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Symplectic algorithm for constant-pressure molecular dynamics
using a Nose´ –Poincaré thermostat
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We present a new algorithm for isothermal–isobaric molecular-dynamics simulation. The method
uses an extended Hamiltonian with an Andersen piston combined with the Nose´–Poincare´
thermostat, recently developed by Bond, Leimkuhler, and Laird@J. Comp. Phys.151, 114 ~1999!#.
This Nosé–Poincare´–Andersen~NPA! formulation has advantages over the Nose´-Hoover-Andersen
approach in that the NPA is Hamiltonian and can take advantage of symplectic integration schemes,
which lead to enhanced stability for long-time simulations. The equations of motion are integrated
using a generalized leapfrog algorithm~GLA! and the method is easy to implement, symplectic,
explicit, and time reversible. To demonstrate the superior stability of the method we show results for
test simulations using a model for aluminum and compare it to a recently developed time-reversible
algorithm for Nose´–Hoover–Anderson. In addition, an extension of the NPA to multiple time steps
is outlined and a symplectic and time-reversible integration algorithm, based on the GLA, is given.
© 2000 American Institute of Physics.@S0021-9606~00!51307-5#
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I. INTRODUCTION

Traditionally, molecular-dynamics simulations are pe
formed using constant particle numberN, volume V, and
energyE. However, these are not usually the conditions u
der which experiments are done and there has been m
attention to the development of simulation methods desig
to sample from other, experimentally more relevant e
sembles, such as constant temperature~canonical! and/or
constant pressure.1–4 Some of the most popular and useful
these are those based on so-called ‘‘extended’’ Hamiltonia
i.e., Hamiltonians in which extra degrees of freedom ha
been added to the system in order to ensure that the tra
tory samples from the statistical distribution correspond
to the desired thermodynamic conditions.

For a constant pressure system, for example, Ander5

introduced the volumeV, along with its corresponding con
jugate momentumpV , as extra variables. The new variabl
are coupled to the system in such a way as to guarantee
the trajectory~if ergodic! samples from an isobaric statistic
distribution. Similarly, to generate a constant temperat
distribution. Nose´6 introduced a new mechanical variabless
~with conjugate momentumps! that couples into the system
through the particle momenta and acts to effectively resc
time in such a way as to guarantee canonically distribu
configurations. These two extensions can be combined
give a Hamiltonian whose trajectories can be shown
sample from an isothermal–isobaric ensemble.7

This combined Nose´–Andersen~NA! Hamiltonian is
given by

a!Author to whom correspondence should be addressed; electronic
laird@pilsner.chem.ukans.edu
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2 1U~V1/3q!1

pV
2

2QV
1

ps
2

2Qs

1gkT ln s1PextV, ~1!

wherepi is the conjugate momentum to the scaled posit
qi5V21/3r i , Pext is the external pressure andg is given by
Nf11 whereNf is number of degrees of freedom of th
original system. The quantitiesQV andQs are the masses o
the Andersen ‘‘piston’’ and the Nose´ thermostat, respec
tively. @Note that this is not the only formulation possibl
For example, one can use the strain, proportional to lnV,
instead of the volume as an independent extended varia
This leads to the sampling by the trajectory of a sligh
different distribution, but the difference between averag
calculated using these distributions is generally sm
O(1/N).8#
The equations of motion for this system are

ṗi52V1/3¹ iU~V1/3q!, ~2a!

q̇15
pi

s2miV
2/3, ~2b!

ṗv5P2Pext, ~2c!

V̇5pv /QV , ~2d!

ṗs5V22/3s3(
pi

2

mi
2

gkT

s
, ~2e!

ṡ5ps /Qs , ~2f!

where the instantaneous pressureP is given by

P5
2

3V (
i

pi
2

2miV
2/3s22

1

3V (
i

]U

]qi
qi . ~3!il:
4 © 2000 American Institute of Physics
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There are two major drawbacks to this approach: Fi
because of the time rescaling, the time variable in Nose´ dy-
namics is not ‘‘real’’ time, so any discretized trajectory ge
erated by numerically integrating the Nose´ equations of mo-
tion must be transformed back into real time, leading to
configurations that are spaced at unequal real-time interv
This is inconvenient for the construction of equilibrium a
erages, especially of dynamical quantities. Second,
Hamiltonian is notseparable9 ~that is, the kinetic and poten
tial terms in the Hamiltonian are not functions only of m
menta and position variables, respectively!, making standard
Verlet–leapfrog approaches inapplicable.

