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We have calculated the interfacial free energy for the hard-sphere system, as a function of crystal
interface orientation, using a method that examines the fluctuations in the height of the interface
during molecular dynamics simulations. The approach is particularly sensitive for the anisotropy of
the interfacial free energy. We find an average interfacial free energy of �=0.56±0.02kBT�−2. This
value is lower than earlier results based upon direct calculations of the free energy �R. L.
Davidchack and B. B. Laird, Phys. Rev. Lett. 85, 4751 �2000��. However, both the average value
and the anisotropy agree with the recent values obtained by extrapolation from direct calculations
for a series of the inverse-power potentials �R. L. Davidchack and B. B. Laird, Phys. Rev. Lett. 94,
086102 �2005��. © 2006 American Institute of Physics. �DOI: 10.1063/1.2338303�
I. INTRODUCTION

The crystal-melt interfacial free energy � has been the
focus of numerous studies1–16 due primarily to its importance
in crystal nucleation and growth.17–22 Its anisotropy �i.e., the
dependence of � on the orientation of the crystal with respect
to the interface� is also of particular interest for pattern for-
mation in solidification; for example, the anisotropy can de-
termine the dendrite growth direction in directional
solidification.23 Even small anisotropies are important, as
they are necessary for the stable growth of dendrites. Direct
experimental determinations of � are usually based on con-
tact angle measurements.24,25 Such measurements are quite
difficult and have been done only for a handful of
materials.26 For most materials, the indirect estimates of this
quantity are obtained from the nucleation rate measurements,
using the �approximate� relationship between � and the
nucleation rate from the classical nucleation theory �or vari-
ants thereof�. However, since this approach yields an orien-
tationally averaged value of �, it is unable to resolve the
anisotropy. The lack of reliable direct experimental methods
for determining � and its anisotropy has motivated a growing
number of studies aimed at computing � and its anisotropy
for model systems via molecular simulation.6–16

Currently, two qualitatively different approaches are be-
ing employed to determine the crystal-melt interfacial free
energy in computer simulations. The thermodynamic integra-
tion approach stems from the definition of � as the reversible
work required to form a unit area of the interface. Within this
approach, separate bulk crystal and melt systems prepared at
the crystal-melt coexistence conditions are transformed
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along a continuous path that brings them in contact with each
other, creating an interface. Thermodynamic integration is
performed along the path in order to determine the reversible
work involved in the transformation process. The value of �
is then obtained as the work divided by the area of the cre-
ated interface. Performing the calculation on systems with
different crystal orientations can yield information about the
free energy anisotropy, provided the results are sufficiently
accurate. This approach was first employed by Broughton
and Gilmer to calculate the interfacial free energy for a trun-
cated Lennard-Jones potential at the triple point6 and was
subsequently extended via the cleaving wall method to the
systems of hard spheres7 and inverse-power potentials15 �see
Ref. 27 for details�.

An alternative approach, the capillary fluctuation
method, which examines the magnitude of capillary fluctua-
tions in the profile of a thin strip of the interface,8–12,14,16 has
been used in the past few years �Fig. 1 illustrates the simu-
lation geometry�. For a macroscopically rough interface, the
size of the capillary fluctuation modes is related to the inter-
facial stiffness �̃ by the equipartition theorem as follows:28

��hq�2� =
kBT

A�̃q2 , �1�

where A=bL is the area of the flat interface, q is the wave
number, and hq is defined in Eq. �3�. The interfacial stiffness
is given in terms of the interfacial free energy by the formula

�̃��� = ���� + d2�/d�2, �2�

where � is the angle between the instantaneous local normal
to the interface and the average orientation for the reference
flat interface. By simulating a number of interfaces with dif-

ferent crystal orientations and measuring the average magni-
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tude of the fluctuation modes, one can use Eq. �1� to deter-
mine �̃ from the simulations and Eq. �2� to extract the
anisotropic interfacial free energy. This approach has been
initially applied to an interatomic potential of Ni �Ref. 8� and
has since been extended to a number of metal and alloy
systems.9,14 This approach is particularly useful for finding
the anisotropy, as the interfacial stiffness is much more sen-
sitive to the small anisotropy in �.

