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We present a general molecular-dynamics simulation scheme, based on the Nose´ thermostat, for
sampling from arbitrary phase space distributions. We formulate numerical methods based on both
Nosé–Hoover and Nose´–Poincare´ thermostats for two specific classes of distributions; namely,
those that are functions of the system Hamiltonian and those for which position and momentum are
statistically independent. As an example, we propose a generalized variable temperature distribution
that is designed to accelerate sampling in molecular systems. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1557413#

I. INTRODUCTION

Molecular-dynamics~MD! computer simulation is a
widely used tool in biology, chemistry, physics, and materi-
als science.1,2 Much of the power in the technique lies in the
ability to generate phase-space trajectories weighted accord-
ing to a relevant statistical-mechanical distribution. In the
first MD simulations, straightforward integration of the equa-
tions of motion for the system under study yielded energy
conserving trajectories that, assuming ergodicity, generated
microcanonical~constantNVE! equilibrium distributions of
phase-space configurations. Later, to better mimic experi-
mental conditions, a variety of MD techniques were devel-
oped that generate other standard statistical-mechanical dis-
tributions, such as canonical~NVT!,3–5 isothermal–isobaric
(NPT),6,7 and grand-canonical~mVT!.8 Recently, however,
there has been growing interest in the simulation of systems
with distributions that go beyond textbook statistical me-
chanical ensembles. For example, a variety of molecular-
dynamics methods focusing on the simulation of systems
obeying Tsallis statistics9 have been developed by Plastino
and Anteneodo,10 Andricioaei and Straub,11 and Fukuda and
Nakamura.12 In this work we outline ageneral molecular-
dynamics scheme, based on the Nose´ thermostat,3,13 to gen-
erate configurations according to an arbitrary phase-space
distribution.

A primary motivation for the development of algorithms
for the generation of nonstandard distributions is the need
for methods that accelerate the configurational sampling of
systems. Many systems are not sufficiently ergodic on the
time scale of standard molecular-dynamics simulations to en-
sure the convergence of statistical averages. This is espe-
cially true of macromolecules, biomolecules, and amorphous
materials. Over the past decade, a number of methods have
been developed to enhance sampling in MD. Berne and
Straub14 have recently written an excellent review of new
sampling methods. Central to these approaches has been the
recognition that high activation barriers cause a bottleneck

in phase space, rendering transitions between states unlikely.
A common thread among many methods is the systematic
deformation of the potential~or total! energy surface to ac-
celerate barrier crossing, either by lowering the barriers or
raising the potential valleys. From a statistical mechanical
perspective, such energy modifications induce a correspond-
ing modification in the phase-space distribution by en-
hancing the statistical weight of configurations in the vicinity
of energy barriers. Explicit knowledge of the modified
sampling distribution allows for statistical reweighting of
the computed trajectories to achieve averages in the original
ensemble.

The simplest method for enhancing sampling is to scale
the full Hamiltonian by some factor less than unity. This is
equivalent to performing the simulation at a higher tempera-
ture. If averages are desired at temperatureT, isothermal MD
simulations can be carried out at some higher temperature
T* , with averages at the original temperature computed by
reweighting the probability of each configuration by a factor
of exp@((1/kT)2(1/kT* ))H(p,q)#. A significant disadvan-
tage with such temperature boost approaches is that, unless
the boost is sufficiently small, low energy configurations are
not visited with a frequency large enough to obtain accept-
able statistics. A related approach, multicanonical MD, is
based on a Monte Carlo technique of the same name15 and
uses preliminary high temperature trajectories to construct a
distribution that is nearly flat in the position coordinates,
allowing nearly uniform sampling of coordinate space in
subsequent simulations. Multicanonical MD has been dem-
onstrated to accelerate conformational sampling in model
polypeptides16 and atomic clusters.

Another approach is Voter’s hyperdynamics,17,18 which
employs a ‘‘boost potential’’ to reduce the sampling prob-
ability in low energy regions, thereby accelerating barrier
crossing due to diminished relative energetic cost. With
boost potentials chosen to leave the potential energy in bar-
rier regions unchanged, transition state theory arguments can
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be used to obtain good transition rate statistics. However, the
low-energy sampling problem remains as in high tempera-
ture dynamics. Hyperdynamics has been used successfully in
solid state systems, but the method is not generally appli-
cable to liquids, where the presence of many saddle points
hampers the identification of well-defined barrier regions.

An approach to enhanced sampling can also be based on
a modification~typically a smoothing! of the potential energy
function. In some cases, enhanced sampling via potential
modification can be realized directly without altering any
equilibrium properties by a suitable coordinate transfor-
mation.19 The approach of Straub and co-workers11 is of
particular relevance for the current article, with Monte
Carlo and MD methods based on potential energy modifica-
tions that sample coordinates from alternative densities ac-
cording to a formalism motivated by the nonextensive Tsallis
entropy.9 The Tsallis–Straub approach is easy to implement,
amounting to a simple modification of the interaction forces
according to the gradient of an effective potential. Recently,
a more direct application of Tsallis entropy to MD was sug-
gested by Plastino and Anteneodo.10 Based on the idea of an
effective Hamiltonian, these authors showed that canonical
sampling ~using the dynamical approach of Kusnezov
et al.20! with respect to the effective Hamiltonian is equiva-
lent to Tsallis sampling. Significantly, this work considered
only the Tsallis regime in which coordinate sampling is re-
stricted to low energy regions. In a similar very recent work,
Fukuda and Nakamura,12 generate Tsallis dynamics by
adapting the effective Hamiltonian approach of Plastino and
Antenenodo to a Nose´–Hoover thermostat.4 In addition, the
possibility of extending the approach to arbitrary statistical
distributions is discussed.

