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Structure of a soft-sphere fluid at a soft repulsive wall:
A comparison of weighted density-functional theories

Rachel Sibug-Aga and Brian B. Laitd
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
(Received 16 June 2003; published 26 May 2004

Density-functional theory is used to investigate the structure of a soft-sphere fluid at a soft wall. The fluid is
modeled by an inverse sixth—power repulsive pair potential and the fluid particles interact with a flat stationary
wall defined by an inverse-twelth power repulsive external potential. For comparison we examine results using
three weighted density approximatioA4DA), namely those due to Curtin and Ashcrfithys. Rev. A32,
2909(1985], Denton and AshcrofPhys. Rev. A39, 426(1989], and the partitioned WDA of Kol and Laird
[Mol. Phys. 90, 951 (1997]. The degree to which each of these approximations can accurately predict the
structure of the fluid at the wall is evaluated for several densities through comparison with Monte Carlo
simulation data.
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I. INTRODUCTION feld [15]. For predicting the structure and thermodynamics of

. . . hard-sphereinhomogeous fluids, the highest accuracy theo-
In recent years, there has been considerable interest in tl?f-‘és are those based on fundamental measure theory. Re-

formulation of density-functional theorig®DFT’s) to predict cently, soft-sphere versions of that FMT formalism have
the structure and thermodynamics of inhomogeneous quidsbeen aevelopeﬁlG 17. While these methods are important
with applications in colloid and interface science, electro-g, steps in the ;jev.elopment of a general EMT for soft

cherr_ustry, and a variety of other fields. l_:luu_js that_ have aspheres, they are not applicable to the systems of interest in
special geometrical symmetry or those fluids in confined 9€this work — namely those with long range repulsive cores.

ometries have been the commonly used models, the simpleg}, h i hmi i _
of which is that of a fluid at a structureless wall. DFT studies e method outlined by SchmidL€] diverges above a den

) . sity of 0.26573 for the inverse-sixth power potential studied
involving such geometry have been performed on ¢he3] here, whereas theotcavity” FMT of Sweatmar{17] is de-
e Sone o s S o o S 0 Sysems wiha e range bt o procedure

) . : . . . .~ given for the determinatiotior meaning of this range for
terest are a fluid near a hard cylindéi, a fluid confined in g ¢ 9 g

. ) . purely repulsive inverse power systems. In the absence of
a spherical cavitf7], and a fluid around a large hard Sphereapplicable FMT theories, weighted DFT's are the current

[7]. The vast majority qf DFT studies of confin_ed fluids have best candidates for longer ranged repulsive potentials.
focused on systems with short ranged repulsions such as the The development of weighted density approximations

hard sphere and Lennard-Jones systems. (WDA's) of the free energy functional for classical inhomo-

¢ The ﬂ(;*.'dlw".“" georf‘?e_gy IS S|gn|f|cant| In sohdlillqmd mteg eneous fluids was initiated by Nordho[0] and Tarazona
ace studies since a fluid at a structureless wall can provide @ y; A number of formulations have since been developed

flrst appr:0X|mat|on to ? rrlleterolgdercljeous SO“d'“ql.Jl')d mterfac;;;and tested for hard spheres, and most have demonstrated
where the structure of the solid does not contribute signifiy,,4 agreement with Monte Carlo simulations — see, for

cantly to the fluid structure developed within the interfacialexa“.nple the comparison of different WDA methods for a
“?giof‘: The advantage iS. that the problem is considerabIKard sph,ere fluid at a wall reported by Kroll and Laji&d. In
S'mp“f'?dz yet, t_he generic fegtures of the. structure of t_headdition, systems with long range attractive interactions and
fluid within the interfacial region are obtained. Since thisgp range repulsive cores, such as Lennard-Jones, have
type of approximation does not consider the actual solid, it ig,ee gyccessfully treated by combining a perturbative treat-
then possible to isolate the effects of particle interaction ent of the attraction with a hard-sphere WDA approxima-
between the real solid and the fluid. A drawback of the modeTFon for the repulsiori18]. However, the application of WDA

is that there is no information about the solid that can be, o ods to inhomogeneous fluids with longer range repul-

obtained. . . . sive cores, on the other hand, have not received much atten-
Most classical DFT's fall into three classés) perturba- i, |y this study, we examine the structure of a simple

