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A semiclassical coupled dressed-quasimolecular-states (DQMS) approach is presented for nonper
turbative treatment of multichanriel charge-transfer reactions at lou collision velocities and high
laser intensities, incorporating the implementation of the generalized Van Vleck (GVV) nearly de-
generate perturbation theory. The GVV technique allows block partitioning of the infinite-
dimensional Floquet Hamiltouiau into a finite-dimensional madel DQMS space, and thereby
reduces greatly the number of effective coupled channels. Further, the GVV-Floquet basis allows
minimization of the (usually large in amplitude) field-induced nonadiabatic radial couplings without
the need to explicitly construct the transformation between the adiabatic and diabatic DQMS basis.
This yields a new set of coupled CxVV-DQMS equations (neither adiabatic nor diabatic) which are
particularly convenient for multichannel calculations. The method is applied to the study of the
laser-assisted charge-transfer process: Li'++H(ls)+Am~Li +(n =3)+H+, using 2-, 5-, and 15-
GVV-DQMS basis. It is found that while the 5-state results agree well with the 15-state calculations
even up to very high intensities for the (LiH) + system, the 2-state basis is inadequate at high-
intensity and lower-wavelength regimes. Detailed results and nonlinear dynamical features are
presented for the process at small impact velocity 10 cm/s and strong laser fields with intensity
ranging from 1 to 100 TW/cm and wavelengths from 1500 to 3000 A.

INTRODUCTION

Knowledge of the charge-transfer cross sections in ion-
atom collisions plays an important role in the interpreta-
tion and understanding of many physical phenomena such
as determining the radiation losses and neutral beam heat-
ing efficiencies in tokamak plasmas' and predicting the
feasibility of producing an x-ray laser.

It is known that the nonresonant ion-atom charge-
transfer cross section, which is normally small at low ve-
locities, can be enhanced a great deal by the presence of a
strong laser field. The observation of a laser-induced
charge-exchange collision involving Ca+ and Sr has also
been reported. More recently, Seely and Elton have sug-
gested that photon-induced charge-transfer reactions are
also useful for the measurement of particle densities, with
time and space resolution provided by the pumping laser
beam, in a tokamak plasma.

Theoretical studies have shown that at weak laser
fields and at small impact velocities, the laser assisted
processes A++B+Aco~A +B+ can be well described by
perturbative schemes of one kind or another within the
rotating-wave approximation (RWA) and the impact-
parameter formalism, and that the charge-transfer cross
sections behave linearly as a function of the intensity of
the laser field and as a function of the reciprocal of the
impact velocity. These approaches, however, are generally
difficult to extend to high laser intensity and very low col-

lision velocity regions where the laser-induced charge-
transfer rates tend to be the largest. In a previous paper, '

hereafter called paper I, the authors have developed a
nonperturbative coupled dressed-quasi molecular-states
(DQMS) approach for the treatment of charge-transfer
processes at low collision velocities and strong laser inten-
sities. The theory parallels an earlier treatment developed
by one of us' in the study of multiphoton enhancement
of vibrational excitations induced by molecular collisions.
The essence of the coupled DQMS approach is as follows:
As the laser frequency of interest is in the range of quasi-
molecular electronic energy separations, the laser field os-
cillates more rapidly than the nuclear motion. It is then
legitimate to first construct the solutions of the ( A-
8)+ + field system, namely, the dressed quasimolecular
electronic states (also called the quasienergy or electronic-
field states) with the internuclear separation R fixed. The
laser-assisted collision processes can then be treated as the
electronic transitions among the DQMS driven by the nu-
clear motion only. The DQMS can be determined by in-
voking either the full quantized treatment' or the semi-
classical Floquet theory, ' ' both treatments being
equivalent in strong fields. ' " In our approach, we have
adopted the Floquet approach, which has been extensively
used recently in studies of multiphoton excitation and dis-
sociation of molecules. '"

The DQMS obtained via the Floquet theory are adia
batic, and their associated quasienergies (depending
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parametrically on R) exhibit regions of avoided crossings,
where the electronic transition probabilities are large due
to the strong radial couplings induced by nuclear move-
rnent. By further transforming the adiabatic DQMS into
an appropriate diabatic DQMS representation, defined via
the vanishing of the radial couplings (through the unitary
transformation of Smith' "and Heil and Dalgarno' ' '),
we obtained a new set of coupled (diabatic DQMS) equa-
tions, which offer some computational advantages. The
above-mentioned procedure has been extended to the
study of the laser-assisted charge-exchange process
He + + H(1 s) +fico~He+(n =2) + H+, in a two-state ap-
proximation but beyond the RWA, for the velocity range
from 1.5X10 to 2X10 cm/s, and for the laser intensity
in the range of 0.4 to 4.0 TW/cm .