In this paper we present a dynamical framework for
sampling from a general class of probability density func-
tions, including but not limited to the Tsallis density. In order
to introduce the idea of sampling from nonmicrocanonical
distributions and to provide the necessary background for
our generalized dynamics we discuss in Sec. II the extended
Hamiltonian approach of Nose´3 to canonical~constant tem-
perature! sampling, as well as the Nose´–Hoover4 and Nose´–
Poincare´5 approaches for implementing real-time formula-
tions of Nose´ dynamics. In Sec. III we introduce Generalized
Distribution Dynamics~GDD! and discuss the technique for
two special classes of systems: those for which the position
and momentum distributions are separable and those for
which the phase space distribution is a function of the full
Hamiltonian, and show how the Nose´ framework can be
used to derive the equations of motion that produce trajecto-
ries which sample from generalized distributions. In Sec. IV
we present as an example the variable temperature distribu-
tion for accelerating the sampling of systems with high bar-
riers. Numerical experiments on a double well potential us-
ing both the separable and full Hamiltonian GDD approaches
are presented in Sec. V.

II. SAMPLING FROM A CANONICAL DISTRIBUTION:
THE NOSÉ THERMOSTAT

In traditional ~NVE! MD simulation, the equations of
motion corresponding to the system Hamiltonian,H(p,q),

are integrated to generate the trajectories. The trajectory is
constrained to the constant energy surface,E5H(p,q) deter-
mined by the initial values of coordinates and momenta.
States in phase space along solutions are said to be sampled
from the microcanonical, or constant energy, distribution ac-
cording to the probability densityrNVE(q,p) that is propor-
tional tod(H(q,p)2E), whered is the Dirac delta function.

Due in part to a desire to bring simulation into accord
with laboratory experiments that are typically conducted at
some fixed temperature, methods have been developed
for generating trajectories which sample from the canonical,
or constant temperature, ensemble according to the proba-
bility density rNVT(q,p), which is proportional to
exp@2bH(q,p)#, whereb51/(kBT), T being the tempera-
ture andkB the Boltzmann constant. In contrast to the micro-
canonical case, canonical sampling allows states at all ener-
gies, though higher energy states have lower probabilities
depending on the value of temperatureT.

Although other methods exist, the most widely used
techniques for generating canonically distributed trajectories
in MD simulation are based on the extended Hamiltonian of
Nosé,3,13

HNosé5
p̃TM21p̃

2s2 1V~q!1
p2

2Q
1gkBT ln s, ~1!

where s and p are conjugate thermostat variables,Q is a
fictional thermostat mass which determines the strength of
thermal coupling to the system,g5Nf11 ~with Nf being the
number of degrees of freedom in the system!, and p̃ is a
virtual momentum related to the actual momentum of the
system byp̃5sp.3 The equations of motion generated by the
NoséHamiltonian@Eq. ~1!# are

dq

dt
5M21p̃/s2, ~2!

dp̃

dt
52¹V~q!, ~3!

ds

dt
5

p

Q
, ~4!

dp

dt
5

p̃TM21p̃

s3 2gkBT/s. ~5!

The Nose´ method regulates the temperature of the sys-
tem through a dynamical time transformation given by
dt/dt5s, wheret is the Nose´ ~virtual! time and t is real
time. The remarkable property of Nose´ dynamics is that mi-
crocanonical sampling of the extended phase space
$q,p̃,s,p% yields canonical sampling in the reduced phase
space,$q,p%, provided that the system is ergodic.

For practical calculations of averages such as velocity
autocorrelation functions, it is convenient to work in a real-
time implementation of the Nose´ thermostat. The most com-
monly used real-time modification is due to Hoover.4 Hoover
recognized that one can generate a set of real-time equations
of motion by making the following transformations to the
Noséequations of motion:

~1! Change of variables:p5p̃/s;
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~2! Time transformation:dt/dt5s;
~3! Change of variables:h5 ln s andj5ḣ.

The result is the following time-reversible system of equa-
tions, known as the Nose´–Hoover~NH! equations,4

q̇5M21p, ~6!

ṗ52¹V~q!2jp, ~7!

ḣ5j, ~8!

j̇5
1

Q
@pTM21p2gkBT#, ~9!

whereg5Nf , the number of degrees of freedom in the sys-
tem. These equations of motion are non-Hamiltonian in form
since the coordinate transformations were not canonical;
however, a conserved energy does exist given by20

ENH5
pTM21p

2
1V~q!1

Qj2

2
1gkBTh. ~10!

~Although the variableh has been decoupled from the sys-
tem, it is helpful to include it in the calculations so thatE can
be monitored as an indicator of trajectory stability.!

