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Two nondegenerate quantum levels coupled off-diagonally and linearly to a bath of quantum­
mechanical harmonic oscillators are considered. In the weak-coupling limit one finds that the 
equations of motion for the reduced density-matrix elements separate naturally into two 
uncoupled pairs of linear equations for the diagonal and off-diagonal elements, which are 
known as the Bloch equations. The equations for the populations form the simplest two­
component master equation, and the rate constant for the relaxation of nonequilibrium 
population distributions is liT), defined as the sum of the "up" and "down" rate constants in 
the master equation. Detailed balance is satisfied for this master equation in that the ratio of 
these rate constants is equal to the ratio of the equilibrium popUlations. The relaxation rate 
constant for the off-diagonal density-matrix elements is known as l/T2. One finds that this 
satisfies the well-known relation l/T2 = 1/2TI' In this paper the weak-coupling limit is 
transcended by deriving the Bloch equations to fourth order in the coupling. The equations 
have the same form as in the weak-coupling limit, but the rate constants are calculated to 
fourth order. For the population-relaxation rate constants this results in an extension to fourth 
order of Fermi's golden rule. We find that these higher-order rate constants do indeed satisfy 
detailed balance. Comparing the dephasing and population-relaxation rate constants, we find 
that in fourth order lIT2# lI2T!. 

I. INTRODUCTION 

The coupling of a quantum-mechanical system to a ther­
mal bath provides a mechanism for the relaxation of the 
system from its initial state to a state of thermal equilibrium. 
The understanding of this relaxation is of course very impor­
tant in many different kinds of time- and frequency-domain 
spectroscopy. To a good approximation, in many spectro­
scopic situations one can consider the system to consist of 
only two relevant quantum states; therefore, it comes as no 
surprise that the study of the relaxation of such a two-level 
system (TLS) coupled to an appropriately described bath 
environment has received much attention over the years. 

Consider a generic two-level system in which the 
ground (excited) state is labeled 10} (II}), and the energy 
difference between the states is wo. The state of the system 
at a given time t is completely described by its density matrix, 

() [Uoo(t) Uo) (t)] (1) 
U t = uJO(t) U

I1 
(t) , 

where uoo(t) and U)) (t) are the populations of the ground 
and excited states, respectively, and the off-diagonal terms 
are a measure of the phase coherence between the states, and 
have the relationship ulO(t) = UOJ (t) *. 

In the absence of any coupling of the TLS to its environ­
ment, the states 10} and II} are eigenstates of the total Ham­
iltonian; therefore, the evolution of the density matrix is 
such that the diagonal terms remain constant and the off­
diagonal elements oscillate with a frequency liJo. When the 

.) Author to whom correspondence should be addressed. 

TLS is energetically coupled to a bath that is in thermal 
equilibrium, the TLS states will no longer be eigenstates of 
the total Hamiltonian and the system will evolve toward 
thermal equilibrium; that is, the diagonal terms of the TLS 
density matrix will decay to the values dictated by the Boltz­
mann equilibrium criterion, and the off-diagonal elements 
will relax to zero (complete incoherence). 

Phenomenologically, the simplest reasonable descrip­
tion of the relaxation of a TLS coupled to a bath is one in 
which the decay of the density-matrix elements to their equi­
librium values is exponential. Such a description is provided 
by the Bloch equations-a coupled set of first-order differen­
tial equations for the density-matrix elements: 

o-oo(t) = - klOuoo(t) + kolu ll (t), (2) 

0-11 (t) = klOuoo(t) - kolu ll (t), (3) 

0-1O(t) = - [i(liJo + LlliJ) + l/T2 ]u lO (t), (4) 

0-01 (t) = [i(liJo + LlliJ) - l/T2 ]0-01 (t), (5) 

where klO and kOI are the "up" and "down" rate constants, 
respectively, LlliJ is the bath-induced shift in the natural fre­
quency of the TLS, and l/T2 is the decay rate constant of the 
off-diagonal terms. Equivalent equations were introduced 
by Bloch in his study of the relaxation ofnuc1ear spins. I For 
many TLS/bath systems, the Bloch equations are an excel­
lent phenomenological description of the relaxation to equi­
librium, as long as one only considers times large enough so 
that any initial non-exponential transient behavior in the dy-
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namics has subsided. 
The first two equations, for the TLS populations, are 

gain-loss type rate equations, and are the simplest example of 
the so-called master equation.2 Observing that the popula­
tions of the ground and excited states must relax to their 
Boltzmann equilibrium values in the limit of infinite time 
leads to the detailed balance condition: 

klOlkol =oTI/~=K, (6) 

where K is the equilibrium constant. Ifwe define lITI as the 
rate of decay to zero of the population deviations from equi­
librium, it can be easily seen from the Bloch equations that 

lITI = kOI + k lO• (7) 

Theories of bath-induced TLS relaxation, leading to 
Eqs. (2)-(5), can be more or less divided into two types. 
Theories of the first type involve the treatment of the bath 
degrees offreedom in a purely stochastic way. The Hamilto­
nian consists of a TLS coupled to one or more stochastic 
fields that represent the bath, whose nature is defined entire­
ly by the statistical properties (correlation functions) of the 
stochastic fields. Such a treatment has proven useful in the 
study of NMR relaxation in liquids.3-5 A drawback of this 
approach is that since the bath is not represented by dynami­
cal variables (and the dynamics of the combined system is 
therefore not treated consistently), the rate constants kOI 
and k 10 are equal, which from the detailed-balance condition 
can only be strictly true in the infinite-temperature limit. 

In the second type of TLS/bath relaxation theory, the 
bath degrees of freedom are treated in a fully quantum-me­
chanical manner.3-6 The TLS is coupled to a collection of 
quantum degrees of freedom and the dynamics of the com­
bined system is calculated. The irreversible nature of the 
relaxation process is obtained by averaging over the initial, 
assumed thermally equilibrated, bath distribution. This type 
of approach is appropriate, for example, for describing the 
relaxation of optical or vibrational excitations in crystals. 7-9 

Since in this type of theory the system and bath variables are 
treated on the same footing, and the temperature is now an 
explicit parameter, this approach can be used to describe 
relaxation at finite temperatures, where the up and down 
transition rates will not be equal. 

The great majority of studies ofTLS relaxation proper­
ties have focused on perturbation calculations that are sec­
ond order in the TLS/bath coupling. Such calculations show 
that, to second order, the diagonal and off-diagonal coupling 
terms (in the basis of the TLS eigenstates) have well-defined 
and separate roles in the relaxation process. The population 
relaxation rate, lITI, is determined completely by the off­
diagonal coupling terms. In addition, the off-diagonal cou­
pling makes a contribution to the phase relaxation rate, 
lIT2, which, in second-order perturbation theory is equal to 
half the population relaxation rate. The diagonal terms in­
duce fluctuations in the TLS energy-level spacing that lead 
to a contribution to the phase relaxation rate. As the diag­
onal terms do not energetically couple the excited and 
ground states, these terms cannot cause additional popula­
tion decay. 

In light of these second-order results, theorists and spec­
troscopists have found it convenient to separate the contri-

butions to the total phase relaxation (dephasing) rate in the 
following manner:4,8-12 

1 1 1 -=-+-. 
T2 2TI Ti 

(8) 

The first term of the right-hand side is, in second order, the 
contribution from the off-diagonal coupling and is a con­
comitant to population relaxation. The second term repre­
sents the additional dephasing due to the diagonal coupling, 
and liT i is frequently referred to as the "pure dephasing" 
rate constant. Interpreted in this way, this additional contri­
bution to the dephasing should necessarily be non-negative, 
as the fluctuations in the TLS energy-level splitting can only 
lead to disruption of the phase relationship between the ex­
cited and ground states and could not act to enhance it. This 
leads to an important inequality that is a major result of the 
second-order theory: 

(9) 

This inequality is used frequently in the analysis and inter­
pretation of spectroscopic experiments and, despite its status 
as a result correct rigorously only to second order, seems to 
be accepted as a universally valid physical law. 

