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Symplectic algorithm for constant-pressure molecular dynamics
using a Nose —Poincare thermostat

Jess B. Sturgeon and Brian B. Laird®
Department of Chemistry and Kansas Institute for Theoretical and Computational Science,
University of Kansas, Lawrence, Kansas 66045

(Received 20 July 1999; accepted 24 November 1999

We present a new algorithm for isothermal—isobaric molecular-dynamics simulation. The method
uses an extended Hamiltonian with an Andersen piston combined with the—Roseare
thermostat, recently developed by Bond, Leimkuhler, and L@ir€Comp. Phys151, 114(1999].

This Nose-Poincare-Anderser(NPA) formulation has advantages over the Néssover-Andersen
approach in that the NPA is Hamiltonian and can take advantage of symplectic integration schemes,
which lead to enhanced stability for long-time simulations. The equations of motion are integrated
using a generalized leapfrog algorithli@LA) and the method is easy to implement, symplectic,
explicit, and time reversible. To demonstrate the superior stability of the method we show results for
test simulations using a model for aluminum and compare it to a recently developed time-reversible
algorithm for Nose-Hoover—Anderson. In addition, an extension of the NPA to multiple time steps
is outlined and a symplectic and time-reversible integration algorithm, based on the GLA, is given.
© 2000 American Institute of Physid$$0021-960680)51307-3

. INTRODUCTION / p2 / .
_\/-2/3 1/3
Hya=V EWJFU(V 9+ 55, " 70.

Traditionally, molecular-dynamics simulations are per-
formed using constant particle numbiy volume 'V, and +gKkTIns+ PgyV, (1)
energyE. However, these are not usually the conditions un-

wherep; is the conjugate momentum to the scaled position

der which experiments are done and there has been muﬁ;zvl/sri, P, is the external pressure ands given by

attention to the development of simulation methods designe 'f+1 whereN; is number of degrees of freedom of the
to sample from other, experimentally more relevant eN-original system. The quantitied, andQ, are the masses of
sembles, such as constant temperat(g@nonical and/or  the Andersen “piston” and the NOsthermostat, respec-
constant pressure:* Some of the most popular and useful of tively. [Note that this is not the only formulation possible.
these are those based on so-called “extended” Hamiltoniang;or example, one can use the strain, proportional t& In
i.e., Hamiltonians in which extra degrees of freedom havanstead of the volume as an independent extended variable.
been added to the system in order to ensure that the trajedhis leads to the sampling by the trajectory of a slightly
tory samples from the statistical distribution correspondingdifferent distribution, but the difference between averages
to the desired thermodynamic conditions. calculated using these distributions is generally small,
For a constant pressure system, for example, And%rserp(llN)-g] _ _ )
introduced the volum#/, along with its corresponding con- | "€ €quations of motion for this system are

jugate momentumr,,, as extra variables. The new variables pi=— V¥V, u(v¥y), (2a)
are coupled to the system in such a way as to guarantee that
the trajectory(if ergodic) samples from an isobaric statistical . b
o - 0=z 27 (2b)
distribution. Similarly, to generate a constant temperature s‘m\V
distribution. Nos& introduced a new mechanical variabkes .
Ty =P~ Pext, (20

(with conjugate momentuna) that couples into the system
through the particle momenta and acts to effectively rescale y/— m,1Qy, (2d)
time in such a way as to guarantee canonically distributed
configurations. These two extensions can be combined to . o33 ;. gkT
vy T
|

give a Hamiltonian whose trajectories can be shown to s ' (28)
sample from an isothermal—isobaric ensernble. )
This combined NoseAndersen(NA) Hamiltonian is §=ms/Qs, ()
given by where the instantaneous press@és given by
2
dauthor to whom correspondence should be addressed; electronic mail:  P= iz —,_pi — iE (9_Uq_ ©)
laird@pilsner.chem.ukans.edu V4 2mVv¥3s? 3V g

0021-9606/2000/112(8)/3474/9/$17.00 3474 © 2000 American Institute of Physics


https://core.ac.uk/display/213409586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Chem. Phys., Vol. 112, No. 8, 22 February 2000 Symplectic algorithm for constant-pressure molecular dynamics 3475