Recently, Bond, Leimkuhler, and Laird5 have developed
an alternative real-time Nose´ thermostat scheme, the Nose´–
Poincare´ method, which is Hamiltonian in form, allowing for
the use of symplectic integration schemes~which have been
shown to give superior stability in long time simulation21!.
This is accomplished by performing a time transformation,
not to the Nose´ equations of motion as with Nose´–Hoover,
but directly to the Hamiltonian using a Poincare´ time trans-
formation, as follows:

HNP5s~HNosé2H0!, ~11!

where H0 is the initial value ofHNosé. It can be easily
verified5 that the phase space trajectory generated byHNP is
identical to that generated byHNosé except for a time trans-
formation dt/dt5s. The Nose´–Poincare´ equations of mo-
tion are

q̇5s21M21p̃, ~12!

ṡ5
sp

Q
, ~13!

pP52s¹V~q!, ~14!

ṗ5s22p̃TM21p̃2gkT2DH, ~15!

where

DH5
p̃TM̃21p̃

2s2 1Vc~q!1
p2

2Q
1gkT ln s2H0 . ~16!

Note that, the exact solution to the Nose´–Poincare´ equations
of motion generates trajectories that are identical to those
generated by the Nose´–Hoover scheme, exactly solved. It is
in the construction of approximate numerical methods that
these two approaches differ.

Although we favor the Nose´–Poincare´ method in all
cases, the Nose´–Hoover formalism is more familiar within

the simulation community. For this reason, in the current
article, we present schemes based on both the Nose´–Hoover
and Nose´–Poincare´ approaches.

In certain systems, for example those with few particles
or strong harmonic components, the ergodicity assumption
basic to the Nose´ approaches is not met. For these cases, the
notion of Nose´–Hoover chains has been developed,22 in
which the Hamiltonian is further extended with additional
thermostat variables that are coupled to each other. It has
been demonstrated that NH chains, with properly chosen
thermostat masses, can induce the needed ergodicity so that
NH dynamics provides a means of sampling from the ca-
nonical distribution. We discuss NH chains further in Sec. V
and in the Appendix.

III. GENERALIZED DISTRIBUTION DYNAMICS

In this section we present a dynamical scheme for sam-
pling points in phase space from a general distribution func-
tion F(p,q) which satisfies the properties of a probability
density function in the phase space variables$p,q%,

E
p,q

F~p,q!51 and F~p,q!>0.

In analogy to the procedure used by Plastino and
Anteneodo10 to develop a MD method to generate the ca-
nonical Tsallis distribution, we relate the general density to
the canonical density by way of an effective Hamiltonian
Heff as

F~p,q!5e2bHeff,

which yields

Heff52
1

b
ln F~p,q!. ~17!

It is clear that canonical sampling with respect to the effec-
tive Hamiltonian is equivalent to sampling according to the
generalized probability densityF. To achieve canonical sam-
pling with Heff we write the Nose´ Hamiltonian for General-
ized Distribution Dynamics,

HNosé
F 52

1

b
ln F~ p̃/s,q!1

p2

2Q
1gkBT ln s. ~18!

From the equations of motion generated from this Nose´
Hamiltonian and after applying the transformations de-
scribed in the previous section, we obtain the Nose´–Hoover
GDD equations of motion,

q̇52
kBT

F~p,q!
¹pF~p,q!, ~19!

ṗ5
kBT

F~p,q!
¹qF~p,q!2jp, ~20!

ḣ5j, ~21!

j̇5
1

Q F 2kBT

F~p,q!
pT¹pF~p,q!2gkBTG . ~22!

Similarly, the Nose´–Poincare´ equations of motion for the
GDD are
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q̇52
kT

F~ p̃/s,q!
¹p̃/sF~ p̃/s,q!, ~23!

pP5
kT

F~ p̃/s,q!
¹qF~ p̃/s,q!, ~24!

ṡ5
sp

Q
, ~25!

ṗ5
kT

sF~ p̃/s,q!
¹p̃/sF~ p̃/s,q!2gkT2DHNosé. ~26!

These formulations disrupt the separability of variables
present in the original NH and NP equations of motion@Eqs.
~6!–~9! and ~13!–~16!, respectively#. A time reversible dis-
cretization of the GDD equations would involve the solution
of nonlinear equations inq and p at every step. Iterative
solution would require many evaluations of the potential en-
ergy and its gradient at each step, likely adding tremendously
to the computational burden. We address this issue by con-
sidering two special classes of probability density functions
that maintain variable separability:

Case 1: GDD for separable distribution functions
Consider separable probability distribution functions of

the form,

F~p,q!5A~p!B~q!.

We can relate the separable density to the canonical density
by way of effective kinetic and potential energiesKeff and
Veff as

F~p,q!5e2bKeffe2bVeff,

leading to

Keff~p!52
1

b
ln A~p!, Veff~q!52

1

b
ln B~q!. ~27!

Canonical sampling with respect to the effective Hamiltonian
Heff5Keff1Veff is equivalent to sampling from the general-
ized probability densityF. Following the procedure outlined
in the previous section, canonical sampling withHeff can be
achieved using the Nose´–Hoover GDD equations of motion,
which for a separable distribution function are obtained as

q̇5¹pKeff~p!, ~28!

ṗ52¹qVeff~q!2jp, ~29!