tive methods based on functional Taylor-series expansionﬁ10del soft-sphere fluid at a soft wall as calculated by three

about some reference s;a{&Q]—usually the homogengous ifferent weighted density approximation schemes, namely,
phase, (b) nonperturbative methods based on weighteqat of curtin and AshcrofftCA WDA) [12], a simplified
density-functional theorieBVDFT) [11-14, or (c) methods WDA of Denton and AshcroftDA WDA) [14], and the par-
based on the fundamental measure thg&MT) of Rosen- titioned WDA of Kol and Laird(KL WDA ) [13]. The spe-

cific model system we study is an inverse-sixth power repul-

sive fluid against a stationary, structureless wall defined by a

*Electronic address: blaird@ku.edu repulsive inverse twelth-power external potential. Results for
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these three DFT’s at a variety of bulk densities are compared ~
with Monte Carlo simulations. Fex= Vdfp(r)fo(Pz)- (6)
However, for very strongly inhomogeneous systems the
[l. WEIGHTED DENSITY-FUNCTIONAL THEORIES OF LDA breaks down. To remedy this, the local density is aver-
INHOMOGENEOUS FLUIDS aged over a small region using a weighting functiggr ,

Density-functional theories have their origin in atheoremfr2|;p) to create a coarse-grained or “weighted” density

due to Hohenberg and Kolja9], which was extended to the P("):

finite temperature case by Mermii20]. For a system at fixed

temperature;T, chemical potentialu, and external single- f)(rl):f drop(ro)w(|ry—ry|;p(ry)). (7)

particle potential,¢»(r), Mermin proved the existence of a

functional [ p(r)], independenof u(r) andu, such that the A specific weighted DFT is defined by specifying a proce-

functional dure by whichw(r,p) is determined given input as to the
properties of the system. In this work we compare three dif-

Q[p(r)]:j—‘[p(r)]+fdrp(r)[u(r)_ﬂ] (1) ferent weighted density-functional theories: the weighted

density approximation of Curtin and Ashcraf€A WDA)

is a minimum for the correct equilibrium single-particle den-[12], & simplified version of the CA WDA by Denton and

sity p(r) subject to the external potential. The value(bfat ~ AShcroft (DA WDA) [4,14), and the partitioned weighted

this minimum is the value of the grand potential. The densit)fJI ) ;

that minimizes Eq(1) is determined by either numerically of these methoqis require as input the excess HeImhoIt_z free

solving the Euler-Lagrange equation energy per particlé(p) and the tyvo-body direct co_rrelatmn
function of the homogeneous fludr ; p), both of which can

80 be obtained from experiment, simulation, or integral equa-
3p(r) tion theory[22].
or by parameterizing(r) and minimizing Eq.(1) with re- A. Weighted density approximation of Curtin and Ashcroft
spect to the parameters. (CA WDA)
For a classical systerf21], the functionalF[p] can be ] )
written as the sum of an ideal patEg[p], and an excess In this approach, the excess free energy functional of the

inhomogeneous system is approximated by that of a homo-

art, Fe,l p], due to the interparticle interactions: ) o
P olp] P geneous system evaluated at a weighted density,

Flpl = Fidlpl + Felpl. (3)

For a classicamonatomicsystem, the ideal part is known Fe)[P]:J drf(p(r))p(r), (8)
exactly and is given by
wheref(p) is the excess free energy per particle of the ho-
. _ 3 _ mogeneous fluid as a function of the bulk dengitsgndp is
Bfld[p]—J dr p(r{In[A°p(r)] - 1}, @ s defined in Eq(7) above.
Within the CA WDA [12], the weight function is deter-
mined by requiring that the second functional derivative of

eral, the excess parfey is unknown; therefore, the central Fex reproduce the correct value of the two-particle direct
task c.)f a DFT method is to PVOV'F’e a suitable approximation, e ation functionc®, for the liquid in the homogeneous
for this quantity. The quantityF,, is related to the structure limit

of an inhomogeneous fluid through the hierarchy of
n-particle direct correlation functions{™(r, ... ,r;[p(r)]):
5nﬂ~7:ex
op(ry) ... &)

this hierarchy is often useful in the development of DFT
approximation schemes.