The first calculations to go beyond second-order pertur­
bation theory involved systems with only diagonal coupling. 
Kubo showed that, for a TLS linearly coupled to a Gaussian 
stochastic bath, the second-order results for the dephasing 
rate are exact. 13 Hsu and Skinner6 obtained a similar result 
for a TLS linearly coupled to a bath of quantum harmonic 
oscillators. For the case of quadratic coupling to a quantum 
bath, Hsu and Skinner6,14 showed that the second-order re­
sult was not exact and were able to obtain an exact non per­
turbative result for the dephasing rate, The same result had 
also been previously obtained by another method by 
Osad'ko.1 5 Quadratic coupling to a stochastic bath has been 
studied,6.16 again yielding an exact non-perturbative solu­
tion. However, since diagonal coupling alone cannot alter 
the population levels of the two states, the population relaxa­
tion rate for such models is necessarily zero; therefore, the 
inequality of Eq. (9) holds trivially to all orders in the cou­
pling. 

Recently, Budimir and Skinner l7 performed a fourth­
order perturbation-theory calculation to determine the re­
laxation rate constants of a TLS linearly coupled, both dia­
gonally and off-diagonally, to a Gaussian stochastic bath. 
They showed that in this case, unlike in the case of diagonal 
coupling alone, the second-order result is not exact. More­
over they showed that in fourth order, the off-diagonal and 
diagonal fluctuations do not lead to independent contribu­
tions to the total dephasing rate as in Eq. (8). In particular, if 
one uses Eq. (8) as the definition of T i, they showed that the 
off-diagonal terms can make a substantial contribution to 
liT i. In fact, it is demonstrated that, due to this off-diag­
onal contribution, T i can actually be negative for certain 
reasonable values of the parameters that describe the sto­
chastic fields, or in other words, that T2> 2TI! 

In order to check the validity of the perturbation expan­
sion, and to determine at what point the relaxation to equi­
librium is actually exponential, Sevian and Skinner l8 per-
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formed a series of computer simulations of this stochastic 
model. These simulations confirmed the results of Budimir 
and Skinner, demonstrating that the initial non-Markovian 
decay was short compared to the total decay time, even for 
systems that exhibit significant deviations from the inequali­
ty of Eq. (9). Sevian and Skinner also discuss some of the 
implications of this result. Aihara et al. 19 have very recently 
extended the analytic results ofBudimir and Skinner to sixth 
order, and have also shown the equivalence of their results to 
the frequency-domain continued fraction results of Shibata 
and Sato,20 which have recently been rederived with a novel 
method by Risken et al. 21 For a slightly different dichotomic 
(two-state jump) model of the fluctuations, Reineker et al. 22 
have also shown that T2 can be larger than 2T1• 

As was previously mentioned, one of the major draw­
backs of the stochastic-bath model is that it is strictly appli­
cable only at infinite temperature. Therefore it is important 
to understand if the result that T2 can be greater than 2TI , 

which has now been demonstrated convincingly for the sto­
chastic model, is an artifact of this implied infinite-tempera­
ture limit, or is, in fact, more generally valid. To this end, one 
would like to generalize this result to finite temperature, 
which entails a fully quantum-mechanical derivation of the 
Bloch equations to fourth order in TLS/bath coupling. 

There is also a more fundamental reason for providing a 
derivation of the Bloch equations to higher order in the per­
turbation: to the best of our knowledge there have been no 
explicit derivations of the master equation2.23-26 that lead to 
tractable expressions for the rate constants to higher than 
second order in perturbation theory. In fact, at least one 
statement in the literature suggests that the convolutionless 
master equation is obtained only in the weak-coupling lim­
it. 2.' If one could show that Eqs. (2) and (3) were valid in 
higher-order perturbation theory, this would provide an ex­
ample of a master equation valid outside the weak-coupling 
limit. Moreover, the higher-order expressions for the rate 
constants would produce an extension of Fermi's Golden 
Rule. 

In this paper we derive generalized Bloch equations 
(Redfield equations5

) to fourth order in the system/bath 
interaction, for a completely quantum-mechanical Hamilto­
nian involving a TLS coupled linearly and off-diagonally to a 
bath of harmonic oscillators. We consider only the case of 
off-diagonal coupling since it is for this case that the stochas­
tic model produces the most interesting results. While this 
model is by no means the most general model of its type 
because of the specific form of both the bath and the 
TLS/bath coupling, its solution nonetheless involves a non­
trivial calculation. The derivation of the Bloch equations 
closely follows the general approach discussed by Budimir 
and Skinner 17 for the stochastic model. We show that the 
rate equations for the populations do indeed form a master 
equation, and that the fourth-order expressions for the rate 
constants obey the property of detailed balance. As in the 
stochastic model, we also show that, in general, T2 =12TI , 

which is in contrast to the expectation from second-order 
perturbation theory if there is only off-diagonal coupling. In 
the penultimate section we discuss the correspondence of 
our model and results with the "spin-boson" problem.27.28 

In a companion paper,29 which follows immediately, we 
introduce a model for the quantum-mechanical bath and its 
coupling to the TLS that reduces to the stochastic model in 
the limit T --+ 00. We show that, for some parameters of this 
model, T2 > 2TI , even at finite temperature. 

II. FORMULATION OF THE PROBLEM 

We consider a TLS that is off-diagonally coupled to a 
harmonic bath. The Hamiltonian for such a system is writ­
ten as the sum of a TLS Hamiltonian, H TLS ' a bath Hamilto­
nian, Hb, and a term, HI' describing the TLS-bath coupling: 

H=HTLS +Hb +HI' 

where 

HTLS = wolO (I I, 

Hb = I Wk (b tbk + 1/2), 
k 

HI = o[ IlAP) (01 + IlA tlO) (11]' 

A=Ihk(bt +bk )· 
k 

(10) 

(11) 

(12) 

(13 ) 

(14) 

In the above, Wo is the TLS excited-state energy (with­
out loss of generality the ground-state energy has been set to 
zero), the Hamiltonian for the harmonic bath is a sum over 
normal modes of frequency OJ k , and b t and bk are boson 
creation and annihilation operators, respectively. As shown, 
A is linear in the normal-mode coordinates. The expansion 
coefficients, hk' have units of frequency, and can, in general, 
be complex, although, for reasons of mathematical simpli­
city that will be clear later, we require that h ~ is real, i.e., 
each hk is either purely real or purely imaginary. t3 is a di­
mensionless expansion parameter enabling one to keep track 
of the perturbation order, and can be set equal to one at the 
end of the calculation if desired. 

The dynamics of the total (TLS + bath) density opera­
tor, p (t), is governed by the Liouville equation 

ap(t) = _ ~ [H,p(t) ]. 
at 11 

(15) 

Transforming to the interaction representation 

pU) =eiHotl"pU)e- iHotl", (16) 

where Ho is the unperturbed part of the total Hamiltonian 

Ho = H TLS + H b , (17) 

leads to the interaction Liouville equation 

apU) = _ ilU)pU), (18) 
at 

where let) is defined by 

l(t) ... = (1/11) [HI (t), ... ], (19) 

HI (t) =eiHotl"Hle - iHotl". (20) 

From Eqs. (13) and (14) this gives 

HI (t) = t3[IlA(t) 11)(01 + IlA(t)tIO) (1 I ], (21) 

where 

(22) 

J. Chem. Phys., Vol. 94, No.6, 15 March 1991  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 18:59:58



4394 Laird, Budimir, and Skinner: Derivation of the Bloch equations 

= L hk (b lei"'" + bke - i"',,). 
k 

The formal solution to Eq. (18) is 

p(t) =p(O) - if dl l IUI)pUI), 

(23) 

(24) 

(25) 

which can be iterated to give a perturbation series in I (t) 
(and thus HI) 

pU) =p(O) - if dl l I(tI)p(O) 

-l' dtlf' dl2 I(tI)I(t2)p(0) + .... 

