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Generalized dynamical thermostating technique
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We demonstrate that the Nose´ method for constant-temperature molecular-dynamics simulation@Mol. Phys.
52, 255~1984!# can be substantially generalized by the addition of auxiliary variables to encompass an infinite
variety of Hamiltonian thermostats. Such thermostats can be used to enhance ergodicity in systems, such as the
one-dimensional harmonic oscillator or certain molecular systems, for which the standard Nose´-Hoover meth-
ods fail to reproduce converged canonical distributions. In this respect the method is similar in spirit to the
method of Nose´-Hoover chains, but is both more general and Hamiltonian in structure~which allows for the
use of efficient symplectic integration schemes!. In particular, we show that, within the generalized Nose´
formalism outlined herein, any Hamiltonian system can be thermostated with any other, including a copy of
itself. This gives one an enormous flexibility in choosing the form of the thermostating bath. Numerical
experiments are included in which a harmonic oscillator is thermostated with a collection of noninteracting
harmonic oscillators as well as by a soft billiard system.
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I. INTRODUCTION

The use of extended dynamical systems to generate
jectories with phase points distributed according to a can
cal ~isothermal! distribution, as opposed to the micro
canonical~isoenergetic! distribution generated by traditiona
Hamiltonian dynamics, has become standard in molecu
dynamics simulation. Of the available approaches, th
based on the extended Hamiltonian of Nose´ are the most
widely used. In this method, the Hamiltonian of the system
augmented by the addition of auxiliary dynamical variabl
so that constant-energy dynamics in the extended ph
space generates a canonical distribution in the reduced p
space of the original system, assuming ergodicity. Althou
this method is popular, it exhibits limitations when applied
large scale systems with complex chemical structure, suc
protein-bath models and quantum-classical systems
which a variety of dynamical components are present in
solution. These limitations are a direct result of the simplic
of the Nose´ method~which is also one of its most desirab
features! and they are only partly ameliorated by the intr
duction of various devices such as Nose´ chains. In this paper
we show how Nose´’s approach can be generalized to inco
porate a wide range of bath systems, offering many inter
ing avenues for improved dynamic sampling. We also de
onstrate the construction of efficient numerical methods
this system.

Following the original papers of Nose´ @1,2#, many modi-
fications of the basic formulation have been proposed. N´
dynamics accomplishes thermostating by a dynamic~and ar-
tificial! modification of the time scale. In Ref.@3#, time and
coordinate transformations are introduced to correct
time-scale problem; the resulting Nose´-Hoover dynamics is
non-Hamiltonian, although a conserved energy function d
exist. The lack of Hamiltonian structure precludes the use
symplectic numerical integration schemes, which have b
1063-651X/2003/68~1!/016704~6!/$20.00 68 0167
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shown to yield superior long term stability@3#, and the de-
sign of algorithms for this system has focused on the de
opment of time-reversible methods@4#. In an alternative ap-
proach@5,6#, a Poincare´ time transformation is applied to th
NoséHamiltonian, yielding a new Hamiltonian, which gen
erates canonically distributed dynamics directly in real tim
Although the exact phase-space trajectories for the No´-
Hoover and Nose´-Poincare´ methods can easily be shown
be identical, the Nose´-Poincare´ dynamics is Hamiltonian, al-
lowing for the design ofsymplectic, time-reversible approxi-
mate integrators@5,7#. More recently, an alternative symplec
tic thermostating scheme has been proposed based
reformulation of Nose´ dynamics in a separated form~with a
constant mass matrix!, incorporating an on-the-fly recover
of phase variables at fixed time steps through interpolation
reweighting@8#.

In all of these methods, the production of canonically d
tributed phase-space trajectories requires the system t
sufficiently ergodic so that time and ensemble averages
equal within required accuracy. For the strongly coupl
many-particle systems generally encountered in molec
simulation, the dynamics is often sufficiently chaotic for th
condition to be met. However, for certain important low
dimensional systems„such as the one-dimensional~1D! os-
cillators @9#… or for many-particle systems with weakl
coupled low-dimensional subspaces~such as molecular sys
tems with stiff intramolecular vibrations@10#!, the addition
of only two auxiliary Nose´ variables is not enough to yield
sufficiently ergodic phase-space trajectories. To remedy t
a number of methods have been proposed that either mo
the coupling of the auxiliary variables in the Nose´-Hoover
equations of state@11–14# or add additional auxiliary vari-
ables, as in the method of the Nose´-Hoover chains@15#. For
a molecular system with periodic boundary conditions,
latter approach has proved to be the more generally us
one. All of these methods to enhance ergodicity, such as
©2003 The American Physical Society04-1
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Nosé-Hoover approach from which they derive, are no
Hamiltonian in structure and cannot take advantage of s
plectic integration schemes.