In this paper we further exploit the DQMS approach
with particular emphasis on more complex systems where
the number of coupled DQMS is large particularly at high
laser intensities. %'e shall focus on developing new tech-
niques which are capable of reducing the number of cou-
pled channels and at the same time providing numerically
stable algorithms for multichannel calculations. One no-
tices that the infinite-dimensional Floquet matrix (or the
fully quantized Hamiltonian) can be partitioned in such a
way that nearly degenerate Floquet (dressed) states form a
closely coupled subspace (called the model space) which
can be decoupled from the rest of the Floquet states
(called the external space) to any desired order of pertur-
bation theory. One of the major goals of this paper is to
extend the generalized Van Vleck (CxVV) nearly degen-
erate perturbation theory' ' to block-partition the

, infinite-dimensional Floquet Hamiltonian to a finite-
dimensional model-space Hamiltonian, thereby reducing
greatly the number of coupled channels in the laser-
assisted charge-exchange studies. Although the GVV-
Floquet basis, which defines the partitioned model space
spanned by the nearly degenerate states of interest, is not
the same diabatic basis defined exactly in the sense of
Smith' "and Heil and Dalgarno, ' ' ' we shall show that
the GVV basis minimizes the part of the radial coupling
matrix which is mainly provoked by the resonant laser
field, and therefore reduces the coupled adiabatic DQMS
equations to coupled diabatic DQMS equations when the
collision-induced couplings are neglected.

Of particular interest is the charge-transfer process
Li + + H(ls)+~Aco~Li +(n=3) + H+ which (1) is of
relevance in controlled thermonuclear fusion research, and
(2) involves a large number of the dressed-quasimolecular
states, thus providing a good test case for the present ap-
proach. The same process has been recently studied by
Errea et al. '" ' using a first-order perturbative approach
and two-state model within the RWA. As will be demon-
strated later, while the two-state model is adeq'iate for
certain low laser intensity (I&1 TW/cm ) and some
smaller frequency ranges, one needs in general to consider
many more quasimolecular states to obtain converged re-
sults, thus demanding more elaborate treatment such as
the coupled DQMS approach presented here.

In Sec. II, we first briefly review the coupled DQMS
approach developed in paper I, ' and then formulate the
coupled CxVV-DQMS equations, based on the generalized

Van Vleck nearly degenerate perturbation theory. The
comparisons between the GVV approach and the previous
coupled adiabatic and diabatic DQMS approaches are ela-
borated based on a nonperturbative two-state model in Sec.
III. The laser-assisted process Li + + H(ls)+~Aco
~Li +(n=3) + H+ is studied in detail based on three
nonperturbative models: the 2-state (2S), the 5-state (5S),
and the 15-state (15S) in Sec. IV. This is followed by a
conclusion in Sec. V. Atomic units will be used
throughout the paper unless otherwise specified.

II. THEORY

%(r, t
~
R(t))=H(r, r

~

R(t))%'(r, t
~
R(t)),

Bt

where 4(r, t
~

R(t)) is the state wave function of the col-
liding system at some instant of the time t, and
H(r, t

~
R(t)), the total Hamiltonian, is composed of a

field-free electron Hamiltonian h,&(r
~

R(t)) and an in-

teraction V(r, t) = rEoc—os(cot) between the active elec-
tron, positioned at r, and the applied laser field of fre-
quency co and amplitude Eo(8,$) whose orientation is
given by the polar and azimuthal angles 8 and P, respec-
tively. The z direction is chosen parallel to the initial im-
pact velocity vo of the two nuclei. The nuclear trajectory
R(t) is determined by some average potential of the two
colliding entities, and will be taken as rectilinear, as in the
impact-parameter method, in the rest of the test for sim-
plicity. Therefore, for each specified impact parameter
blvd, we have R(t) =b+vot Assum. ing that the frequen-
cy of the laser field is of the same order of magnitude as
that characterizing the electronic motion, i.e., much
greater than that characterizing the nuclear motion, the
electronic states can be first thought, of as being dressed
by the applied laser field before adjusting to the changing
molecular field caused by the nuclear motion. The
DQMS wave function Pp„(r, t

~

R(t)) obeys the eigenvalue
equation obtained by the Floquet theorem'

Pp„(r, t
i
R(t))

=a&„(R(r))P&„(r,t
~

R(t)) (2)

defined in an extended Hilbert space RS T with the spa-
tial part R spanned by the eigenfunctions g~(r

~

R(t)) of
the field-free electronic Schrodinger equation

h,&(r
~
R)P~=E~(R)P&, P=1,2, . . . , X (3)

and the temporal part T by the complete orthonormal set
of functions e'""', n =0, +1, +2, . . . + oo, which obey the
relation

A. The dressed-quasimolecular-state approach

Within the semiclassical trajectory formulation and the
electric dipole approximation, the slow ion-atom collisions
in the presence of an intense linearly polarized laser field
can be described by the time-dependent Schrodinger equa-
tion
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277/N
e i (m —n)cotdt

2m'
(4)

The time derivative (8/Bt)R in Eq. (2) is taken at some
fixed internuclear distance R. The DQMS potential ener-
gies ep„(R (t)) thus adjust continuously to the change of
the internuclear separation R. By expanding the total
wave function %(r, t

