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Density-functional theory is used to investigate the structure of a soft-sphere fluid at a soft wall. The fluid is
modeled by an inverse sixth–power repulsive pair potential and the fluid particles interact with a flat stationary
wall defined by an inverse-twelth power repulsive external potential. For comparison we examine results using
three weighted density approximations(WDA), namely those due to Curtin and Ashcroft[Phys. Rev. A32,
2909(1985)], Denton and Ashcroft[Phys. Rev. A39, 426(1989)], and the partitioned WDA of Kol and Laird
[Mol. Phys. 90, 951 (1997)]. The degree to which each of these approximations can accurately predict the
structure of the fluid at the wall is evaluated for several densities through comparison with Monte Carlo
simulation data.
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I. INTRODUCTION

In recent years, there has been considerable interest in the
formulation of density-functional theories(DFT’s) to predict
the structure and thermodynamics of inhomogeneous fluids,
with applications in colloid and interface science, electro-
chemistry, and a variety of other fields. Fluids that have a
special geometrical symmetry or those fluids in confined ge-
ometries have been the commonly used models, the simplest
of which is that of a fluid at a structureless wall. DFT studies
involving such geometry have been performed on one-[1–3]
and two-component[4,5] hard spheres, as well as on
Lennard-Jones fluids[6]. Other similar configurations of in-
terest are a fluid near a hard cylinder[1], a fluid confined in
a spherical cavity[7], and a fluid around a large hard sphere
[7]. The vast majority of DFT studies of confined fluids have
focused on systems with short ranged repulsions such as the
hard sphere and Lennard-Jones systems.

The fluid/wall geometry is significant in solid-liquid inter-
face studies since a fluid at a structureless wall can provide a
first approximation to a heterogeneous solid-liquid interface,
where the structure of the solid does not contribute signifi-
cantly to the fluid structure developed within the interfacial
region. The advantage is that the problem is considerably
simplified, yet, the generic features of the structure of the
fluid within the interfacial region are obtained. Since this
type of approximation does not consider the actual solid, it is
then possible to isolate the effects of particle interactions
between the real solid and the fluid. A drawback of the model
is that there is no information about the solid that can be
obtained.

Most classical DFT’s fall into three classes:(a) perturba-
tive methods based on functional Taylor-series expansions
about some reference state[8,9]—usually the homogeneous
phase, (b) nonperturbative methods based on weighted
density-functional theories(WDFT) [11–14], or (c) methods
based on the fundamental measure theory(FMT) of Rosen-

feld [15]. For predicting the structure and thermodynamics of
hard-sphereinhomogeous fluids, the highest accuracy theo-
ries are those based on fundamental measure theory. Re-
cently, soft-sphere versions of that FMT formalism have
been developed[16,17]. While these methods are important
first steps in the development of a general FMT for soft
spheres, they are not applicable to the systems of interest in
this work — namely those with long range repulsive cores.
The method outlined by Schmidt[16] diverges above a den-
sity of 0.26s−3 for the inverse-sixth power potential studied
here, whereas the “s-cavity” FMT of Sweatman[17] is de-
signed for systems with a finite ranges, but no procedure is
given for the determination(or meaning) of this range for
purely repulsive inverse power systems. In the absence of
applicable FMT theories, weighted DFT’s are the current
best candidates for longer ranged repulsive potentials.

The development of weighted density approximations
(WDA’s) of the free energy functional for classical inhomo-
geneous fluids was initiated by Nordholm[10] and Tarazona
[11]. A number of formulations have since been developed
and tested for hard spheres, and most have demonstrated
good agreement with Monte Carlo simulations — see, for
example, the comparison of different WDA methods for a
hard sphere fluid at a wall reported by Kroll and Laird[2]. In
addition, systems with long range attractive interactions and
short range repulsive cores, such as Lennard-Jones, have
been successfully treated by combining a perturbative treat-
ment of the attraction with a hard-sphere WDA approxima-
tion for the repulsion[18]. However, the application of WDA
methods to inhomogeneous fluids with longer range repul-
sive cores, on the other hand, have not received much atten-
tion. In this study, we examine the structure of a simple
model soft-sphere fluid at a soft wall as calculated by three
different weighted density approximation schemes, namely,
that of Curtin and Ashcroft(CA WDA) [12], a simplified
WDA of Denton and Ashcroft(DA WDA ) [14], and the par-
titioned WDA of Kol and Laird(KL WDA ) [13]. The spe-
cific model system we study is an inverse-sixth power repul-
sive fluid against a stationary, structureless wall defined by a
repulsive inverse twelth-power external potential. Results for*Electronic address: blaird@ku.edu
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these three DFT’s at a variety of bulk densities are compared
with Monte Carlo simulations.