There are two major drawbacks to this approach: Firstwhere AH=Hys— Hna(t=0) and, since the averages are
because of the time rescaling, the time variable in Nyge taken over the real-time trajectory, the valuegds now N;
namics is not “real” time, so any discretized trajectory gen-to give the correct isothermal—isobaric distribution. It can be
erated by numerically integrating the Nosguations of mo- shown(see Appendix Athat, assuming ergodicity, the NPA
tion must be transformed back into real time, leading to thelynamics generates trajectories that sample from an
configurations that are spaced at unequal real-time intervalssothermal—isobari¢NPT) statistical distribution. It is also
This is inconvenient for the construction of equilibrium av- relatively easy to shoWsee Appendix Bthat the NPA equa-
erages, especially of dynamical quantities. Second, th&ons of motion formy, s, andV generate the appropriate
Hamiltonian is noiseparabl@ (that is, the kinetic and poten- virial relations! for the NPT distribution, namely{P)
tial terms in the Hamiltonian are not functions only of mo- =P and(V(P—Pg))+kT=0.
menta and position variables, respectiveipaking standard

Verlet—leapfrog approaches inapplicable. _ lIl. INTEGRATING THE NPA EQUATIONS OF MOTION
By a change of variables and a time rescaling of the
equations of motion. Hoov&tderived new equations of mo- The NPA Hamiltonian is nonseparable since the kinetic

tion that generate the same trajectorifes the exact solu- energy contains the extended “position” variabkandV.
tion) as the original Nosé&lamiltonian, but in real time. This The equations of motion for a general time-independent,
Nose-Hoover dynamics has become a standard method inonseparable Hamiltonian can be writtéar general posi-
molecular simulation. However, the change of variables thations Q and conjugate moment)

links the NoseHamiltonian to the NoseHoover equations of - :

motion is a noncanonical transformation—the total energy Q=G(P.Q), P=F(P.Q), ©®)
function of the system is still conserved, but it is no longer awhere G(P,Q)=dH/dP and F(P,Q)=—dH/dQ. (For a
Hamiltonian, since the equations of motion cannot be deseparable HamiltoniarG is only a function ofP andF is
rived from it. Although a variety of very good time- only a function ofQ.) For such a nonseparable system, stan-
reversible methods have been put forwdrdf the lack of dard symplectic splitting methods, such as the Verlet—
Hamiltonian structure precludes the use of symplectic inteleapfrog algorithm, are not directly applicable. However,
gration schemes, which have been shown to have superigymplectic methods specifically for nonseparable systems

stability over nonsymplectic methods. have been develop€dOne simple example that is second-
order and time-reversible is the generalized leapfrog algo-
rithm (GLA)
:_II.A'I,'\;-:ETI\(I)?\“SEI\IPOINCARE—ANDERSEN (NPA) Pos1o= Pt hF(Prs 110,Q0)/2,
=Q,+th[G(P ,Q,)+G(P , 12,
Recently, Bond, Leimkuhler, and Lafttihave devel- Qn+1=Qn*hG(Pn+12:Qn)+ G(Pns 12, Qna)] )
oped a new formulation of Noseonstant-temperature dy-
namics in which a Poincaréme transformation is applied Pn+1=Pnv12t hF(Phi12,Qn41)/2,

directly to the NoséHamiltonian, instead of applying a time \yhereh is the time step an®, andQ,, are the approxima-
transformation to the equations of motion as in Nese {ions to P(t) and Q(t) att=t,=nh. [This method can be

Hoover. The result of this is a method that runs in real timeégptained as the concatenation of the symplectic Euler
but is also Hamiltonian in structure. In this work we combine nethod

this new thermostat with the Andersen method for constant
pressure to give an algorithm for isothermal—isobaric mo- Prs1=PathF(Pni1,Qn),

lecular dynamics. For a system with an Andersen piston, the Qni1=0Q,+hG(P,.1,Q,). (8)
new Nose-Poincare-Andersen(NPA) Hamiltonian is given ) _n ) .n rreen
by with its adjoint’

Hnpa=[Hna—Hna(t=0)]s, 4 Qn+1=QnThG(Pn,Qns),

L . . . 9
whereHy, is given in Eq.(1). As discussed in Ref. 11, the Phr1=Pn+thF(P,,Qpuy). ©)

above form of the Hamiltoniata specific case of a Poincare 14 concatenation of an integrator with its adjoint guarantees

time transformationwill generate the same trajectories as 4 (jme.-reversible metholiThis method is a simple example
the original NoseAndersen Hamiltonian, except with ime ¢ 5 ¢35 of symplectic integrators for nonseparable
rescaled by (which puts the trajectories back into real time Hamiltonianst4-17