By a change of variables and a time rescaling of
equations of motion. Hoover10 derived new equations of mo
tion that generate the same trajectories~for the exact solu-
tion! as the original Nose´ Hamiltonian, but in real time. This
Nosé–Hoover dynamics has become a standard metho
molecular simulation. However, the change of variables t
links the Nose´ Hamiltonian to the Nose´–Hoover equations o
motion is a noncanonical transformation—the total ene
function of the system is still conserved, but it is no longe
Hamiltonian, since the equations of motion cannot be
rived from it. Although a variety of very good time
reversible methods have been put forward,11,12 the lack of
Hamiltonian structure precludes the use of symplectic in
gration schemes, which have been shown to have sup
stability over nonsymplectic methods.9

II. THE NOSÉ–POINCARÉ–ANDERSEN „NPA…

HAMILTONIAN

Recently, Bond, Leimkuhler, and Laird13 have devel-
oped a new formulation of Nose´ constant-temperature dy
namics in which a Poincare´ time transformation is applied
directly to the Nose´ Hamiltonian, instead of applying a tim
transformation to the equations of motion as in Nos´–
Hoover. The result of this is a method that runs in real tim
but is also Hamiltonian in structure. In this work we combi
this new thermostat with the Andersen method for cons
pressure to give an algorithm for isothermal–isobaric m
lecular dynamics. For a system with an Andersen piston,
new Nose´–Poincare´–Andersen~NPA! Hamiltonian is given
by

HNPA5@HNA2HNA~ t50!#s, ~4!

whereHNA is given in Eq.~1!. As discussed in Ref. 11, th
above form of the Hamiltonian~a specific case of a Poincar´
time transformation! will generate the same trajectories
the original Nose´–Andersen Hamiltonian, except with tim
rescaled bys ~which puts the trajectories back into real time!,
The resulting equations of motion~except forps! for this
constant pressure and temperature Nose´–Poincare´ Hamil-
tonian are the same as those given above for the No´–
Andersen system@Eqs.~2a!–~2f!#, except that the right-hand
side is multiplied by the thermostat variables. For ps we
have

ṗs52s
]H
]s

2DH5V22/3(
pi

2

mis
22gkT2DH, ~5!
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where DH[HNA2HNA(t50) and, since the averages a
taken over the real-time trajectory, the value ofg is now Nf

to give the correct isothermal–isobaric distribution. It can
shown~see Appendix A! that, assuming ergodicity, the NPA
dynamics generates trajectories that sample from
isothermal–isobaric~NPT! statistical distribution. It is also
relatively easy to show~see Appendix B! that the NPA equa-
tions of motion forpV , s, and V generate the appropriat
virial relations11 for the NPT distribution, namely,̂ P&
5Pext and ^V(P2Pext)&1kT50.

III. INTEGRATING THE NPA EQUATIONS OF MOTION

The NPA Hamiltonian is nonseparable since the kine
energy contains the extended ‘‘position’’ variabless andV.
The equations of motion for a general time-independe
nonseparable Hamiltonian can be written~for general posi-
tions Q and conjugate momentaP!

Q̇5G~P,Q!, Ṗ5F~P,Q!, ~6!

where G(P,Q)5]H/]P and F(P,Q)52]H/]Q. ~For a
separable Hamiltonian,G is only a function ofP and F is
only a function ofQ.! For such a nonseparable system, sta
dard symplectic splitting methods, such as the Verle
leapfrog algorithm, are not directly applicable. Howeve
symplectic methods specifically for nonseparable syste
have been developed.9 One simple example that is secon
order and time-reversible is the generalized leapfrog al
rithm ~GLA!

Pn11/25Pn1hF~Pn11/2,Qn!/2,

Qn115Qn1h@G~Pn11/2,Qn!1G~Pn11/2,Qn11!#/2,
~7!

Pn115Pn11/21hF~Pn11/2,Qn11!/2,

whereh is the time step andPn andQn are the approxima-
tions to P(t) and Q(t) at t5tn5nh. @This method can be
obtained as the concatenation of the symplectic Eu
method

Pn115Pn1hF~Pn11 ,Qn!,
~8!

Qn115Qn1hG~Pn11 ,Qn!.

with its adjoint9

Qn115Qn1hG~Pn ,Qn11!,
~9!

Pn115Pn1hF~Pn ,Qn11!.