ḣ5j, ~30!

j̇5
1

Q
@pT¹pKeff~p!2gkBT#. ~31!

Generation of the Nose´–Poincare´ equations of motion for
this class of distributions follows similarly.

Note that these equations have a simple relationship with
the NH Eqs.~6!–~9!. Any existing implementation of the NH
~or NP! equations of motion can be easily modified for sepa-
rable GDD by the replacement ofM21p by ¹Keff(p) in Eqs.
~6!, ~9!, andV(q) by Veff(q) in Eq. ~7!.

The most important applications for GDD for separable
distributions are those in which only the coordinate distribu-
tion is altered through modification of the potential. Such

potential-only modifications are at the heart of Voter
dynamics18 and the Tsallis statistics based methods for accel-
erated sampling of Straub and Andricioaei.11 For such sys-
temsKeff is equal to its standard form12p

TM21p andVeff is
given by Eq.~27!. Implementation of GDD for such systems
is straightforward as any existing Nose´–Hoover ~or Nosé–
Poincare´! code could be used without modification~other
than the use of a modified input potential surface!.

Case 2: GDD for distributions that are functions of the
Hamiltonian

Here we consider distributions that are formal functions
of the scalar Hamiltonian:F(H(p,q)). Defining the effective
Hamiltonian as

Heff5~21/b!ln F~H~p,q!![ f ~H~p,q!!

with associated Nose´ Hamiltonian, the Nose´–Hoover GDD
equations of motion for this case are

q̇5 f 8~H~p,q!!M21p, ~32!

ṗ52 f 8~H~p,q!!¹V~q!2jp, ~33!

ḣ5j, ~34!

j̇5
1

Q
@ f 8~H~p,q!!pTM21p2gkBT#. ~35!

We can arrive at the natural expression for the momenta by
performing the time transformationdt/dt̂51/f 8(H(q,p)),

dq/dt̂5M21p, ~36!

dp/dt̂52¹V~q!2
1

f 8~H~p,q!!
jp, ~37!

dh/dt̂5
1

f 8~H~p,q!!
j, ~38!

dj/dt̂5
1

Q FpTM21p2
1

f 8~H~p,q!!
gkBTG . ~39!

These equations have a suggestive form. The influence of the
modified distribution is manifested solely in the thermostat
variables. Deviation off 8(H) from unity can be viewed as a
time-dependent scaling of simulation temperatureT along
with an inverse scaling of the thermostat massQ.

It is possible to rewrite these equations yet again to
achieve separation of the coordinates and momenta. Just as
the quantity in Eq.~10! is constant along solutions of the NH
equations, the GDD Eqs.~36!–~39! conserve the related
quantity,

E0
f 5 f ~H~q,p!!1

Qj2

2
1gkBTh. ~40!

Making use of our assumption thatF and ~and alsof ! is
monotonic and hence one-to-one, we can solve Eq.~40!,

H~q,p!5 f 21S E0
f 2

Qj2

2
2gkBTh D ~41!

and define a new function ofh andj,

f~h,j!5H f 8F f 21S E0
f 2

Qj2

2
2gkBTh D G J 21

~42!
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so that the GDD equations become

dq/dt̂5M21p, ~43!

dp/dt̂52¹V~q!2f~h,j!jp, ~44!

dh/dt̂5f~h,j!j, ~45!

dj/dt̂5
1

Q
@pTM21p2f~h,j!gkBT#. ~46!

Equations~43!–~46! can be shown to conserve energy by
differentiating Eq.~40! and substituting Eqs.~41! and ~42!.
These equations introduce coupling between the thermostat
variables, but leave the coordinates and momenta separated,
allowing for efficient discretization schemes. A similar trick
can also be used to simplify the numerical calculations in the
symplectic Nose´–Poincare´ method. We discuss numerical
methods in the Appendix.

It must be pointed out that because the GDD equations
for this full Hamiltonian case were derived with a time trans-
formationdt/dt̂5f(h,j) in Eq. ~42!, it is necessary to in-
clude f as a weighting function when computing the time
average of any dynamical variableA(G[$p,q,h,j%) using
trajectories produced by Eqs.~43!–~46!, since

^A&[
1

T
E

0

T

dtA@G~ t !#5
1

T̂
E

0

T̂
dt̂

dt

dt̂
A@G~ t̂ !#

5
1

T̂
E

0

T̂
dt̂f~ t̂ !A@G~ t̂ !#,

where t and t̂ are the original and transformed time vari-
ables, respectively, andT̂5*0

Tdt(dt̂/dt)5*0
Tdtf(t). Given

that f is only a function of the scalar variablesh andj, this
is a rather trivial task.~For clarity, a derivation of the distri-
butions generated by the equations of motion given in this
section using the non-Hamiltonian statistical mechanics of
Tuckermanet al.23 is given in the Appendix.!