The resulting equations of motio(rexcgpt fqrws)’ for th.is Applying the GLA to the NPA equations of motion
constant pressure and temperature NéZ@ncareHamil- ;

. X , gives
tonian are the same as those given above for the Nose

Andersen systerfEqs.(2a)—(2f)], except that the right-hand- o E 13 13
side is multiplied by the thermostat variatde For 75 we Pin+12=Pin= 550V ViU (VG), (109
have h

2 Tyn+12= TynT zsn[,])(qn Pr+12:Vn +Sn) — Pext]v

. IH P;
— H= *2/32
M= S Js A V iSZ ng AH, (5) (10b)
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h
- EAH(qn vpn+1/2’vn !7Tv,n+l/2’sn 17Ts,n+1/2)v
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in eV. The natural time unit of the simulation is then 10.181
fs; that is, a simulation time step of 0.1 corresponds to an
actual time step of 1.0181 fs.

In order to properly sample the isothermal—isobaric dis-
tribution, the masses for the extended variables need to be

chosen with some café.If the masses are too large or too

(100 small, the natural vibrational frequency of the extended vari-
T able Wi|| lie outside the dengity of st_ates of vibrational fre-
Sn+1=Snt E(S”+S”+1)T’ (100 guencies of the system. This effectively decouples the ex-
s tended variable from the motions of the system, destroying
h Ty ne1/2 ergodicity. A useful method to monitor this is to examine the
Vir1=Vnt 5 (Sn+Sn11) Q : (108 distributions of kinetic energy or instantaneous “tempera-
v ture” (for the thermostat massnd density(for the pressure
h{ 1 1 Pin+1/2 piston. For a system with an isothermal—isobaric distribu-
Qin+1=Gint 5 SnV%/3+ Sn+1V§/fl) m (100 tion, the distribution of the kinetic-enerdy will be a Gauss-

ian with variance 2k)%/3N—the distribution of the instan-

- o +E & Pins 12 —gksT taneous temperaturd is then a Gaussian with variance
snti=Henil2t 9| & myvB 2, U8 2T2/3N (Note that, for simplicity, and for the sake of this
h argument, we have ignored the corrections in these quantities
— —AM(Gns 1Pt 12, Vi1, due to the fact that the total momentum is consefver
2 they are negligible with respect to the calculation of the dis-
Tyt 1/2:Sns 12 Tsns 12)s (109 tribution). For a system, in which the thermostat is decoupled

from the system, the thermostat variable motion will be an
undamped harmonic oscillatih—the resulting distribution
is decidedly non-Gaussian, being peaked at the edbes
classical turning poinjsof the distribution and low around

Tyn+1= Ty,n+127F Esn+1[P(qn+lipn+1/2’Vn+1 +Sn+1)

—Peul, (10 the average value.
h In order to determine the proper masses for the thermo-
Pin+1=Pin+12t EanV%’flViU(V%’flqnﬂ). (10i)  stat we perform a series of simulations using various thermo-

stat masses while holding the pressure piston mass constant

As in the case of the constant volume NeBwincare with a value ofQ,=0.0001.(This initial value ofQy, was
algorithm, the GLA for the NPA is explicit—this is not nec- based on previous runs in the development phase of the al-
essarily the case for a general nonseparable Hamiltoniaigorithm,) Each run was initialized to an fddace-centered-
Note that Eq(100) requires the solution of a scalar quadratic cub@ lattice of initial density 0.06021 A% with the indi-
equation forms b 1/,. Details of how to solve this equation vidual velocity components chosen from a Maxwell—
without involving subtractive cancellation can be found inBoltzmann distribution at 1000 K. The system was
Ref. 11. equilibrated for 50 000 step$0.91 p$ and then monitored