II. WEIGHTED DENSITY-FUNCTIONAL THEORIES OF
INHOMOGENEOUS FLUIDS

Density-functional theories have their origin in a theorem
due to Hohenberg and Kohn[19], which was extended to the
finite temperature case by Mermin[20]. For a system at fixed
temperature,T, chemical potential,m, and external single-
particle potential,fsr d, Mermin proved the existence of a
functionalFfrsr dg, independentof usr d andm, such that the
functional

Vfrsr dg = F frsr dg +E drrsr dfusr d − mg s1d

is a minimum for the correct equilibrium single-particle den-
sity rsr d subject to the external potential. The value ofV at
this minimum is the value of the grand potential. The density
that minimizes Eq.(1) is determined by either numerically
solving the Euler-Lagrange equation

dV

drsr d
= 0 s2d

or by parameterizingrsr d and minimizing Eq.(1) with re-
spect to the parameters.

For a classical system[21], the functionalF frg can be
written as the sum of an ideal part,Fidfrg, and an excess
part,Fexfrg, due to the interparticle interactions:

Ffrg = Fidfrg + Fexfrg. s3d

For a classicalmonatomicsystem, the ideal part is known
exactly and is given by

bFidfrg =E drrsr dhlnfL3rsr dg − 1j, s4d

whereL is the thermal wavelength, andb=skTd−1. In gen-
eral, the excess part,Fex is unknown; therefore, the central
task of a DFT method is to provide a suitable approximation
for this quantity. The quantityFex is related to the structure
of an inhomogeneous fluid through the hierarchy of
n-particle direct correlation functions,csndsr 1, . . . ,r n; frsr dgd:

d nbFex

dr„r 1d . . . dsr nd
= csndsr 1, . . . ,r n;frsr dg…; s5d

this hierarchy is often useful in the development of DFT
approximation schemes.

Classical density-functional theories using a weighted
density approach were first introduced by Nordholm,
Johnson, and Freasier[10], and Tarazona[11]. Such theories
are modifications of the usual local density approximation
(LDA ) for inhomogeneous systems. In the LDA, the free
energy density at a pointr in a system with inhomogeneous
single-particle densityrsr d is given by the free energy per
particle of ahomogeneoussystem, evaluated at the value of
the single-particle density at pointr

Fex=E
V

drrsr df0sr̂2d. s6d

However, for very strongly inhomogeneous systems the
LDA breaks down. To remedy this, the local density is aver-
aged over a small region using a weighting functionwsur 1

−r 2u ; r̂d to create a coarse-grained or “weighted” density
r̂sr d:

r̂sr 1d =E dr 2rsr 2dw„ur 1 − r 2u; r̂sr1d…. s7d

A specific weighted DFT is defined by specifying a proce-
dure by whichwsr ,rd is determined given input as to the
properties of the system. In this work we compare three dif-
ferent weighted density-functional theories: the weighted
density approximation of Curtin and Ashcroft(CA WDA)
[12], a simplified version of the CA WDA by Denton and
Ashcroft (DA WDA ) [4,14], and the partitioned weighted
density approximation of Kol and Laird(KL WDA ) [13]. All
of these methods require as input the excess Helmholtz free
energy per particlefsrd and the two-body direct correlation
function of the homogeneous fluidcsr ;rd, both of which can
be obtained from experiment, simulation, or integral equa-
tion theory[22].

A. Weighted density approximation of Curtin and Ashcroft
(CA WDA)

In this approach, the excess free energy functional of the
inhomogeneous system is approximated by that of a homo-
geneous system evaluated at a weighted density,r̂sr d,

Fexfrg =E dr f„r̂sr d…rsr d, s8d

where fsrd is the excess free energy per particle of the ho-
mogeneous fluid as a function of the bulk densityr and r̂ is
as defined in Eq.(7) above.

