system would require 
more extensive study. 

The diffusion profile (Fig. 6) was calculated similarly to 
the smaller (100) interface, except that the z direction was 
divided into 60 bins (corresponding to 57 particles per bin on 
the average) instead of 30. An eyeball estimate of the 10-90 
width of the diffusion profile yields about 3.80' or about 5.4 
lattice plane spacings. Although the limiting bulk liquid dif­
fusion constant values differ by about 10%, the values for the 
interface widths are almost identical. 

III. SIMULATION RESULTS FOR THE (110) INTERFACE 

This interface was constructed from five blocks (three 
solid and two liquid) of700 particles each for a total of 3500 
particles. The solid blocks were oriented such that the z axis 
corresponds to the (110) direction of the bcc crystal. The 
average temperature (kT IE) of the system was 0.097, with 
fluctuations of the order of .002. The xy cross section, unlike 
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that of the (100) interface, is slightly rectangular, with side 
lengths xbox = 9.983 and ybox = 10.034. The equilibration 
was performed in the same manner as for the (100) face. 
Once the equilibrium procedure was completed and the in· 
terface was stable, the simulation was run for 4000 time steps 
to collect averages. This interface requires less runtime for 
the averaging procedure than the (100) face because the 
plane particle density (see Table I and Fig. 1) is much 
greater (more particles per unit cross sectional area), which 
leads to better collection statistics. The density profile (Fig. 
7) was calculated by dividing the z direction into 2000 bins. 
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The peak height 10-90 width for this interface is about 9.00' 
(nine lattice planes) indicating a broader interfacial region 
than in the 100 simulation . 

The diffusion profile (Fig. 8) was calculated in the same 
manner as for the (100) interface above. In the z direction 
the simulation cube was divided into 60 bins (57 particles 
per bin) as in the large (100) simulation. A rough estimate 
of the diffusion 10-90 width gives about 3.90' or 3.8 bcc 
(110) lattice planes. This is almost exactly the same value as 
for the (100) interface, which is interesting in view of the 
fact that the density peak 10-90 widths for the two interfaces 
are very different. 

IV. SIMULATION RESULTS FOR THE (111) INTERFACE 

The (111) interface was constructed from five blocks 
(three solid and two liquid) of 720 particles each for a total 
of 3600 particles. As for the (110) interface, the average 
temperature in reduced units was approximately 0.097, with 
fluctuations on the order of 0.002. Similarly, the x-y cross 
section is not square, with xbox = 10.0337 and 
ybox = 10.4274. Equilibration ofthe interface proceeded in 
the same manner as the (100) and (110) interfaces except 
that 10 000 steps were necessary to equilibrate the liquid 
about the fixed solid phase. 

After equilibration, the simulation was run for 16 000 
time steps to collect averages. Such a long averaging run, 
compared to the other faces, is required because the plane 
density of the (111) crystal planes is much lower than either 
the (100) or (110) planes (Table I). The lower the number 
of particles per unit area in a given plane, the more time steps 
are required to get reasonable statistics. Figure 9 shows the 
( 111) density profile calculated by partitioning the z direc­
tion into 2000 bins. The peak height 10-90 width for the 
( 111) interface is about 7.00' (17 lattice planes). 
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the apparent density between the lattice planes does not drop 
to zero. This is also the case for the ( 1(0) interface, although 
to a much lesser extent. This interplane density is not due to 
the diffusion of particles from one plane into the next, but 
rather reflects correctly the overlap of the z axis projections 
of the closely spaced ( 111) planes. The ( 111) crystal direc­
tion in the bcc solid is made up of triangular lattice planes 
stacked upon each other, with the particles in each plane 
lying above the triangular holes of the previous plane in an 
ABCABC pattern. Since the spacing between the planes is 
quite small (about 0.410'), the z coordinates of particles in 
two adjacent planes can overlap even though the particles 
remain localized about their respective lattice sites. 