The concatenation of an integrator with its adjoint guarant
a time-reversible method.# This method is a simple exampl
of a class of symplectic integrators for nonsepara
Hamiltonians.14–17

Applying the GLA to the NPA equations of motio
gives

pi ,n11/25pi ,n2
h

2
snVn

1/3¹ iU~V1/3qn!, ~10a!

pv,n11/25pv,n1
h

2
sn@P~qn ,pn11/2,Vn ,sn!2Pext#,

~10b!
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ps,n11/25ps,n1
h

2 S (
i 51

N pi ,n11/2
2

miVn
2/3sn

22gkBTD
2

h

2
DH~qn ,pn11/2,Vn ,pv,n11/2,sn ,ps,n11/2!,

~10c!

sn115sn1
h

2
~sn1sn11!

ps,n11/2

Qs
, ~10d!

Vn115Vn1
h

2
~sn1sn11!

pv,n11/2

QV
, ~10e!

qi ,n115qi ,n1
h

2 S 1

snVn
2/31

1

sn11Vn11
2/3 D pi ,n11/2

mi
, ~10f!

ps,n115ps,n11/21
h

2 S (
i 51

N pi ,n11/2
2

miVn11
2/3 sn11

2 2gkBTD
2

h

2
DH~qn11 ,pn11/2,Vn11 ,

pv,n11/2,sn11 ,ps,n11/2!, ~10g!

pv,n115pv,n11/21
h

2
sn11@P~qn11 ,pn11/2,Vn11 ,sn11!

2Pext#, ~10h!

pi ,n115pi ,n11/21
h

2
sn11Vn11

1/3 ¹ iU~Vn11
1/3 qn11!. ~10i!

As in the case of the constant volume Nose´–Poincare
algorithm, the GLA for the NPA is explicit—this is not nec
essarily the case for a general nonseparable Hamilton
Note that Eq.~10c! requires the solution of a scalar quadra
equation forps,n11/2. Details of how to solve this equatio
without involving subtractive cancellation can be found
Ref. 11.

Often, in specific practical applications, there is a su
cient separation of time scales between the fastest and s
est motions in the dynamics that a multiple time step
proach is prudent. For constant particle number, volume
energy ~NVE! simulations, this approach is we
developed.18 For NPT simulations of the type discussed he
multiple time step algorithms exist,12 but are complicated
~mainly due to the lack of Hamiltonian structure in th
Nosé–Hoover–Anderson approach!. In contrast, the
multiple-time step extension of the NPA is straightforwa
and a modification of the generalized leapfrog algorithm
this system is presented in Appendix C.

IV. SIMULATION RESULTS

In order to evaluate this method, simulations were p
formed using an embedded atom potential for aluminum19

Unless otherwise specified all simulations were done o
system of 256 particles with periodic boundary conditio
for an aluminum melt atT51000 K and P50. For this
model, mass is measured in amu, distance in Å, and en
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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in eV. The natural time unit of the simulation is then 10.1
fs; that is, a simulation time step of 0.1 corresponds to
actual time step of 1.0181 fs.

In order to properly sample the isothermal–isobaric d
tribution, the masses for the extended variables need to
chosen with some care.20 If the masses are too large or to
small, the natural vibrational frequency of the extended va
able will lie outside the density of states of vibrational fr
quencies of the system. This effectively decouples the
tended variable from the motions of the system, destroy
ergodicity. A useful method to monitor this is to examine t
distributions of kinetic energy or instantaneous ‘‘tempe
ture’’ ~for the thermostat mass! and density~for the pressure
piston!. For a system with an isothermal–isobaric distrib
tion, the distribution of the kinetic-energyK will be a Gauss-
ian with variance 2̂K&2/3N—the distribution of the instan-
taneous temperatureT̂ is then a Gaussian with varianc
2T̂2/3N ~Note that, for simplicity, and for the sake of th
argument, we have ignored the corrections in these quant
due to the fact that the total momentum is conserved21 as
they are negligible with respect to the calculation of the d
tribution!. For a system, in which the thermostat is decoup
from the system, the thermostat variable motion will be
undamped harmonic oscillation20—the resulting distribution
is decidedly non-Gaussian, being peaked at the edges~the
classical turning points! of the distribution and low around
the average value.