The effect of the technique presented above is to intro-
duce a formulation which is~1! semiexplicit, and~2! evolves
dynamics in a modified time scale. The semiexplicit nature
arises from the fact that a two-dimensional nonlinear system
must be solved iteratively at each time step; however, since
this formulation specifically does not require the computa-
tion of forces or other system-dependent nonlinearities at
each iteration, the solution of the small system can be opti-
mized and should be regarded as roughly similar to comput-
ing square roots or trigonometric functions~which are also
generally solved by simple iterative processes!. For the com-
putation of time correlation functions, the presence of the
time transformation would cause some minor inconvenience
since the trajectories would have to be transformed back to
real time before averaging~but see Ref. 24 for an example of
how this can be done efficiently using interpolation!; how-
ever, since time and, by extension, time correlation functions
in these generalized density simulations have, at present, no
physical interpretation, the presence of the time-
transformation is unimportant.

IV. EXAMPLE APPLICATION: A VARIABLE
TEMPERATURE DISTRIBUTION

The methods of this paper are very general in the sense
that dynamical simulations can be made to sample any
smooth, invertible density functionF(p,q). In this section
we propose a particular distribution function both for the
purpose of demonstrating the methods of this paper and to
outline a potentially useful method for accelerating sampling
in systems with high barriers.

As mentioned earlier, one way to enhance the sampling
of systems that are not ergodic on the time scale of standard
simulation due to high barriers is to carry out the simulations
at high temperature. The original distribution can the be re-
covered by reweighting the trajectory to compensate for the
change in the distribution. However, for most situations the
low energy configurations that have large weight in the origi-
nal distribution are not sampled with sufficient frequency at
high temperatures to yield adequate statistics after reweight-
ing.

To address the low energy sampling problem with high
temperatures, we propose a generalized distribution that has
the effect of raising temperature only in high energy regions
while leaving the low energy dynamics unaffected. To begin,
we define the monotonic functionf g(s), designed to
smoothly switch between the identity function and a linear
function of slopeg,

f g~s!5H s if s,s0

as31bs21cs1d if s0<s<s1

d1g~s2s1! if s.s1 ,

~47!

wheres0<d<s1 control the size of the switching window
and the shape of the switching function, and the polynomial
coefficients of the switching function are given by

a5~2d2~12g!s02~11g!s1!/~s02s1!3,

b5~2~12g!s0
21~21g!~s0s11s1

2!23d~s01s1!!/

~s02s1!3,

c5~gs0~s0
21s0s122s1

2!2s1~4s0
21s0s126ds01s1

2!!/

~s02s1!3,

d5~s0
2d~s023s1!1s1~2s11g~s12s0!!!/~s02s1!3.

We now define a probability distribution as a function the
HamiltonianH,

F~p,q!5Fg~H~p,q!!5e2 f g~H !/kT. ~48!

The same switching functionf g can be used to generate a
separable distribution with

F~p,q!5e2pTM21p/2kTe2 f g~V~q!!/kT ~49!

in which the momentum distribution remains canonical. At
g51 ~and d5s1) both the Hamiltonian and potential ver-
sions of the variable temperature distribution reduce to the
canonical distribution at temperatureT. For g,1, the distri-
butions give canonical sampling in low energy~total or po-
tential, respectively! regions (E,E0 for some predetermined
value E0) of phase space at reference temperatureT while
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sampling high energy regions (E.E1) at the higher tem-
perature T(E)5T/a(E), where a(E)5g(12(E1 /E))
1(d/E). Note thata(E) approachesg in the limit of large
E. This distribution modification has similarities with the
Tsallis-based distributions used by Andricioaei and Straub11

and Plastino and Anteneodo10 in that the effective tempera-
ture is a monotonically increasing function of energy; how-
ever, in these cases the temperature~and thus the dynamics!
is altered at all energies whereas in our present case the
dynamics at low energies is unaltered.

V. NUMERICAL EXPERIMENTS

To test our methods, we consider the double well poten-
tial

V~x!5e~x422x211!

with minima atx561 and barrier heighte.
We have performed a number of GDD simulations using

the variable temperature distribution~48! in both its full
Hamiltonian and potential forms. For all simulations, the ref-
erence temperature waskT5e/10. For such low dimensional
systems it is necessary to use Nose´–Hoover chains to en-
hance the ergodicity of the dynamics~see the Appendix for
discussion!. In all simulations six thermostats were used. The
switching window parameters in Eq.~47! were taken ass0

53, s154, andd53.5 ~except wheng51, thend5s1). We
report experiments with the variable temperature parameter
g51.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2. Asg decreases
from unity, stability considerations dictate smaller time steps.

The time step wash50.001 for the modified potential en-
ergy calculations. For the full Hamiltonian approach, we use
time steph50.0001. As a demonstration of the accuracy of
our new method for the full Hamiltonian simulation~as
measured by energy conservation!, we show in Fig. 1 the
relative energy error,uE(t)2E(t50)/E(t50)u, for a run of
53106 time steps.

The left view of Fig. 2 shows the distribution of coordi-
nates for the full Hamiltonian calculations atg50.2. It can
be seen by the good agreement with the theoretical distribu-
tion that the coordinates along the trajectory are sampled
according toFg . Also shown is the reweighted distribution
which recovers the canonical distribution. Note that at this
temperature (kT5e/10) standard NH chain dynamics fails to
sample effectively. As discussed earlier, a weighting factor of
f was used when computing averages to take care of the
effects of the time transformation used to derive the GDD
equations of motion. The right view of Fig. 2 shows the
distribution of coordinates for the modified potential calcu-
lations atg50.2. As for the results for the full Hamiltonian,
it can be seen that the canonical coordinate distribution is
also recovered by reweighting. Note that the unweighted co-
ordinate distributions from the full Hamiltonian and modified
potential formulations are not identical. In particular, the tra-
jectory from the full Hamiltonian method spends slightly
more time in high energy configurations.