The diffusion profile (Fig. 10) was calculated in the 
same manner as for the other interfaces with the z direction 
being divided into 60 bins (60 particles per bin). A rough 
estimate of the diffusion 10-90 width gives about 4.00' or 9.8 
( 111) bcc lattice planes. Again it is interesting to note that 
this is almost exactly the same value as for the other two 
interfaces. It is therefore tempting to speculate that the dif­
ferences in the density profiles among these three interfaces 
are due primarily to geometric considerations, which do not 
affect the transport properties. 

V. DISCUSSION AND COMPARISON WITH EXISTING 
THEORY 

Computer simulations have a twofold role in the devel­
opment and extension of microscopic physical theories. 
First, in the absence of a suitable theory, simulations provide 
a detailed microscopic picture of the properties of the system 
under study. This can be very useful in devising an appropri­
ate theory. The phenomenological information gained in 
this way is often more useful, for the purposes of developing 
a theory, than experiments on real physical systems, due to 
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FIG. 10. The measured diffusion constant [(Ecr!m) II2X 103] in subre­
gions of the ( 111) interface. The upper dotted line is the equilibrium bulk 
liquid value. 

the high level of detail and to the lack of uncertainty in the 
molecular structure and interactions. Secondly, when a mi­
croscopic theory does exist, the information from the simu­
lations can be used to test the predictions of the theory, and 
possibly help to improve or extend it. 

The interface simulations presented here can be used to 
illustrate both ofthese roles. At present, no microscopic the­
ory is available that can predict the variation in the diffusion 
constant across an interfacial region. Hence, our present 
simulations on bcc systems, as well as those for the other 
systems, are important in providing a phenomenological 
base upon which such a theory could be built. In addition, 
the diffusion profiles, while not actually predicted, are neces­
sary input functions to current microscopic theories of crys­
tal growth from the melt. 17 

In contrast, a microscopic, first-principles theory, 
which claims to predict the structure and thermodynamics 
of crystal-liquid interfaces, was published some time ago. 
This theory is based on the density functional formalism and 
was developed by Haymet and Oxtoby.27 The theory has 
since been improved and greatly extended in various ways by 
the work of McMullen and Oxtoby, 28 Curtin30 and Moore 
and Raveche.29 Despite the level of interest in this complex 
problem, the theory must still be considered to be in an em­
bryonic stage of development, because the systems to which 
it may be applied are still limited. In particular, the theory 
cannot be tested against the present bcc simulations for a 
reason detailed below. 

The crucial step in the development of a density func­
tional theory (DFT) is to derive an expression for the free 
energy of an inhomogeneous molecular system as a func­
tional of the single particle density per). The equilibrium 
structure and thermodynamics of the system can then be 
determined by minimizing this free energy functional over 
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the space of physically realizable single particle density func­
tions. Since an exact determination of this free energy func­
tional is not possible at present, the functional is approximat­
ed by a Taylor expansion about a reference state whose 
properties are known. In this case, the reference state is the 
homogeneous liquid phase and the expansion coefficients 
are determined from the n-body direct correlation functions 
measured in this liquid phase. Because these correlation 
functions are not well known above n = 2, the expansion is 
generally truncated at this point. 

Before the calculation of the interfacial properties can 
proceed, the density functional theory must be used to deter­
mine the equilibrium freezing properties of the system at the 
required temperature. The structure and thermodynamics 
of the coexisting liquid and solid phases are needed to deter­
mine the boundary conditions of the density profiles on ei­
ther side of the interface. The equilibrium freezing calcula­
tion may be summarized as follows. First, the periodic single 
particle density of the solid is parametrized so that the mini­
mization of the free energy functional can be performed. The 
most general parametrization for a given lattice type is the 
Fourier series 

p(r) =PL[l +1]+ LP(k)e'k
•
r] , (4) 

{k} 

where P L is the bulk liquid density, 1] is the fractional density 
change on freezing, {k} represents the set of reciproca1lat­
tice vectors (RL V s) corresponding to the particular lattice 
type under study, andpL p(k) is the Fourier component of 
the density corresponding to the wave vector k. A simpler 
but less general parametrization that is commonly used ex­
presses the density as a sum of Gaussian peaks centered at 
the lattice sites 

(
a )3/2 

p(r) = -; ~ exp( - air - R;j2) , (5) 

where the R; are the real space lattice vectors, and a mea­
sures the width of the Gaussian peaks. For close packed sys­
tems, the Gaussian parametrization has been found to give 
almost identical freezing results as the more complicated but 
more general Fourier expansion.33 After parametrization of 
the crystal density, the free energy (actually the grand po­
tential difference between the solid and liquid) is minimized 
in such a way as to ensure the thermodynamic conditions of 
phase equilibrium are satisfied; that is, the pressure, tem­
perature, and chemical potential of the crystal phase equal 
those of the liquid phase. The density P (r) at the minimum is 
the equilibrium crystal density. 

