
Weighted-density-functional theory calculation of elastic constants 
for face-centered-cubic and body-centered-cubic hard-sphere crystals 

Brian B. Laird 
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 

(Received 30 March 1992; accepted 27 April 1992) 

The isothermal elastic constants for the face-centered-cubic (fcc) and body-centered-cubic 
(bcc) hard-sphere crystal are calculated for a range of densities using the modified weighted
density functional of Denton and Ashcroft [Phys. Rev. A 39,4701 (1989)]. The fcc elastic 
constants are shown to be in excellent agreement with the computer simulation data and to 
represent a significant improvement over the predictions of other density-functional methods. 
The bec crystal is predicted correctly to be unstable to shear, in agreement with simulation. 
This fact supports the conclusion that the bcc hard-sphere solid, even though mechanically 
unstable, is well described by such methods. 

I. INTRODUCTION 

The calculation of the elastic constants of hard-sphere 
solids using various forms of density-functional theory has 
been the subject of several recent papers. I

-
5 Such calcula

tions are much more sensitive measures of the accuracy of a 
particular density-functional technique than the determina
tion of the solid-liquid freezing point. Although varying in 
absolute accuracy relative to the computer-simulation re
sults,6 most proposed versions of density-functional theory 
give at least qualitatively reasonable results when applied to 
the hard-sphere (face-centered-cubic) solid to fluid transi
tion,7-14 whereas the results of calculations for the elastic 
constants involving the same set of theories differ dramati
cally. This sensitivity is expected because evaluation of elas
tic constants involves the determination of the second de
rivatives of the Helmholtz free energy, a procedure that 
tends to magnify the shortcomings of any theory. 

Two early calculations2-3 generated some controversy 
because they predicted a negative Poisson ratio for the hard
sphere face-centered-cubic fcc crystal. This result implies 
the somewhat counterintuitive situation that when a uniax
ial compression is applied along one Cartesian direction, the 
crystal responds by contracting along the other two axes. 
Both of these calculations were based on aversion 7,15 of den
sity-functional theory in which the free energy of the inho
mogeneous phase (solid) is given by a second-order expan
sion about a reference phase, in this case, the coexisting 
liquid. Later computer simulations 16,17 put the matter to rest 
by showing that this conclusion was false and the Poisson 
ratio was indeed positive at densities at which the crystal is 
thermodynamically stable. 

Two later density-functional calculations gave more 
promising results. The first, by Velasco and Tarazona,4 was 
based on an early version of weighted-density-functional 
theory. The second by Baus and XUII used the so-called ef
fective liquid approximation (ELA), which is similar in 
form to the earlier "second-order" theories, but the density 
of the fluid whose properties are used to construct the free
energy functional for the solid phase is chosen rather arbi
trarily so that the position of the first peak in the fluid struc
ture factor S(k) corresponds to the first reciprocal lattice 

vector of the crystal under study. Both studies, which are 
designed to include higher-order terms in the functional ex
pansion in an implicit and ad hoc manner, give qualitatively 
reasonable results for the fcc elastic constants. 

Building on the work of Tarazona,8 Curtin and Ash
crofeo developed the so-called weighted-density approxima
tion (WDA). In this theory, the free-energy functional is 
constructed in such a way that the first two functional de
rivatives with respect to the density yield the correct result in 
the homogeneous (liquid) limit. Because of these con
straints, the WDA can be considered to have a firmer theo
retical basis than earlier nonperturbative theories. Later, 
Denton and Ashcroft 13 developed a related, but simpler ap
proach known as the modified weighted-density approxima
tion (MWDA). The MWDA is easier to use than the WDA 
and, at least for freezing, provides the same level of accuracy. 
Based on its simplicity and good results for hard spheres and 
other systems, the MWDA is the most useful density-func
tional theory currently available. 

In this paper, the MWDA is used to calculate the elastic 
constants for the fcc hard-sphere crystal. Given the pre
viously mentioned sensitivity of the elastic constant on the 
density-functional method used, this should be a critical test 
of this theory. When compared to the simulation data, the 
results of this calculation are very good and are superior to 
those of previous calculations. 