In Fig. 3 we show the distribution of total energy along
the computed full Hamiltonian trajectory forFg with g50.2,
which can be seen to closely approximate the theoretical en-
ergy distribution forFg . Also shown is the functionf (H)
from Eq. ~47!, along with the computed values off calcu-
lated as the natural logarithm of the energy distribution from
the trajectory.

In Fig. 4 we illustrate the success of the variable tem-
perature densityFg in hastening barrier crossings for the
double well system. This figure shows waiting time plotted
vs the temperature boost factor 1/g. It can be seen that both
the full Hamiltonian and modified potential approaches yield
dramatic reductions in waiting time between barrier cross-
ings.

VI. CONCLUSION

In this paper we have presented a general dynamical
formalism, which we call Generalized Distribution Dynam-

FIG. 1. Relative energy error as a function of time for the full Hamiltonian
GDD applied to the double well system discussed in the text.

FIG. 2. Left view: Full Hamiltonian
simulationf g with g50.2. Right view:
Modified potential simulation with
g50.2. The solid curve gives the coor-
dinate distribution of the computed
trajectories, the dashed line gives the
reweighting of the computed sampling
to the canonical distribution, and the
dotted lines give the theoretical ca-
nonical distribution.
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ics ~GDD!, that generates trajectories that sample from any
of a broad class of probability distribution functions. In ad-
dition we show that the GDD scheme, which is based on the
Noséthermostat,3 can be easily implemented numerically for
two classes of distribution functions: distributions that are
functions of the full Hamiltonian and those that separate into
a product of momentum and position distributions. In these
two cases, the GDD scheme is equivalent to the dynamics of
a system with a modified full Hamiltonian or effective po-
tential energy surface, respectively. To implement GDD for
these two classes, we outline specific numerical methods for
both the Nose´–Hoover4 and Nose´–Poineare´5 real-time for-
mulations of Nose´ dynamics. As an example, we have intro-
duced a specific form of a probability density function, the
variable temperature distribution, which has application in
accelerating configurational sampling in systems with high
energy barriers. To illustrate the numerical scheme and
evaluate the method we performed numerical experiments
using a one-dimensional bistable oscillator and demonstrate
that the variable temperature distribution is very effective for
accelerated sampling of coordinates when used in the effec-
tive potential energy setting. We are currently applying this
work to enhance the dynamical sampling of model polypep-
tides.

ACKNOWLEDGMENTS

This work was undertaken during visits of E.J.B. and
B.B.L. to the Center for Mathematical Modelling at the Uni-
versity of Leicester, UK. Acknowledgment is made by E.J.B.
to the donors of the Petroleum Research Fund, administered
by the ACS, for partial support of this research. B.B.L. ac-
knowledges the support of the National Science Foundation
under Grant No. CHE-9970903. B.J.L. acknowledges the
UK Engineering and Physical Sciences Research Council
Grant No. GR/R03259/01. The authors also wish to thank
Professor Mark Tuckerman for his careful reading and con-
structive criticism of the manuscript.

APPENDIX: ALGORITHMIC DETAILS

1. Numerical methods for Nose ´ –Hoover GDD for
distributions that are functions of the Hamiltonian

The NH Eqs.~6!–~9! can be discretized in a number of
ways that generalize the basic Verlet approach. One such
method is given in Appendix D of Ref. 25,

pn11/25pn2
Dt

2
~¹V~qn!1jn11/2pn11/2!, ~A1!

jn11/25jn1
Dt

2Q
~pn11/2

T M21pn11/22gkBT!, ~A2!

hn115hn1Dtjn11/2, ~A3!

qn115qn1DtM21pn11/2, ~A4!

jn115jn11/21
Dt

2Q
~pn11/2

T M21pn11/22gkBT!, ~A5!

pn115pn11/22
Dt

2
~¹V~qn11!1jn11/2pn11/2!. ~A6!

Equations~A1! and ~A2! can be solved by computing the
vector,

p̄5pn2
Dt

2
¹V~qn!

and rewriting Eq.~A2!,

FIG. 3. Left view: Total energy den-
sity for the full Hamiltonian distribu-
tion. Right view: The functionf g(H)
reconstructed from trajectory energy
sampling. The solid curve gives the to-
tal energy distribution of the computed
trajectories, the dashed line gives the
reweighting of the computed sampling
to the canonical distribution, and the
dotted lines give the theoretical ca-
nonical distribution.

FIG. 4. Sampling speedup measured as increased frequency of barrier cross-
ings for the full Hamiltonian~stars! and modified potential~circles! methods
using the variable temperature distribution. The high energy slope reduction
factors isg21. The speedup factor is the average waiting time between
barrier crossings for each value ofg, normalized by the average waiting
time atg51.
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jn11/25jn1
Dt

2Q S p̄TM21p̄

S 11
Dt

2
jn11/2D 22gkBTD .