~

R(t)) of Eq. (1) in terms of the
DQMS wave functions PI„(r,t ~

R(t) },i.e.,

—iR g Ap„(R(t))g' (R(t)),
a, m

where the nonadiabatic coupling matrix element

Ap„~ (R(t)) between two arbitrary DQMS wave func-
tions g„(r,t

~

R(t)) and P' (r, t
~

R(t)) can be written as

A p., ~ «(t) ) = && 0p. VR I

4''

f dt f droop„VRQ~~ . (7)

Equation (2) can be solved by expanding the DQMS wave
function Pp„(r, t

~

R(t)), which is a periodic function of t
with period 2m/co at each fixed internuclear separation R,
i.e., PI„(r,t +2m/co

~

R) =Pp„(r, t
~

R), in terms of the
field-free quasimolecular-state wave functions .Ig I and
the Fourier basis I

e' '),

Pp„(r, t
~

R)= g (am
~

ep„)e' "'P (r, R) .
a, m

Here the expansion coefficient (am
~
ep ) satisfies an

infinite-dimensional eigenvalue equation

(am ~HF
~
yk)(yk

~
ep„) =ep„(R)(am

~
ep„) (9)

y k

+(r, t
~

R(t))= yrp„(R(t)}yp„(r, t
~

R(t))
P, n

and inserting it into Eq. (1) we obtain a set of coupled adi
abatic DQMS equations for Xp„(R(t)), namely,

i Xp„(R (t)}=ep„(R(t)}Xp„(R(t))
Bt

D p„~ (R)

= &&&&ep I)'2k&&}'&k IE' &(Ay I VRIPy, & ~

y2 y) k

(13)

Here we note that the coefficient (yk
~
ep„) depends only

on the internuclear separation R and can be obtained easi-
ly by diagonalizing a truncated, yet converged, Floquet
Hamiltonian HF(R) defined by Eq. (10), while the field-
free nonadiabatic couPling (Py ~

VR
~ Py ) in general de-

pends on both the amplitude and the direction of the vec-
tor R. The field-dominated coupling Bp„(R) becomes
important when the two field-free electronic states, denot-
ed by Ep(R) and E (R), are strongly mixed by the ap-
plied laser field, i.e., the corresponding Rabi frequency

~

——, (gp ~

r
~ f ) Eo (

is larger than or comparable with
the detuning b.p (R)=

~
E~(R)—E (R)

~

co —Th. e
collision-dominated couphng D p„(R) becomes signifi-
cant only when the corresponding field-free electronic po-
tential energies Ep(R) and E~(R) possess pseudocross-
ings, at some internuclear separation R. In the DQMS
representation, cf. Eq. (6), states which are strongly cou-
pled are thus indicated by regions of avoided crossings, a
manifestation of the size of either 8p„(R), or
Dp„(R), or both, in the correlation diagram of the
DQMS potential energies ep„(R). Therefore, in the cou-
pled adiabatic DQMS equation (6), the collision-induced
and the field-induced transition mechanisms are treated
on an equal footing. We note also that as long as the
collision-dominated coupling D' is small when compared
with the field-dominated coupling B', the inclusion of
electronic translational factors (not treated here) is not
essential and has no significant effect on the field-assisted
charge-exchange rates.

A particularly interesting case is that where the
collision-induced coupling D p„~ (R) can be completely
ignored and the field-induced coupling, provoked either
by single-, or multiple-photon resonant transitions at some
finite internuclear distances R„, is solely important, e.g. ,
the laser-assisted charge-transfer process at very slow col-
lision velocities

with the Floquet Hamiltonian Hz at each fixed R defined
as Li ++H( ls)+~fin) —&Li +(n =3)+H+ . (14)

(am ~Hy
~

/k&(R)=E (R)& y&~k+m~6~y5~k

Ep
~ q, &(&, +&, ).

(10)

In terms of coefficients I (am
~
ep„)(R) I the nonadiabatic

coupling matrix elements A p„(R) can be written as

A p„(R)=Bp„(R)+Dp„~(R),
where the field-dominated coupling

Bp„,. (R)=—gg(ep„~) k) () t ~e: ) (12)

and the collision-dominated coupling

In the process (14), the field-free electronic correlation di-
agram shows no pseudocrossing between potential ener-
gies of the entrance and exit channels, see Fig. 1(a), ' and
the collision-induced coupling is thus negligible. When
the laser, whose frequency matches the electronic energies
of the entrance channel, i.e., 3dcr state in the process (14),
and the reactive channels, i.e., 4fo, 3d~, 3po, and 3pvr
states, at some internuclear distance R where the transi-
tion dipole moments are nonvanishing, see Figs. 1(a) and
1(b), is turned on adiabatically, large transitions between
these channels can take place via the absorption or emis-
sion of photons during the collision. More vividly, the
transitions between various DQMS states are dictated by
the DQMS correlation diagram, 2' shown in Fig. 2. In
Fig. 2 we see that the usual simple picture of the close-
coupling approach in field-free slow ion (atom)-atom col-
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easier to perform than the corresponding coupled adiabat-
ic equations, Eqs. (6). However, as can be seen from Fig.
3, the transformation from the adiabatic to a diabatic
basis and therefore the construction of the diabatic poten-
tials for the multichannel case is nontrivial and may be in
fact sometimes difficult to perform. In the Sec. IIIB we
introduce an alternative way to minimize the nonadiabatic
couplings A p„without the need to explicitly construct
the transformation between the adiabatic and diabatic
basis.