In addition to the fcc hard-sphere crystal, the elastic 
constants for the body-centered-cubic (bcc) crystal are also 
calculated. While it is well known that the bcc hard-sphere 
crystal is mechanically unstable to shear fluctuations, Curtin 
and Rungel8 have shown that the WDA gives reasonable 
free energies for the bcc hard-sphere solid if the free-energy 
minimization only includes uniform expansions or contrac
tions of the lattice, thereby excluding a priori the shear dis
tortions that would show the instability. This hard-sphere 
bcc phase, although unstable, is of interest because neither 
the WDA nor the MWDA give bcc solutions for systems 
such as the inverse sixth-power potential,19 for which simu
lations20 show that such a structure is both mechanically and 
thermodynamically stable along the freezing line. Given this 
failure of these (and all earlier) density-functional theories 
for non-close-packed crystals of relatively long-ranged po-
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tentials, the hard-sphere bcc phase, if described correctly, 
could give a starting point for a possible perturbation ap
proach. 

As the elastic constants measure the curvature of the 
free-energy surface about a given structure, their calculation 
for the bcc hard-sphere crystal will show whether this phase 
is mechanically stable or unstable. Since it is known that this 
structure is unstable in reality, the correct prediction of this 
by the MWDA will indicate that this approach describes the 
free-energy surface at least qualitatively. To this end, it is 
promising that the present calculations of the bcc hard
sphere elastic constants show that the MWDA does predict 
correctly the instability of this crystal. 

II. ELASTIC CONSTANTS 

The elastic constants of a system measure the thermody
namic response of the system to an externally induced distor
tion that is both uniform and small. Such a distortion or 
"strain" can be represented by a linear point transformation 

R; = 1/ + uijlj, (1) 

where rO and r are the initial and post-distortion coordinate 
vectors, respectively, of any point in the system, and uij is 
called the displacement gradient. 

The symmetric Lagrangian (or "finite") strain tensor 1] 

is defined as 

nij = !(uij + uj ; + Uk;Uk), (2) 

where here and in what follows, the Einstein summation 
convention, whereby repeated indices are summed over, is 
assumed. It can be shown readily that this strain tensor, so 
defined, governs the change, due to the distortion, in the 
distance between two artibrary points in the system. Since 
the internal energy is dependent only on the relative posi
tions of the particles that make up the system, any change in 
the thermodynamic state of the system can be described as a 
function of 1] alone. That 1] is a symmetric tensor ensures 
that it is invariant to any pure rotation. 

Because the strain is assumed to be small, the Helmholtz 
free energy per unit volume can be expanded in a Taylor 
series about the undistorted state 

Y(1]) Y(O). 0 1· 
--V-=--V-+ Tij1]ij +2Cijkl1]ij1]k/ + "', (3) 

where 

T? =J...(BY) 
lj V B1]ij 71=0 

(4) 

is the stress tensor for the undistorted system and 

Cijkl = J... ( B2y ) 
V B1]ijB1]kl 71=0 

(5) 

are the (isothermal) elastic constants. For a system whose 
initial stress corresponds to an isotropic pressure p, 

T~ = - pOij' (6) 

Since the strain is assumed to be small, one is tempted to 
argue that the third term of the right-hand side ofEq. (2) 
can be ignored as it is of second order in the displacement 
gradient. One could then define an "infinitesimal" strain 
tensor 

tij = !(uij + up) (7) 

and a corresponding set of elastic constants 

Bijkl = J... ( B 2 Y ) . 
V BtijBkl ,,=0 

(8) 

However, elastic constants so defined differ from Cijkl de
fined in Eq. (6) by terms proportional to the initial stress 
tensor since the first-order term T~1] ij in Eq. (4) contains 
terms that are second order in t that will also contribute to 
the B ijkl 'So Only in the case of zero initial stress are the two 
definitions identical. 