Often, in specific practical applications, there is a suffi-for 50000 step950.91 p$. [The fluctuations in instanta-
cient separation of time scales between the fastest and sloweous temperature as a function of time for the various ther-
est motions in the dynamics that a multiple time step apinostat masses are plotted in Fig. 1. The instantaneous tem-
proach is prudent. For constant particle number, volume anﬁerature‘i’ is given by
energy (NVE) simulations, this approach is well
developed?® For NPT simulations of the type discussed here,
multiple time step algorithms exist, but are complicated
(mainly due to the lack of Hamiltonian structure in the
Nose-Hoover—Anderson approach In contrast, the
multiple-time step extension of the NPA is straightforwardwhere K is the instantaneous kinetic energy of the system,
and a modification of the generalized leapfrog algorithm toandkg is Boltzmann'’s constant—the factoN{ 1) is used
this system is presented in Appendix C. to correct for the fact that in a molecular-dynamics simula-
tion, the total linear momentum is consenféfiThis figure
shows that for a very small thermostat piston mags,
=1.0, the system tightly oscillates around the input tempera-
ture. This system has@sT)?)=6.5 K2 Similar behavior is

In order to evaluate this method, simulations were perseen forQ,=10.0. For a very large masQs=1 000 000.0
formed using an embedded atom potential for alumid@im. the same harmonic oscillations are observed. Figure 2 shows
Unless otherwise specified all simulations were done on #he instantaneous temperature distributions. In both of these
system of 256 particles with periodic boundary conditionscases, from the non-Gaussian shape of the distributions, one
for an aluminum melt aff=1000K andP=0. For this can see that the system is not properly sampling the
model, mass is measured in amu, distance in A, and energgothermal—isobaric distribution. From the formula given

2K

= 2N kg’

IV. SIMULATION RESULTS
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FIG. 1. The instantaneous temperatﬁl'ref the system plotted as a function

Qs = 1.0; Qv = 0.0001

— Qs =10.0; Qv = 0.0001 1

L L L

— Qs =100.0; Qv = 0.0001

1 L L

Qs = 1000.0; Qv = 0.0001 1

Qs = 10000.0; Qv = 0.0001 Ll

bbb bty ottt Ay Pyt

Qs 00000.0; Qv = 0.0001 R

5 10 15 20

time(ps)

of time for six different thermostat masses.

above for the expected distribution 3t we expect for a

Symplectic algorithm for constant-pressure molecular dynamics 3477
0.006
> 0.003 [
2L
= 0.000
4
®  -0.003
. —0.006
«©
2 0.030
S
> 0.015
L
) 0.000
=
g -0.015
= 0.030
- 1200 . : .
()

[ i i it
" il W i A Ll
£ 1000 AR TR L Rl R
= |‘ i it bt g Ll i b ol

800 . . .
0 500 1000 1500 2000
time(ps)

FIG. 3. (a) The value of the NPA Hamiltonian as a function of time for a
long run(over 2 ng on a 256 particle aluminum system. The starting con-
figuration had been equilibrated &= 1000 K andP=0. The values of),
and Q (in reduced unitsare 500.0 and 10%, respectively. The instanta-
neous pressure and temperature trajectories for this run are giyenand

(c), respectively.

system of 256 particles at 1000 K, the distribution to be ausingQs=500.0 to determine the mass of the pressure pis-
Gaussian with((5T)?)=2604.2 K. From this value and an ton- A value ofQ,=0.0001 was determined to be a suitable
average temperature of 1000 K, a Gaussian was construct¥@!ue for the mass of the pressure piston.

and is plotted together with the distributions in Fig. 2. These
curves match the observed distribution €y in the range of

Using these values for the piston masses, the stability of
the method was tested. FiguréaBshows the value of the

100.0 to 10000.0; for subsequent simulations we choose ¥PA Hamiltonian (a conserved quantityas a function of
value ofQ.=500.0. A similar series of runs were performed time for a long run using a time step of 0.1.0181 f3. The
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trajectory shown here was begun after initial equilibration at
1000 K for 2x 10° time stepg2.036 ng. The stability of the
method is excellent, giving no noticeable drift Hyps Over

the course of a long trajectory. The pressure and temperature
trajectories for this run are also shown in Fig&)3and 3c),
respectively. In Figs. @-4(c), we examine the ability of

the method to regulate the pressure, temperature and density,
respectively. This system was initialized to an fcc lattice of
initial density 0.06021 A3 with the individual velocity
components chosen from a Maxwell-Boltzmann distribution
at 100 K. The simulation was then run with the NPA with
T=1000K andP=0. In all cases, the instantaneous pres-
sure, temperature, and density evolve quickly and stabilize
about their desired values.