where A is the thermal wavelength, ang=(kT)™%. In gen-

(2
(i ripp=- im ZBTelel

plro)—po Op(r1)8p(ra)”
Using (8) and the normalization requirement thar ,w(|r,
-r4/;p(r1))=1, the following differential equation fow(r),
in terms ofc(r; p) andf(p), is obtained12]:

=c"(ry, ... roilp(D]); (5

Classical density-functional theories using a weighted c@(k; p) = - 28" (p)w(k; p) — Bpf "(p)WA(K; p)
density approach were first introduced by Nordholm, : , ) ]
Johnson, and Freasigt0], and Tarazon§ll]. Such theories 2Bpt’ (p)w(k;p) dW(k;p)/3p. (10

are modifications of the usual local density approximation(For a detailed derivation of the above expressionipthe
(LDA) for inhomogeneous systems. In the LDA, the freereader should consult Ref12].) This differential equation
energy density at a poimtin a system with inhomogeneous can be solved either by iteratighi2] or by using a standard
single-particle density(r) is given by the free energy per numerical differential equation solvg23].

particle of ahomogeneousystem, evaluated at the value of  The CA WDA has been used to successfully predict the
the single-particle density at point freezing transition of hard spher¢$8] and Lennard-Jones
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fluids [18], the structure and interfacial free energy of the C. Partitioned weighted density approximation of Kol and
hard-sphere crystal-melt interfade4,25, as well as the Laird (KL WDA)

structure and thermodynamics of hard spheres at a hard wall Although the CA WDA(and the related MWDA of Den-

[2]. A simplification of the CAWDA, the modified weighted- .
: S ton and Ashcrofthave been shown to adequately predict the
density approximatiofMWDA) of Denton and Ashcroft uid/fcc crystal freezing transition for hard sphefd2,2q

: o ; I
[26] has also been successful in predicting the freezing og ) . Lo i
hard spheres. However, when the MWDA is applied to the nd Lennard-Jones particlgsg], it fails completely to pre

lonaer ranaed inverse-sixth repulsive svstem. the methoaiCt freezing into nonclose-packed structures of longer
ng 9 P y ' anged potentials, for example the fluid to bcc transition for
fails to predict a stable bcc structuf2?].

particles interacting with an inverse-sixth-power repulsive

pair potential[27]. To remedy this, Kol and Lair{i13] have

B. Weighted density approximation of Denton and Ashcroft demonstrated that if the excess free energy functional is par-
(DA WDA) titioned into long and short range parts and only the short

range part of the free energy is approximated by a MWDA

scheme, the prediction of a stable bcc structure for the in-

fl‘llnCti?nal can t?e cri]ifficult to implement rs}_uccessfu[ly. Asim- verse sixth-power potential is realized. Motivated by these
pler alternative is the DA WDA4,14). In this approximation  yoq,ts ' we have reformulated this partitioned WDA of Kol

a weighted density approximation is applied not to the eXCeS3 g Laird (KL WDA) within the context of CA WDA in

free energy functional but to its functional derivative with order to apply it to current inhomogeneous fluid problem
respect top(r), namely the single particle direct correlation The difficulty of implementation of this method is roughly

function as defined in Eq5) (with n=1). comparable to that for the CA WDA.
Using Egs.(3)«5), functional minimization of Eq(1) In principle, the free energy functional can be partitioned

leads to a formally exact expression for fiomogeneous  jniq entropic and energetic contributions as given below,
single-particle density

Due to its complexity, calculations using the CA WDA

Felpl==TS)lpl + €)lp]
1
=-TS[p]+ EJ f dr 1dr ,h(r12)p(r 1)p(r»)

xg@(ry,ra0p)), (15

p(r) = po expi= Bu(r) +cV(r;[p]) - c§’(po)},  (11)
where Cél)(po) is the single-particle direct correlation func-
tion of ahomogeneouBuid, evaluated at the bulk densipy.