From the definitions given above, the following symme
tries follow: 

1]ij = nji , 

Tij = Tj;. 
C ijkl = C jikl = C klij = .... 

(9) 

(10) 

(11) 

Using these index permutation symmetries, it is possible to 
decrease the number of indices of the elastic constants from 
four to two using the standard Voigt notation 11 -> 1, 22 -> 2, 
33--.3, 12, and 21->5,23; and 32->5, 13 and 31 ..... 6 (e.g., 
C1I32 -> CIS)' For the cubic systems considered here, only 12 
of the possible 36 Voigt elastic constants Ca {3 are nonzero 
and of these there are only three independent ones. CII' C12, 

and C44 can be taken to be a complete set. 
Once a method is specified for determining the free ener

gy of the cubic solid after a deformation transformation has 
been applied, the three independent elastic constants can be 
determined using the following procedure: First, three dif
ferent displacement tensors [see Eq. (1) J are defined 

(12) 

U~T = t20n Ojp (13) 

~~/)=t3(OilOJ2 +O'20jl)' (14) 

The desired elastic constants can then be determined in 
terms of derivatives of the free energy with respect to t1' t2' 

and t3' 

BY p-= ~3P, 
Btl 
B2y 

p--=3(CII +2CI2 -P), 
B~ 

B2y 
P~=CII-P, 

2 

B2y 
P-- = 2 (2C44 - P). 
B~ 

(15) 

(16) 

(17) 

(18) 

The requirement of mechanical stability puts restric
tions on the various elastic constants for a stable crystal. For 
a cubic system, these conditions can be shown21 to be 

C I1 -P>O, (19) 

(20) 

(21) 

It is the violation of the third condition that leads to the 
mechanical instability of bcc hard spheres. 
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For comparison to the literature, it is useful to define 
two useful quantities that can be determined from the elastic 
constants. The first is the bulk modulus 

B GIl + 2Gl2 + p. 
3 

(22) 

This quantity is simply the inverse isothermal compressibili
ty for the crystal. The second is Poisson's ratio 

Gl2 +P 
v (23) 

This ratio measures the contraction of the transverse direc
tion in response to a uniaxial stretching. It is this quantity 
that was predicted incorrectly to be negative by the early 
density-functional calculations. Using Eq. (21), it can be 
shown easily that mechanical stability requires 

(24) 

III. WEIGHTED-DENSITY-FUNCTIONAL THEORY 

In the canonical ensemble, a density-functional theory 
(DFT) is a procedure for determining the Helmholtz free 
energy .r associated with a given spatially dependent single
particle density per); i.e.,.r is determined as afunctional of 
per). The equilibrium free energy and microscopic density 
can then be found by minimizing this functional .r (p) over 
the space of single-particle densities-subject to the con
straint that the volume and total number of particles remains 
fixed. For a detailed description of basic classical density
functional theory and its mathematical justifications, see the 
review by Evans.22 

The functional .r (p) can be written as the sum of an 
ideal part ..rid (p) and an excess part .rex (p) due to the 
interparticle interactions 

.r(p) = .rid (p) + .r~x (p). (25) 

The ideal part is known exactly and for a monatomic system 
is given by 

.rid (p) = f dr p(r){ln[A3p(r)] -l}, (26) 

where A is the thermal wavelength. The excess part is, in 
general, unknown. Therefore, the central task of a density
functional theory is to provide a suitable approximation 
scheme for this quantity. 

While a variety of methods have been developed for ap
proximating ..rex, they can for the most part be divided into 
two classes. In the first class, originating in the work of Ra
makrishnan and Yusouffl5 and Haymet and Oxtoby,7 the 
functional for the excess free energy of the inhomogeneous 
phase is expressed as a functional Taylor series in the single
particle density about some homogeneous reference liquid. 
The coefficients of the nth-order expansion term are the n
body direct-correlation functions evaluated in the homoge
neous phase. As these functions are only readily available for 
n<2, the expansion is generally truncated at second order. 

