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The evaluation of the entropy of a liquid has wide 
applications in protein folding, I micelle formation, 2 mem­
brane studies/ the hydrophobic effect,3 ion solvation,4 and 
other studies of solutions,5-9 but remains a difficult prob­
lem, both for computational and analytic statistical me­
chanics. In this paper we evaluate the nonideal contribu­
tion to the entropy of mixing for a simple binary liquid, 
using an extension of simple, closed-form equations for 
single-component liquids. 

In a recent paper,IO we investigated three approximate 
expressions for the total entropy of a single-component 
fluid in terms of the pair correlation function, g(r). For the 
six liquids studied, the calculated entropy was within 10% 
of the simulation value over almost the entire fluid density 
range. In light of this success, we examine in this commu­
nication two of these approximations for the binary hard­
sphere mixture. We show that the approximation for the 
entropy obtained from the incompressible limit remains 
accurate and useful. 

For a single-component system in the canonical ensem­
ble, an expansion for the entropy in terms of multiparticle 
correlation functions was derived by Green. II Later, Net­
tleton and Green l2 and Raveche13 determined the corre­
sponding expression (or the grand canonical ensemble. 
That the two expressions differ ensures that they yield the 
same results in the thermodynamic limit (that is, in spite of 
the difference in asymptotic behavior of the mutliparticle 
correlation functions between the two ensembles). In the 
grand canonical ensemble, the correlations approach unity 
at large particle separation, but those of the canonical en­
semble approach a value that differs from unity by a factor 
proportional to the isothermal compressibility and in­
versely proportional to the number of particles. 14 Through 
a clever rearrangement of terms, Baranyai and Evansl5 

showed that the grand canonical expression is, in fact, an 
ensemble invariant one, namely, it yields the same result 
whether canonical or grand canonical correlation functions 
are used. 

The generalization of the grand canonical (and thus 
ensemble invariant) entropy expansion to mixtures was 
obtained by Hernando. 16 For a multicomponent system at 
temperature T, occupying a volume V, with an average 
total number of particles N, the entropy may be written 

(1) 

(2) 

S(2)=_~ L xaX{3f dr[g~~(r)lng~~(r) -g~(r) +1], 
a{3 v 

(3) 

+3g~~(ra{3)gW(r{3r) -3gi7j(ra{3) + 1], (4) 

where k is the Boltzmann constant, a, /3, and r index 
particle species, the number density p=NIV, and Xa, va' 
and Aa are the mole fraction, number of degrees of free­
dom, and thermal wavelength of component a, respec­
tively. 

In liquid phase statistical mechanics, usually only the 
pair correlation functions are known. To be of practical 
use, the entropy expression [Eqs. (1 )-(5)] is usually trun­
cated after the second-order term, yielding the following 
approximate expression for the reduced excess entropy per 
particle 

_ S-Sideal (2) 
S= Nk -::::.S , 

sC2)= -~2,xaX{3f dr[g~(r)lng~~(r) -g~(r) + 1]. 
2 a,{3 v 

(5) 

Note that the ideal entropy which has been subtracted in 
Eq. (5) is for an ideal mixture and hence includes the ideal 
entropy of mixing. 

The ensemble invariant expression for the entropy of a 
fluid mixture [(Eqs. (1)-(4)] contains terms of two types. 
The first type involves integrals over expressions of the 
form g(n) In("')' Hernandol6 has shown that these terms 
vanish for n>3 within the generalized superposition ap­
proximation (GSA) .17 Since this approximation is accu­
rate for low to medium densities, any error in the entropy 
calculated using S(2) in this density region must result from 
the omission of the remainder terms for n>3. 

For densities high enough that the fluid is relatively 
incompressible, it is possible to approximate the remainder 
terms in a very simple way. In the limit that density fluc­
tuations are small (that is, the compressibility is small), 
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the difference between the grand canonical correlation 
functions and those of the canonical ensemble approaches 
zero. This correspondence between the two ensembles in 
the "incompressible limit" has been discussed extensively 
by Wallace. 18 Since the sum of all the higher-order remain­
der terms [those not of the form g(n) InC···)] for n;;;.3 is 
exactly -t within the canonical ensemble,15 the grand ca­
nonical entropy should approach 

(6) 

in the incompressible limit, provided the density is still low 
enough that the GSA is valid. The above "incompressible 
limit" expression was derived for the single-component 
case, but holds for a multicomponent fluid as well, because 
the sum of all the remainder terms evaluated using canon­
ical correlation functions must exactly compensate for the 
difference between the ideal (s(O» parts of the grand ca­
nonical and canonical entropy expansions,14 which is the 
same for both single- and multicomponent fluids. 

We now evaluate the above two approximations for the 
entropy, S(2) and inc, for mixtures of hard spheres, at var­
ious densities and compositions. The results are compared 
with a relatively accurate empirical fit to the known exact 
entropy, and hence the region of validity of the two ap­
proximations is mapped out. 