This scalar equation forjn11/2 can now be solved analyti-
cally or with an iterative solver. Using the computedjn11/2,
we can compute

pn11/25
p̄

11
Dt

2
jn11/2

.

The discretization scheme~A1!–~A6! can be generalized
to the GDD Eqs.~43!–~46!,

pn11/25pn2
Dt

2
~¹V~qn!1f~hn ,jn11/2!jn11/2pn11/2!,

~A7!

jn11/25jn1
Dt

2Q
~pn11/2

T M21pn11/22f~hn ,jn11/2!gkBT!,

~A8!

hn11/25hn1
Dt

2
f~hn ,jn11/2!jn11/2, ~A9!

qn115qn1DtM21pn11/2, ~A10!

hn115hn11/21
Dt

2
f~hn11 ,jn11/2!jn11/2, ~A11!

jn115jn11/21
Dt

2Q
~pn11/2

T M21pn11/2

2f~hn11 ,jn11/2!gkBT!, ~A12!

pn115pn11/22
Dt

2
~¹V~qn11!

1f~hn11 ,jn11/2!jn11/2pn11/2!. ~A13!

Two of the formulas are implicit. The procedure forjn11/2 is
the same as for Eq.~A2!, while Eq. ~A11! may require the
use of an iterative method, depending on the nature of the
function f. In the numerical results presented here, we use
Newton–Raphson iteration with tolerance of 10212 in double
precision.

The GDD scaling functionf~h,j! introduced in Eq.~42!
serves two interesting purposes. The resulting dynamical for-
malism retains the form of the NH equations, with coordi-
nates and momenta coupled to a generalized thermostat~sub-
ject to a time transformation! via the thermostat variablesh
and j. The introduction of f allows for discretization
schemes which are explicit in the coordinates and momenta,
which is important for overall efficiency. Implementation of
a timestepping scheme such as Eqs.~A7!–~A13! requires
repeated evaluation of the functionf, requiring the inversion
of the function f in Eq. ~17! which defines the effective
Hamiltonian of the generalized density. In general an ana-
lytic expression will not be available forf 21. For the work
described here, we have implemented the GDD scaling func-
tion using an algorithm which relies on the Newton–
Raphson method for finding a zero of a scalar equation. For

the variable temperature distribution based on Eq.~47!, we
evaluate f(h,j)51/f 8( f 21(H)) by first evaluating DE
5E0

f 2(Qj2/2)2gkBTh from Eq. ~42!, then evaluating

f 21~DE!

5H DE if DE,H0

root of as31bs21cs1d2DE if H0<DE<H1

1

g
~DE2d!1H1 if DE.H1 ,

and

f 8~ f 21!5H 1 if D f 21,H0

3as212bs1c if H0< f 21<H1

g if f 21.H1 .

With a good initial approximation~such asDE or the aver-
age 1

2(DE1(1/g)(DE2d)1H1)) the Newton–Raphson
method above converges to the desired root with two or three
iterations in our experience, subject to a convergence toler-
ance of 10212 in double precision calculations.

2. A symplectic numerical method for Nose ´ –Poincaré
GDD for distributions which are functions
of the Hamiltonian

Starting from the Nose´ extended Hamiltonian applied to
the effective Hamiltonian,

HNosé
f 52 f ~H~q,p̃/s!!1

p2

2Q
1gkBT ln s. ~A14!

Assumingf is one to one, we can invertf to obtain, along the
energy surfaceHNosé

f 5E, the new Hamiltonian

H~q,p̃/s!2 f 21S E0
f 2

p2

2Q
2gkT ln sD50. ~A15!

The zero energy dynamics in this Hamiltonian correspond to
HNosé5E0

f dynamics. We next introduce a time-
transformation of the Poincare´-type,H→sH resulting in

HNP
f 5sH~q,p̃/s!2s f21S E0

f 2
p2

2Q
2gkT ln sD50.

~A16!

It is natural to use a splitting method here, breaking the
Hamiltonian into two parts according to the obvious additive
decomposition and solving each term successively using an
appropriate symplectic numerical method. Note that the
splitting suggested here is different than that used recently by
Nosé26 in his variation of the Nose´–Poincare´ method, but the
basic technique is similar. Integration of the term

H15sH~q,p̃/s! ~A17!

can be easily performed using the standard~and symplectic!
Verlet method; note that during this fraction of the propaga-
tion timestep,s will be constant. Formally, the integration of

H252s f21S E0
f 2

p2

2Q
2gkT ln sD ~A18!
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can be done analytically. However, this is relatively painful.
A simpler approach is to use an implicit method, such as the
implicit midpoint method. For a general Hamiltonian
H(q,p), the midpoint method advances from step to step by
solving

qn115qn1dt¹pH~qn11/2,pn11/2!, ~A19!

pn115pn1dt¹qH~qn11/2,pn11/2!, ~A20!

whereqn11/2[(qn1qn11)/2 andpn11/2 is defined similarly.
In the present case, this means solving a nonlinear system in
R2 at each time step.

3. Non-Hamiltonian statistical mechanics
of the generalized distribution dynamics

Recently, Tuckermanet al.23 have developed a general
procedure for the evaluation of the statistical distributions
generated by non-Hamiltonian equations of motion. In this
Appendix we utilize this formalism to confirm that the GDD
equations of motion for distributions that are functions of the
Hamiltonian@Eqs.~36!–~39! and Eqs.~43!–~46!# do indeed
generate the canonical distribution@or the canonical distribu-
tion weighed byf~h,j! in the case of the time transformed
equations of motion#.