In the hope of correcting the deficiencies of the "second
order" DFTs, a new approach was initiated by Tarazona.8 

This weighted density-functional method is a modification 
of the usual local-density approximation (LDA) for inho-

mogeneous systems. The most successful such theory to 
date, based on simplicity and accuracy, is the so-called modi
fied weighted-density approximation (MWDA) of Denton 
and Ashcroft,13 which is a simplification of the earlier 
weighted-density approximation (WDA) of Curtin and 
Ashcroft. 10 

In the MWDA, the excess free energy of the inhomogen
eous phase is given by the homogeneous free energy evaluat
ed at a spatially independent weighted density 

flYex (p) = Nflfo(p), (27) 

where the weighted density is defined by 

p = ~ f drIP(r l ) f dr2 P(r2 )w(lr l - r2 1;p)· (28) 

The weighting function w is determined from requirements 
that it be normalized to unity and that the resulting free
energy functional yields the correct two-particle direct-cor
relation function in the homogeneous limit. The resulting 
equation for the weighting function is easily solved algebrai
cally to give 

An alternate derivation of the MWDA, which shows its rela
tion to earlier perturbative approaches, has been given re
cently by Laird and Kroll.19 It should be noted that in the 
present calculations, the real-space integrals in Eq. (28) are 
evaluated most easily by conversion into a reciprocal-space 
sum by Fourier transform. 

Now that the MWDA Helmholtz free energy as a func
tional of the single-particle density per) has been specified, 
the equilibrium structure and free energy are determined by 
minimizing this functional with respect to variations in p (r) 
subject to the constraint of constant bulk density. Practical 
calculations require the parametrization of per) in order to 
reduce the minimization dimensionality. All calculations re
ported in this and earlier calculations were done using a gen
eralized Gaussian parametrization for the solid single-parti
cle density 

( 
7r )3/2 per) = - ') exp[ (r - R j ) 'a' (r - R;)], (30) 
lal ra) 

where a is a matrix containing the Gaussian width param
eters and {R j } represents the set of real-space lattice vectors 
for the particular solid structure under consideration (e.g., 
fcc or bec). This parametrization differs from the usual iso
tropic Gaussian form often used in density-functional freez
ing calculations because the calculation of the elastic con
stants requires distortion of the lattice away from the strict 
cubic symmetry of the fcc or bcc lattice, therefore requiring 
an anisotropic description of the crystal density peaks. The 
number of minimization variables used in the calculation of 
a particular elastic constant is then dependent on the sym
metry of the concomitant lattice distortion. One advantage 
to the Gaussian parametrization is that the ideal part of the 
free energy [Eq. (4) J can be evaluated analytically 
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TABLE 1. Thermoelastic constants for the fcc hard-sphere calculated using 
the MWDA with the Percus-Yevick hard-sphere data. 

pc? p Gil G12 G44 B G1 V 

0.90 6.54 24.80 1.77 21.09 11.63 4.97 0.313 
0.92 6.84 30.55 4.56 23.66 15.50 6.15 0.325 
0.94 7.21 36.06 6.65 26.37 18.86 7.49 0.325 
0.96 7.64 41.60 8.75 29.54 22.25 - 8.78 0.326 
0.98 8.14 47.75 10.88 33.17 25.88 10.3 0.324 
1.00 8.70 54.65 24.20 37.34 29.92 . 12.0 0.323 
1.02 9.34 62.53 15.82 42.16 34.50 14.0 0.321 
1.04 10.06 71.51 18.92 47.82 39:80 . . 16:2 0.320 
1.06 10.88 82.32 22.42 54.47 46.01 19.1 0.318 
1.08 11.80 94.98 26.68 62.44 . 51:3S--22.4- 0.316 
1.10 12.86 110.15 31.88 71.69 62.26 26.3 0.315 
1.12 14.08 128.57 38.25 83.20 73.05 31.1 0.314 
1.14 15.48 151.24 46.20 97.11 86.37 37.0 0.312 
1.16 17.12 179.58 56.27 114.5 103.1 44.5 0.311 
1.18 18.07 215.6 69.3 136.9 124.4 54.1 0.310 
1.20 21.34 261.7 86.7 165.2 152.2 66.1 0.310 
1.225 24.98 343.4 116.6 214.1 200.5 88.4 0.308 
1.25 29.70 464 162.6 286.2 273.0 121 0.307 
1.275 36.17 658 .232 402 386.1 147 0.301 

3 (Ial) 5 /3F;d (a) = -In - + 3In(A) - -. 
2 1T 2 

(31) 

The validity of the Gaussian approximation is discussed in 
detail in Ref. 12. 