Recently, both the thermodynamic integration and the
capillary fluctuation approaches were used12,13 to calculate
the anisotropic free energy of a truncated Lennard-Jones po-
tential. The results were in very good agreement: the differ-
ence in the average values was less than 0.3%. The aniso-
tropic free energies were also in good agreement, and both
calculations produce the ordering �100��110��111 for the
three principal crystal orientations. This is an excellent test
of both approaches: two very different techniques can closely
reproduce the same values for the same potential. In addi-
tion, the approaches are complementary: the thermodynamic
integration approach is a direct method for determining the
interfacial free energies, and thus the error bars are smaller
for the absolute values, while the fluctuation approach is
more sensitive to the differences in the free energies �i.e.,
anisotropy�.

In the present work, we apply the capillary fluctuation

FIG. 1. Sample geometry from the �100� interface simulation. Spheres are
colored according to whether they are part of the crystal �light gray� or
liquid �dark gray� as determined by the value of the order parameter calcu-
lated as described in Ref. 9.
method to the hard-sphere �HS� system. As in the Lennard-
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Jones case, this provides an independent check on the ther-
modynamic integration results. In a recent paper15 using the
thermodynamic integration method the average interfacial
free energy was found to be 0.573�5�kBT�−2, where the num-
ber�s� in parentheses represent the estimated error in the last
digit�s� shown. This value has been obtained by extrapola-
tion from thermodynamic integration results for a series of
inverse-power potentials. It is lower than the earlier esti-
mates of �=0.62�1�kBT�−2 obtained by the thermodynamic
integration approach applied directly to the HS system7 and
0.616�3�kBT�−2 found in the HS nucleation simulations,21

but is closer to 0.55�2�kBT�−2 estimated from nucleation ex-
periments on hard-sphere-like colloidal systems.4,29

The first application of the capillary fluctuation approach
to the hard-sphere system was published recently,16

which reported the average interfacial free energy �
=0.62�2�kBT�−2. However, we argue that the author’s ap-
proach admitted systematic bias leading to the increase in �
beyond the reported confidence interval. We present our
analysis and comparison of the results in the final section of
this article.

We are also interested in a closer examination of the
anisotropy. The cleaving calculation of interfacial free ener-
gies in the HS systems7 has produced the relation �110

��100��111, which is somewhat surprising, since in the
Lennard-Jones, as well as other fcc-forming materials, the
�100� orientation has the highest free energy. The recent ex-
trapolation results,15 as well as those obtained by the capil-
lary fluctuation method,16 found the ordering �100��110

��111, which is similar to that in the Lennard-Jones and
other fcc-forming systems.

In the calculations reported in this article we obtain val-
ues for the average interfacial free energy and anisotropy that
are consistent with the extrapolation results15 and are lower
than previously reported from direct calculation for the HS
system. We also obtain a precise estimate of the anisotropy
of the interfacial free energy.

II. COMPUTATIONAL DETAILS

The hard-sphere molecular dynamics simulation was
carried out using the algorithm described in Ref. 30. The
systems containing crystal-melt interfaces with different
crystal orientations were all prepared and equilibrated at the
crystal and melt coexistence densities of �c=1.037�−3 and
�m=0.939�−3, respectively, with an estimated coexistence
pressure of P=11.57�3�kBT�−3, where � is the sphere diam-
eter. In order to minimize the computational effort and re-
duce the measurement error, the system geometry is quasi-
two-dimensional, with the length of the interfaces L being
much larger than the width b �see Fig. 1�. The coordinates
are chosen such that the x axis is normal to the interface,
while the y and z axes correspond to the long and short
directions of the interface, respectively. We denote the sys-
tem orientation with respect to the crystallographic reference
frame of the crystal as �ijk��lmn�, where �i , j ,k� � n̂ is the
vector normal to the interface and �l ,m ,n� � ŝ is the vector
tangent to the interface along the short direction. The tangent

vector along the long direction is defined by the cross prod-
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uct t̂= ŝ� n̂. The interface profile �averaged over the short
direction� is given by the function x=h�y� for each of the two
crystal-melt interfaces created due to the periodic boundary
conditions. If the values of the function h�y� are measured at
a discrete set of points yn=n�, where n=1, . . . ,N and �
=L /N, then the Fourier modes hq in Eq. �1� are defined as
follows:

hq =
1

N
	
n=1

N

h�yn�eiqyn, �3�

where the wave number q takes values q=2�k /L with k
=1, . . . ,N.