B. The generalized Van Vleck nearly degenerate
perturbation approach

0

O

0.5

:.- o.o ft.

Here the Xp„(R(t)) are the coefficients in the expansion of
the total wave function 0'(r, t

I
R(t)) of Eq. (1) in terms of

the complete set of diabatic DQMS functions

I gp„(r, t
I
R(t)) I, namely,

%(r, t
I

R(t)}=Qxp„(R(t))rtIp„(r, t
I
R(t)} (16)

P, n

and the diabatic potential Vp„a (R) is given by

Vp„(R)= g g (C ')p„rke~rk(R)Crk
y k

The matrix C in Eq. (17) is defined by the relation' 'b'

(17)

g g A a~ yk(R)C~k p„(R)+ Ca~ p„(R)=0 (18)am, n

and provides the transformation between the diabatic and
adiabatic DQMS wave functions

Pp„(r, t
I

R)= ggP' (r, t IR)C p„(R) . (19)

As shown in paper I, ' the diabatic potentials Vp„~(R)
thus constructed are in general much smoother and small-
er in magnitude when compared with the nonadiabatic
couplings A p„a (R). Hence numerical solutions of the
coupled diabatic DQMS equations, Eqs. (15), are usually

——0.5
O

O
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Flax. 3. (a) The adiabatic DQMS energies e' (R) of the
(LiH) + + field system under the five-state model and (b) the

corresponding adiabatic couplings
I
R 0 p„'

I
of Eq. (12) at

impact parameter p=1.0 a.u. , impact velocity
I vtI

I

=1.0&&10'
cm/s, field intensity I=10 TW/cm, and field wavelength
A, =2000 A.

In a recent paper, we have extended the GVV nearly
degenerate perturbation theory' ' to study the multipho-
non excitation dynamics of finite-level systems in strong
laser fields. For a laser-assisted reaction, e.g. , Eq. (14), in
the slow ion (atom)-atom collisions, the enhancement of
the reaction rate is mainly caused by resonant single (or
multiple)-photon transitions in regions where the laser fre-
quency (or its harmonics) is close to the energy defect, say

I
Ep(R„)—E (R„)I, of two field-free quasimolecular

states possessing significant transition dipole moments.
From the DQMS correlation diagram, e.g., Fig. 2, we see
that once the entrance channel is selected, only some finite
number (which may be large) of nearly degenerate
dressed-quasimolecular states will be significant at various
stages of the collision. Therefore in solving the time-
independent [but implicitly depending on time via R(t)j
eigenvalue equation (9), which is equivalent to the
Schrodinger equation (2), with R fixed, we can partition
the total Floquet Hamiltonian HF(R) of Eq. (10) into two
parts: one, Mo, consists of unperturbed DQMS states (in-
cluding the entrance channel) which are nearly degenerate
in the course of the collision, and two, 8'o, consists of the
rest of the states. By invoking the GVV approach we
construct a model space M spanned by some perturbed
model-space wave functions with each of them, to the
zeroth order, reducing to one of the states in Mo. The to-
tal Floquet Hamiltonian HF (R ) can then be block-
diagonalized by the model-space functions, or equivalently
the model-space wave functions can be made orthogonal
to the external-space wave functions in 8, to any desired
order of perturbation theory. Therefore the laser-assisted
collisions of the kind discussed in this paper can be con-
fined to a finite-dimensional subspace, the model space M
defined above in the GVV theory.

For convenience we shall abbreviate unperturbed
DQMS ~t~t~~ whi~h sp» Mo by I 3), I8), I C), . . . ,
and the rest which span Wo by I

I ), I
J),

I
K), . . . , in-

stead of using double indices like
I
am ), I

Pn ),
I yk), . . . appearing in Eqs. (8), (9), and (10). According

to the GVV theory we form a model space M from per-
turbed model-space wave functions

I
kg (R))=

I
Ag'(R)) ~

I
Ag'(R))+

I
A~'(R))+

(20)

where
I

A,~'(R)) =—
I
A'). Correspondingly, the perturbed

external-space wave functions can be written as
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I
gt(R)&=

I gt '(R)&+ g't (R)&+
I gl (R)&+

(21)

in Eq. (27) is small, unlike its counterpart Bp„~~(R),
even at pseudocrossings (to be seen later). The collision-
dominated couplings

I
x„&=g g U. „(R)

I

&'. & (22)

with Ut= U '. The transformation defined in Eq. (22)
amounts to

where
I
gl-'&—:

I
I &. The eigenfunctions I I

e'
& j which

diagonalize the total Floquet Hamiltonian HF(R) within
the manifold M can then be related to the model-space
wave functions I I