In this paper, we outline a general method for improvi
the ergodicity of the Nose´ thermostat that is fully Hamil-
tonian in structure. The method is generated by the introd
tion of additional auxiliary variables to the Nose´-Poincare´
thermostat, in much the same way as the Nose´-Hoover
chains are generated from the Nose´-Hoover equations of mo
tion. However, instead of specifically adopting a chainli
coupling for this extended Nose´-Poincare´ Hamiltonian, we
determine a general form for the coupling, from which
infinite variety of specific methods can be extracted. T
general form is presented in Sec. III, following a backgrou
discussion of the mathematical formulation of Nose´ based
thermostats in Sec. II. In Sec. IV, specific examples of G
eralized Nose´-Poincare´ thermostats are introduced and an
lyzed with numerical experiments.

II. BACKGROUND: THE NOSE´ AND NOSÉ-POINCARÉ
HAMILTONIANS

For a system ofN particles ind dimensions, the origina
NoséHamiltonian is given by

HN5
p̃TM21p̃

2s2
1V~q!1

ps
2

2Qs
1gkT lns, ~1!

whereq and p̃ are thedN dimensional atomic position an
conjugate Nose´ momentum vectors, respectively, and t
scalarss andps are auxiliary conjugate position and mome
tum variables. The Nose´ dynamics controls the temperatu
of the system by rescaling time so that the real timet of the
system is related to the Nose´ time t by dt/dt5s. In addi-
tion, the momentump of the original system is related to th
Nosémomentum byp5p̃/s.

The equations of motion for this system are

dq

dt
5M21p/s2, ~2a!

dp̃

dt
52“V~q!, ~2b!

d s

dt
5

ps

Qs
, ~2c!

dps

dt
5p̃TM21p̃/s32gkT/s. ~2d!

The Nose´-Hoover equations of motion@15# are generated by
transforming the time derivatives to real time, transformi
to real momentum, and making the coordinate transform
tions h5 ln s andj5ḣ. These coordinate and time transfo
mations destroy the canonical Hamiltonian structure of
equations, although there is a conserved energy function

As an alternative to Nose´-Hoover, the Nose´-Poincare´ ther-
mostat@5#, a fully Hamiltonian real-time implementation o
01670
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the Nose´ thermostat, is obtained by applying a time transf
mation directly to the Nose´ Hamiltonian as opposed to th
equations of motion. The resulting transformed Hamilton
is given by

HNP5s@HN2HN~ t50!#.

The Nose´-Poincare´ Hamiltonian is nonseparable, since th
kinetic energy contains the extended ‘‘position’’ variables.
The equations of motion for a general time-independe
nonseparable Hamiltonian can be written~for general posi-
tions Q and conjugate momentaP) as

Q̇5G~P,Q!,

Ṗ5F~P,Q!, ~3!

where G(P,Q)5]H/]P and F(P,Q)52]H/]Q. ~For a
separable Hamiltonian,G is only a function ofP and F is
only a function ofQ.! For such a nonseparable system, sta
dard symplectic splitting methods, such as the Ver
leapfrog algorithm, are not directly applicable. Howev
symplectic methods specifically for nonseparable syste
have been developed@3#. One simple example that is secon
order and time reversible is the generalized leapfrog al
rithm ~GLA!

Pn11/25Pn1hF~Pn11/2,Qn!/2,

Qn115Qn1h@G~Pn11/2,Qn!1G~Pn11/2,Qn11!#/2,

Pn115Pn11/21hF~Pn11/2,Qn11!/2, ~4!

whereh is the time step andPn andQn are the approxima-
tions toP(t) andQ(t) at t5tn5nh. This method is a simple
example of a class of symplectic integrators for nonsepara
Hamiltonians @16–19#. Applying the GLA to the Nose´-
Poincare´ system gives a numerical method that is semi
plicit ~requiring only one force evaluation per time step!,
symplectic, and time reversible.

The Nose´-Poincare´ method is shown@5# to provide ca-
nonical sampling by an argument demonstrating that the
crocanonical distribution function in the extended pha
space,

rMC~q,p,s,ps ;N,V,EN!5
1

ZMC
d„s@HN~q,p,s,ps!2EN#…

~5!