In the DA WDA, the approximation is made such that
cD(r;[p]) in the equation above is replaced by its homoge-,,

neous counterpart evaluated at a weighted density as deﬁn%{]I
in Eq. (7):

ereg?(ry,r,:[p]) is the pair correlation function for an
omogeneous system. In partitioned WIDES], the parti-
tioning giv(%n in Eq(15) is not exactly followed because the
. function,g'“(r,r5;[p]), is not known, thus making the con-
cB(r;[p]) =5’ ((r)). (12)  struction of an explicit expression for the free energy func-
The procedure for obtaining the weight function used fortional difficult. Instead, the excess free energy functional is
the calculation ofs(r) makes use of the expressions for the divided into short and long range parts, which are denoted as
one- and two- particle direct correlation functions in terms of/1lp] and F5[p], respectively, in the equation below.
the derivatives of the excess free energy. WBhand(12),
the two-particle direct correlation function in the homoge- Fedpl=Filpl+ Filpl, (16)

neous limit can be expressed in the form where the long range functiond, is definedas follows

o a(rs[p))
(2) —r.l - 1
@z~ ralpo) = p(rlzl)rlpo op(ry) 13 Falp]= Ef f dr1droé(rip(r)p(ra) 6rizl).  (17)

From this relation, an equation for the weight function is e switching functiord(r ;1) is a crude approximation to
derived, the actualg®(r,r,;[p]) and is chosen here to be

@)y -

W(r': pg) = M. (14 0r 1) = expl— (1/r)2], (18)
d¢q (po)ld po

wherel can be roughly interpreted physically as a value of
With this approximation forc®(r;[p]), Eq. (11) can be beyond whichc(r)=-pB¢(r) is a reasonable approximation.
solved self-consistently for a specific system until conver{The form of the switching function was chosen to give a
gence is obtained. Note that, since the DA WDA does nosmoothed step function - the use of a discontinuous step
have a unique associated free energy, it is limited to strucfunction was found in the earlier woik 3] to lead to unac-
tural studieqsuch as the present applicatiaand would not  ceptable discontinuities in the functionalhe short ranged
be useful, for example, in the identification of phase transipart, F; is primarily entropic in nature and is approximated
tions. using a weighted-density functional scheme
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A lll. RESULTS FOR A SOFT-SPHERE FLUID AT A SOFT
Fi= f drp(r)f,(p(r)), (19 REPULSIVE WALL
\Y

To compare the three weighted density approximations,
wheref,(p) is obtained from the full excess free energy for We examine the structure of a simple model soft-sphere fluid
the homogeneous fluid by subtracting off the contributionat @ soft repulsive wall. The fluid consists of particles inter-
from F, (evaluated in the homogeneous limin contrast, acting via an inverse sixth-power repulsive pair potential:
the long ranged partF,[p] can be calculated exactly, and is = e(o/r)®
primarily energetic. The results for this method do depend on (1) = e(alr)”, (22)

fjheengirt]mgﬁv(i);lzr;le V:Luii)j ;[Eee éﬁ'%%&gliﬁﬂgggfgna gé\(’)ei? wherer is the interparticle separatiofNote that, for inverse

is necﬁssary toyﬁave a criterion with which to csﬁoose then ~power potentials excess thermodynamic quantities are
. _ —3/n_ *—*_3/n . _

switching length. In the earlier work of of Kol and Laird the 2MNIY @ function Of)/n—_po’?’(kT/ e *"'=p'T¥"). This poten

value ofl was chosen so that the free energy was minimumtlal is a good candidate for the study of the structure of

however, in the present application, no minimum was de_longer-ranged repulsive potentials in that ita simple and

tected and it was found that an operative criterion was téb) not well _apprommated by a hard-sphere model — for
choose the minimum value d@ffor which solutions for the example, this system freezes into a bce crystal structure

weight functions could be obtaine@ince there is no varia- (30,31 — such structures are mechanically unstable for
tional theorem for the dependence of the free energy, on shorter ranged potentials such as hard spheres or Lennard-

there is no physical reason to choose one criterion over th%or_]es spheres. 'I_'he system also_ex_hlblt_s a bee to fcc solid-

other — that choice has to be made on a case by case basl lid phase ifansiionasihe denS|ty.|s ralexn?dhe tempera-

and is admittedlyad hog. Both of these criteria lead to val- ure 1S 'F’W"*‘re@? bgyond_the freezing po[nt. This phase

ues ofl that are density dependent, which has the drawbacg'agram IS qualltatllvely similar to bce formmg metals, S.UCh

that the Gibbs adsorption equation is not satisfied for suchR> 'fon, and the Inverse-power system Is a useful simple

methodg28,29; however, since we are interested only in themodel for the study of generic phase behavior of such met-

prediction of structure in the current work, this is not an als. h ft-sphere fluid i ith .