A, ~ & j by a unitary transformation U,
namely,

D&B"=g&& &~~
I }z k&&ri, k

I ~~&&fy, I ~RI 4y, &

of Eq. (27) in the GVV picture and D&„~(R)of Eq. (13)
in the adiabatic picture are connected simply by the uni-

tary transformation defined by U(R) of Eq. (22), or (23).
When the collision-induced transition, e.g., the process
(14), is negligibly small, we can safely drop the whole

term with which the A' ' is associated in Eq. (24), and
thus obtain the coupled equations,

y', "'(r, t IR)=g+U. ,(R)y: (r, t IR) (23) Xg '(R(t))= gH g g '(R)XPP '(R),
Bt B

(28)

4'(r, t
I
R(t))=—gX'„'(R)P~ '(r, t

I
R), (24)

we obtain a finite set of coupled equations,

i X' '(R(t))
at '

~ ~ (GVV)g(GVV) R ~ A (GVV)g(GVV)
AB B ~ ~ AB B

B B
(25)

The GVV Hamiltonian H ' ' in Eq. (25) can be evaluat-
ed directly once the model-space wave functions I I

A, z & j
are obtained, and can be related to the exact DBMS ener-
gies I @~ (R) j by the relation

H g g '(R)= g g (U )g ~e' (R)U~~ g . (26)

The matrix A' '(R), which is the counterpart of the
2 '(R) in Eq. (6), can be written explicitly as

A';:"(R)=—gg &~. I}k& „&7k I~. &

which gives a new basis Igz '(r, t
I
R)j. By approxi-

mating the total wave function %(r, t
I
R(t)) as a linear su-

perposition of the transformed wave functions

I P'„"(r,t
I
R) j,

which have the same form as the exact diabatic coupled
equations (15). Therefore, the GVV Hamiltonian
H' '(R) plays the same role of the diabatic potential
V(R) defined via Eqs. (17) and (18), or, in other words,
the transformation matrix U(R) of Eq. (22) plays the
same role of the unitary transformation C(R) defined by
Eq. (18). ~e should remark here that although we have

formally identified U(R) as C(R), in practice we never

really need to evaluate the transformation matrix' U(R)
because the GVV Hamiltonian H ' ' can be constructed
directly from the model-space wave functions I I

A,z & j in
Eq. (20). Also, the DQMS eigenenergies I e~„(R)j can be
obtained by simply diagonalizing the GVV Hamiltonian
H' '(R). In the case that the collision-dominated cou-
plings D', or D' ', are not small, we can always return
to Eqs. (25) and solve the exact GVV coupled equations,
although the latter are neither adiabatic nor diabatic in
the sense defined via the matrix element of the operator
~R"

The GVV coupled equations, i.e., (24) or (28), can be
solved subject to the initial conditions

X'„'(R(t))—=X' '(R(t))~5 „5 p as t~
(29)

+yyy&x„I}„k&&y„kIx, &

(27)

with p indexing the initial state of the colliding system be-
fore entering the laser field. The transition probability of
finding the system initially in a field-free quasimolecular
state p, & =g„(r,R(t = —oo ) ) and finally in a state

I

v &
=P (r, R(t = + oo ) ) can be computed by the relation

which has the same form as A', see Eqs. (11)—(13).
coupled equations (6) and (25) are similar [they are
equivalent via the unitary transformation (23)] except that
(i) the GVV Hamiltonian H' ~ is nondiagonal and its
diagonal elements are allowed to cross each other, whereas
the e' (R)'s are not; (ii) the field-dominated couplings
Bp„(R) in Eq. (12) in the dressed adiabatic picture
show up mainly as the off-diagonal part of 0 ( ' in the
GVV representation; and (iii) the quantity

B g, g '(R) =——g g &~g
I yk & & }'k

I
~a &

k dR

~p (p»o'Eo ~)= g IX' '(R(t=+oo))
I

(30)

o&„(vp', Ep, co) =2' f dppP&„(p, vp , Ep, co) . '(31)

Finally, we need to average Eq. (31) over all possible
orientations of the laser fields E(0,$) with respect to the
collisional plane defined by vo and the internuclear axis
R, namely,

for a set of specific parameters p, vp, Ep(t9, $), and co. To
obtain the reaction cross section at fixed vo, Ep(8, $), and
co we integrate Eq. (30) over the impact parameters p and
obtain
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III. THE GVV TW'0-STATE MODEL

In this section we consider only two quasimolecular
states, say

~
a) =g and

~
P):—gp with Ep(R) &E (R) at

all A. The transition dipole moment between these two
states is tu, p=(cc

~

r
~
p), while the effects of the per-

manent dipole moments will be ignored. The laser field is
characterized by the amplitude Eo(8,$) and the frequency
co which matches the energy defect AE (R ) =Ep(R )—E (R) at some finite internuclear separation R, i.e.,
co=6,E(R„). Assuming the system initially, before enter-
ing the laser field, is in the state

~
a), the corresponding

(GUUGVV Hamiltonian H 2~2
' can be easily derived on a

two-dimensional manifold M2 spanned by two perturbed
model-space wave functions

~

A, 0) and
~

A p I ) of the
forms

~
X,) =

~
a,0) +

~

A,",') +
~

A, "0') + (33)

cr& (vo&
~
Eo

~
~co) = J dQ cr&&(vo'Eo(8, $) co) (32)

1

4m.

to compare with experimental measurements.