In order to determine the proper masses for the therm
stat we perform a series of simulations using various therm
stat masses while holding the pressure piston mass con
with a value ofQV50.0001. ~This initial value ofQV was
based on previous runs in the development phase of the
gorithm.! Each run was initialized to an fcc~face-centered-
cube! lattice of initial density 0.060 21 Å23 with the indi-
vidual velocity components chosen from a Maxwel
Boltzmann distribution at 1000 K. The system w
equilibrated for 50 000 steps~50.91 ps! and then monitored
for 50 000 steps~50.91 ps!. @The fluctuations in instanta
neous temperature as a function of time for the various th
mostat masses are plotted in Fig. 1. The instantaneous
peratureT̂ is given by

T̂[
2K

2~N21!kB
,

whereK is the instantaneous kinetic energy of the syste
and kB is Boltzmann’s constant—the factor (N21) is used
to correct for the fact that in a molecular-dynamics simu
tion, the total linear momentum is conserved.21# This figure
shows that for a very small thermostat piston mass,Qs

51.0, the system tightly oscillates around the input tempe
ture. This system has â(dT̂)2&56.5 K2. Similar behavior is
seen forQs510.0. For a very large mass,Qs51 000 000.0
the same harmonic oscillations are observed. Figure 2 sh
the instantaneous temperature distributions. In both of th
cases, from the non-Gaussian shape of the distributions,
can see that the system is not properly sampling
isothermal–isobaric distribution. From the formula give
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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above for the expected distribution ofT̂, we expect for a
system of 256 particles at 1000 K, the distribution to be

Gaussian witĥ (dT̂)2&52604.2 K2. From this value and an
average temperature of 1000 K, a Gaussian was constru
and is plotted together with the distributions in Fig. 2. The
curves match the observed distribution forQs in the range of
100.0 to 10 000.0; for subsequent simulations we choos
value ofQs5500.0. A similar series of runs were performe

FIG. 1. The instantaneous temperatureT̂ of the system plotted as a functio
of time for six different thermostat masses.

FIG. 2. These are the distributions in the instantaneous temperatureT̂ cor-
responding to the temperature trajectories in Fig. 1. A Gaussian curve
variance 2T2/3N is shown in each plot for comparison.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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usingQs5500.0 to determine the mass of the pressure p
ton. A value ofQV50.0001 was determined to be a suitab
value for the mass of the pressure piston.

Using these values for the piston masses, the stabilit
the method was tested. Figure 3~a! shows the value of the
NPA Hamiltonian ~a conserved quantity! as a function of
time for a long run using a time step of 0.1~1.0181 fs!. The
trajectory shown here was begun after initial equilibration
1000 K for 23106 time steps~2.036 ns!. The stability of the
method is excellent, giving no noticeable drift inHNPA over
the course of a long trajectory. The pressure and tempera
trajectories for this run are also shown in Figs. 3~b! and 3~c!,
respectively. In Figs. 4~a!–4~c!, we examine the ability of
the method to regulate the pressure, temperature and den
respectively. This system was initialized to an fcc lattice
initial density 0.060 21 Å23 with the individual velocity
components chosen from a Maxwell–Boltzmann distribut
at 100 K. The simulation was then run with the NPA wi
T51000 K andP50. In all cases, the instantaneous pre
sure, temperature, and density evolve quickly and stabi
about their desired values.

The GLA has a global error that is second order in t
time step. To demonstrate that this also is true in our resu
a series of simulations were performed using various val
for the time step. The system was initialized in an identi
manner to that described in the last paragraph and then
for a total time of 2.036 ps. Figure 5 shows a log–log plot
the energy error, as estimated by the standard deviatio
HNPA @Eq. ~5!#, versus the time step.

In order to demonstrate that the method yields relev
dynamical quantities, the normalized velocity autocorrelat
function, C(t)5^v(t)•v(0)&/^v(0)•v(0)&, was calculated
using our constant NPT algorithm~with Qv andQs as deter-
mined above! and compared to the same quantity calcula
using standard constant NVE molecular dynamics~using a

ith

FIG. 3. ~a! The value of the NPA Hamiltonian as a function of time for
long run ~over 2 ns! on a 256 particle aluminum system. The starting co
figuration had been equilibrated atT51000 K andP50. The values ofQv
and Qs ~in reduced units! are 500.0 and 1024, respectively. The instanta
neous pressure and temperature trajectories for this run are given in~b! and
~c!, respectively.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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velocity-Verlet integrator22!. Both simulations were run us
ing the same time step of 0.1~1.0181 fs! The NVE simula-
tions were run at an energy and density corresponding to
average energy and density for the constant NPT sim
tions. This comparison is shown in Fig. 6. Both systems w
first equilibrated at 1000 K for 200 000 steps~203.6 ps! and
run for 20 000 steps~20.36 ps! to collect averages.C(t) for
the Nose´–Poincare´–Andersen method for constant NPT m
lecular dynamics is seen to be nearly indistinguishable fr
that of the NVE simulation.