issue. In situations where the validity of the Gibbs adsorptior] The so t—.TIp efr_e uid interacts W'tl f.a Istat!onary, structure-

equation is important, one can still use the KL WDA by ess soft wall defined by an external field given by

fixing | at some intermediate value appropriate for the den- _ 12

sity range studied Of course, this assumes that it is possible U@ = e(al2)™, 23

to choose a reasonable valuelathat gives solutions over \herez is the distance between the wall and a fluid particle

density range of interest for the given system of study, a fachong the direction normal to the interfacial plane.

that cannot be guaranteedpriori.) _ In this study the DFT calculations are performed at a re-
With the partitioning of the free energy and with the ex- qyced temperature of =kT/e=0.1 and for three different

pression given in Eq.17), an expression for the two-particle equced bulk densitiepy=poo=0.15, 0.30, and 0.50, re-

direct correlation function in the homogeneous limit is spectively. At this temperature, the reduced freezing density
is 0.69[31]. For all DFT’s studied, the excess free energy
c@(|ry=r4]:p0) = AC?(|r = r4]: po) f(p) and pair direct correlation functiazi?(r) for the homo-

) geneous inverse sixth-power fluid are needed as input. This
= B(ra=ri)élro=rai. (20 input liquid structure and thermodynamic data was calcu-
lated using the modified hypernetted-chain integral equation
The function Ac®(|r,~r4|;po) is shorter ranged than the method[32-34. For details of the specific version used, see
two-particle direct correlation function. We then use thisthe article by Rosenfeld35]. The integral equation was
quantity and the short ranged free energy to find the weigh$olved numerically using the method of Labik, Malijevsky,
function from the condition that and Vaika [36]. This integral equation gives results for this
system that are in excellent agreement with computer simu-
5@ pF,[p] lation [27]. _ _ _
—. (2] The procedure used to determine the density profiles for
p(r2)=po 9p(r1) p(r2) this wall-fluid problem using the CA WDA and KL WDA is
as follows.
The weight function is found by using an equation identical (1) Equation(10) (or its analog for KL WDA is solved
to that for the CA WDA[EQ. (10)] with Ac® replacingc®?. iteratively to givew(k;p) (using as initial value the solution
As mentioned above, the value of the parameteas chosen  to the quadratic equation obtained by setting the last term on
as the minimum value for which a solution far(k; py) can  the right-hand side of Eq10) to zero.
be obtained. The weight functions are similar in form and  (2) For the given bulk densityp, the corresponding
range to the weight functions from the CA WDA method chemical potential is determined from the homogeneous ex-
applied to the hard-sphere syst¢h3]. The weight functions cess free energy by
for hard spheres exhibit a discontinuity at the sphere diam-
eter, which is also the range of the hard-sphere interaction. w=Inp+pf'(p)+1(p). (24)

AC(Z)(|r2‘r1|;Po):_
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FIG. 1. Density profilesp(z) for py=0.15/0° calculated using
the three WDA methods in comparison with MC simulation
(circles.

(3) Minimize Eq. (1) with respect toa(z) defined by
(25

(4) The “ideal” (noninteracting or low-densijysolution

p exd—pBu(z)] has been factored out here to simplify the pa-
rameterization. The minimization for both the CA WDA and
KL WDA is performed using the Fletcher-Reeves-Polak-
Ribiere conjugate gradient algorithfi23] with a uniform
grid of 2048z points with spacinglz=0.005 and an initial
guess ofe=0 (as a test minimization was also performed
using results from the DA WDA or MC simulations as initial
guesses and no change in the final solution was)seen

For the DA WDA, Eq.(11) is solved iteratively using an
initial guess ofa(z)=0 and the same grid as for the other
two methods. The values dfused to construcAc'?(r) for
the KL WDA are 1.1%, 1.05, and 0.95 for p"=0.15, 0.30,
and 0.50, respectively

p(2) = poe ™ Pe?.