Once the equilibrium phases have been determined, a 
parametrization of the interfacialp(r) is constructed by al­
lowing the order parameters used in the equilibrium calcula­
tion to vary with z, the coordinate perpendicular to the inter­
face. The shape of the z-dependent order parameter profiles, 
as well as the interfacial excess free energy, can then be deter­
mined from the minimization condition, together with the 
boundary conditions [the order parameters must tend to­
ward the solid (liquid) equilibrium values as z goes to 
+ 00 ( - 00)]. Many authors also assume that the Fourier 

components are slowly varying across the interface, which 
permits use of a square-gradient approximation. 

The Fourier parametrization, used in the original paper 
by Haymet and Oxtoby, 27 is more general than the Gaussian, 
but is more complex. In practical calculations, the expansion 
for p (r) must be truncated after the first few Fourier compo­
nents. Hence Haymet and Oxtoby chose the bcc/melt inter­
face to study because, unlike the fcc system (which at that 
time was the only crystal/melt system studied by simula­
tion), it is possible to find physically reasonable solutions to 
the equilibrium freezing problem for a small numbers of 
Fourier order parameters. This very simple level of density 
functional theory predicts the 10--90 width ofthe fractional 
density change 1] for both the bcc ( 1(0) and ( 111 ) interfaces 
[the ( 110) was not studied] to be approximately given by 

(6) 

wheree" (k l ) is the second derivative of the liquid two-parti­
cle direct correlation function evaluated at the magnitude of 
the nearest neighbor RLV of the solid. For the inverse sixth­
power potential bulk liquid at pT = 0.6833 and T* = 0.1, 
e" (k l ) was measured in a simulation of 432 particles to be 
about - 1.170' 3. This leads to a 10--90 width of about 4.10' 
or 6 and 10 lattice planes for the ( 1(0) and ( 111 ) interfaces, 
respectively. The splitting of the 1](z) and PI (z) profile, as 
described in Ref. 27, leads to a interfacial peak-height profile 
that would be slightly broader than this 1] profile, but by only 
at most a few tenths of 0'. Hence this theory leads to interface 
widths which are similar to, but slightly smaller than, the 
widths measured in the present simulations. 

Recent work on the density functional theory of solid­
liquid interfaces has focused on the less complex Gaussian 
parametrization, which in principle provides a better repre­
sentation of the bulk crystal freezing than a severely truncat­
ed Fourier expansion (but still less accurate than a full Four­
ier expansion). Moore and Raveche29 make the ansatz that 
the single particle density of the interfacial system can be 
written 

p(r) = PL + j(z)[ Ps (r) - pd ' (7) 

where p L is the bulk liquid density, p s (r) is the bulk, spatial­
ly varying solid density [given by Eq. (5)], and j(z) is a 
switching function that goes from 0 to 1 as the interface is 
traversed from the bulk liquid to the bulk solid. They then 
minimize a Helmholtz free energy functional (also using the 
square-gradient approximation) using a hyperbolic tangent 
parametrization ofj(z) to obtain the interfacial properties. 
Application of their theory to the fcc Lennard-Jones inter­
face gives results that are very sensitive to the input param­
eters. The resulting range of results for a reasonable spread 
of input values does overlap with the simulations on this 
system, but is rather large, making comparison difficult. 