IV. RESULTS AND DISCUSSION 

Implementation of the MWDA for the calculation of 
the elastic constants for hard-sphere crystals requires as in
put the thermodynamics and structure of the hard-sphere 
fluid over a range of densities. Fortunately; for the hard
sphere system, these input data are available in relatively 
accurate, analytical form from the exact solution of the Per-

1000 r::-------------------, 
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UJ s:: 
o o 
.S 
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UJ 
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~ 10 

0.9 1.0 1.1 

p(Y3 
1.2 1.3 

FIG. 1. The pressure and elastic constants for the hard-sphere fcc crystal as 
functions of density. All quantities are in units of (kB n/c? The lines are 
the MWDA density-functional results and the symbols represent those of 
the computer simulations (Ref. 16). 

TABLE II. Thermoelastic constants for the bcc hard-sphere solid ca lculat-
ed using the MWDA with the Percus-Yevick hard-sphere data. 

pc? p* Gil G'2 G44 B G1 v 

0.92 8.67 16.3 -6.0 25.1 4.30 2.48 0.258 
0.94 9.04 26.1 14.1 30.3 24.4 1.97 0.435 
'0.96 .9.65 44.9 22.3 35.3 33.5 " 1.32 0.481 
0.98 10.43- 53.3 31.5 41.4 42.2 0.49 0.494 
1.00 11.38 62.7 41.2 48.7 52.2 -0.60 0.51 
l.O2 12.53 74.0 53.1 56.7 64.2 -2.06 0.52 
1.04 13.92 87.9 68.2 66.0 79.4 -4.05 0.53 
1.06 15.60 105.4 87.8 72.4 98.9 - 6.80 0.54 
1.08 17.68 127.6 113.7 54 124 -10.6 0.54 
1.085 18.27 36 
1.10 20.24 154.0 146.5 156 -16.5 0.56 
1.12 23.3 179 181 188 -26 0.57 
1.14 26.9 195 215 217 -37 0.59 
1.16 31.2 258 280 283 -61 0.58 
1.18 37.0 377 398 403 -47 0.56 
1.20 45.3 576 596 604 -56 0.55 

cus-Yevick equation derived independently by Werteim23 

and Thiele.24 Since the weighted densities produced within 
the MWDA are considerably lower than the bulk densities 
of the solids studied, the Percus-Yevick approximation for 
hard spheres should be adequate for this calculation as it 
breaks down only at high densities near freezing. 

Using Eqs. (12)-(18), the elastic constants for the fcc 
and bcc hard-sphere crystals have been calculated. A five
point finite difference formula to evaluate the requisite de
rivatives with & ranging from 0.001 to 0.1. For the fcc sys
tem, the calculated values of the pressure P and the elastic 
constants CII , C12, and C44 are given in Table I and plotted in 
Fig. 1. Also in Table I are shown the derived quantities Band 
v. With the exception of the dimensionless ratio v, all quanti
ties are in units of (kB T)lcr, where kB is Boltzmann's con
stant, T is the temperature, and a is the hard-sphere diame-
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'0 
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'0.25 

0.20 
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A 
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p(Y3 

A ~ .. 