Defining a reduced TLS density matrix 

aCt) =Trb [p(t)], 

(26) 

(27) 

where Trb [ ... ] denotes a trace over the bath states, and 
assuming an initial density matrix that is a product of the 
unperturbed equilibrium bath density, 
Pb = e - f3Hb/Trb [e - f3Hb] ({3 = l/kT), and an arbitrary ini­
tial reduced TLS density matrix, a( 0) : 

p(O) =Pba(O), (28) 

gives 

a(t) = a(O) - if dlt TrdI(tt)Pb ]a(O) 

-l' dlt 1" dl2 Trb [IUt)IU2)Pb ]a(O) 

X + '" . (29) 
Defining 

c5nM(n)u) = ( - i)nn!f dtlf' d12 " '1'" ~ 1 dtn 

XTrdI(t1 )I(t2) " ·I(tn )Pb]' (30) 
with 

M(O)=l, 

Eq. (29) can now be written 

(31) 

a(t) = <I>(t)a(O), (32) 

with 

(33) 

The sum in the above equation for <I>(t) is only over the even 
moments, because only even powers of HI are nonzero after 
the bath trace, since HI is linear in the bath coordinates. 
Taking the time derivative of Eq. (32) 

uU) = $(t)a(O) 

= $U)<I>(t) - tiT(t), 

and defining 

R(t) =$(t)<I>(t) -- I, 

gives the following rate equation for aU): 

c,(t) = R(t)a(t). 

(34) 

(35) 

(36) 

Note that, since a(t) is a matrix, R (t) is a fourth-rank ten­
sor. 

We define 
00 

RU) = L c52nR (2n)(t), (37) 
n=I 

where R (2n) (t) is of perturbation order 2n in the interaction 
Hamiltonian HI' The R (2n) (t) are obtained by explicitly ex­
panding $ (t) and <I> (t) - I in Eq. (34), and then collecting 
terms oflike order in 15. This yields 

R (2)U) = ~M(2)(t), 

and 

(38) 

R (4)(t) = ~M(4)(t) _ !M(2)(t)M(2)(t), (39) 

and we will be content to stop at fourth order. These equa­
tions, together with the definition of M(n)(t) [Eq. (30)], 
give 

c52R (2)(t) = - f dt l Trb [I(t)I(tI)Pb]' 

and, after rearranging time integrals, 

(40) 

~R (4)t = l' dtlf' dl2f' dt3{Trb [I(t)I(tI)I(t2)I(t3)Pb] - Trb [I(t)IUI)Pb ]Trb [I(t2)I(t3)Pb] 

- Trb [I(t)I(t2)Pb ]Trb [I(tI)I(t3)Pb] - Trb [I(t)I(t3)Pb ]Trb [I(tI)I(t2)Pb p. (41) 

From Eqs. (40) and (41) we see that the integrands in 
the R (n) (t) have the form of ordered cumulants,30.31 which 
obey the cluster property such that whenever the difference 
between any two time arguments becomes much greater 
than the correlation time, T e , of the double-time correlation 
function, to be defined below, the cumulant approaches 
zero. This property ensures that the integrands of the 
R (n)(t) are only non-zero inside a finite region of the inte­
gration volume of order ~ - I. Thus, the limit t -+ 00 is well 

defined, and in this limit each R (n) U) approaches a constant 
tetradic, except for possible oscillatory factors due to the 
interaction representation. From a second-order calculation 
we anticipate a structure of the Redfield form: 5 

i7 (t)-'\"'e i(a-a'-f3+f3')<""'R a (I) (42) aa' - L aa'f3f3' f3f3' , 
f3f3' 

where a, a', fJ and {3'E{O,l}, and R aa'f3f3' are constants. 
Therefore, these constants, if they exist, are given by 
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Raa'fJ{J' == lim e - ita - a' - P + P')wot 

t-co 

x (al{R(t) 1,8) (,B '1}la'). (43) 

Because HI is both off-diagonal in the TLS states and 
linear in the bath coordinates, a similar argument to that 
presented for the stochastic model l7 shows that R aa'(3(3' = 0 
if a + a' +,8 +,8' is odd, and thus, upon transformation 
back to the non-rotating frame, Eq. (42) yields two pairs of 
coupled equations 

and 

0-00 (1) = RooooO"ouU) + R00110"1l U), 

0-11(t) = RllOOO"ou(t) + RllIIO"ll(t), 

(44) 

(45) 

0-1O(t) = ( - iwo + R JOJO)O"JO(t) + R 10010"01 (t), (46) 

o-Ol(t) = (iwo + ROI01)0"01(t) + R OllOO"IO(t)· (47) 

The first pair of equations, for the state probabilities, can be 
simplified by using the probability conservation requirement 
that 

(48) 

leading to the relations Roooo = - R 1100 and 
RIIII = - R ooll , which can also be verified explicitly, at 
least to fourth order in D. Defining 

klO = - R oooo, 

kOI = - R 111l> 

(49) 

(50) 

one then obtains the coupled rate Eqs. (2) and (3). Further­
more, defining 

oc 
k - ~ r:.2nk (2n) 

10 - L U 10 (51) 
n=1 

(and a similar equation for kol ) one can then calculate the 
second- and fourth-order contributions to the rate constants 
from Eqs. (37), (40), (41), and (43). 

For the off-diagonal density matrix element pair, Eqs. 
(46) and (47), using 0"01 (t) = 0"1O(t) *, it must be true that 
ROIOI = R rOlo, and ROllo = R rool' (This can also be verified 
explicitly, at least to fourth order.) The term involving R 1001 

in Eq. (46) is a coupling between the two off-diagonal ele­
ments of the reduced density matrix, and is usually ignored. 
The traditional rationale for this neglect (known as the ro­
tating wave approximation) is that, to zeroth-order, 0"1O(t) 

and 0-1O(t) both oscillate like e - ;'"0', whereas 0"01 (t) oscil­
lates like e + ;wo'. If Wo is sufficiently large, the fact that 0"1O(t) 

oscillates in concert with 0-1O(t) makes it a much more effi­
cient driving force in Eq. (46) than 0"01 (t). If these coupling 
terms are ignored, then one recovers the Bloch Eqs. (4) and 
(5), if one identifies 

lIT2 = - Re{R IOIO}, (52) 

(53) 

Perhaps a better estimate of the effect of this coupling 
term is obtained by diagonalizing the coupled system of lin­
ear differential equations formed by Eqs. (46) and (47). 
This is performed in Appendix A. Associating the real and 
imaginary parts of the eigenvalues with lIT2 and Wo + t:.w, 
respectively, we obtain 

l/T2 = - Re{R IOIO}, (54) 

Ilw = (wo - Im{R IOIO}) 

x 1 _ IR IOOl 1

2 

(wo - Im{R IOIO})2 
(55) 

Comparing Eqs. (53) and (55), we conclude that in general 
the coupling terms in Eqs. (46) and (47) cannot be neglect­
ed. [When IRloo11 < (wo - Im{R IOIO}), which is the case in 
the weak-coupling limit, then one indeed recovers 
t:.w = - Im{R JOJO}, showing that in this limit one can ne­
glect the coupling.] Nevertheless, we see that even if the 
coupling term is retained, l/T2 is still simply - Re{R JOJO}. 

Finally, by defining 

1 f D2n(_I_) (2n), (56) 
Tz n= I T2 

00 

t:.w = L D2nt:.w(2nl, (57) 
n=1 

one can obtain expressions up to fourth order for l/T2 and 
t:.w. 

III. POPULATION RELAXATION-THE MASTER 
EQUATION 

The preceding section shows how, in principle, the 
asymptotic form of the equations of motion for the reduced 
density matrix elements is given by two uncoupled pairs of 
coupled equations, to arbitrarily high order in the interac­
tion Hamiltonian HI' In this section we focus on the two 
coupled equations for the level populations, which, as men­
tioned in the introduction, form the simplest possible two­
component master equation. In subsection A we begin by 
calculating the "up" and "down" rate constants to second 
order in D, which is equivalent to Fermi's Golden Rule. In 
subsection B we calculate kOI and klO to fourth order in 8, 
yielding new expressions for these rate constants. In subsec­
tion C we show that the principle of detailed balance is satis­
fied by the master equation with these fourth-order rate con­
stants, as long as the eqUilibrium constant is calculated to 
second order in D. 

A. Second-order calculation of the rate constants 

From Eqs. (37), (40), (43), (49), and (51) we have 

k \~) = - lim R 6Uo (t), (58) 
,-co 

= !~n:! D - 2f dt l (OI{Trb [L(t)L(tI)Pb] 10) (01}10). 