To determine the interface profile h�yn�, an order param-
eter 	i for each atom i in the system is calculated. The order
parameter is defined in such a way that a distinction between
local crystal and liquid structures is maximized. As shown in
Fig. 1, the crystal and liquid atoms can be identified using
the value of the order parameter, and thus outline the location
of the crystal-melt interface. In the previous studies employ-
ing the fluctuation approach, two types of order parameter
have been used. The first one proposed by Hoyt et al.8 is
calculated using the distances of neighboring atoms from the
ideal fcc lattice sites around a given atom i,

	i =
1

12	
j

�rij − rfcc�2, �4�

where rij =r j −ri and the sum is over the 12 nearest neigh-
bors.

The second order parameter, proposed by Morris,9 uses a
set of six reciprocal lattice vectors q such that exp�iq ·rfcc�
=1 to construct the local order parameter for each atom,


i = 
 1

6Z
	
q

	
j

exp�iq · rij�
2

, �5�

where the second sum runs over Z nearest neighbors within
the distance rc of a given atom. Essentially, Eq. �5� describes
the coherent scattering from an atom and its neighbors, from
a set of reciprocal wave vectors. In practice, this order pa-
rameter generally works well, but some atoms in the crystal
phase have a low value more characteristic of the liquid
phase and, less frequently, atoms in the liquid have a larger
value more characteristic of the crystal. These mischaracter-
ized atoms are usually isolated, and therefore the discrimina-
tion between crystal and liquid structures may be improved
by averaging over the neighbors. Thus, the order parameter
for each atom is defined as the average,

	i =
1

Z + 1�
i + 	
j


 j� . �6�

In order to ascertain that the final results do not depend on
the details of the determination of h�y�, we used both meth-
ods. The interface location was determined using the atom
positions recorded at time intervals of 5.0��m /kBT�1/2 in
long molecular dynamics simulation runs. In the first
method, the instantaneous atom positions were used, while in

the second one we used atom positions averaged over a short
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time interval of 0.125��m /kBT�1/2, where m is the atom
mass.

The interface location at yn is calculated using the order
parameters of atoms within a bin centered at yn. The two
methods also differ in the way this calculation is carried out.
In the first method, we use a smooth weighting function
wd�x� with compact support of radius d to define the order
parameter for all coordinates �not just at the atom positions�
as follows:

	�x� =
	iwd�x − xi�	i

	iwd�x − xi�
, �7�

where xi is the coordinate of atom i and the sums are over
atoms within a given bin. We used the weighting function in
the form wd�x�= �1− �x /d�2�2 for �x��d and wd�x�=0 other-
wise. The interface location h�yn� is determined from the
intersection of 	�x� with a threshold 	thr, i.e., 	�h�yn��
=	thr. For sufficiently large weighting function width d and
the threshold 	thr value chosen in the middle between the
typical values of 	�x� in bulk crystal and melt phases, this
equation has a single solution in the vicinity of the crystal-
melt interface. In the second method, the interface location
h�yn� is defined as the average position of “interfacial” atoms
within a bin centered at yn. The atoms are classified as inter-
facial, if their order parameter 	i� �	min,	max�. This method
relies on the order parameter of atoms within bulk crystal
and liquid phases being strictly outside this range.

In order to determine the stiffness �̃ using Eq. �1�, we
measure the stiffness of individual modes,

�̃�q� =
kBT

bL��hq�2�q2 . �8�

Even though Eq. �1� implies that �̃�q� should be independent
of q within the statistical error, we can expect deviations for
both small and large q. Since the relaxation time increases
with the mode length,11 the relaxation times for small q
�large wavelength� can be larger than the simulation time,
leading to undersampling and therefore, larger uncertainty in
the obtained results. For large q �small wavelength� the rela-
tionship in Eq. �1� between the stiffness and the average size
of the fluctuations, which is based on the assumption of the
continuity of the interface profile, is expected to break down
when the wavelength becomes commensurate with the crys-
tal lattice spacing. In particular, the value of ��hq�2� for small
amplitude, small wavelength fluctuations will be sensitive to
the details of the method for determining the interface loca-
tion. Based on these considerations, we expect to see a
q-independent behavior of �̃�q� only in a limited range q
� �qmin,qmax�. By applying different methods for locating the
interface and varying parameters within these methods, we
investigate the sensitivity of �̃�q� to the details of the meth-
ods and take qmax small enough to exclude data where this
sensitivity exceeds the statistical error. The interfacial stiff-
ness �̃ is then obtained as the value of �̃�q� averaged over q
in the range �qmin,qmax�.
After the stiffnesses for different orientations have been
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computed, the interfacial free energy and its anisotropy is
determined based on the cubic harmonic expansion of Fehl-
ner and Vosko,31