The GLA has a global error that is second order in the
time step. To demonstrate that this also is true in our results,
a series of simulations were performed using various values
for the time step. The system was initialized in an identical
manner to that described in the last paragraph and then run
for a total time of 2.036 ps. Figure 5 shows a log—log plot of
the energy error, as estimated by the standard deviation of
Hunea [EQ- (5)], versus the time step.

In order to demonstrate that the method yields relevant
dynamical quantities, the normalized velocity autocorrelation
function, C(t)=(v(t)-v(0))/{v(0)-v(0)), was calculated
using our constant NPT algorithfwith Q, andQ as deter-

responding to the temperature trajectories in Fig. 1. A Gaussian curve withnined aboveand compared to the same quantity calculated
variance Z2/3N is shown in each plot for comparison.

using standard constant NVE molecular dynanfigsing a
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time(ps) FIG. 6. The normalized velocity autocorrelation functid®(t), for the
aluminum model calculated for a 256 particle systenT &t1000 K andP
FIG. 4. Pressuré), temperaturéb), and density(c) trajectories for the 256 =0. The soIi_d Iinp is calculated using'the N.PA algorithm describgd, hereiq.
particle aluminum system using the NPA algorithm witk= 1000 K and ;I_':ssdotted line is a constant NVE simulation under corresponding condi-
| .

P=0 starting from an initial configuration in an fcc lattice with density
=0.06021 A2 and initial velocities chosen from a Maxwell-Boltzmann
distribution at 100 K.

method that was developed using splitting techniques on the

Liouville operator corresponding to the NPA equations of
velocity-Verlet integratd?). Both simulations were run us- motion, and it is somewhat more complicated to implement
ing the same time step of 0(1.0181 f$ The NVE simula-  than the GLA. Like the GLA, it is a second-order method
tions were run at an energy and density corresponding to theverall, but the integration of the thermostat variables em-
average energy and density for the constant NPT simulaploy a fourth-order symmetric splitting. To compare the
tions. This comparison is shown in Fig. 6. Both systems weregnethods we have performed simulations of both systems us-
first equilibrated at 1000 K for 200 000 ste(®03.6 p$ and  ing identical starting configurations and extended variable
run for 20 000 step$20.36 p$ to collect averagesC(t) for  masses at 1000 K and zero pressure. Each system was pre-
the Nose-Poincare-Andersen method for constant NPT mo- equilibrated for 2.036 ns and then monitored for an addi-
lecular dynamics is seen to be nearly indistinguishable fromional 4.072 ns. Figure 7 shows the conservation of the NA
that of the NVE simulation. energyHya— Hna(t=0) for time steps of 0.22.162 f9, 0.4

Finally, it is useful to compare the method with a state-(4.324 fg, and 0.8(8.648 fg in Figs. 1a)—7(c), respectively.
of-the art integrator for the Noséloover—AndersoiiNHA)  Although both methods show good energy conservation, the
equations of motion, namely that of Martyrea al*® This  GLA, due to its symplectic nature, does not exhibit the drift
method is a time-reversible, but nonsymplediitie to the in energy that can be seen in the time-reversible, but non-
nonsymplectic nature of the NHA equations of mojion symplectic, method for the NHA.

0.0 T T 2.00 . T ,
=8 NPA (slope = 2.0) h = 8145 fs R At
1.00 | et .
0.00 WMWMWMW
5 NPA (a)
_ =50 1 L -1.00 : )
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-100 1 i « -0.20
3
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time(ns)
FIG. 5. Log—log plot of the energy errgstandard deviationo(Hypp) VS
the time step for a variety of piston and thermostat masses. The order of thelG. 7. Deviation of the NoseAnderson energy from its initial value for
method is given by the slope of this line which is 2.0, indicating a second-several time steps for the NR@ising GLA integratorand for the method of
order global error. Martynaet al. for the NHA equations of motion.
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V. SUMMARY whereN; is the number of degrees of freedoihys(0) is
the value of the NA Hamiltonian at=0, andZyp, is the