Finally, it is useful to compare the method with a sta
of-the art integrator for the Nose´–Hoover–Anderson~NHA!
equations of motion, namely that of Martynaet al.13 This
method is a time-reversible, but nonsymplectic~due to the
nonsymplectic nature of the NHA equations of motio!

FIG. 4. Pressure~a!, temperature~b!, and density~c! trajectories for the 256
particle aluminum system using the NPA algorithm withT51000 K and
P50 starting from an initial configuration in an fcc lattice with densityr
50.060 21 Å23 and initial velocities chosen from a Maxwell–Boltzman
distribution at 100 K.

FIG. 5. Log–log plot of the energy error~standard deviation! s(HNPA) vs
the time step for a variety of piston and thermostat masses. The order o
method is given by the slope of this line which is 2.0, indicating a seco
order global error.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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method that was developed using splitting techniques on
Liouville operator corresponding to the NPA equations
motion, and it is somewhat more complicated to implem
than the GLA. Like the GLA, it is a second-order metho
overall, but the integration of the thermostat variables e
ploy a fourth-order symmetric splitting. To compare th
methods we have performed simulations of both systems
ing identical starting configurations and extended varia
masses at 1000 K and zero pressure. Each system was
equilibrated for 2.036 ns and then monitored for an ad
tional 4.072 ns. Figure 7 shows the conservation of the
energyHNA2HNA(t50) for time steps of 0.2~2.162 fs!, 0.4
~4.324 fs!, and 0.8~8.648 fs! in Figs. 7~a!–7~c!, respectively.
Although both methods show good energy conservation,
GLA, due to its symplectic nature, does not exhibit the d
in energy that can be seen in the time-reversible, but n
symplectic, method for the NHA.

he
-

FIG. 6. The normalized velocity autocorrelation function,C(t), for the
aluminum model calculated for a 256 particle system atT51000 K andP
50. The solid line is calculated using the NPA algorithm described, her
The dotted line is a constant NVE simulation under corresponding co
tions.

FIG. 7. Deviation of the Nose´–Anderson energy from its initial value fo
several time steps for the NPA~using GLA integrator! and for the method of
Martynaet al. for the NHA equations of motion.
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V. SUMMARY

We have developed a real-time Hamiltonian formulati
of isothermal–isobaric molecular-dynamics simulation ba
on a Poincare´ time transformation of the Nose´–Anderson
Hamiltonian. This new Nose´–Poincare´–Anderson ~NPA!
method is an extension of the recently developed No´–
Poincare´ method for isothermal molecular dynamics.13 This
new method has advantages over the standard No´–
Hoover–Anderson ~NHA!10 reformulation of Nose´–
Anderson dynamics, in that unlike the NHA, the NPA reta
a Hamiltonian structure allowing for the use of symplec
integrators, which have recently proven to have superior
bility over nonsymplectic methods. For integrating the eq
tions of motion we use the generalized leapfrog algorit
~GLA!, which is time-reversible, second-order, and sympl
tic. Using a model for aluminum, we have shown that t
NPA is extremely stable over long runs and reproduces
tistical mechanical properties of the system and distribut
well. It is also shown to exhibit less energy drift at large tim
steps than a state-of-the-art method for integration of
NHA equations of motion. Finally, we have also demo
strated that a multiple-time step extension of the metho
straightforward.
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APPENDIX A

In this Appendix we demonstrate that, assuming erg
icity, the Nose´–Poincare´–Anderson Hamiltonian generate
trajectories in which the coordinates are distributed acco
ing to the isothermal–isobaric statistical distribution.

The statistical distribution for the reduced set of va
ables, f ( p̃,q̃,V) is given by an integral over the extende
variable distributionFext(p,q,s,ps ,V,pV)

dq̃dp̃dV f~ p̃,q̃,V!5E dsE dpsE dpVdpdqdV

3Fext~p,q,s,ps ,V,pV!. ~A1!