Within the CA WDA [12], the weight function is deter-
mined by requiring that the second functional derivative of
Fex reproduce the correct value of the two-particle direct
correlation function,cs2d, for the liquid in the homogeneous
limit,

cs2dSur 2 − r 1u;r0d = − lim
rsr 2d→r0

d s2dbFexfrg
drsr 1ddrsr 2d

. s9d

Using (8) and the normalization requirement thatedr 2wsur 2

−r 1u ; r̂sr 1d)=1, the following differential equation forwsrd,
in terms ofcsr ;rd and fsrd, is obtained[12]:

cs2dsk;rd = − 2bf8srdwsk;rd − brf 9srdw2sk;rd

− 2brf8srdwsk;rd ] wsk;rd/] r. s10d

(For a detailed derivation of the above expression forw, the
reader should consult Ref.[12].) This differential equation
can be solved either by iteration[12] or by using a standard
numerical differential equation solver[23].

The CA WDA has been used to successfully predict the
freezing transition of hard spheres[18] and Lennard-Jones

R. SIBUG-AGA AND B. B. LAIRD PHYSICAL REVIEW E69, 051502(2004)

051502-2



fluids [18], the structure and interfacial free energy of the
hard-sphere crystal-melt interface[24,25], as well as the
structure and thermodynamics of hard spheres at a hard wall
[2]. A simplification of the CA WDA, the modified weighted-
density approximation(MWDA ) of Denton and Ashcroft
[26] has also been successful in predicting the freezing of
hard spheres. However, when the MWDA is applied to the
longer ranged inverse-sixth repulsive system, the method
fails to predict a stable bcc structure[27].

B. Weighted density approximation of Denton and Ashcroft
(DA WDA)

Due to its complexity, calculations using the CA WDA
functional can be difficult to implement successfully. A sim-
pler alternative is the DA WDA[4,14]. In this approximation
a weighted density approximation is applied not to the excess
free energy functional but to its functional derivative with
respect torsr d, namely the single particle direct correlation
function as defined in Eq.(5) (with n=1).

Using Eqs.(3)–(5), functional minimization of Eq.(1)
leads to a formally exact expression for theinhomogeneous
single-particle density

rsr d = r0 exph− busr d + cs1dsr ;frgd − c0
s1dsr0dj, s11d

wherec0
s1dsr0d is the single-particle direct correlation func-

tion of ahomogeneousfluid, evaluated at the bulk densityr0.
In the DA WDA, the approximation is made such that
cs1dsr ; frgd in the equation above is replaced by its homoge-
neous counterpart evaluated at a weighted density as defined
in Eq. (7):

cs1dsr ;frgd = c0
s1d
„r̂sr d…. s12d

The procedure for obtaining the weight function used for
the calculation ofr̂sr d makes use of the expressions for the
one- and two- particle direct correlation functions in terms of
the derivatives of the excess free energy. With(5) and (12),
the two-particle direct correlation function in the homoge-
neous limit can be expressed in the form

c0
s2dsur 2 − r 1u;r0d = lim

rsr 2d→r0

dcs1dsr ;frgd
drsr 2d

. s13d

From this relation, an equation for the weight function is
derived,

wsr ;r0d =
c0

s2dsr ;r0d
] c0

s1dsr0d/] r0
. s14d

With this approximation forcs1dsr ; frgd, Eq. (11) can be
solved self-consistently for a specific system until conver-
gence is obtained. Note that, since the DA WDA does not
have a unique associated free energy, it is limited to struc-
tural studies(such as the present application) and would not
be useful, for example, in the identification of phase transi-
tions.