A mixture of hard spheres with additive diameters is 
defined by the following pairwise-additive potential energy, 
between a particle of type a with diameter a a and a particle 
of type {3 with diameter a p 

(7) 

where aafJ= (aa+ap)/2. Such a potential is a useful first 
choice to test the various entropy expressions for mixtures. 
The excess Helmholtz free energy is purely entropic, and 
furthermore good, approximate, closed form expressions 
exist for the structural and thermodynamic properties, 
greatly simplifying the numerical evaluations. 

Another advantage of the hard-sphere mixture is that 
for a fluid with fixed diameters and mole fractions, the 
excess entropy is a function of the total density alone: The 
temperature plays no role because there is no explicit en­
ergy scale. Instead of using the total density, the results 
will be presented below as a function of the total packing 
fraction 

1/= 1rp LXao!' 
6 a 

(8) 

which, for a binary mixture with diameter ratio al/a2=d, 
and mole fractions Xl and X2=(1-XI), may be written 

(9) 

(In what follows we assume without loss of generality that 
a2>al' namely, O.;;;d.;;;1.) This packing fraction is the frac­
tion of the total volume occupied by the spheres. 

To evaluate S(2) for a specific hard-sphere mixture, it is 
necessary to have a good approximation to the pair corre-
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FIG. 1. Excess entropy for a binary hard-sphere fluid with diameter ratio, 
d=0.8 for large-sphere mole fractions x2=0.2 (lower curves), 0.5 (mid­
dle curves), and 0.8 (upper curves)-the middle and upper sets of curves 
are shifted by 2 and 4, respectively. The circles give s(2), the triangles 
show the incompressible limit, sC 2

) -1/2 and the solid lines show the 
modified Mansoori fit (Ref. 22). 

lation functions, gafJ(r). For these functions, we use the 
Percus-Yevick approximation. 19 For an additive hard 
sphere mixture, a closed-form analytic solution to this ap­
proximation was obtained by Lebowitz.2o This approxima­
tion is generally very good for hard-core potentials at den­
sities not too close to freezing. 

Our results will be tested below against an accurate 
equation of state, which yields the entropy determined by 
computer simulations. We use a modified version of the 
Mansoori21 equation of state due to Kranendonk and Fren­
ke1.22 This function accurately reproduces the simulation 
data over most of the fluid parameter space. 

We have calculated both i 2) and i nc =S(2) -t as a 
function of the total packing fraction, 1/ for a variety of 
diameter ratios and mole fractions. These quantities, to­
gether with the "exact" value from the modified Mansoori 
fit, are plotted in Fig. I for a diameter ratio, d=al/a2=0.8 
and three different large sphere mole fractions: x2=0.2 
(lower curve), x2=0.5 (middle curve), and x2=0.8 (up­
per curve). The three curves are very similar. This results 
because, for diameter ratios not too different from unity 
(nearly equal sized spheres), the entropy as a function of 
total packing fraction is very nearly independent of the 
concentration ratios. As for single-component liquids 10 the 
incompressible limit approximation is very good for inter­
mediate packing fractions between about 0.3 and 0.45, but 
poor at low densities where the fluid is quite compressible. 
At low packing fractions (below about 0.2) the simple 
second-order truncation S(2) yields a fine approximation to 
the "exact" entropy. Interestingly, i 2

) again becomes very 
nearly exact just above a packing fraction of 0.5. This phe­
nomena is also observed for single-component fluids, and it 
has been shown to result from a fortuitous cancellation of 
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FIG. 2. Same as Fig. I, except for diameter ratio, d= 1/2. 

the higher-order g(It) In( - --) terms (n>3)_23 

0.6 

As the diameter ratio decreases (that is, as the sphere 
diameters becomes more asymmetric), the entropy as a 
function of the total packing fraction becomes more 
strongly dependent upon the mole fraction_ In Figs. 2 and 
3, the two approximations and the simulation result are 
plotted for diameter ratios d= 1/2 and 1/3, respectively. 
At these two diameter ratios, the behavior is similar to 
d=O_8. One obvious difference is that for the more asym­
metric cases, the region of validity of S<2) at low packing 
fraction increases as the fraction of the small spheres in­
creases. In addition, the region of validity of the "incom­
pressible limit" shifts to slightly higher packing fractions. 
These phenomena become more pronounced as the asym-
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FIG. 3. Same as Fig. I, except for diameter ratio, d= 1/3. The squares on 
the middle curve are the results of Monte Carlo simulation (Ref. 21). 

metty becomes larger. Based on the results of computer 
simulation of phase coexistence in hard-sphere mixtures, 24 

these trends are likely to be correlated with an increase in 
the liquid packing fraction at freezing, 'TJf as the fraction of 
smaller spheres becomes larger. Additional information 
can be gained from plotting25 the entropy of the various 
mixtures as a function of the ratio 'TJ/'TJf. 

~he summary, the qualitative behavior and quantita­
tive accuracy of the entropy expansions for mixtures of 
hard spheres has been shown to be similar to those of the 
single component case. In particular, the incompressible 
limit is a valuable, approximate expression for the entropy 
of dense liquids_ Although further study is warranted, it is 
clear that these results give support to the use of such 
methods in the analysis of more complicated systems, such 
as aqueous solutions,26 where entropic effects play an im­
portant role, but for which thermodynamic data is difficult 
to obtain. 
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