��n�/�0 = 1 + �1�	
i=1

3

ni
4 −

3

5
�

+ �2�	
i=1

3

ni
4 + 66n1

2n2
2n3

2 −
17

7
� , �9�

where 
n1 ,n2 ,n3� are the Cartesian components of the unit
vector n normal to the interfacial plane, �0 is the orientation-
ally averaged interfacial free energy and �1 and �2 are expan-
sion coefficients that quantify the anisotropy. A similar ex-
pression for the stiffness can be derived using Eq. �2�. In
particular,

�̃�n̂, t̂� = ����� +
d2�

d�2�
�=0

, �10�

where �������n̂ cos �+ t̂ sin ��. Note that the stiffness of
the interface depends both on the normal n̂ and the tangent t̂
�or ŝ� direction. For convenience, we provide expressions for
� and �̃ for the orientations studied in this work in Table I.

III. RESULTS

We have simulated systems containing about 105 par-
ticles. The sizes of the systems are given in Table II. Before
performing production runs we have investigated the depen-
dence of �̃�q� on various parameters of the capillary fluctua-
tion method. The dependence of �̃�q� on the choice of the
order parameter is shown in Fig. 2. As expected, the stiffness
at small q is less sensitive to the type of the order parameter,
and the difference in the computed results increases with q.

TABLE I. Expressions for interfacial free energy and stiffness for different
interface orientations from Eq. �10�.

Interface orientation ��n̂� /�0 �̃�n̂ , t̂� /�0

�100��001� 1+ 2
5�1+ 4

7�2 1− 18
5 �1− 80

7 �2

�110��1̄10� 1− 1
10�1− 13

14�2 1− 21
10�1+ 365

14 �2

�110��001� 1− 1
10�1− 13

14�2 1+ 39
10�1+ 155

14 �2

�111��1̄10� 1− 4
15�1+ 64

63�2 1+ 12
5 �1− 1280

63 �2

�120��001� 1+ 2
25�1− 68

175�2 1+ 6
5�1+ 104

35 �2

�120��2̄10� 1+ 2
25�1− 68

175�2 1− 66
25�1+ 88

7 �2

TABLE II. Simulated system sizes and calculated stiffness for different
orientations of the hard-sphere crystal-melt interface.

Orientation System size, � �̃, kBT�−2 �̃ �fit�

�100��001� 125.5�128.6�6.273 0.44�3� 0.437

�110��1̄10� 115.3�131.7�6.654 0.42�3� 0.422

�110��001� 115.3�139.7�6.273 0.70�3� 0.693

�111��1̄10� 130.4�115.2�6.654 0.67�4�a 0.696

�120��001� 126.2�126.2�6.273 0.59�3� 0.601

�120��2̄10� 112.2�127.0�7.014 0.43�3� 0.427

aThis value of stiffness is for the rhcp-crystal-melt, rather than the fcc-

crystal-melt interface. See text for details.
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The exception is the �111��1̄10� orientation, in which the two
order parameters produce markedly different results. Closer
inspection of the structure of the crystal layers near the fluc-
tuating interface shows that the newly formed layers rarely
respect the fcc configuration, but rather form a random
hexagonal-close-packed �rhcp� structure through a sequence
of stacking faults. This observation is consistent with those
discussed in Ref. 11. The order parameter of Hoyt et al.8 in
Eq. �4�, which relies on the proximity of the nearest neigh-
bors to the ideal fcc lattice, tends to mistakenly identify rhcp
with the liquid structure �large value of the order parameter�,
thus leading to erroneously large stiffness values. The order
parameter of Morris9 correctly identifies rhcp as a crystal
phase and therefore is more reliable in calculating stiffness
for this orientation. In subsequent calculations, we only used
the second order parameter for the �111� orientation and in-
terpret the result as the stiffness of the interface between the
rhcp crystal and melt.