Consider a dynamical equation of motion,

ẋ5G~x!

with a conserved quantityE(x)5C, whereC is a constant
and x is the set of dynamical variables~for a Hamiltonian
system, these would be the coordinates and conjugate mo-
menta!. For this system one can define a divergencek ~some-
times referred to as a compressibility! by

k[¹i• ẋ5(
i

] ẋi

]xi
.

The phase-space distribution is then given by23

r~x!5
1

V
e2w~x!d@E~x!2C#,

whereV is the phase-space partition function~which serves
to normalize the distribution! and w is defined such thatẇ
5k. For a Hamiltonian system,k50 and the usual equation
for the distribution is obtained.

For the untransformed Nose´–Hoover GDD equations of
motion for distributions that are functions of the full Hamil-
tonican@Eqs.~32!–~35!#, the divergence is

k5¹p•ṗ1¹q•q̇1
]ḣ

]h
1

]j

j̇

5 f 9~H~p,q!!@¹qHM 21p2¹pH¹qV~q!#2gj,

52gj52gḣ,

whereg is the number of degrees of freedom, the penulti-
mate step follows since¹pH5M 21p and¹qH5¹qV(q), and
the last step is a consequence of the equation of motion forh
@Eq. ~34!#. This equation fork givesw52gh, which when
combined with the conserved quantity@Eq. ~41!#,

E0
f 5 f ~H~p,q!!1gkTh1 1

2Qj2

gives the phase space distribution

r~p,q,h,j!5
1

V
e2ghd@ f ~H~p,q!!1gkTh1 1

2Qj22E0
f #.

Integrating over the auxilliary variablesh and j then gives
the required distribution in the reduced phase space

r~p,q!5
1

Z
exp$2 f ~H~p,q!!/kT%,

whereZ is the corresponding partition function.
For the time-transformed equations@Eqs.~36!–~39!# the

analysis is similar, except that the divergence can be shown
to be

k52
d

dt̂
$ ln@ f 8~H !#1gh%,

which givesw52 ln@f8(H)#1gh ~the details are left as an
exercise for the reader!. The distribution is then

r~p,q,h,j!5
1

V

e2gh

f 8~H !
d@ f ~H~p,q!!1gkTh1 1

2Qj22E0
f #.

This differs from the distribution for the untransformed equa-
tions derived above by a weighting factor 1/f 8(H)
5f(h,j), so in the calculation of averages it is necessary to
unbias the distribution by reweighting with a factor 1/f, as
discussed in the text. The final equations of motion for this
system@Eqs.~43!–~46!# that were derived by a rewriting of
Eqs.~43!–~46! using Eqs.~42! and~41! can be easily shown
to have a divergence of

k52gḣ,

which is identical to that for the original untransformed
equations@Eqs.~32!–~35!#. This would seem to be a contra-
diction in that the naive application of the non-Hamiltonian
formulation given above would yield a distribution identical
to that of the untransformed equations; however, the trajec-
tory generated by Eqs.~43!–~46! is identical to that gener-
ated by Eqs.~36!–~39! and would therefore generate a dis-
tribution weighted byf. The resolution of this apparent
paradox is to note that the conservation law for Eqs.~43!–
~46! is given by Eq.~41! not by Eq. ~40! as used above.
When the delta function in the above equation for the distri-
bution is replaced with d@H(p,q)2 f 21(E0

f 2(Qj2/2)
2gkTh)#, and the nonlinear dependence of the delta func-
tion on h is taken into account in the intergration over the
auxilliary variables, the desired distribution is recovered, as
required.

4. Nosé –Hoover chains

For systems that are small or contain stiff oscillatory
components, lack of ergodicity may render the Nose´ scheme
ineffective. Chains of Nose´–Hoover thermostats have been
shown22 to allow canonical sampling in these cases. For a
chain ofm11 thermostat variables the equations of motion
are
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dq/dt5M21p, ~A21!

dp/dt52¹V~q!2j0p, ~A22!

dh0 /dt5j0 , ~A23!

dj0 /dt5
1

Q0
@pTM21p2gkBT#2j1j0 , ~A24!

dh1 /dt5j1 , ~A25!

dj1 /dt5
1

Q1
@Q0j0

22kBT#2j2j1 , ~A26!

]

dhm21 /dt5jm21 , ~A27!

djm21 /dt5
1

Qm21
@Qm22jm22

2 2kBT#2jmjm21 ,

~A28!

djm /dt5jm , ~A29!

djm /dt5
1

Qm
@Qm21jm21

2 2kBT#. ~A30!

Along solutions of the Nose´–Hoover Chain~NHC! equations
the conserved quantity is

ENHC5
pTM21p

2
1V~q!1(

i 50

m Qij i
2

2
1gkBTh0

1(
i 51

m

kBTh i . ~A31!

Discretization schemes for NH chains are discussed in Refs.
22 and 27.

Extension of Nose´–Poincare´ to incorporate chains is
somewhat delicate; this is work in progress by two of the
authors.
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