For comparison we have also performed standard Me-
tropolis Monte Carlo simulations on each of these systems

using 500, 700, and 700 patrticles, respectively,pfpxo.la

0.30, and 0.50. Each simulation was equilibrated from a ran-

dom configuration for & 10° cycles followed by 2< 1P
cycles to collect averages. The box siteg/o,L,/o,L,/0)
used for these three runs, respectively, (@8, 14.8, 16.8
(11.7,11.7,18.8 (7.9,7.9,23., for p'=0.15, 0.30, and

0.50—the box sizes were chosen so as to give the correc

bulk density away from the wall. Two additional MC runs for
the system a,bg:O.SO with 1400 particles were run — one in
which the number of particles was doubled by doubling
and keeping thex—y cross-sectional area fixed, and one in
which the cross-sectional area was doubled, keelpjrixed.

The results for the larger systems showed no detectable siz :

dependence in the density profiles.
Figures 1-3 show density profiles f@p=0.15/0°, p,
=0.30/0°, andp,=0.50/0°, respectively. All of the methods

PHYSICAL REVIEW E 69, 051502(2004)
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FIG. 2. Same as Fig. 1 except witl3=0.30/5>.

0.50, although, the KL WDA and CA WDA show better
agreement with Monte Carlo results for the height of the first
density peak as compared to the DA WDA method, which
significantly overestimates the height of the first density
peak. This limitation of the DA WDA method has also been
observed when applied to hard spheres against a hard wall
and is a consequence of a failure to satisfy the pressure sum
rule [4]. However, at the lowest densities the DA WDA is
seen to give surprisingly good agreement with simulation
beyond the first peak — even better than the other two, much
more involved methods. At the highest densif/50), the
best method is the KL WDA, which accurately predicts the
position and height of all density peaks. It should be noted,
that despite the differences, the agreement with simulation of
all three methods is good.

For the KL WDA, it is useful to examine the sensitivity of
the method to the choice of the switching paramétéigure
4 shows the dependence of the predicted density profiiles

oy Ll

3+ s M T T ‘= CAWDA| |
- DAWDA
5 4 — KLDWA
o MC
- 25 o —
o2r . 7
(=% 12 13

1

z/C

FIG. 3. Same as Fig. 1 except witl=0.50/0°. For clarity, a

studied predict the position of the first peak at each densitynagnification of the region around the first peak is shown in the

with reasonable accuracy at the lower densiti@80 and

inset.
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po

FIG. 4. Density profiles fop,=0.50/0° as predicted by the KL

WDA for different values of the switching parameterFor com-
parison the MC simulation values are shown as open circles.
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neous fluids for systems with long ranged repulsive interac-
tions (i.e., with longer ranged repulsive cores than hard-
sphere or Lennard-Jones interactipnge have compared the
results of three different WDA methods with Monte Carlo
simulation for a system consisting of a model fluid of par-
ticles interacting through an inverse sixth-power repulsive
pair potential at a soft wall. The three methods studied are
the the WDA of Curtin and AshcroftCA WDA) [12], a
simplified WDA of Denton and AshcroftDA WDA) [14],

and the partitioned WDA of Kol and Lair(KL WDA) [13].

The predictions of the three methods are seen to be quite
accurate when compared to Monte Carlo simulation. The DA
WDA overestimates the height of the first peak, but for larger
distances is more accurate than the other methods at low
density. At high density, the KL WDA is seen to be the most
accurate method for the first peak. That the KL WDA is
better at predicting the structure of inhomogeneous fluids for
longer range potentials than the CA WDA is not too surpris-
ing given earlier results showing that KL WDA3] is more
successful than the CA WDA at predicting the freezing tran-

p(2) for bulk densityp,=0.50/c" for three different values of stion for inverse-power potentials. Finally, when considering
[/o: 0.95, 1.15, and 1.30. The solutions for the large valueshese methods for the purposes of a specific application one
of | are roughly identical to each other and to the CA WDA should take into account the fact that the DA WDA is, by far,

solution(which is thel — o« limit of the KL WDA). It is only
at 1=0.95r (the value that was used in the calculajithat

differences are seen. At this value lothere is significant

improvement(relative to the higher values of of the first
density peak in comparison to the MC simulation.

IV. SUMMARY

To determine the accuracy to which classical density—

the easiest and least computationally intensive method to
implement and run for these systems.
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