5

H2X.2 '(R)= g H2'x2(R),
i=0

where

[H z'x2] o, 0=E (R»

[H 2X2]p I p I Ep——(R) —co,(O)

(&) (&)[H 2X2]ao, P—I [H 2X2]P—l, ao

[H 2X2] 0, 0 [H 2X2lp —l, p —I
(2) (2)

(3)
[H2X2)ao, p —I [H2X2]p—l, ao

2

COO+ CO

$ 3

(COO+ CO)

(37)

~ (4) 4

f H2x2]ao, ao [H 2X2]p—I, p—I = 3
(COO+ CO)

Is I I s I ~
—~o+~/2

[H 2X2]ao, p—I [H 2X2]p—l, ao 2
CO (COO+CO)

The nonvanishing matrix elements of the matrix 8'
of Eq. (27) can also be evaluated easily via the expression

1 Q2
iA Il)= 1 ——,ia, o)—

2 (CO0+CO)

Q2
+

2CO(COO+CO)

~
p, i&

COp+ CO

(35)

1 b b
, ) = 1 ——,~P, —1)+

2 (COO+CO) COO+CO

(36)

where

coll=coo(R):Ep(R) E (R)

b—= ——,'IM p.Eo(6', 4)

which is a function of R, 0, and P. Here we note that in
obtaining Eqs. (35) and (36), the full normalization condi-
tion has been imposed on the model-space wave functions,
i.e., (Az

~
A21 ) =5&21+0(b ). By using Eqs. (35) and (36),

the G-VV Hamiltonian H 2~z
' can be evaluated to fifth

order fit is a special feature of the IVV theory that when
the model-space wave functions are accurate to nth order,
the corresponding GVV Hamiltonian can be accurate to
(2n + l)th order], namely,

~~p, I&= ~P, —1)+ (~p", I)+ ~~p", I&+. , (34)

where
~

A, '"0') and
~

Ap"' I) are the nth-order corrections
of

~

A, 0) and
~ Ap I), respectively. To the second order,

of the perturbed model-space wave functions, we can easi-
ly derive

B lcivvl (R) B{cxvv)e(R) (b2)4( + )'

(38)

It is seen from Eqs. (37) and (38) that if we neglect the
.collision-dominated'coupling, i.e., 0'. ', in Eq. (24), the
GVV coupling equations do not possess any nonsmooth
components. Furthermore, the magnitude of the matrix
elements of A( '=8' '+0' ' when compared
with their counterparts in 8' ' can be ignored. It is
worth noting that the ordinary RWA approach amounts
to considering only the first-order GVV Hamiltonian of
Eq. (37), i.e., it neglects all anti-rotating effects; the quan-

vtity 8' ' in the RWA limit vanishes exactly.
For illustration, we consider the two states ~3do. ) and

~4fo) for the process (14) illuminated by a strong laser
field of intensity I=10 TW/cm, and of wavelength
A. =2000 A. We further assume that the laser field Eo is
in the z direction, i.e., Eo~~z~~vo and

~
vo~ =1.0)&10

cm/s. The frequency co of the laser field will match the
energy defect b,E(R„)=E4f (R ) E3d (R ) at R—„=7
a.u. At the impact parameter p=1 a.u. , we present in Fig.
4 the two diagonal elements of the GVV Hamiltonian

Gvv)H2'x2 '(R), as a function of R, which cross over each
other around R =7 a.u. For a closer examination, in Fig.
5, we plot both RWA and GVV diagonal parts and find
that the location of the intersection of the two RWA po-
tentials E&f (R) co and E3d (R) does no—t coincide with
that of the two A&VV potentials [H 2„2 '] 0 0 and
[H zx2 ')p I p I with a=3dcr and P=4fo. The shift of
the cross point from RWA's to GVV's is the well-known
Bloch-Siegert shift which plays an important role in the
resonant single-photon process of a two-state system in
the presence of a strong laser field. In Fig. 6 we present
the off-diagonal Part [H zx2 ']ao p I along with the quan-
tity

~

R.B 0 p I
~

. It is found that the latter is several or-
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FIG. 4. The GVV potential energies of the two-state GVV
model. The two GVV model-space wave functions considered
here are

I
A1) —=

I A3$o Q) and
I
A2) =—

I A4fo 1). Data are calcu-
lated at the same conditions as those described in Fig. 3.

O
C0
O

C5
I
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0.0
5.0 10.0

Internuclear Separation R {a.u. )
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ders of magnitude smaller than the former and thus can
be safely dropped. When the collision-induced coupling is
not important, such as in process (14), we are therefore
justified in using the GVV coupled equations (28) to study
the dynamics of slow atomic collisions in the presence of
a strong field. The results presented in Sec. IV are based
exclusively on Eq. (28).

IV. RESULTS AND DISCUSSIONS

—0,92

O)
C

Ld

—0.93
7.0 7.1 7.2 7.3

Internuclear Separation R (a.u. )

FIG. 5. Comparison between the two-state GVV (solid) and
RWA (dotted) potential energies at the conditions of Fig. 4.