We have developed a real-time Hamiltonian formulation artition function for the full extended system

of isothermal—isobaric molecular-dynamics simulation base&)

on a Poincargime transformation of the Nosénderson 1
Hamiltonian. This new NosePoincare-Anderson (NPA) ZNpA:—Nf dsf dﬁsf dw\,f dpJ' dqf dv
. . . N!h™
method is an extension of the recently developed Nose
Poincaremethod for isothermal molecular dynamicsThis X 6{s[Hya—Hna(0) ]} (A3)

new method has advantages over the standard -Nose o o
Hoover—Anderson (NHA)® reformulation of Nose  Defining the reduced Hamiltonian as
Anderson dynamics, in that unlike the NHA, the NPA retains
a Hamiltonian structure allowing for the use of symplectic ~ ~
. . i = —_—
integrators, which have recently proven to have superior sta- H(PD 2. 2m ®@, (A4)
bility over nonsymplectic methods. For integrating the equa-
tions of motion we use the generalized leapfrog algorithmwe have
(GLA), which is time-reversible, second-order, and symplec- 1
tic. Using a model for aluminum, we have shown that thed’“d’“de BEH V) = J d J J
. a,V)=s——x s| d d
NPA is extremely stable over long runs and reproduces sta-q pAVI(p.g.V) Z\paN!hNf Ts| BTV
tistical mechanical properties of the system and distribution

well. It is also shown to exhibit less energy drift at large time % dpdqu&[ s/ H(V~ Y35~ 1p,vi3y)
steps than a state-of-the-art method for integration of the
NHA equations of motion. Finally, we have also demon- 2 2

. . . . T Ty
strated that a multiple-time step extension of the method is + + ——+gkTIns
straightforward. 2Qs  2Qy

+ PexV —Hna(0)

]. (A5)
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APPENDIX A + _2Qv+ng|n S+ PgyV
In this Appendix we demonstrate that, assuming ergod-
icity, the Nose-Poincare-Anderson Hamiltonian generates —Hya(0) } (A6)
trajectories in which the coordinates are distributed accord-
ing to the isothermal—isobaric statistical distribution. For a functionf(s) with a single pole as=s, we have
The statistical distribution for the reduced set of vari-
ables,f(p,q,V) is given by an integral over the extended S8(s—sp)
variable distributionF o,(p.q.,s, ms,V, my) o(f(s))= sl
q ’def('p,’d,V)zf dsj dwsf dm,dpdqdV which, for our case, gives
XFed(P,0,8,ms,V,my).  (AL)  dadpaVi(p.g,Vv)

(Here the tildes are used to denote the real, unscaled dynami- as| g
cal variables. Assuming that the dynamics is ergodic, the ~ ZnpaN! RNt S| dms
NPA dynamics will generate a microcanonical distribution

] s 1
based on the NPA zero-energy surface. Thus, Xf dmyd pdqdvm_ﬁ[ . exr{ _ gTr( H(B.G)

1
dadbdvara,a,vfmf dsf d”Sf o G
I S
2Q." 2Q +P€X‘V_H“P(°))”' a7
X dpdqdVe{s[Hya—Hya(0)1}. -

(A2) Integration overs gives



3480 J. Chem. Phys., Vol. 112, No. 8, 22 February 2000 J. B. Sturgeon and B. B. Laird

o s 1 Since the distributions for bothrg and m, are symmetric
qdpdVf(p,q,vV)= Wf d'”'sf dmy about zero, independent sfand each other, the term on the
PA right-hand-side is zero giving

o N e

Xdpdquex;{—ngT(H(p,q) ((P=Pex))npa=0. (BS)
2 2 Since’P— Py depends only upon the real positions and mo-
s Vb menta(and not explicitly ors, 7, or m), the average over
ext . . . .
2Qs 2Q, the NPA distribution will be equal to that over the standard
NPT distribution, as shown in Appendix A, giving

- HNP(O)) | A8 {(P-Pediner=0, (B6)

Settingg=N; and integrating ovefrg and,, together with  as required.

the observation that when the above procedure is applied to Now for the second virial relation, we start by multiply-
Znpa, We obtain a result that is a constant times the normaing the NPA equation of motion fotry by V
isothermal—isobaric partition function

Viry=8(P—Pey V. (B7)
1 ~ [ ~ Rearranging gives
V’}TV d V7TV V’7TV SV’7TV
xXexp{— B[H(P,T) + PeuV1} (A9) (P=PedV=—"-=qi| 5 |75 T - B9

This gives (after canceling the differentials and common Taking an equilibrium average gives

constants
V7TV SV7TV
== - e ((P=Pex)V)npa= — < T> + <_52_> . (B9)
f(piqiv):ZN!th eXp[—,B[H(p,q)-i-PextV]}. (A].O) NPA

where we have again used the fact that the equilibrium av-
erage of a time derivative will be zero at equilibrium. Using
the NPA equations of motion fagandV gives

which is the usual isothermal—isobaric distribution.