~Here the tildes are used to denote the real, unscaled dyn
cal variables.! Assuming that the dynamics is ergodic, th
NPA dynamics will generate a microcanonical distributi
based on the NPA zero-energy surface. Thus,

dq̃dp̃dV f~ p̃,q̃,V!5
1

ZNPAN!hNf E dsE dpsE dpV

3dpdqdVd$s@HNA2HNA~0!#%.

~A2!
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whereNf is the number of degrees of freedom,HNA(0) is
the value of the NA Hamiltonian att50, andZNPA is the
partition function for the full extended system

ZNPA5
1

N!hNf E dsE dpsE dpVE dpE dqE dV

3d$s@HNA2HNA~0!#%. ~A3!

Defining the reduced Hamiltonian as

H~ p̃,q̃!5(
i

p̃i
2

2mi
1F~ q̃!, ~A4!

we have

dq̃dp̃dV f~ p̃,q̃,V!5
1

ZNPAN!hNf E dsE dpsE dpV

3dpdqdVdH sFH~V21/3s21p,V1/3q!

1
ps

2

2Qs
1

pV
2

2QV
1gkT ln s

1PextV2HNA~0!G J . ~A5!

Changing variables to real quantitiesq̃i5V1/3qi and p̃i

5pi /(sV1/3) gives

dq̃dp̃dV f~ p̃,q̃,V!5
1

ZNPAN!hNf E dsE dpsE dpV

3dp̃dq̃dVsNfdH sFH~ p̃,q̃!1
ps

2

2Qs

1
pV

2

2QV
1gkT ln s1PextV

2HNA~0!G J . ~A6!

For a functionf (s) with a single pole ats5s0 we have

d~ f ~s!!5
d~s2s0!

u f 8~s0!u
,

which, for our case, gives

dq̃dp̃dV f~ p̃,q̃,V!

5
1

ZNPAN!hNf E dsE dps

3E dpVdp̃dq̃dV
sNf

gkT
dH s2expF2

1

gkT S H~ p̃,q̃!

1
ps

2

2Qs
1

pV
2

2Qv
1PextV2HNP~0! D G J . ~A7!

Integration overs gives
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dq̃dp̃dV f~ p̃,q̃,V!5
1

gkTZNPAN!hNf E dpsE dpV

3dp̃dq̃dV expF2
Nf

gkT S H~ p̃,q̃!

1
ps

2

2Qs
1

pV
2

2Qp
1PextV

2HNP~o! D G . ~A8!

Settingg5Nf and integrating overps andpV , together with
the observation that when the above procedure is applie
ZNPA, we obtain a result that is a constant times the norm
isothermal–isobaric partition function

Z5
1

N!hNf E dVE dp̃E dq̃

3exp$2b@H~ p̃,q̃!1PextV#%. ~A9!

This gives ~after canceling the differentials and commo
constants!

f ~ p̃,q̃,V!5
1

ZN!hNf
exp$2b@H~ p̃,q̃!1PextV#%. ~A10!

which is the usual isothermal–isobaric distribution.

APPENDIX B: VIRIAL RELATIONS AND THE NPA
EQUATIONS OF MOTION

The equations of motion for any consistent extend
Hamiltonian designed to generate the isothermal–isob
distribution, should generate trajectory averages that o
the appropriate virial relations,11 namely, ^P2Pext&NPT50
and ^V(P2Pext)&NPT1kT50. In this Appendix we show
that these relations are indeed consistent with the NPA e
tions of motion.

To show the first relation, we start with the NPA equ
tion of motion forpV

pV5s~P2Pext!. ~B1!

Rearranging gives

P2Pext5
ṗV

s
5

d

dt FpV

s G1
ṡpV

s2 . ~B2!

Taking the equilibrium average within the NPA distributio
gives

^~P2Pext!&NPA5 K ṡpV

s2 L
NPA

. ~B3!

since the equilibrium average of the time derivative ofpV /s
will be zero. Using the NPA equation of motion fors gives

^~P2Pext!&5 K pspV

sQs
L . ~B4!
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Since the distributions for bothps and pV are symmetric
about zero, independent ofs and each other, the term on th
right-hand-side is zero giving

^~P2Pext!&NPA50. ~B5!

SinceP2Pext depends only upon the real positions and m
menta~and not explicitly ons, ps , or pV!, the average over
the NPA distribution will be equal to that over the standa
NPT distribution, as shown in Appendix A, giving

^~P2Pext!&NPT50, ~B6!

as required.
Now for the second virial relation, we start by multiply

ing the NPA equation of motion forpV by V

VṗV5s~P2Pext!V. ~B7!