C. Partitioned weighted density approximation of Kol and
Laird (KL WDA)

Although the CA WDA(and the related MWDA of Den-
ton and Ashcroft) have been shown to adequately predict the
fluid/fcc crystal freezing transition for hard spheres[12,26]
and Lennard-Jones particles[18], it fails completely to pre-
dict freezing into nonclose-packed structures of longer
ranged potentials, for example the fluid to bcc transition for
particles interacting with an inverse-sixth-power repulsive
pair potential[27]. To remedy this, Kol and Laird[13] have
demonstrated that if the excess free energy functional is par-
titioned into long and short range parts and only the short
range part of the free energy is approximated by a MWDA
scheme, the prediction of a stable bcc structure for the in-
verse sixth-power potential is realized. Motivated by these
results, we have reformulated this partitioned WDA of Kol
and Laird (KL WDA ) within the context of CA WDA in
order to apply it to current inhomogeneous fluid problem.
The difficulty of implementation of this method is roughly
comparable to that for the CA WDA.

In principle, the free energy functional can be partitioned
into entropic and energetic contributions as given below,

Fexfrg = − TSexfrg + eexfrg

=− TSexfrg +
1

2
E E dr 1dr 2fsr12drsr 1drsr 2d

3gs2dsr 1,r 2;frgd, s15d

wheregs2dsr 1,r 2; frgd is the pair correlation function for an
inhomogeneous system. In partitioned WDA[13], the parti-
tioning given in Eq.(15) is not exactly followed because the
function,gs2dsr 1,r 2; frgd, is not known, thus making the con-
struction of an explicit expression for the free energy func-
tional difficult. Instead, the excess free energy functional is
divided into short and long range parts, which are denoted as
F1frg andF2frg, respectively, in the equation below.

Fexfrg = F1frg + F2frg, s16d

where the long range functionalF2 is definedas follows

F2frg =
1

2
E E dr 1dr 2fsr12drsr 1drsr 2dusr12; ld. s17d

The switching functionusr12; ld is a crude approximation to
the actualgs2dsr 1,r 2; frgd and is chosen here to be

usr12; ld = expf− sl/rd12g, s18d

wherel can be roughly interpreted physically as a value ofr
beyond whichcsrd<−bfsrd is a reasonable approximation.
(The form of the switching function was chosen to give a
smoothed step function - the use of a discontinuous step
function was found in the earlier work[13] to lead to unac-
ceptable discontinuities in the functional.) The short ranged
part, F1 is primarily entropic in nature and is approximated
using a weighted-density functional scheme
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F1 =E
V

drrsr df1„r̂sr d…, s19d

where f1srd is obtained from the full excess free energy for
the homogeneous fluid by subtracting off the contribution
from F2 (evaluated in the homogeneous limit). In contrast,
the long ranged part,F2frg can be calculated exactly, and is
primarily energetic. The results for this method do depend on
the choice of the value of the switching length,l, for a given
density(obviously, asl →` the CA WDA limit obtains), so it
is necessary to have a criterion with which to choose the
switching length. In the earlier work of of Kol and Laird the
value of l was chosen so that the free energy was minimum;
however, in the present application, no minimum was de-
tected and it was found that an operative criterion was to
choose the minimum value ofl for which solutions for the
weight functions could be obtained.(Since there is no varia-
tional theorem for the dependence of the free energy onl,
there is no physical reason to choose one criterion over the
other — that choice has to be made on a case by case basis
and is admittedlyad hoc). Both of these criteria lead to val-
ues ofl that are density dependent, which has the drawback
that the Gibbs adsorption equation is not satisfied for such
methods[28,29]; however, since we are interested only in the
prediction of structure in the current work, this is not an
issue. In situations where the validity of the Gibbs adsorption
equation is important, one can still use the KL WDA by
fixing l at some intermediate value appropriate for the den-
sity range studied.(Of course, this assumes that it is possible
to choose a reasonable value ofl that gives solutions over
density range of interest for the given system of study, a fact
that cannot be guaranteeda priori.)

With the partitioning of the free energy and with the ex-
pression given in Eq.(17), an expression for the two-particle
direct correlation function in the homogeneous limit is

cs2dsur 2 − r 1u;r0d = Dcs2dsur 2 − r 1u;r0d

− bfsur 2 − r 1udusur 2 − r 1u; ld. s20d

The function Dcs2dsur 2−r 1u ;r0d is shorter ranged than the
two-particle direct correlation function. We then use this
quantity and the short ranged free energy to find the weight
function from the condition that

Dcs2dsur 2 − r 1u;r0d = − lim
rsr 2d→r0

d s2dbF1frg
drsr 1ddrsr 2d

. s21d

The weight function is found by using an equation identical
to that for the CA WDA[Eq. (10)] with Dcs2d replacingcs2d.
As mentioned above, the value of the parameterl was chosen
as the minimum value for which a solution forwsk;r0d can
be obtained. The weight functions are similar in form and
range to the weight functions from the CA WDA method
applied to the hard-sphere system[13]. The weight functions
for hard spheres exhibit a discontinuity at the sphere diam-
eter, which is also the range of the hard-sphere interaction.