(59) 

Using the definition orI(t) and HI (t) [Eqs. (19) and (21)] 
gives 

k \~) = lim (' dt l Trb [A(t)tA(t1 )Pb + PbA(t1 )tA(t)]. 
t_ 00 Jo 

(60) 

Using the fact that a trace is invariant to cyclic permutations 
of its operator arguments, and defining a (non-time-or­
dered) bath correlation function by 

C I (t - t') = Trb [PbAt(t)A(t')] (61) 

J. Chern. Phys., Vol. 94, No.6, 15 March 1991  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 18:59:58
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(below we show explicitly that C I is a function only of the 
difference of the time arguments) gives 

kg) = Iim2 Re{ f'dt l e - i,,,,,(t- t')CI (t - tl)}' (62) 
t- 00 Jo 

Making the variable change, 7 = t - t I and taking the t ..... 00 

limit gives 

k\~)=2Re{fO d7e- iW"TCI(7)}. (63) 

We will find it useful to work with the spectral represen­
tation of the correlation function. To this end, defining 

CI(CUo) = f~ "" d7 eic"TCI (7), (64) 

so that 

CI (7) = _1_ J"" dcu e - iWTCI (cu), 
211" - "" 

(65) 

allows us to write 

. 1 {J"" A i"'" } k \~) = hm - Re dcu CI(CU) d7e -/(W+ W,,)Te - <T , 
<_0 11" - "" 0 

(66) 

where we have added a convergence factor. In Appendix B 
we discuss at some length how to deal with the time integral 
in the above, since in what follows several subtleties arise. 
For the present purposes, however, the situation is quite 
straightforward and we simply use the relation that 

i OO 

dt e - i(x - xo)te -., = 11"fiJ (x - xo) - i9 (x - xo), 

(67) 

where fiJ (x - xo) is a generalized function such that 
lim€_ofiJ (x - xo) = 8(x - xo), the Dirac delta function, 
and 9 (x - xo) is a generalized function defined by its ac­
tion under an integral sign: 

~i~ f~ "" dxf(x) 9 (x - xo) = p f~ "" dx :<:~o ' (68) 

where f(x) is integrable on ( - 00,00) and P denotes the 
usual Cauchy principal value. Since, as we will see below, 
A-

C I (cu) is real, this gives 

k\6)=C I (-cuo)' (69) 

From Eqs. (24) and (61), we can explicitly write 

C ') ~ Ih 12{[ ( ) 1] -i",,(t-t') l{t-t =£.. k ncu k + e 
k 

+ n(cuk )eiW,(t- t')}, (70) 

where n (cu) is the thermal occupation number for bosons of 
frequency cu 

n(cu) = (ef3'''''-I) -I. (71) 

Using Eq. (64) and the integral representation of the delta 
function, yields 

CI(cu) =211"L Ihk I2{[n(cuk ) + 1]8(cu-cuk ) 
k 

+ n (CUk )8(u> + CUk)}' (72) 

= 2{r l (cu)[n(cu) + 1] + r l ( - cu)n( - cu)}, 
(73) 

where r I (cu) is a weighted density of states, having dimen­
sions of frequency, and is defined as follows: 

r I (cu) =11"L Ihk 1
28(cu - cuk)· 

k 

(74) 

Since all the cu k are non-negative, r I (cu) is zero for cu < O. 
Therefore Eq. (69) becomes 

(75) 

This is the standard second-order perturbation theory result 
for the transition rate, which can be obtained easily from 
Fermi's Golden Rule. 7 Since the rate is proportional to the 
thermal occupation number of the vibrational modes with 
frequency CUo, the "up" rate constant k \~) is interpreted as 
the absorption (destruction) of one vibrational quantum of 
frequency CUO' Note that the limT_ok \6) = o. 

Once an expression for k \6n' is obtained for a given or­
der in terms of the correlation function, the corresponding 
expression for k i,i n

) can be written down by inspection by 
noting that the roles of the ground and excited states are 
reversed upon cuo ..... - CUo and A --+ A +. However, it is easy to 
see that 

Trl> [PbAt(t)A(tI)] = Trb [PbA(t)At(t')], (76) 

and so this latter change has no consequence. Therefore we 
have simply 

A-

k 6~) = CI (cuo), 

= 2r I (cuo)[n(cuo) + 1]. 

(77) 

(78) 

The factor n (cuo) + I signifies that the transition occurs by 
the emission (creation) of one vibrational quantum. Note 
that lim r . o k (\~) :;60, corresponding to "spontaneous emis­
sion. " 

The total population-decay 
lITI = kOI + klO' can be expanded as 

_ = i 82n(_1 )(2n) 

TI n= I TI 
From the above we have simply 

(lITI ) (2) = CI (CUO) + CI ( - cuo), 

= 2r1(CUo)[2n(cuo) + 1], 

= 2 r 1 (cuo) coth ClHicuo/2 ) . 

rate constant, 

(79) 

(80) 

B. Fourth-order calculation of the rate constants 

As one would expect, calculation of the fourth-order 
rate constants is much more involved than that of the sec­
ond-order terms. We start with k \6)' From Eqs. (37), (43), 
(49), and (51), we have 

(81) 
t- oc 

Equation (4 I) gives an expression for the fourth-order term 
of the tetradic operator R (t) in terms of integrals over traces 
of various products of the interaction Liouville operator. By 
taking the (0000) tensor element of R 14) (t) [see Eq. (43)] 
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and performing all the necessary commutations as indicated 
by the definition of the operator I (t), Eqs. (19) and (21) 
(and paying strict attention to the operator orders since the 
A's do not commute), an expression is obtained that involves 
integrals over two types of terms. The first type of term con­
sists of a product of two-time correlation functions, for ex­
ample, 

Trb [PbAt(t)A(t2) ]Trb [PbAt(t3)A(t4)]. (82) 

The second type of term is a single four-time correlation 
function and a typical such term is 

(83) 

This type of term can be broken down into products of two­
point functions by the use of Wick's theorem. 32 Simply stat­
ed for the present application, if A(tl), B(t2), C(t3)' and 
D( t4 ) are linear combinations of boson creation and annihil­
ation operators in the interaction representation, then 

Trb [Pb A (t I )B(t2) C(t3)D(t4) ] 

= Trb [Pb A (tl )B(t2) ]Trb [Pb C(t3)D(t4)] 

+ Trb [Pb A (II )C(l3)] Trb [Pb B {tZ)D{t4)] 

+ Trb [Pb A (I I )D(t4) ] Trb [PbB (t2) C( t3) ]. (84) 

After this factorization, a number ofterms in R i:k (t) can­
cel, leaving ten terms involving C I (t) [see Eq. (61)] and a 
new correlation function 

(85) 

with Fourier transform 

C2 (cu) = 2{r2 (cu) [n(cu) + 1] + r 2 ( - cu)n( - cu)}, 
(86) 

where r z (cu) is another weighted density of states, defined 
as: 

r 2 (cu) =1TI h io(cu - CUk)' (87) 
k 

Note that since by assumption h ~ is real, this implies that 

TrdpbA(t)A(t')] = TrdpbAt(t)At(t ')] , (88) 

and also that C2 (cu) is real. Since CI (cu) is also real, we have 
[from Eq. (65)] 

C; (I) = Cr( - t), (89) 

for i = I or 2. Upon changing variables to "relative" times, 
71 = t - t l , 72 = tl - t 2, 73 = t2 - t 3, and taking the limit 
t -+ 00, one obtains 

k \6) = - 21"" d711"" d721"" d7
3 
Re{C~( 71 + 72 + 73)C2( 72)e- ;"'0(1', - 1',) + C~( 71 + 72 + 73)C~( 72)e- ;"'0(1',- 1',) 

+ C2( 71 + 72)C2( 72 + 73)e- ;"'0(1', + 1',) + C~( 71 + 72)C2( 72 + 73 )e - ;"'0(1', + 1',) 

+ C
I 
(71 + 72 + 7

3
)C

I 
(7z)e- ;"'0(1', + 1',) - Cr( 71 + 72 + 73 )Cr( 7 2 )e- ;"'0(1', + 1',) 

_ C
I 
(71 + 72)C

I 
(72 + 7

3
)e - ;"'0(1', + 21'2 + 1',) - CT( 71 + 72)C

I 
(72 + 7

3
)e - ;"'0(1', + 21'2 + 1',) 