A 

1.2 1.3 

FIG. 2. The Poisson ratio for the fcc crystal. The solid line gives the MWDA 
theoretical results and the circles are from the simulations (Ref. 16). 
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FIG. 3. The MWDA pressure and elastic constants for the hard-sphere bcc 
crystal as functions of density. All quantities are in units of (kBT)/fT'. 

ter. The computer simulation results16 are also plotted in 
Fig. 1 and one can see that the agreement is excellent. Please 
note that the scale is logarithmic. This was done so that all 
the data could be displayed conveniently on one graph. The 
greatest error occurs for C12, which is about a factor of 1.5 
too large at the highest densities calculated. These results for 
the MWDA represent a significant improvement over those 
of earlier density-functional calculations. 

The calculated values for the Poisson ratio v for the fcc 
crystal are plotted in Fig. 2 together with the simulation 
values. While both show a negative slope as a function of 
density, the trend is more pronounced in the simulations. 
This is due primarily to the overestimation by the theory of 
the value of C12 at high density. Note that for all densities, 
the Poisson ratio is positive in agreement with the simula
tions and in contrast to the early "second-order" density
functional calculations. 

Table II contains the same information as in Table I for 
the bcc hard-sphere crystal. The bcc pressure and the elastic 
constants are plotted in Fig. 3. The maximum calculated 
density for the bcc crystal is lower than that of the fcc calcu
lation because, since the maximum packing fraction ofbcc is 
lower than that offcc, the bcc elastic constant becomes large 
at lower densities than those for fcc. 

The question of the stability of the bcc hard-sphere crys
tal is answered by evaluating the elastic constant Ci defined 
in Eq. (21). The physical distortion represented by Ci is a 
contraction along one Cartesian direction (e.g., x) coupled 
with a simultaneous expansion along a perpendicular direc
tion (e.g., y). Mechanical stability requires that this quantity 
be positive. For both the fcc and bcc crystals, Ci is shown in 
Fig. 4. As expected, this quantity is positive at all densities 
for the fcc solid. For the bcc solid, Ci is small and positive for 
reduced densities below about 1.0 and negative above. This 
would indicate that the bcc solid is stable at densities (below 
1.0) and unstable at high densities. This somewhat curious 

...... 300 

200 o 

C.L 
Fee // .......... .... 

100 

.•..• 0 ...• ·······/··/ 

......................... ~ .......... ·"O·· .. · .. 
a ------.......... 

"-
..... ---..... , 

Bee 
-100 

0.90 1.00 1.20 1.30 

FIG. 4. The MWDA elastic constant C1 in units of (kBT)/fT' [see Eq. 
(21) 1 for the bcc (dotted line) and fcc (solid line) crystals. The simulation 
values (Ref. 16) for the fcc crystal are also shown (circles). 

result has also been seen by McCarley and Ashcroft25 in 
their recent MWDA study ofbcc hard-sphere stability. The 
densities at which the bcc crystal is predicted to be mechani
cally stable are well below the lowest thermodynamically 
stable solid density. This low-density stability is counterin
tuitive and is most certainly an artifact of the theory caused 
by the anomalous drop in C12 at low densities for the bcc 
(and to a smaller extent the fcc) crystal. 

A curious and unforseen trend in the bcc elastic con
stants is the sudden drop in C44 at a reduced density of about 
1.09, indicating the onset of yet another form of mechanical 
shear instability [see Eq. (20)]. Above pc? = 1.085, this 
quantity actually goes negative. Analysis of the free energy 
as a function of C3 [using the displacement tensor Uij3) de
fined in Eq. (14) ] shows that this drop is due to the transfor
mation of the minimum at C3 = 0 (the undistorted crystal) 
into a saddle point. 

In summary, the modified weighted-density approxima
tion of Denton and Ashcroft has been shown to give results 
for the fcc hard-sphere elastic constants that are superior to 
those calculated previously using other density-functional 
approaches. Given the extreme sensitivity of the calculated 
elastic constants on the density-functional method used, this 
is a very important result. In addition, except at low densities 
below the usual region of interest for hard-sphere crystals, 
the bcc hard sphere is predicted correctly by the MWDA to 
be unstable to shear. This is further evidence that this unsta
ble phase is well described by such methods and could be 
used as a starting point for perturbation theory studies of 
stable bcc phases in systems with longer-ranged potentials. 
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