III. RESULTS FOR A SOFT-SPHERE FLUID AT A SOFT
REPULSIVE WALL

To compare the three weighted density approximations,
we examine the structure of a simple model soft-sphere fluid
at a soft repulsive wall. The fluid consists of particles inter-
acting via an inverse sixth-power repulsive pair potential:

fsrd = ess/rd6, s22d

wherer is the interparticle separation.(Note that, for inverse
n−power potentials excess thermodynamic quantities are
only a function ofgn=rs3skT/ e d−3/n

=r*T*−3/n). This poten-
tial is a good candidate for the study of the structure of
longer-ranged repulsive potentials in that it is(a) simple and
(b) not well approximated by a hard-sphere model — for
example, this system freezes into a bcc crystal structure
[30,31] — such structures are mechanically unstable for
shorter ranged potentials such as hard spheres or Lennard-
Jones spheres. The system also exhibits a bcc to fcc solid-
solid phase transition as the density is raised(or the tempera-
ture is lowered) beyond the freezing point. This phase
diagram is qualitatively similar to bcc forming metals, such
as iron, and the inverse-power system is a useful simple
model for the study of generic phase behavior of such met-
als.

The soft-sphere fluid interacts with a stationary, structure-
less soft wall defined by an external field given by

uszd = ess/zd12, s23d

wherez is the distance between the wall and a fluid particle
along the direction normal to the interfacial plane.

In this study the DFT calculations are performed at a re-
duced temperature ofT* =kT/e=0.1 and for three different
reduced bulk densitiesr0

* =r0s3=0.15, 0.30, and 0.50, re-
spectively. At this temperature, the reduced freezing density
is 0.69 [31]. For all DFT’s studied, the excess free energy
fsrd and pair direct correlation functioncs2dsrd for the homo-
geneous inverse sixth-power fluid are needed as input. This
input liquid structure and thermodynamic data was calcu-
lated using the modified hypernetted-chain integral equation
method[32–34]. For details of the specific version used, see
the article by Rosenfeld[35]. The integral equation was
solved numerically using the method of Lábik, Malijevský,
and Vońka [36]. This integral equation gives results for this
system that are in excellent agreement with computer simu-
lation [27].

The procedure used to determine the density profiles for
this wall-fluid problem using the CA WDA and KL WDA is
as follows.

(1) Equation(10) (or its analog for KL WDA) is solved
iteratively to givewsk;rd (using as initial value the solution
to the quadratic equation obtained by setting the last term on
the right-hand side of Eq.(10) to zero).

(2) For the given bulk densityr, the corresponding
chemical potential is determined from the homogeneous ex-
cess free energy by

m = ln r + rf8srd + fsrd. s24d

R. SIBUG-AGA AND B. B. LAIRD PHYSICAL REVIEW E69, 051502(2004)

051502-4



(3) Minimize Eq. (1) with respect toaszd defined by

rszd = r0e
−buszdeaszd. s25d

(4) The “ideal” (noninteracting or low-density) solution
r expf−buszdg has been factored out here to simplify the pa-
rameterization. The minimization for both the CA WDA and
KL WDA is performed using the Fletcher-Reeves-Polak-
Ribiere conjugate gradient algorithm[23] with a uniform
grid of 2048z points with spacingdz=0.005s and an initial
guess ofa=0 (as a test minimization was also performed
using results from the DA WDA or MC simulations as initial
guesses and no change in the final solution was seen).