2
APPENDIX B: VIRIAL RELATIONS AND THE NPA ((P=P o)V npa= _< 7TV> +<7Ts7TvV> (B10)
ex .
NPA

EQUATIONS OF MOTION Qv s

The equations of motion for any consistent extended\Now the last term is zero since the distributions fay and
Hamiltonian designed to generate the isothermal—isobarigr,, are symmetric, independent sfand V. The next term
distribution, should generate trajectory averages that obeyan be evaluated by the equipartition theorem, since it does
the appropriate virial relations, namely, (P—Pgnpr=0 not involves, to give
and (V(P—Pgy))ner+kT=0. In this Appendix we show

2
that these relations are indeed consistent with the NPA equa- | Tv KT (B11)
tions of motion. Qv/ wpa '
To show the first relation, we start with the NPA equa-
tion of motion for This gives
\A ext/ -

which by the above reasoning yields

Rearranging gives

S’ﬂ'v
= (B2)

w d
P=Pei=5 =4

(Y,
S

We can see here that there is no inconsistency between the

. N o ... expected virial relations generated from the equations of mo-
Taking the equilibrium average within the NPA distribution ion and the isothermal—isobaric distribution.

gives

S’7TV
(P= Pex‘)>NPA_< s >NPA' (B3 APPENDIX C: MULTIPLE TIME STEPPING WITH NPA
since the equilibrium average of the time derivativengf/s Suppose the potential energy can be separated into a

will be zero. Using the NPA equation of motion femgives  quickly varying partU, (e.g., stiff harmonic vibrations or
short-ranged repulsive interactionand a slowly varying
((P—Peog))= < 7TS7TV>_ (B4) partU, (g.g., long-range p_otentials, nonbonqled interacjions
sQs The Nose-Anderson Hamiltonian can be written
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2

Ha= gz 2 gy + sV )+ Ux(V)

5 2
+ 300" 30, —S 4P, V+gkTIns
1
=HA+HIR-

where we split the Hamiltonian as follows:

2 2
pl Ty
(1) 1/3
HNa= Ve 2 2Qv+2Q (V=)
+gkTIns,

HQ=U,(V*g) + PV,

Consequently the Nosé€oincare—Anderson Hamiltonian is

Hnpa=S[Hna—Hna(0)]
=Hypat Hipa,
where
HRBa=S[HRA ~HRA(0)],

H(ZF)’A_ S[H NA H§\13A) (0)].

We define the flow map for a Hamiltoniath as the operator

such that for any dynamical variabke we have
A(t)= ¢y A(t=0).

Using the standard Trotter factorization used to develop

multiple-time step molecular dynami€sve write

- [
= 2 1 2
DHpa ¢H§\‘F{A,h/2(¢H§\‘gA,h/I) ¢H§\‘F),A,h/21

Symplectic algorithm for constant-pressure molecular dynamics 3481
. L h [ 1 D pi2,n+l/2j
1/2j—-1 /3
5n+1/21 s,n+1/2)— 2] V2J 1Snj 1 2mi
—gkT—AHy(Snj -1,V 1,0n_1-
(1) g 1(Sn,j-1:Vnj-1,0nj-1
(C2) Phs 1725 Ten+1/2)  TV.n+ 1/2,1)] : (C10f
_ h Ts,n+1/2]
Sn,j_sn,j—l+ E(Sn,j +Sn,j—1) Qs ) (ClO@
_ h TV,n+1/2
(C3) Vn,j_vn,j—1+ ﬁ(sn’j‘f‘sn’j_l)Q—v, (ClOW
(C4 h ( 1 1 ) Pi.n+1/2
. =0 L + — + ! ,
an,j ql,n,j 1 2| Sn,jflvﬁfjs—l Snl\/2/3 m,
(C10i)
(CH
h 1 (Pf ns1i2j)?
(Co) Tsn+1/2j = Tsn+12j T 57 2l V2/3 ﬁj 2 2m,
—gKT—AH(Snj Vi n,jPrr12 »
C ’ !
€ Tsnt 112 !7TV,n+1/2J)}’ (C10)
TVn+1/2) = T+ 125+ Esn,jpl(sn,j Vnj G,
(C8) (C10K