~whereZMC is the microcanonical partition function obtaine
by integratingrMC over the extended phase space! generates
a canonical distribution in the reduced phase space.
proof relies on simply performing the integrations with r
spect to the auxiliary variables.

III. A GENERALIZED EXTENDED NOSE ´ THERMOSTAT

In this section, we show that the Nose´ approach~and its
corresponding real-time version—Nose´-Poincare´! is only the
simplest realization of a vast range of generalized therm
stating Hamiltonians. In particular, we show below that c
4-2
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nonical sampling can be achieved as well if the Nose´ Hamil-
tonian is coupled to an auxiliary system~with position
variables$s i% and conjugate momenta$p i%) to generate a
generalized Nose´ Hamiltonian

HGN5H~q,p̃/s!1gkT ln s1 f ~ps ,$s i ,p i%!, ~6!

where H is the Hamiltonian for the original system to b
thermostated,s and ps are the usual Nose´ thermostat vari-
ables, andf is a continuous function that must be chosen
that it is bounded below and so that exp(2bf) is in L1 on its
domain, i.e., so that its absolute integral is finite. The cor
sponding real-time generalized Nose´-Poincare´ Hamiltonian
is then

HGNP5s@HGN2HGN~ t50!#. ~7!

The proof that this generalized Nose´-Poincare´ generates a
canonical distribution~assuming ergodicity! follows closely
that for the standard Nose´-Poincare´ approach@5# and is given
here for completeness. The statistical distribution for the
duced set of variables,P(p,q…, is given by an integral ove
the extended variable distributionPext(p,q,s,L) @where L
denotes the vector of auxiliary variables (ps ,$s i%,$p i%)]:

dqdpP~p,q!5E dqdp̃dsdLPext~p,q,s,L!, ~8!

where the integral is over the auxiliary variabless and L.
Assuming that the dynamics is ergodic,

dqdpP~p,q!5
1

ZGNN!hNf
E dsE dLdp̃dqd„s@H~p/s,q!

1gkT ln s1 f ~L!2HGN~0!#…, ~9!

whereZGNP represents the partition function for the gene
alized Nose´-Poincare´ Hamiltonian andNf is the number of
degrees of freedom in the thermostated system. Chan
variables to real momentap5p̃/s gives

dqdpP~p,q!5
dpdq

ZGNN!hNf
E dsdLsNfd„s@H~p,q!1gkT ln s

1 f ~L!2HGN~0!#…. ~10!

For a functionf(s) with a single pole ats5s0, we have

d„f~s!…5
d~s2s0!

uf8~s0!u
,

which, for our case, gives

dqdpP~p,q!5
dpdq

ZGNN!hNf
E dsE dL

sNf

gkT

3dS s2expH 2
1

gkT
@H~p,q!

1 f ~L!2HGN~0!#J D . ~11!
01670
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Integration overs yields

dqdpP~p,q!5
dqdp

gkTZGNN!hNf
E dL expH 2

Nf

gkT
@H~p,q!

1 f ~L!2HGN~0!#J . ~12!

Settingg5Nf and integrating over the remaining auxiliar
variablesL give

P~p,q!5
C

ZGNN!hNf
exp@2bH~p,q!#, ~13!

whereb5(kT)21 and we have assumed certain properties
the function f (L) to ensure that the integration converge
namely,~1! f is bounded below,~2! exp(2bf)PL1. Applying
the same procedure toZGN and canceling constants gives

P~p,q!5
1

ZN!hNf
exp$2b@H~p,q!#%, ~14!

which is the usual canonical distribution, withZ being the
standard canonical partition function:

Z5
1

N!hNf
E dpE dq exp$2b@H~p,q!#%. ~15!

~It should be noted that in the original Nose´-Poincare´ paper
@5#, a method for Nose´-Poincare´ chains was outlined; how
ever, this method violates the conditions onf given above
and is invalid.!

A useful subclass of generalized Nose´ Hamiltonians can
be generated by viewing the standard Nose´ Hamiltonian as
the ‘‘system’’ and the auxiliary variable$s i ,p i% as a ‘‘bath’’
giving

HGN5HN~ p̃,q,s,ps!1Hbath~$s i ,p i%!1H int~ps ,$s i ,p i%!,
~16!

whereHN is the usual Nose´ Hamiltonian and the system-bat
interaction HamiltonianH int has no dependence ons to pre-
serve the canonical distribution, but is otherwise arbitra
~within the constraints onf outlined above!. This gives us the
result that a given Hamiltonian system can be thermosta
by coupling it to any other system, including a copy of itse.