_ C
I 
(71 + 72 + 7

3
)C

I 
(7

2
)e - ;"'0(1', + 21'2 + 1',) - Cr( 71 + 72 + 7

3
)C

I 
(7

2
)e - ;"'0(1', + 21'2 + 1")}. (90) 

The preceding expression for the "up" rate constant is 
very cumbersome. As mentioned in the course of the second­
order rate-constant calculations, the spectral representa­
tions of the correlation functions are more convenient than 
the real-time functions in Eq. (90). Obtaining a tractable 
expression in terms of CI (cu) and C2 (cu) is tricky, but possi­
ble. Each of the time integrals becomes the sum of two gener­
alized functions, and products of these generalized functions 
are quite delicate. In Appendix B we derive several useful 
identities for these products. Therefore, with some care, the 
above expression can be evaluated on a term-by-term basis. 
As an illustration, the evaluation of one term of Eq. (90) is 
shown in detail in Appendix C. Once each term is evaluated 
and these results are combined and simplified, a surprisingly 
simple relation emerges: 

k \6) = (1I21T){cuo- IC2 ( - CUo) [P2 (CUO) - P2 ( - cuo)] 

where 

+ c; (- CUO)[PI(CUO) - P I ( - cuo)] + P; ( - cuo) 

X [CI (cuo) - CI ( - cuo)] - 2CI ( - cuo)P; (cuo)}, 
(91) 

A 

J"" C (CUi) 
Pi (cu) = P dcu'-: -- , 

-"" cu-cu 
(92) 

A 

A aC;(cu) 
C~(cu) =---

, acu 

ap· (cu) 
P~(cu) =-'--

, acu 
A 

J
"" I C;(cu/ ) 

=P dcu I ' 

_"" cu -cu 

(93) 

(94) 

(95) 

and where the last line comes from integrating by parts (see 
Appendix B). 

An explicit expression for k \6) in terms of Ii (cu) and T 
is obtained by substituting Eqs. (73) and (86) into the 
above. One feature that becomes immediately clear is that, 
unlike the second-order rate constants, one cannot interpret 
k \6) in terms of the absorption and/or emission of vibration­
al quanta. In particular, it is interesting to examine the low­
temperature limit of k \6)-one finds that 

1· k (4) _ 21 I (cuo) l"" d r; (cu) 1m 10 - cu. 
T -0 1T 0 cu + CUo 

(96) 

Thus the zero-temperature up rate constant is nonzero! This 
strange result must be due to the strong coupling of the TLS 
and bath degrees offreedom and the concomitant mixing of 
the nature of these states. 
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The above expression for k ~ri) can be converted by in­
spection to an expression for k 6~) by letting Wo-+ - Wo: 

k 6~) = (1/21T){Wo- lC2(WO)[P2 (wo) - P2 ( - wo)] 

A- A-

X [C1 ( - wo) - C1 (wo)] 

-2C1(wO)P, ( -wo)}· (97) 

The fourth-order population decay rate, 
(lIT I )(4) = k ~ri) + k 6~), is 

(lITI ) (4) = 0/21T) {wo- I [C2 (wo) + C2 ( - wo) HPz(wo) 

- P2 ( - wo)] - [C; (wo) - C; (- wo)] 

X [PI (wo) - PI ( - wo)] - [CI (wo) 

+ CI ( - wo)][ P; (wo) + P; ( - wo) ]}. 
(98) 

C. Confirmation of detailed balance for fourth-order 
rate constants 

Any master equation of the form of Eqs. (2) and (3) 
must obey the property of detailed balance ofEq. (6). In the 
usual derivation of the master equation, each of the rate con­
stants is second order in the perturbation, and so their quo­
tient is zeroth order, implying that this quotient is simply the 
zeroth-order equilibrium constant. When the rate constants 
are calculated to fourth order, their quotient has a term sec­
ond order in 8. To verify detailed balance, then, the equilibri­
um constant must be calculated to second order in 8 as well. 

To begin, we write 

K = _of1_1 = _T_r-'.-b [_(_I-'.-le_--:(3 __ H -'.-11_> _] = _K_II , 

ifo6 Trb [ (Ole - (3H 10> ] Koo 

where 

Trd (ile-(3Hli>] 

Tr
b

[e-(3Hb ] 

which can be expanded in 8 as 

(99) 

( 100) 

(101 ) 

Note that only even powers of 8 occur because HI is off­
diagonal in the TLS states. Writing 

K=K(O) + 82K(Z) + ... , 
we see that 

K(O) 
K(O) =_1_1 

(0) , 
Koo 

K(Z) K~)K~?) K(Z) =_1_1 ___ ----:-_ 
K~) K~)' 

(l02) 

(103) 

To calculate K ~r), a perturbation expansion of the op­
erator e - (3H is needed. To this end we write 

=e-(3H{I_ J: dJ...e-<H"Hle-A(H,,+H,». (104) 

which is a standard operator identity that is easily proven by 
multiplying both sides by ef3H" and differentiating with re­
spect to /3. Iteration of this identity gives the perturbation 
series: 

e - (3H = e - (3H,{ 1 - J: dJ... e-<H"Hle - AH" 

+ J: dJ... LA dyeAH"Hle-AH"eYH"Hle-yH" + ... ). 
(105) 

The first term of this series trivially gives 

K~)=I, K~?)=e-{j'kO", (106) 

and so that therefore 

K (0) = e- fJliw". (107) 

From the third term, a change of integration variables gives 

K~) = I1ZJ: dJ... f dTe-liw"rcl ( - iI1T), (l08) 

K~i) = 1J2e- fJliwJ: dJ... LA dTeliw"rCI ( - iI1T). (109) 

These expressions for K~), K~?), K~) and KIf), together 
with Eq. (103), yield 

K(Z) = 211Ze- fJliwJ: dJ... LA dTsinh (WoT)CI ( - iI1T). 

(10) 

Using Eq. (65) and performing the J... and T integrations, 
gives 

K(2)=___ dwCI(w) e-fJli'o" f"" A 

21T - "" 

(
e - fJIi(w - w,,) - 1 + /311(w - wo) 

X 2 
(w - wo) 

_ e-fJli(w+w,,) - 1 + /311(w + wo»). 

(w + WO)2 
(111 ) 

In order to verify detailed balance, we now need to com­
pare the expansion for K term-by-term with the expansion 
for klOlkol: 

klO = (~)(O) + 82(klO)(2) + ... , 
kOI kOI kOI 

(112) 

(k )
(0) k (2) 

10 10 

k =k(2)' 
01 01 

(
klO)(2) = _1_ (k (4) _ k (4) k I~») . 
k k (2) 10 01 k (2) 

01 01 01 

(113 ) 

First, we look at the zeroth-order term: from Eqs. 69 and 77 
we have 

(
klO)(O) = CJ.( -wo) = n(wo) =e-fJlitU". (114) 
kOI CI(WO) n(wo)+1 

Since from above, K (0) = e - fJliw", detailed balance is cor­
rectly satisfied by the second-order rate constants. Next, 
after explicitly substituting in the second-order rate con­
stants, Eq. (113) for the second-order term gives 

(
klO)(2) _ 1 (k(4)_e- fJliw"k(4» 

- " 10 01 . 
kOI C I (wo) 

(115) 

This expression is evaluated in Appendix D, where we show 
that it is exactly equal to Eq. (111) for K (2). This verifies 
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that for the master equation with rate constants calculated to 
order 0', detailed balance is satisfied. 

For later use we note that with Appendix 0, we can 
write K (2) in a more convenient form as 

K (2) = (e - fJ'''''''/2 rr) {j3ftP I (OJo) 

- 13ftPI ( - OJo) + P; ( - OJo) 

X (elM'"'' + 1) - P; (OJo)(e - fJli"'" + I)}. (116) 

From the above, we can easily take the limit T -.0, yielding 

~~ loo r' (OJ) lim K = ~ dOJ_1 
__ + 0(84 ), 

T-O rr 0 OJ+OJo 
(117) 

which is nonzero. This is of course intimately related to the 
fact that (as seen in Sec. III B) to fourth order the zero­
temperature "up" and "down" rate constants are both non­
zero. 