Following the analysis carried out in Refs. 32 and 33, we
have studied the distributions of interfacial heights and found
them to be Gaussian, in agreement with the predictions of the
capillary fluctuation theory. We have also investigated the
dependence of the results on the threshold 	thr and the bin
width �. Moving the threshold away from the optimal inter-
mediate position leads to a slight decrease in the calculated
stiffness. This is consistent with the observations reported in

FIG. 2. Stiffness of the fluctuation modes evaluated using different order
parameters. Solid dots represent results obtained using Eq. �4�, while open
circles are computed according to Eqs. �5� and �6�. The results are averaged
over 200 samples of the interfacial profiles and over the two interfaces in
each system.
Ref. 16. In addition, our studies have shown that the results
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are sensitive to the value of the bin width �: with increasing
values of �, the short-wavelength fluctuations are smoothed
out, resulting in higher values of computed stiffnesses �̃�q�
for larger q. In Fig. 3 we plot �̃�q� for three different values
of the bin width. The results are obtained by averaging over
2000 samples of interfacial profiles and over the two inter-
faces for each orientation. The statistical errors are estimated
using the block-averaging technique.34 The parameter d in
Eq. �7� is fixed at 4.0�.

As discussed earlier, the small q values of the calculated
stiffness exhibit large variability due to incomplete sampling
�large relaxation time� of long-wavelength modes. For q
�0.2 the results are more systematic, but show increasing
sensitivity to the bin width. According to the capillary fluc-
tuation theory, the stiffness of different modes, as defined by
Eq. �8�, should be independent of q. From the results shown
in Fig. 3, it appears possible to adjust the bin width param-
eter and achieve such independence �within statistical errors�
for a wide range of q’s for all orientations. However, the
optimal choice of � would be different for different orienta-
tions and there is no apparent a priori reason to believe that
the specific choice of the bin width �or other parameters� that
minimizes the dependence of �̃�q� on q leads to an accurate
value of the interfacial stiffness.

Therefore, in order to limit possible systematic bias in
our results, we restrict the averaging to within the interval
0.2�q�0.5 where all three values of the bin width param-

˜

FIG. 3. Stiffness of individual modes �̃�q� for different orientations of the
hard-sphere crystal-melt interface. Triangles, circles, and squares indicate
results obtained for bin widths � of 1.5, 2.0, and 2.5�, respectively. Error
bars indicate the 95% confidence intervals. Vertical dashed lines show the
range of modes �0.2�q�0.5� used to determine the stiffness �̃ in Table II.
eter yield relatively flat ��q� and the difference in the aver-
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age stiffness for the three measurements is smaller than
0.01kBT�−2 for all orientations. The results are presented in
Table II. The errors listed in the table combine the statistical
error, which is about 0.01kBT�−2 for all orientations except

�111��1̄10�, where it is 0.02kBT�−2, and an estimated system-
atic error of up to 0.02kBT�−2 due to the sensitivity of the
results to the details of the methods used in the calculation of
the interfacial stiffness.

As discussed above, the simulation of the �111� interface
produced the stiffness of the interface between the rhcp crys-
tal and liquid rather than between the fcc crystal and liquid.
Since the excess free energy of the stacking faults in hard-
sphere crystals is very small,11 the difference between the
two interfacial stiffnesses should be relatively small. How-
ever, in order to have consistent description of the fcc-

crystal-melt interface, we have excluded the �111��1̄10� ori-
entation from the subsequent analysis.

Using stiffness values from the other five orientations,
we have applied linear regression and found the following
values of the Fehlner and Vosko parameters: �0

=0.559�17�kBT�−2, �1=0.072�9�, and �2=−0.004�2�. Using
these parameters, we have calculated the fitted values of the
stiffness, shown in the last column of Table II, which illus-
trate good consistency of the obtained results. The predicted
stiffness for the �111� orientation of the fcc-crystal-melt in-
terface is slightly larger than that of the rhcp-crystal-melt
interface, and we see the largest deviation from the fit for this
orientation. In order to check the system size effects, we
have simulated systems with larger interfacial widths �b
=10–11�� and smaller lengths �L=70–80��. The obtained
values of �̃�q� agree within statistical errors with those for
other system sizes for all orientations and all q, indicating
that, as predicted by Eq. �1�, the magnitude of the fluctuation
modes ��hq�2� is inversely proportional to the area of the in-
terface.