(C9)

wherel is positive integer and the time step for the slow and

fast variables i1 andh/I, respectively. Using the symplectic

Euler algorithm[Eq. (8)] and its adjoinEq. (9)], one can

easily derive a multiple-time-step generalized leapfrog algo-

rithm for this splitting

h
Pin+120=Pin~ 3 saVERV U (V).

Pexd,

h
Tv,n+12,0= Tv,nt 5 > Sal Po(Vi,0n) —

h
Tsn+1/2,0= T2an— ESnAHZ(Vn +an)s
doj=1|

p n+12§ = Pint12j-1

h
_Esnj 1Vn11/:§.V UZ(V1/J 19n,j- 1)

! —
Ty n+1/2j = TV,n+1/2j—1

h
+ 5Sn'j_l’Pl(Sn’j—1,an—1uQn,j—1)v

(C10a

(C10b

(C100

(C100

(C10¢

h /3 1/3
Pi N+1/2) = p| N+12j 2] Sﬂj V U2(Vn ]qn ]) (ClOD
end do

Uin+1=0in

Sn+1§$n,|

Vn+1§Vn,I

7Ts,n+1§77's,n+1/21_Esn+lAH2(Vn+1aQn+l)r (C10m

Ty n+1= Tyn+12) T 23n+1[P2(Vn+1aQn+l Pexds
(C10n

h
Pin+1=Pint12)— 25n+1V 3 ViUV 001 0),
(C100

where the partial instantaneous pressufgsand P, are
given by

2 p? 1 oU,
Py 3v 2 2mVZZ 3V EI . gi, (C1y)
PR s c12
2= 73y a_qui : (C12

This algorithm, being based on a symmetric concatena-
tion of symplectic Euler steps, is both time reversible and
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symplectic. It should be noted that other splittings are ceri®w. G. Hoover, Phys. Rev. 81, 1695(1985.
tainly possible here, but a detailed analysis and determind:D. J. Tobias, G. J. Martyna, and M. L. Klein, J. Chem. PH@d, 4177
tion of the optimal splitting would be the subject of further (1994-

work.

IM. A. Allen and D. J. TildesleyComputer Simulation of Liquid®xford
Science Press, Oxford, 1987

2D. Frenkel and B. SmitJnderstanding Molecular Simulatiofcademic,
New York, 1996.

3D. Brown and J. H. R. Clarke, Mol. Phy§1, 1243(1984).

4D. J. Evans and G. P. Morriss, Comput. Phys. ReR297 (1984).

5H. C. Anderson, J. Chem. Phy&2, 2384(1980.

6S. Nose, Mol. Phys52, 255 (1984.

’S. Nose, J. Chem. Phy81, 511(1984.

8W. G. Hoover, Phys. Rev. 84, 2499(1986.

9J. M. Sanz-Serna and M. P. Calvblumerical Hamiltonian Problems
(Chapman and Hall, New York, 1985

D. J. Tobias, G. J. Martyna, M. E. Tuckerman, and M. L. Klein, Mol.
Phys.87, 1117(1996.

133, D. Bond, B. J. Leimkuhler, and B. B. Laird, J. Comput. PH&L 114
(1999.

143, M. Sanz-Serna, BI28, 877 (1991.

15F, Lasagni, Z. Angew. Math. Phy89, 952 (1989.

8y B. Suris, USSR Comput. Math. Math. Phy29, 138(1989.

173, M. Sanz-Serna, Acta Numet, 243 (1991).

18M. Tuckerman and B. J. Berne, J. Chem. PH.1990(1992.

193, Mei and J. W. Davenport, Phys. Rev4B, 21 (1992.

203, Nose, Prog. Theor. Phys. Supp03 1 (1992).

217, Cagin and J. R. Ray, Phys. Rev.3%, 4510(1988.

22\, C. Swope, H. C. Anderson, P. H. Berens, and K. R. Wilson, J. Chem.
Phys.76, 637 (1982.