We also note that for the model discussed in this paper it 
is straightforward to show that for arbitrarily strong TLS­
bath coupling if'! = Trb [e - PH ]ITr[e - fJH ] is diagonal in 
the 0-1 representation, which means that this basis is always 
the most appropriate one for describing the relaxation to 
equilibrium. 

IV. DEPHASING 

In subsection A of this section we calculate the dephas­
ing rate constant, IIT2 , to second order in 8, and show that 
(l/T2 ) (2) = (1I2)(IIT1)(2), which is the usual situation. 
In subsection B we calculate the frequency shift to second 
order, AOJ(2), and we show that, somewhat surprisingly, it is 
different from the frequency shift inferred from the renor­
malized energy splitting. In subsection C we calculate the 
dephasing rate constant to fourth order in 8, and we see that 
( IIT2 ) (4) =1= (1I2) ( IITI ) (4). 

A. Dephasing rate constant to second order 

From Eq. (54) we see that 

X OI{Trb [I<t)I(t1 )Pb] 11) (01}10) }. 

(118) 

Using the definition of I(t) and carrying out the commuta­
tions yields 

(_1_)(2) = lim Re{ r dt
1 
Trb [A(t)A(tl)tPb Tz 1-00 Jo 

+PbA(tI)tA(t)]} (119) 

= Re{I" dtei<"oT[C1(7) +C1( -7)]}. 

(120) 

Finally, transforming to the spectral representation for 
CI(O lEq. (65)] gives 

(121 ) 

Comparing this to Eq. (80) shows that 

(_1 )(2) = J..- (_1 )(2) , 
T2 2 Tl 

(122) 

which is the standard relationship between population and 
phase relaxation if there is only off-diagonal coupling to the 
TLS. 

B. Second-order frequency shift 

From Eq. (55) one sees that the second-order frequency 
shift is given by 

AOJ(2) = - Im{R i6lo} (123) 

= Im{lOO d7eiU)"T[CI (7) + C1( -7)]}. (124) 

Using Eqs. (67), (68), and (92) gives 

AOJ(2) = (1I2rr)[PI ( - OJo) - PI (OJo)]' (125) 

It is interesting to compare this to the frequency shift 
inferred from the renormalized energy splitting. That is, for 
an isolated TLS, the off-diagonal density-matrix element os­
cillates with a frequency determined by the TLS energy split­
ting. For a TLS coupled to a bath, our intuition tells us that 
the reduced off-diagonal density-matrix element should os­
cillate with a frequency determined by the renormalized en­
ergy difference of the two levels, which can be defined by 

K==e-fJ!i"'. (126) 

Further defining 

Ali) = li) - OJo = 82t::.,li)(2) + 84t::.,li)(4) + "', (127) 

then from Eqs. (102) and (126) we have 

(128) 

From Eqs. (116) and (125), we see that surprisingly, 
t::.,(;j(2) =1= AOJ(2) from above, and defining the difference 
AOJ,(2) == A(;j(2) - AOJ(2), we have 

AOJ'(2) = (1I2rr13ft){P; (OJo)(e - fJ!i'"'' + 1) 

- P; ( - OJo)(ef1liw
" + I)}. (129) 

c. Dephasing rate constant to fourth order 

The fourth-order dephasing rate constant, (lIT2 ) (4), is 
obtained from 

(IIT2 )(4) = - Re{R \cilo}. (130) 

Anticipating the result that (IIT2 ) (4) =1= (1I2) (IITI ) (4), we 
define what has traditionally been called the pure-dephasing 
rate constant, liT;, by 

T; = T2 - 2Tl ' 
( 131) 

which can be expanded in powers of 8. As seen in part A of 
this section, (1/T ~ ) (2) = O. To fourth order we can write 

J. Chem. Phys., Vol. 94, No.6, 15 March 1991 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 18:59:58



4400 Laird, Budimir, and Skinner: Derivation of the Bloch equations 

R (4) + R (4) 

R {R (4) } + 0000 1111 - e 1010 
2 

( 132) 

Following the laborious procedure outlined in Sec. III B, 

I 

one can show that 

(;J (4) =/(wo) + /( - wo), 

where 

( 133) 

/(Wo) = 21'''' d71L'" d72L" d73Re{Cr( 71 + 72 + 73)C2( 72)e - i<",,(T, - T,) + Cr( 71 + 72 + 73 )Cr( 72)e - ;W,,(T, - T,) 

+ Cr (71 + 72)C2( 72 + 73)e - ;W,,(T, + T,) - Cr( 71 + 72 + 73)Crc 72)e - ;W,,(T, + T,) 

One sees, felicitously, that the above involves only terms that 
have already been calculated in Eq. (90). The resulting 
expression for (lIT; )(4) is 

(135) 

This expression will be evaluated for a specific model in the 
following paper. 29 

v. CONNECTION TO THE STOCHASTIC MODEL 
RESULTS OF BUDIMIR AND SKINNER 

The above calculation is a generalization of the fourth­
order derivation by Budimir and Skinner (BS) of the Bloch 
equations for a TLS under the influence of stochastic fluctu­
ations. l

? The completely quantum mechanical model dis­
cussed in the present paper, when viewed in the interaction 
representation, is in fact very similar to the stochastic model. 

(134) 

The Heisenberg operator AU) in the quantum-mechanical 
model becomes a random variable in the stochastic model. 
Similarly, the quantum-mechanical correlation functions 
C I (t) and C2(t) (both involving traces over the bath states) 
become statistical correlation functions. Furthermore, for 
the specific model of linear coupling to harmonic oscillators 
discussed above, Wick's theorem for the factorization of 
four-point functions is identical to the factorization of four­
point statistical correlation functions of Gaussian random 
variables. The difference in the calculations involves the 
noncommutivity of quantum operators versus the commuti­
vity of stochastic variables, which is intimately related to the 
existence or lack of detailed balance. 

While this analogy between the two models will be de­
veloped at more length in the following paper,29 here we 
simply want to point out some general connections between 
the two derivations. In particular, one can recover some re­
sults of the stochastic model by supposing that C I (t) and 
C2 U) are both real and even. [For example, from Eq. (70) 
we see that this occurs in the high-temperature limit, when 
n(wk) > 1, meaning that Trb [PbAtU)A(t')] 
:::::Trb [PbA(t ')At(t)], or that At(t) and A(t') commute.] 
From Eqs. (63) and (90) this gives 

klO = 2821'''' d7 Re{e - ;w"TCI (7)} - 484100 d711°O d721°O d73Re{C2( 71 + 72 + 73)C2( 7 2)e - ;W,,(T, - T,) 

+ C2( 71 + 72)C2( 72 + 73)e - ;",,,(T, + T,) - C
I 
(71 + 72)C

I 
(72 + 73)e - ;W,,(T, + 2T, + T,) 

- C
I 
(71 + 72 + 73)CI (72)e - ;",,,(T, + 2T, + T,)} + 0(0<'). ( 136) 

In the present derivation we assumed that A(t) satisfies 
Eq. (88), which is equivalent to the assumption of the sto­
chastic model l

? that 

(A*(t)A*(O» = (AU)A(O». 

Identifying 

CI(t) = (A*(t)A(O», 

C2 (t) = (A(t)A(O», 

(137) 

(138) 

(139) 

setting 8 = 1 in the above to be consistent with the usage in 

BS, and taking 6. in BS to be 0 (since in the present treatment 
we only consider off-diagonal perturbations), we obtain 
complete agreement between Eq. (136) above and Eqs. 
(39), (44), and (47) ofBS.17 

Therefore, some general stochastic-model results for 
lITI and liT;, not presented in B~ can be ob.1.ained from 
the present work simply by taking Cl(w) and C2 (w) to be 
even (which follows from the assumptions that C I (t) and 
C2 (t) are real and even). From Eqs. (80), (98), and (135) 
this gives 
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A A 

- C; (wo)p.(wo) - C.(wo)P; (wo)} + 0(06 ), 

(140) 

_1_= tr pIco dw (w-!- [C.(W)2] 
Ti 1T - co w2 

- w~ aw 

- C2(W)2) + 0(tj6). (141) 

In Appendix E, we evaluate these expressions for the two 
models considered in BS, finding complete agreement with 
the results therein. 