McMullen and Oxtoby28 have gone a significant step 
further by allowing the Gaussian width parameter a to vary 
with z. The form of this variation is determined by making 
the ansatz that the zero magnitude (bulk density) and first 
nonzero magnitude RLV Fourier components ofp(r) have 
shifted hyperbolic tangent profiles. This gives a four-param­
eter form (representing the widths and centers of the two 
profiles) for the single particle density. Minimizing the same 
grand potential functional used by Haymet and Oxtoby, 
without invoking the square-gradient approximation, 
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McMullen and Oxtoby examine the hard-sphere (111) in­
terface. Although no hard-sphere crystal/melt interface 
simulations have been performed to make a direct compari­
son possible, the interfacial structure they obtain does com­
pare very favorably with existing simulations of the Len­
nard-Jones interface. The same is true of the results of the 
interface theory by Curtin,30 who minimized a grand poten­
tial functional (derived using a weighted density functional 
formalism) using a two parameter fit similar to that of 
McMullen and Oxtoby. 

Unfortunately, none of these more recent density func­
tional interface theories can be applied at present to the bcc 
inverse-power system. The reason for this is due not to flaws 
in the interface theories themselves, but rather to difficulties 
in the application to this bcc system of the underlying freez­
ing theories on which the interface theories are based.35,36 
Hence, consistent boundary conditions for the interface cal­
culation cannot be obtained, and direct comparison with the 
present simulations is not yet possible. 

It has been shown recently that the density functional 
freezing theories which use a functional derived from a sec­
ond-order perturbation expansion about a reference liquid 
phase (for example, the Haymet-Oxtoby theory33 and a 
slight variation due to Baus and Coloe4) do not predict a 
thermodynamically stable bcc phase for the 1/,P system.35,36 
The bcc phases located by the functional are locally stable, 
but always less stable than the fcc phase. Moreover, the bcc 
phases exist only at unphysically high densities. It is possible 
that the addition of third-order terms to the functional 
expression could correct this situation. There is also the 
prospect that recent advances in choosing the reference sys­
tem for the perturbation theory, developed by McCoy, Rick, 
and Haymet for quantum systems,37 may lead to progress in 
this area. The DFT for freezing based on the weighted-den­
sityapproximation (WDA) developed by Tarazona38 and 
Curtin and Ashcroft,39 on which the interface theory of Cur­
tin30 is based, has been used to predict the free energy of the 
hypothetical (and mechanically unstable) hard-sphere bcc 
solid,40 but is not easily applicable to nonhard sphere sys­
tems in its present form. The original DF calculations, which 
used just several Fourier components for simplicity, certain­
ly need to be extended. The present simulations are intended 
to provide both an incentive to explore further these theo­
retical issues, and "experimental" data with which to test 
candidate theories. 

VI. CONCLUSIONS 

We have performed molecular dynamics simulations of 
the bcc crystal/melt ( 1(0), (110), and ( 111 ) interfaces for a 
system of spherical particles interacting via an inverse-sixth­
power potential. Using the 10-90 width of the density profile 
peak heights as a measure of the structural width, we find the 
three interfaces to be about 6, 9, and 7 molecular diameters 
wide, respectively. A measurement of the variation of the 
diffusion constant across the interface gives a 10-90 width 
for this quantity of about four molecular diameters for all of 
the interfaces studied. This is slightly wider than the diffu­
sion width of 30- seen in interfacial simulations of the Len­
nard-Jones system near its triple point. 13 That the bcc inter-

face is broader is to be expected because the liquid to bcc 
transition is a "weaker" first-order phase transition than the 
liquid to fcc transition. [By the term "weaker transition" we 
mean one that has smaller discontinuities in the thermody­
namic parameters (such as entropy and density) of the coex­
isting liquid and solid phases. ] 

Since this diffusion constant variation should be a more 
sensitive measure of the variation in molecular "environ­
ment" than the peak height width, we conclude that the 
width of the interfacial region (defined loosely as the region 
where particles can be said to be neither liquid-like or solid­
like) is approximately the same for each of the interfaces 
studied. This lack of sensitivity of the diffusion width on the 
interfacial orientation has also been seen in the Lennard­
Jones simulations. \3 The differences in both the peak-height 
widths and the overall shapes of the density profiles among 
the three interfaces are due primarily to the differences in the 
stacking geometries. 
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