For the DA WDA, Eq.(11) is solved iteratively using an
initial guess ofaszd=0 and the samez grid as for the other
two methods. The values ofl used to constructDcs2dsrd for
the KL WDA are 1.15s, 1.05s, and 0.95s for r* =0.15, 0.30,
and 0.50, respectively

For comparison we have also performed standard Me-
tropolis Monte Carlo simulations on each of these systems,
using 500, 700, and 700 particles, respectively, forr0

* =0.15,
0.30, and 0.50. Each simulation was equilibrated from a ran-
dom configuration for 83106 cycles followed by 23106

cycles to collect averages. The box sizessLx/s ,Ly/s ,Lz/sd
used for these three runs, respectively, are(14.8, 14.8, 16.8),
(11.7,11.7,18.3), (7.9,7.9,23.7), for r* =0.15, 0.30, and
0.50—the box sizes were chosen so as to give the correct
bulk density away from the wall. Two additional MC runs for
the system atr0

* =0.50 with 1400 particles were run — one in
which the number of particles was doubled by doublingLz
and keeping thex−y cross-sectional area fixed, and one in
which the cross-sectional area was doubled, keepingLz fixed.
The results for the larger systems showed no detectable size
dependence in the density profiles.

Figures 1–3 show density profiles forr0=0.15/s3, r0
=0.30/s3, andr0=0.50/s3, respectively. All of the methods
studied predict the position of the first peak at each density
with reasonable accuracy at the lower densities(0.30 and

0.50), although, the KL WDA and CA WDA show better
agreement with Monte Carlo results for the height of the first
density peak as compared to the DA WDA method, which
significantly overestimates the height of the first density
peak. This limitation of the DA WDA method has also been
observed when applied to hard spheres against a hard wall
and is a consequence of a failure to satisfy the pressure sum
rule [4]. However, at the lowest densities the DA WDA is
seen to give surprisingly good agreement with simulation
beyond the first peak — even better than the other two, much
more involved methods. At the highest density(0.50), the
best method is the KL WDA, which accurately predicts the
position and height of all density peaks. It should be noted,
that despite the differences, the agreement with simulation of
all three methods is good.

For the KL WDA, it is useful to examine the sensitivity of
the method to the choice of the switching parameterl. Figure
4 shows the dependence of the predicted density profiiles

FIG. 1. Density profilesrszd for r0=0.15/s3 calculated using
the three WDA methods in comparison with MC simulation
(circles).

FIG. 2. Same as Fig. 1 except withr0=0.30/s3.

FIG. 3. Same as Fig. 1 except withr0=0.50/s3. For clarity, a
magnification of the region around the first peak is shown in the
inset.
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rszd for bulk densityr0=0.50/s3 for three different values of
l /s : 0.95, 1.15, and 1.30. The solutions for the large values
of l are roughly identical to each other and to the CA WDA
solution(which is thel →` limit of the KL WDA ). It is only
at l =0.95s (the value that was used in the calculation) that
differences are seen. At this value ofl there is significant
improvement(relative to the higher values ofl) of the first
density peak in comparison to the MC simulation.

IV. SUMMARY

To determine the accuracy to which classical density—
functional techniques can predict the structure of inhomge-

neous fluids for systems with long ranged repulsive interac-
tions (i.e., with longer ranged repulsive cores than hard-
sphere or Lennard-Jones interactions), we have compared the
results of three different WDA methods with Monte Carlo
simulation for a system consisting of a model fluid of par-
ticles interacting through an inverse sixth-power repulsive
pair potential at a soft wall. The three methods studied are
the the WDA of Curtin and Ashcroft(CA WDA) [12], a
simplified WDA of Denton and Ashcroft(DA WDA ) [14],
and the partitioned WDA of Kol and Laird(KL WDA ) [13].
The predictions of the three methods are seen to be quite
accurate when compared to Monte Carlo simulation. The DA
WDA overestimates the height of the first peak, but for larger
distances is more accurate than the other methods at low
density. At high density, the KL WDA is seen to be the most
accurate method for the first peak. That the KL WDA is
better at predicting the structure of inhomogeneous fluids for
longer range potentials than the CA WDA is not too surpris-
ing given earlier results showing that KL WDA[13] is more
successful than the CA WDA at predicting the freezing tran-
stion for inverse-power potentials. Finally, when considering
these methods for the purposes of a specific application one
should take into account the fact that the DA WDA is, by far,
the easiest and least computationally intensive method to
implement and run for these systems.
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