VI. RELATION TO THE "SPIN-BOSON" PROBLEM 

The coupling of two quantum levels to a collection of 
quantum-mechanical harmonic oscillators has been studied 
quite extensively in a somewhat different context. If one con­
siders the tunneling of a particle through the barrier of a 
bistable symmetric potential, at low temperatures one can 
write the Hamiltonian for the isolated tunneling particle in 
terms of the zeroth-order states localized in the left and right 
wells as 

Ho = - (lia/2) (II) (rl + Ir) (II), (142) 

where a is the tunneling frequency. To study dissipative tun­
neling, the system is then coupled to a bath of harmonic 
oscillators 

Hb = L (p~ + mkw~q~ ), 
k 2mk 2 

(143) 

with an interaction Hamiltonian of the form 

(144) 

where qo and the Ck are coupling parameters. The total 
Hamiltonian can then be written in terms of the Pauli matri­
ces in the right-left basis as 

(145) 

which is known as the "spin-boson" Hamiltonian. The static 
and dynamic properties of this Hamiltonian have been stud­
ied extensively, and two excellent and comprehensive re­
views have recently appeared. 27

•
28 

The right and left localized states are in fact defined 
quite naturally as the "plus" and "minus" linear combina­
tions of the two lowest eigenstates, 10) and 11), of the double 
well potential: 

Ir) = (1/-12)(10) + 11», 

II) = (lI-12)(IO) -11». 

(146) 

(147) 

Inverting the above transformation we can then write our 
Hamiltonian in the right-left basis as (neglecting an additive 
constant) 

Thus we can see that if we take the coupling constants hk in 
Eq. (14) to be real so that A is Hermitian, and if we identify 
Wo = a and ohk (2mkWk) 1/2 = qoCk/2, we recover Eq. 
(145) above. 

Before we make a few specific comparisons with the 
spin-boson literature, several general remarks are in order. 
In the tunneling problem, one is particularly interested in the 
dynamics of tunneling between left and right wells, which 
involves the expectation value Pz (t) == (O'z), and one is less 
concerned with the quantities Px (t) and Py (t). Further­
more, one is interested in the full range of system-bath cou­
pling strengths (which necessitates finding approximate so­
lutions to the problem )-indeed, the most interesting results 
occur for strong coupling. On the other hand, in our problem 
we are equally interested (in the spin-boson language) in 
P x (t), Py (t), and Pz (t), since (especially in the following 
paper9) we want to compare T. to T2• In fact, we find that 
the most interesting result of T2 > 2T. is obtained only when 
A i= At, which is not treated in the spin-boson literature. Fin­
ally, although the range of validity of our perturbative ex­
pressions is limited, the calculation to fourth order is exact. 

To make a specific comparison between the two prob­
lems, let us consider the case where the hk are real, so that 
r.(w) = r 2 (w)==T(w), and first discuss the weak-cou­
pling limit. In this case we saw that the coupling terms in 
Eqs. (46) and (47) could be ignored, leading to the Bloch 
Eqs. (2)-(5), where the weak-coupling expressions for the 
rate constants have been obtained herein, and we will neglect 
aw in comparison with Wo' These Bloch equations lead to the 
following expressions for Pi (t) == (Ui ) = Tr[ u(t)ui ]: 

Px (t) = - (liT. )(Px (t) - P~q), 

Py(t) =woPz(t) - (lIT2 )Py (t), 

Pz(t) = -woPy(t) - (1IT2 )Pz (t), 

(149) 

(150) 

(151) 

where Pe,( = tanh(,Bwo/2) and liT! = 2!T2 
= 202r(wo)coth(,Bwo/2). Eliminating Py from Eqs. 
(150) and (151) and neglecting lITz compared to Wo 

(which is consistent with the weak-coupling limit), yields 

(152) 

the equation for a damped harmonic oscillator, in agreement 
with Leggett et al.27 and Silbey and Harris. z8 [Note that 
Leggett's definition of T2 differs from ours by a factor of 2, 
and that his spectral density J(w) is related to our r(w) by 
q'6J(w) = 402-1ir(w).] 

One of the interesting features ofthe spin-boson analysis 
is the renormalization of the tunneling frequency, especially 
at zero temperature. In our language this renormalized fre­
quency is w = Wo + aw, where aw is given by Eq. (55). To 
lowest order we have 

(153) 

J. Chern. Phys., Vol. 94, No.6, 15 March 1991 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.237.46.100 On: Tue, 16 Sep 2014 18:59:58



4402 Laird, Budimir, and Skinner: Derivation of the Bloch equations 

where auP) is defined in Eq. (125). Taking the limit T-O 
we find that 

lim UJ = UJo(1 _ 2/P p r"" dUJ r(UJ) ) + 0(84 ). 

T-O 11' Jo UJ2 - UJ~ 
(154) 

This is identical to the first term in the expansion of the 
Franck-Condon factor of Leggett et al. 27 [see their Eq. 
(3.23) ] except for the presence of UJ~ in our denominator. It 
is also very similar to the first term in the expansion of the 
self-consistent Eq. (l06b) of Silbey and Harris.28 [In that 
work the spectral density J(UJ) is related to our r(UJ) by 
J(UJ) = 282r(UJ )/11', and their tunneling frequency 28 is our 
UJo.] Leggett et al. and Silbey and Harris are particularly 
interested in determining the coupling at which the renor­
malized tunneling frequency vanishes at zero temperature, 
which signifies the localization of the particle in one well or 
the other. With our perturbative treatment we cannot accu­
rately address this issue. Nonetheless, since our expression is 
exact to second order (and without too much trouble one 
could find the fourth-order correction), this might suggest 
ways to improve the approximate treatments of Leggett et af. 
and Silbey and Harris. 

VII. CONCLUSION 

This work demonstrates, we believe for the first time, 
that from a completely quantum mechanical Hamiltonian it 
is possible to derive a master equation, or more generally, 
Bloch equations, where the relaxation-rate constants are cal­
culated to fourth order in the system/bath coupling. The 
rate constants in the master equation provide, for this specif­
ic model, an extension of Fermi's Golden Rule to fourth 
order. We show explicitly that these fourth-order rate con­
stants obey detailed balance. 

Some surprises come out of this work, which, based on 
our familiarity with the usual weak coupling results, are 
quite unintuitive. First, unlike the weak-coupling results, the 
master equation rate constants in fourth order cannot be 
interpreted in terms of the emission and/or absorption of 
vibrational quanta. Furthermore, at T = 0, the "up" rate 
constant and the equilibrium constant are both nonzero. 
Second, the frequency shift obtained from the equations of 
motion for the off-diagonal density-matrix element does not 
agree with that inferred from the renormalized energy split­
ting, as defined by the equilibrium constant. Finally, we find 
that in fourth order l/T2 7"' 1/2Tl> which is contrary to the 
expected result from both second-order calculations and our 
accumulated intuition. 

In the following paper29 we show, for a specific, physi­
cally reasonable model of the bath and its coupling to the 
system, that in fact sometimes T2> 2 T" which demonstrates 
that this result, originally derived from a stochastic model, 17 

holds at finite temperatures as well. 
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APPENDIX A 

In this appendix, the effect of the R lOo , term on the de­
phasing rate and frequency shift is analyzed. Equations (46) 
and (47) give the following system of coupled linear differ­
ential equations: 

[~IO(t)] = [ - iUJo: RIOlO . R 1001* ] [alO(t)]. 
aO! (t) R 1001 lUJo + R 1010 aOI (t) 

(Al) 

The damping constants and frequencies of this system are 
the eigenvalues of the above matrix. These are determined by 
solving the secular equation: 

( - iUJo + RIOlO - A.) UUJo + R Tow - A.) - IR I001 1
2 = o. 

(A2) 

The solution to this equation is 

A. ± = Re{R IOIO} ± i(UJo - Im{R 101O}) 

x 1 _ IR lOOl 1
2 

(UJo - Im{R lOlO })2 
(A3) 

For IR 10011..; (UJo - Im{R IOIO})' the argument of the square­
root is positive; therefore, the real part of A. is the same for 
both eigenvalues, and its negative can be identified as the 
dephasing rate lIT2 : 

lIT2 = - Re{R lOlO}. (A4) 
Thus, the dephasing rate is unaffected by the coupling pa­
rameter R 1001' 

The natural frequency of the system is given by the 
imaginary part of A. ± : 

1- IRIootl
2 

(UJo - Im{R IOIO})2 
(AS) 

Expanding this in powers of 8, with aUJ=UJ - UJo, gives 

aUJ = - 82 Im{R g~o} 

( IR (2) 12) 
<'4 I {R (4) } + 1001 + ... 