For such a broad class of generalized Hamiltonians, i
not possible to give a general numerical discretizat
scheme that is optimal for all members of the class, but
any given specific case, efficient schemes can be devise
the following section, we give two specific examples of ge
eralized Nose´-Poincare´ systems and outline efficient, sym
plectic numerical integration algorithms for each.
4-3
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IV. ALGORITHMS AND NUMERICAL EXPERIMENTS

In this section, two examples of generalized Nos´-
Poincare´ thermostats are presented along with appropr
symplectic numerical discretization schemes. In addition,
merical experiments are performed to show that these m
ods can successfully thermostat a 1D harmonic oscilla
Note that these are merely intended as representative
amples of the infinite set of possible generalized thermos
and are in no sense being touted as optimal.

A. Example 1: ‘‘Vertex’’ coupling to independent
harmonic oscillators

Consider the following specific generalized Nose´ Hamil-
tonian:

HGN5
p̃TM21p̃

2s2
1V~q!1gkT ln s1

S 11( s i
2Dps

2

2Qs

1(
i

s i
2

2
1 (

i 51,m

p i
2

2Qi
. ~17!

We refer to this model as a ‘‘vertex’’ coupling as thes i are
only coupled to the other variables throughps ~a common
vertex!. The generalized Nose´-Poincare´ Hamiltonian for this
system is generated in the usual way,

HGNP5s@HGN2HGN~ t50!#. ~18!

The equations of motion for this example generaliz
Nosé-Poincare´ system are

ṗ̃52s“V~q!, ~19a!

q̇5M21p̃/s, ~19b!

ṡ5

sS 11( s i
2Dps

Qs
, ~19c!

ṗs5p̃TM21p̃/s22gkT2@HGN2HGN~ t50!#, ~19d!

ṡ i5
sp i

Qi
, ~19e!

ṗ i52s~11ps
2/Qs!s i . ~19f!

To generate a symplectic integration scheme, often
best approach is to use a splitting method in which
Hamiltonian is written as the sum of simpler Hamiltonia
for which the equations of motion can be integrated eit
exactly or with known simple symplectic schemes@3#. The
overall discretization scheme is then given as the concat
tion of those for the subproblems. For this vertex generali
Nosé-Poincare´, the following splitting can be used:
01670
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H152sF S 11( s i
2Dps

2

2Qs
1

1

2 (
i

s i
21gkT ln sG ,

~20!

H25sF p̃TM21p̃

2s2
1(

p i
2

2Qi
G , ~21!

H35s@V~q!2HGNP~ t50!#. ~22!

This splitting is similar to one proposed by Nose´ for the
original Nosé-Poincare´ method@7#. The numerical method is
then generated by the concatenation

fH~ t !5fH1
~ t/2!fH2

~ t/2!fH3
~ t !fH2

~ t/2!fH1
~ t/2!1O~ t3!,

~23!

wherefH(t) is the solution map that advances a phase-sp
point forward in time byt under the dynamics defined by th
Hamiltonian H. The solution maps forH2 and H3 can be
performed exactly and that forH1 can be approximated us
ing the GLA discussed in Sec. II to yield a second-ord
method that is both time reversible and symplectic.

B. Example 2: Coupling to a ‘‘realistic’’ system,
the three-soft-particle bath

A standard example of a system that is provably ergodi
the three-ball billiard system consisting of three hard-sph
particles moving in a box with hard boundaries@20#. While
we could, in principle, develop numerical schemes for h
dling a hard-sphere bath, using the technique describe
Ref. @21#, this would be quite complicated. Instead, for th
purposes of this demonstration, we use a simplified bath c
sisting of three soft repulsive spheres constrained to a
cubic box. Using the system-bath notation in Eq.~16!, the
bath and interaction Hamiltonians for this system are giv
by

Hbath5(
i 51

3 up i u2

2Qi
1(

i 51

3 F S s i ,x

l D 12

1S s i ,y

l D 12

1S s i ,z

l D 12G
1(

i
(
j . i

usi2sj u212 ~24!

and

H int5S (
i 51

3

usi u2D upsu2

2Qs
. ~25!