Rearranging gives

~P2Pext!V5
VṗV

s
5

d

dt FVpV

s G2
V̇pV

s
1

ṡVpV

s2 . ~B8!

Taking an equilibrium average gives

^~P2Pext!V&NPA52K V̇pV

s L 1 K ṡVpV

s2 L
NPA

. ~B9!

where we have again used the fact that the equilibrium
erage of a time derivative will be zero at equilibrium. Usin
the NPA equations of motion fors andV gives

^~P2Pext!V&NPA52K pV
2

QV
L 1 K pspVV

s L
NPA

. ~B10!

Now the last term is zero since the distributions forps and
pV are symmetric, independent ofs and V. The next term
can be evaluated by the equipartition theorem, since it d
not involves, to give

K pV
2

QV
L

NPA

5kT. ~B11!

This gives

^~P2Pext!V&NPA1kT50, ~B12!

which by the above reasoning yields

^~P2Pext!V&NPT1kT50. ~B13!

We can see here that there is no inconsistency between
expected virial relations generated from the equations of m
tion and the isothermal–isobaric distribution.

APPENDIX C: MULTIPLE TIME STEPPING WITH NPA

Suppose the potential energy can be separated in
quickly varying partU1 ~e.g., stiff harmonic vibrations or
short-ranged repulsive interactions! and a slowly varying
partU2 ~e.g., long-range potentials, nonbonded interaction!.
The Nose´–Anderson Hamiltonian can be written
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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HNA5
1

V2/3s2 (
pi

2

2mi
1U1~V1/3q!1U2~V1/3q!

1
pV

2

2QV
1

ps
2

2Qs
1PextV1gkT ln s ~C1!

5HNA
~1!1HNA

~2! . ~C2!

where we split the Hamiltonian as follows:

HNA
~1![

1

V2/3s2 (
pi

2

2mi
1

pV
2

2QV
1

ps
2

2Qs
U1~V1/3q!

1gkT ln s, ~C3!

HNA
~2![U2~V1/3q!1PextV. ~C4!

Consequently the Nose´–Poincare–Anderson Hamiltonian i

HNPA5s@HNA2HNA~0!# ~C5!

5HNPA
~1! 1HNPA

~2! , ~C6!

where

HNPA
~1! [s@HNA

~1!2HNA
~1!~0!#,

~C7!
HNPA

~2! [s@HNA
~2!2HNA

~3!~0!#.

We define the flow map for a HamiltonianH as the operator
such that for any dynamical variableA we have

A~ t !5fH,tA~ t50!. ~C8!

Using the standard Trotter factorization used to deve
multiple-time step molecular dynamics18 we write

fHNPA ,h5fH
NPA
~2! ,h/2~fH

NPA
~1! ,h/ l !

lfH
NPA
~2! ,h/2 , ~C9!

wherel is positive integer and the time step for the slow a
fast variables ish andh/ l , respectively. Using the symplecti
Euler algorithm@Eq. ~8!# and its adjoint@Eq. ~9!#, one can
easily derive a multiple-time-step generalized leapfrog al
rithm for this splitting

pi ,n11/2,05pi ,n2
h

2
snVn

1/3¹ iU2~Vn
1/3qn!, ~C10a!

pV,n11/2,05pV,n1
h

2
sn@P2~Vn ,qn!2Pext#, ~C10b!

ps,n11/2,05p2,n2
h

2
snDH2~Vn ,qn!, ~C10c!

do j51,l

pi ,n11/2,j8 5pi ,n11/2,j 21

2
h

2l
sn j21Vn j21

21/3 ¹ iU2~Vn, j 21
1/3 qn, j 21!,

~C10d!

pV,n11/2,j8 5pV,n11/2,j 21

1
h

2l
sn, j 21P1~sn, j 21 ,Vn j21 ,qn, j 21!,

~C10e!
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ps,n11/2,j8 5ps,n11/2,j 211
h

2l H 1

Vn, j 21
2/3 sn, j 21

2 (
pi ,n11/2,j

2

2mi

2gkT2DH1~sn, j 21 ,Vn, j 21 ,qn, j 21 ,

pn11/2,j8 ,ps,n11/2,j8 ,pV,n11/2,j8 !J , ~C10f!

sn, j5sn, j 211
h

2l
~sn, j1sn, j 21!

ps,n11/2j

Qs
, ~C10g!