In this section we shall evaluate the charge-transfer
transition probabilities and total cross sections for the
laser-assisted process (14). For simplicity, we shall as-
sume that (i) the impact velocity

I vol is small enough
that the collision-induced coupling can be neglected, (ii)
the laser field is oscillating in the z direction which is
chosen as parallel to the impact velocity vO, and (iii) all of
permanent dipole moments of the quasimolecular states
are negligible. We have seen (Fig. 2) that the correlation
diagram of the DQMS potential energies of the (LiH) +

system in the presence of a strong laser field is extremely
complicated. In the course of the collision, the number of
dressed-quasimolecular states coupled strongly to the en-
trance channel, here the unperturbed DQM state

I
3do, O),

is large. Strong couplings can be traced by avoided cross-
ings which indicate possible transitions between states
caused by single- or multiple-photon resonances. For the
range of laser frequencies to be studied below, from 1500
to 3000 A, the field-induced transitions due to one-photon

FIG. 6. GVV off-diagonal element [H q&&q"']1 2 and the corre-

sponding
I

R SP& 'I, see Eq. (38), of the two-state GVV
model. For further explanation see the caption of Fig. 4.

resonant process dominate over various types of multiple-
photon processes. When assuming that single-photon
resonant transitions prevail in the collision, we can easily
identify the DQMS closely coupled to the entrance chan-

nel, and construct the GVV Hamiltonian H' ' accord-
ingly.

In the following we consider three different GVV
model spaces, namely, (i) Mz, the 2-state model, spanned
by

I A3do0), and
I A4fo ]); (ii) Ms, the 5-state model,

spanned "y
I
~3d, 0) ~4f, —1&

I ~3d, —1&
I ~3p, —1&

and
I

A, 3p 1) and, finally, (iii) M», the 15-state model,
sPanned by

I
A3do 1& I A4fo, o) I ~3do, o) I ~3po, o)

1~3poo)I I ~3do, O)I 1~4fo, —1&I I ~3do, —1&I 1~3po—1&I,
I~3p., 1&

and
I

A.3p p) (see Fig. 2), assuming the initial state is
I3do, O) which asymptotically assigns the electron to the
ground state of the hydrogen atom. The four quasimolec-
ular states 4fo, 3dm, 3po, and 3p.m all asymptotically as-
sociate with the state Li +(n=3), the charge-transfer
channel. The two-state model consisting of the quasi-
molecular states 3dcr, as the entrance channel, and 4fo,
as the final channel, has been studied in the RWA limit,
and, along with perturbation theory, yields linear depen-
dence of the charge capture cross section on both the laser
intensity and the reciprocal of the impact velocity
1/Uo. '""I Although it is true under certain circumstances
that the two states discussed above prevail in process (14),
we find, as is shown below, that the five-state model will
be much more satisfactory when all dynamical factors are
taken into consideration. This five-state model allows the
charge transfer to take place at some moderate internu-
clear separations, see Figs. 3(a) and 3(b), depending on the
laser frequency. The more complete 15-state model ac-
counts for all one-photon resonant processes, absorption
or emission, encountered during the collision, see Fig. 2,
The two-state GVV Hamiltonian H2&&2 has been illus-(GVV)

trated in Sec. III, while the 5- and 15-state GVV Hamil-

tonians H 5~q and H ~5~~5, respectively, are presented in
Appendixes A and B.
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calculations, which show the linear dependence of the to-
tal cross section on the laser intensity, underestimate the
cross section at the lower intensity and overestimate it at
the higher one (which is obvious) except when the intensi-
ty is very low and the wavelength is relatively large, see
Fig. 10.

The behavior of the charge-exchange cross sections as
we vary the laser wavelength X is shown for the 2S and 5S
models in Fig. 11 at impact velocity

~
vo~ =1.0X10

cmfs and at three different intensities: 1.0, 4.0, and 10.0
TW/cm . It is rather interesting to see that at lower in-
tensity the curve is broad (flatter), whereas at higher in-

100
E

C)

I I
/

rr/rrr

Intensity I (TW/crn')

FIG. 9. The total charge-transfer cross sections, as functions
of the laser field intensity I, of the GVV 5S (solid), GVV 15S
(dashed-dotted), and GVV 2S (dotted) calculations at impact
velocity

~

vo
~

=1.0&10' cm/s and wavelength A, =2000 A for
the process shown in Eq. (14). Dashed curve (2SP1) is based on
the first-order perturbation calculation within the GVV 2S
model.

L0
O

0
1500

~ ~

2000 2500 3000

tensity the curve shows a pronounced peak around
A, =2700 A. In general the differenqes between the 2S and
5S results are greater at higher intensities and at smaller
wavelengths as discussed above.

From the results presented so far we see that for the
laser-assisted charge-transfer process (14), the GVV five-
state model provides a good approximation for a wide
range of laser intensities and wavelengths at small impact
velocities. In other words, the couplings within the elec-
tric dipole approximation between the quasimolecular
3dcr state and the 4fcr, 3dn. , 3po, and 3@m. states at some
larger internuclear separations where the transition dipole
moments are still important, are the main driving mecha-
nism causing charge transfer in the process.