Here the bath positions and momentasi andpi are vectors
in R 3 and the second term in Eq.~24! defines a soft cubic
box of side lengthl. The Nose´-Poincare´ equations for this
system can be integrated using a similar Hamiltonian sp
ting to that used in the vertex coupling,
4-4
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H15sH gkT ln s1S (
i 51,3

usi u2D S ps
2

2Qs
D 1(

i 51

3 F S s i ,x

l D 12

1S s i ,y

l D 12

1S s i ,z

l D 12G1(
i

(
j . i

usi2sj u212J ,

H25sFpTM21p

2s2
1(

i 51

3 upi u2

2Qi
G ,

H35s@V~q!2HGN~ t50!#. ~26!

The dynamics forH2 andH3 can be integrated exactly an
that for H1 can be integrated using the GLA discussed
Sec. II.

C. Numerical experiments

We apply the two generalized Nose´-Poincare´ Hamilto-
nians above to the problem of thermostating a 1D harmo
oscillator. This system exhibits quite severe deviations fr
ergodicity for the unaugmented Nose´ thermostats@15#, which
is the main reason for the difficulty encountered in therm
stating molecular systems with stiff bonds that are wea
coupled to the rest of the system@10#. The unthermostated
Hamiltonian for this system is

H~p,q!5
p2

2
1

q2

2
,

where we have assumed unit mass and angular frequen
To test the sampling, we have performed molecu

dynamics simulations atkT51.0 on this model using both
the vertex coupling~with Qs51.0 and 6 auxiliary variables
with arbitrarily chosen massesQi equal to 0.7, 1.25, 5.2
10.35, 19, and 29.5! and the three-ball coupling~with Qs
57.0, l 52.5, and all sphere masses set to 1.0!. In Fig. 1, the
results for the distribution ofq for both couplings in the runs
of 23106 steps with a time steph50.01 are shown. The
solid line in Fig. 1 shows, for comparison, the exact cano
cal distribution for this system at the target temperature
the dotted line shows the results for the standard No´-
Poincare´ method withQs51.0 ~with identical time step and
run length!. Under these conditions, both extended No´-
Poincare´ methods are seen to adequately generate a can
cal distribution for the harmonic oscillator position variab
Similar agreement is obtained for the momentum distri
tion. In all cases, the energy error was less than 131024

with no discernible energy drift.

V. CONCLUSIONS

We have demonstrated that the Nose´ @1,2# and Nose´-
Poincare´ @5# methods for constant-temperature molecul
dynamics simulation can be substantially generalized by
addition of auxiliary variables to encompass an infinite va
ety of Hamiltonian thermostats. Such thermostats can
used to enhance ergodicity in systems, such as the 1D
monic oscillator@9# or certain molecular systems@10#, for
01670
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which the standard Nose´-Hoover @9# and Nose´-Poincare´
methods fail to reproduce converged canonical distributio
The addition of additional variables to an extended Ham
tonian system is much in the spirit of previous work to im
prove the convergence of the non-Hamiltonian Nose´-Hoover
thermostat, namely, through the use of the Nose´-Hoover
chains@15# or Gaussian thermostating@14#, but the methods
described in this work are far more general and are fu
Hamiltonian in form, which allows for the use of symplect
integration schemes, which have been shown to have s
rior stability in long simulations@3#.

In particular, we demonstrate the remarkable result th
within the generalized Nose´ formalism outlined herein, any
Hamiltonian system can be thermostated with any other,
cluding a copy of itself. This gives one an enormous flexib
ity in choosing the form of the thermostating bath. For e
ample, one could use as the thermostating bath syste
collection of coupled oscillators with natural frequencies th
mimic those in the system to be thermostated allowing
more efficient energy transfer from system to bath. In t
multiresonant Nose´ approach, the bath frequencies and co
plings could be tuned for optimal performance. In anoth
approach, one could use as the thermostating system a s
of the full system; for example, one could thermostat a s
tem of biomolecules in solution with a small sample of wa
at the desired temperature. It is clear that further study
needed to understand how one constructs an optimal the
stating bath for a given system. The generalized Nose´ ap-
proach provides a useful general framework within whi
such investigations can be undertaken in a systematic w

FIG. 1. The probability distribution for the positionq of a har-
monic oscillator thermostated atkT51.0 by the generalized Nose´-
Poincare´ vertex ~diamonds! and three-sphere~circles! couplings
discussed in Sec. IV. Specific parameters used for each simula
are given in the text. For comparison, the exact canonical distr
tion expected is shown as a solid line and the dotted line repres
a simulation using the original Nose´-Poincare´ thermostat with a
thermostat mass of unity.
4-5
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