Vn, j5Vn, j 211
h

2l
~sn, j1sn, j 21!

pV,n11/2,j

QV
, ~C10h!

qi ,n, j5qi ,n, j 211
h

2l S 1

sn, j 21Vn, j 21
2/3 1

1

sn, jVn, j
2/3D pi ,n11/2,j

mi
,

~C10i!

ps,n11/2,j5ps,n11/2,j1
h

2l H 1

Vn, j
2/3sn, j

2 (
~pi ,n11/2,j8 !2

2mi

2gkT2DH1~sn, j ,Vn, j ,qn, j ,pn11/2,j8 ,

ps,n11/2,j8 ,pV,n11/2,j8 !J , ~C10j!

pV,n11/2,j5pV,n11/2,j8 1
h

2l
sn, jP1~sn, j ,Vn, j ,qn, j !,

~C10k!

pi ,n11/2,j5pi ,n11/2,j8 2
h

2l
sn, jVn, j

1/3¹ iU2~Vn, j
1/3qn, j !, ~C10l!

end do

qi ,n11[qi ,n,l

sn11[sn,l

Vn11[Vn,l

ps,n11[ps,n11/2,l2
h

2
sn11DH2~Vn11 ,qn11!, ~C10m!

pV,n115pV,n11/2,l1
h

2
sn11@P2~Vn11 ,qn11!2Pext#,

~C10n!

pi ,n115pi ,n11/2,l2
h

2
sn11Vn11

1/3 ¹ iU2~Vn11
1/3 qn11!,

~C10o!

where the partial instantaneous pressuresP1 and P2 are
given by

P15
2

3V (
i

pi
2

2miV
2/3s22

1

3V (
i

]U1

]qi
qi , ~C11!

P252
1

3V (
i

]U2

]qi
qi . ~C12!

This algorithm, being based on a symmetric concate
tion of symplectic Euler steps, is both time reversible a
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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symplectic. It should be noted that other splittings are c
tainly possible here, but a detailed analysis and determ
tion of the optimal splitting would be the subject of furth
work.

1M. A. Allen and D. J. Tildesley,Computer Simulation of Liquids~Oxford
Science Press, Oxford, 1987!.

2D. Frenkel and B. Smit,Understanding Molecular Simulation~Academic,
New York, 1996!.

3D. Brown and J. H. R. Clarke, Mol. Phys.51, 1243~1984!.
4D. J. Evans and G. P. Morriss, Comput. Phys. Rep.1, 297 ~1984!.
5H. C. Anderson, J. Chem. Phys.72, 2384~1980!.
6S. Nose, Mol. Phys.52, 255 ~1984!.
7S. Nose, J. Chem. Phys.81, 511 ~1984!.
8W. G. Hoover, Phys. Rev. A34, 2499~1986!.
9J. M. Sanz-Serna and M. P. Calvo,Numerical Hamiltonian Problems
~Chapman and Hall, New York, 1995!.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

129.237.46.100 On: Tue,
r-
a-

10W. G. Hoover, Phys. Rev. A31, 1695~1985!.
11D. J. Tobias, G. J. Martyna, and M. L. Klein, J. Chem. Phys.101, 4177

~1994!.
12D. J. Tobias, G. J. Martyna, M. E. Tuckerman, and M. L. Klein, Mo

Phys.87, 1117~1996!.
13S. D. Bond, B. J. Leimkuhler, and B. B. Laird, J. Comput. Phys.151, 114

~1999!.
14J. M. Sanz-Serna, BIT28, 877 ~1991!.
15F. Lasagni, Z. Angew. Math. Phys.39, 952 ~1988!.
16Y. B. Suris, USSR Comput. Math. Math. Phys.29, 138 ~1989!.
17J. M. Sanz-Serna, Acta Numer.1, 243 ~1991!.
18M. Tuckerman and B. J. Berne, J. Chem. Phys.97, 1990~1992!.
19J. Mei and J. W. Davenport, Phys. Rev. B46, 21 ~1992!.
20S. Nose, Prog. Theor. Phys. Suppl.103, 1 ~1991!.
21T. Cagin and J. R. Ray, Phys. Rev. A37, 4510~1988!.
22W. C. Swope, H. C. Anderson, P. H. Berens, and K. R. Wilson, J. Ch

Phys.76, 637 ~1982!.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 16 Sep 2014 16:37:32