Wavelength A. (A)

FIG. 11. The total charge-transfer cross sections, as func-
tions of the wavelength k, of the GVV 5S (solid) and 2S (dotted)
calculations at the impact velocity

~
vo~ =1.0X10 cm/s and

laser intensities I=1.0, 4.0, and 10.0 TW/cm for the process
shown in Eq. (14).
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FIG. 10. Same as Fig. 9, but at the wavelength A, =2700 A.

V. CONCLUSIONS

We have presented a nonperturbative semiclassical
DQMS approach for the general treatment of multichan-
nel slow ion-atom collisions in the presence of intense
laser fields. The implementation of the GVV perturbation
theory in the Floquet Hamiltonian allows the reduction of
the number of effective coupled channels, and in addition,
provides a numerically stable algorithm for minimizing
the large field-induced radical couplings. This yields a set
of GVV coupled equations which offers some computa-
tional advantages over either the adiabatic or the diabatic
DQMS approaches previously proposed. ' The coupled
GVV-DQMS approach is extended to a detailed study of
the laser-assisted charge-exchange process of the bare
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lithiums slowly impinging on ground-state neutral hydro-
gen atoms. It is found that a five-GVV-DQMS basis is
adequate for the description of 'the processes for a wide
range of laser intensities and wavelengths. Extension of
the approach to the study of several laser-assisted charge-
transfer processes involving multiphoton absorptions is in
progress.
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(0)[~5X5]10,10 E1 =E3dcr ~

[H 5 x 5]u, —1 =E~ —co (a =2„3,4, 5),
with

2= 4fcr~ 3= 3dn. ~ 4= 3po~ 5= 3p~ ~

[H5'x5]10, —1=b1 (a=2»4 5 )
'

(3)[0,„,]„„=g
2 E1—E~ —co

(A2)

(A3)

APPENDIX A: THE FIVE-STATE
GVV HAMILTONIAN H gx5 '{R)

Considering the manifo1d M5 spanned by the model-
space wave functions

I ~1,0& =
I i4dn, o& I i4, —1&

=1~4fo, —1& I ~3, —I&=
I ~3d~, —1& I ~4, —1&=

I ~3pcr, —1&

and
I

A5 1&—=
I k3~~ 1& of the system (LiH) + in the

I

and

5X5] —1p—1 1 blp E E + E
(2) ) ~ g 1 1

E~ —E1+co EP —E1+co

(a,P&1); (A4)

5

[II5X5]10, -1=—~b1 g Ib1pl
(3) 1 2

P=2

b1~(R) =b~1(R) = ——, ( I
I
r

I
a& EQ(8,$),

1 1

(E1 Ep co—)2 —(Ep E1+co)(E—~ E1+co)—
Here the transition dipole moment b1~(R) is defined as

(a=2, 3,4, 5) . (A5)

(A6)

13

where r is the position of the electron and EQ(8,$) is the amplitude of the laser field whose orientation is described by
the polar and azimuthal angles 8 and p, respectively, with respect to the impact velocity vQ. The permanent dipole mo-
ments of all quasimolecular states are neglected.

APPENDIX B: THE 15-STATE GVV HAMILTONIAN P '

Considering the manifold M15 spanned by the model-space wave functions A3dg 1&
I A4f~Q& I A3d~Q&

I A3p~Q&,

4p~o&~ I Ad~0&~ I ~&frr, —1&»
I ~3d~, —1&~

I ~3p~, —1&~ I 4prr, —1&~ I Ado—1&~ ~, 4f~, —3&~ I ~3d~, —2&~ I 4p~, —2&i
A 3p 2 & for the (LiH ) + system in the presence of a strong laser field, the corresponding GVV Hamiltonian, to the

first order of perturbation theory, adopted in the calculation can be written as

3dasl b12 b1I b15 0 0 0 0 0 0 0 0 0 0

4fa, O 0

3d~, O 0

3pa, O 0

3p&,0 0

42

52

23

43

53

24

34

b54

25

35

b45

b21

31

51

0

3da, 0 b12 b13
4fa, -l 0

14
0

b15
0

0

23 24 25

H(GVV)
15x15

3dII', -1 0

3pa, -l 0

3p&,-1 0

32

b42

52

43

53

34

b54

b35

b45

(B1)

3da, -1 b12 b13

4fa, -2 0

b14 15

3dm, -2 0

3pa, -2 0
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which is a Hermitian matrix. Here the quantity b I3 is de-
fined as

b~p= ——,
' (a

~

r
~

P).EO(8,$),
where indices a and 13 range from 1 to 5, denoting, respec-
tively, the quasimolecular states 3dcr, 4fo, 3d.~, 3po, and
3pm of the (LiH) + system. We note that in constructing

H IGsx 15) of Eq. (Bl), (i) we have neglected all pe~anent
dipole moments of quasimolecular states, and (ii) we have

used the truncated total Floquet Hamiltonian H~ as the
GVV Hamiltonian for the reason that the basis which
spans the manifold M» is sufficiently large so that

(ovvhigher-order corrections to H ~&~ » will not be appreciable
under the physical conditions considered in this paper.
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