- o· m 1010 2 ' 
UJo 

(A6) 

which shows that the frequency is not affected by the cou­
pling R 1001 until fourth order in the perturbation. 

APPENDIX B 

An integral that appears many times in the course of this 
work is 

l"'" I 
Sex) = dte-lXIe- Et = __ ._. 

o E+ lX 

Taking real and imaginary parts yields 

Sex) = 1T~ (x) - i9 (x), 

where 

~ (x) = d1T(~ + x 2
), 

9 (x) = x/(~ + x 2
). 

Of course 

lim ~ (x) = 8(x), ._0 

(Bl) 

(B2) 

(B3) 

CB4) 

CBS) 
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~i~ f~ ~ dxl(x) 9 (x) = P f~ ~ dXLC;) , (B6) 

which are the Dirac delta function and Cauchy principal 
value, respectively. Indeed, the above is so well known it 
hardly seems worth belaboring. 

The problem arises with products of these generalized 
functions, which must be treated with some care. For exam­
ple, 

S(X)2 = (_1_._)2 = i~(_I_._) = is' (x) (B7) 
E+ IX ax E+ IX 

= irrIi"(x) + 9'(x). (B8) 

Comparing this to the square ofEq. (B2) yields the identi­
ties 

~g(X)2 - 9(X)2 = 9'(x), 

9(x)9(x) = -!9'(x). 

Next considering 

S(x)S( - x) = lI(e + x2) = 9 (x)/x, 

and using Eq. (B2) immediately yields 

~fi'(X)2+ 9(X)2= &>(x)/x. 

(B9) 

(BlO) 

(Bl1 ) 

(B12) 

Eqs. (B9) and (BlO) then lead to the further identities 

29(x)2= &>(x) _ 9'(x) = _x~(&>(X»), 
x dx x 

(BI3) 

2~9(x)2 = 9'(x) + 9 (x)/x. (B14) 

Integration by parts makes quick work of the derivatives of 
these generalized functions: 

~~ f~ oc dxl(x)9'(x) = - ~~ J~ 00 dxIi' (x)f'(x) 

- I' (0), (B15) 

~i~f~oo dxl(x)9'(x) = -~i~f~", dx9(x)/'(x) 

= - pJ'" dxf"-'(x). (BI6) 
- 00 x 

We will also make use of 

~i~ f~oo dx 9 (X)2[f(X) - 1(0)] = o. (B17) 

APPENDIXC 

Consider the seventh term ofEq. (90): 

17 = 2Re{1"" d7"ll"" d7"21"" d7"3 C1 (7"1 + 7"2) 

XCI (7"2 + 7"3)e- i"'u(r, + 2r, + r,)}. (Cl) 

First we write C1 (t) in terms of its Fourier transform using 
Eq. (65) 

(C2) 

Using the definition of Sex) in Appendix B this becomes 

1 {J"" A 17 = lim --:=2 Re d{J) C j ((J) 
,,-02rr - '" 

X f: 00 d{J)' C\ ((J)')S({J) + (J)o) 

XS(O)' + O)o)S(O) + 0)' + 20)0)}' (C3) 

Substituting in Eq. (B2) from Appendix B for 
S({J) + (J)' + 2{J)0) yields 

. 1 {J'" A A 17 = hm - Re dO) C\ (0) C1 ( - (J) - 20)0) 
E-O 2rr - 00 

XS({J) + {J)o)S( - (J) - (J)o) } 

1 J"" A J'" A - lim - d{J) C1 ((J) d{J)' C1 ({J)') 
E-O rr - "" - 00 

X 9 ({J) + (J)o) &> ({J)' + (J)o) &> ((J) + (J)' + 2{J)0)' 
(C4) 

With Eq. (BI1) this gives 

17 = lim _1_ Jeo d{J) C\ ({J) C
1 

( _ (J) _ 2{J)0) &> (0) + 0)0) 
E-O 2rr _ '" 0) + 0)0 

1 A f"" A - ~i~ -;; C1 ( - 0)0) _ "" d{J) C1 ({J) 9 ({J) + (J)0)2. 

(C5) 

Finally, using Eqs. (B13) and (B16) gives 
A A A 

17 = _1_ pJ"" dO) C1 ({J) [C\ ( - (J) - 2{J)0) - C1 ( - (J)o)] 
2rr _ '" ({J) + {J)0)2 

(C6) 

where P; ((J) is defined in Eq. (95). 
The other terms of Eq. (90) are evaluated in a similar, 

although not identical, fashion. 

APPENDIX D 

Using the fact that 

n({J) + 1 = - n( - (J) = ei'fi"'n({J), 

one can easily show from Eqs. (73) and (86) that 

C; ( - (J) = e - {3fiU)C; ((J), 

from which follows [see Eqs. (91), (97), and (115)] 

(Dl) 

(D2) 

(klOlkol ) (2) = A + B, (D3) 

A = [1I2rrC\ ({J)o) ] {C; ( - (J)o) + e - {3fi'u"c; ({J)o)} 

X{p\({J)o) - P I ( - (J)o)}, (D4) 

B = (e - (3fi,u"/2rr) {P; ( - (J)o)(ei'fi'u" + 1) 

-P;(cuo)(e-{3fi,",,+ I)}. (D5) 
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A-

From the definition ofCI(cu) [Eq. (73)] and Eq. (01) 
above, it is straightforward to show that 

/3fze-
fJliw

" f'" A (1 1) A= P dcuCl(cu) -- - -- . 
21T -'" cu-cuo cu+cuo 

(06) 

Next, using the fact that [see Eq. (94) and Appendix B] 

J
'" A 

P;(cuo) = - _'" dcuCl(cu)&"(cu-cuo), (07) 

and Eqs. (B14) and (BI7), gives 

B= e-
fJliw

" J'" dcu(\(cu)(~w,,+ 1) &'(cu+cuo) 
21T - '" cu + CUo 

_ (e- PIIw" + 1) &' (cu - cuo») . (D8) 
cu - CUo 

Finally, with Eq. (02) above, this can be written 

e- f3"w" f'" A-B=--P dcu CI(CU) 
21T - '" 

x(e-PII(W-W,,) - 1 _ e-PII(w+w,,) - 1). (D9) 

(cu - CUO)2 (cu + CUO)2 

When A and B are added together, the principal value is no 
longer necessary, and one obtains Eq. (111). 

APPENDIX E 

Here we show how to reproduce the results ofBS I
? from 

the general stochastic-model expressions of Eqs. (140) and 
( 141 ). First considering the case discussed in Sec. 3.2 of BS, 
where A (t) is real, and 

CI(CU) =C2(cu) =UA2/(A2 +CU2), (E1) 

the principal value in PI (cuo) (used in the calculation of 
lITI ) is evaluated by considering the contour that proceeds 
along the real axis with an infinitesimal semicircle (above 
the real axis) around the pole at CUO' and closed in the upper 
half plane. Since the contribution to the contour integral 
from the pole at CUo is imaginary, the principal value is simply 
the real part of the contour integral, yielding 

Pl(CUO) = -21TA2cuo/(A
2 +cu6)· (E2) 

Setting /) = I in Eq. (140) we then obtain complete agree­
ment with Eq. (56) of BS. For liT ~, the principal value is 
evaluated with the same contour except now there are two 
infinitesimal semicircles above the real axis going around the 

poles at ± cuo. A messy evaluation (because of the triple pole 
atiA.) of this contour integral leads to Eq. (60) of BS. 

For the spin-lI2 particle in a fluctuating magnetic field 
considered in Sec. 3.3 of BS we take 

A-

CI (cu) = A.cu;/(A. 2 + cu2
), (E3) 

A 

and C2 (cu) = O. A similar evaluation of the principal-value 
integrals leads to complete agreement with Eqs. (81) and 
(83) ofBS. 
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