IV. DISCUSSION

A comparison of values for the interfacial free energy of
hard-sphere crystal-melt interface obtained by different com-
putational techniques is shown in Table III: thermodynamic
integration �Refs. 7 and 15�, capillary fluctuation �Ref. 16
and this work�, and homogeneous nucleation �Ref. 21�.
Within the thermodynamic integration approach, �100, �110,
and �111 are measured directly, while parameters �0 and �1,2

are calculated based on Eq. �10� �see Ref. 13 for details�.
Within the capillary fluctuations, all parameters in the table
are determined from the stiffness measurements, as described
in this article. The authors of Ref. 16 obtained the following
stiffness values �in units kBT�−2�: 0.55 for �100��001�, 0.71

for �110��001�, and 0.80 for �111��1̄10�, which they used to
calculate the parameters listed in Table III. In the nucleation
simulations of Ref. 21, the authors obtained an average value
of the interfacial free energy, which we identify here with
parameter �0, although, because Ref. 21 uses classical nucle-
ation theory and other approximations to extract an estimate
of the orientationally averaged interfacial free energy, the
correspondence between this estimate and �0 is only approxi-

mate.
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Even though the earlier calculations7,21 estimated the av-
erage interfacial free energy at about 0.62kBT�−2, the more
recent calculations with a better control of systematic devia-
tions yield a lower value of around 0.57kBT�−2. It is likely
that the confidence intervals for the results stated in Ref. 7
were underestimated because some of the systematic errors
in the thermodynamic integration approach, which increased
the results �especially for the �110� interface�, were not ac-
counted for. Note that the difference in the average free en-
ergy between the present and the previous calculations is
only about 10%. This may seem small, but is important due
to the impact on nucleation rates. Within the classical nucle-
ation theory, the energy of the critical nucleus scales as �3,
and the nucleation rate varies exponentially with this energy.
Thus, our recent results would indicate a much faster nucle-
ation rate.

Note that our results are also lower than those obtained
recently within the capillary fluctuation method and reported
in Ref. 16. We argue that the implementation of the method
in Ref. 16 contains a systematic bias that increases the values
of the interfacial free energy. The key feature of the approach
used in Ref. 16 is that the stiffness, as calculated by the
authors, depends on the value of the threshold parameter 	thr

in such a way that it has a maximum at the intermediate
range of the parameter values. The authors determine 	thr

from the location of this maximum and thus obtain the value
for the interfacial stiffness. However, in our analysis above
we show that the dependence of the calculated stiffness on
the threshold, as well as other parameters of the fluctuation
method, is the most prominent at shorter wavelengths �larger
q�. The comparison in Fig. 3 shows that, for most orienta-
tions, the shorter modes tend to have higher stiffness. There-
fore, by including the modes with q of up to 0.8�−1 and by
choosing the maximum value of stiffness, the authors of Ref.
16 have introduced a bias towards larger stiffness results.

In the present work, our approach was to test the sensi-
tivity of the calculated stiffness values to the details of the
method and discard the results as unreliable if this sensitivity
was much larger than the statistical uncertainty. Within this
approach, the measurements with wave numbers larger than
qmax=0.5�−1 were discarded, and the reported uncertainty in
the results includes possible bias due to the specific details of
the application of the capillary fluctuation method.

To conclude, the capillary fluctuation approach provides
a relatively simple way of determining the crystal-melt inter-
facial free energy and its anisotropy from molecular simula-

TABLE III. Comparison of values for the interfacial
by various computational methods.

Ref.7 Ref. 21

�0 0.617�6� 0.616�3�
�1 0.07�3�
�2 −0.044�12�
�100 0.62�1�
�110 0.64�1�
�111 0.58�1�
tion. However, since the continuum interface model of the
ticle is copyrighted as indicated in the article. Reuse of AIP content is subje

129.237.46.100 On: Tue, 1
capillary fluctuation theory is incompatible with the atomis-
tic nature of molecular simulations, the implementation of
this approach requires a procedure for defining a continuous
interfacial profile h�y� based on the atomic configuration at
the solid-liquid interface. Since such a procedure is not
unique, it is likely to generate systematic errors in the mea-
sured magnitudes of the interfacial fluctuations, which in-
crease with increasing wave number q. Therefore, it is im-
portant to investigate the sensitivity to parameters of each
specific implementation of the capillary fluctuation approach
in every new system under investigation. Further studies are
required to understand the nature of the uncertainties of this
approach and to find possible ways of their elimination.
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