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Time-dependent electron-transport processes are often studied in the wide-band limit. In this paper, a gen-
eralized Floquet approach beyond the wide-band limit is developed for the general treatment of memory effect
on the virtually unexplored multiphoton �MP� coherent destruction of tunneling �CDT� phenomenon of peri-
odically driven electrode-wire-electrode nanoscale systems. As a case study, we apply the approach for a
detailed analysis of the electron-transport dc current in the electrode-quantum double dot-electrode system,
showing the significance of memory effect as well as illustrating the origin of the MP-CDT phenomenon.
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I. INTRODUCTION

An accurate account of electron transport of nanoscale
quantum systems driven by external fields is essential to the
understanding of many fundamental time-dependent
processes,1 including the photon-assisted tunneling,2,3 coher-
ent destruction of tunneling �CDT�,4,5 and nonadiabatic elec-
tron pumping.6 Time-dependent electron-transport processes
are often studied in the wide-band limit �WBL�.7 In particu-
lar, for temporal periodic driving fields, the Floquet theory8,9

can be invoked to enable efficient computations and analysis
of the transport current and the current noise.1,7 The CDT
phenomenon has been studied extensively for electron-
transport problems within the WBL Floquet formulation.10–13

However, the WBL approximation neglects an important fact
that the electrode-wire coupling is in general energy
dependent.14–16 As a result, the memory effect �the effect of
energy-dependent spectral density of electrodes� on electron
transport cannot be accounted for in the Floquet theory-
based calculations.

In this paper, the Floquet theory is generalized beyond the
WBL to include memory effect. Specifically, we make use of
this generalized Floquet method to study the memory effect
on the virtually unexplored multiphoton resonance CDT phe-
nomenon, supplementing the well-studied zero-biased CDT,
with the aim to facilitate the understanding and possible de-
velopment of new mesoscopic optoelectronic devices. The
generalized Floquet formulation is made possible by model-
ing the energy-dependent electrode-wire coupling �i.e., the
spectral density of the electrodes� in terms of sums of
Lorentzian functions.17,18 Previously, the memory effect on
the CDT of zero-biased double quantum dots driven by a
periodic field has been studied in the context of the same
Lorentzian ansatz18 but without taking advantage of the Flo-
quet theory. Following the seminal work of Jauho et al. on
the time-dependent transport theory,19 within the framework
of the nonequilibrium Green’s function,20,21 and with the
adoption of the Lorentzian ansatz for the electrode spectral
density, we show that the underlying time-dependent single-
particle propagator for the electrode-wire-electrode system
can be efficiently solved within the general framework of the

Floquet theory without resorting to the WBL. Moreover, we
find that the generalized Floquet method provides a compre-
hensive physical picture of the multiphoton CDT phenom-
enon.

The paper is organized as follows. In Sec. II we describe
the general formulation of memory effect for an electrode-
wire-electrode quantum system �using a spinless tight-
binding model� in the presence of a time-dependent external
field based on the Lorentzian model for the electrode spectral
density. To this end, a set of coupled ordinary differential
equations for the underlying single-particle propagator is de-
rived. Section III presents the general Floquet approach be-
yond the wide-band limit for the electrode-double quantum-
dot �DQD�-electrode system driven by a periodic external
field. Section IV analyzes the memory effect on the multi-
photon coherent destruction of tunneling phenomena for the
electron transport involving double quantum dots in the
high-frequency limit. Finally, a brief summary is given in
Sec. V.

II. GENERAL FORMULATION OF MEMORY EFFECT

Consider a nanoscale electrode-wire-electrode quantum
system driven by a time-dependent external field. The corre-
sponding single-particle Hamiltonian H�t� can be written
as11,12

H�t� = HC�t� + HL + HR + H�, �1�

where HC�t� is the externally driven central wire Hamil-
tonian, HL and HR are, respectively, the left and right elec-
trode Hamiltonians, and H� is the interaction between the
wire and the electrodes. In the spinless tight-binding
approximation12 with N orbitals �Fig. 1� driven by a time-
dependent external field, the central quantum wire Hamil-
tonian HC�t� may be expressed in terms of single-electron
states ���’s,

HC�t� = �
�=1

N

�
�=1

N

H���t������� , �2�

where the wire contains N sites �orbitals� designated as
1 ,2 , . . . ,N−1,N; the site 1 is in contact with the electrode L
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on the left-hand side and the site N is with the electrode R on
the right-hand side. The left and right electrode Hamiltonians
HL and HR can be written as

HL = �
q

�q�Lq��Lq� , �3�

and

HR = �
q

�q�Rq��Rq� , �4�

respectively, in terms of the electron states �Lq�’s and �Rq�’s.
Finally, the spectral densities of the left and right electrodes
�taking into account the two spin states of electrons� can be
written as

�̄L/R��� = 4��
q

�VL/Rq�2��� − �q� , �5�

which in turn lead to the electrode-wire coupling Hamil-
tonian

H� = �
q

�VLq�Lq��1� + VRq�Rq��N�� + H.c., �6�

with VLq and VRq being, respectively, coupling amplitudes
between the sites �1�, �N�, and their contacting electrodes.

The underlying time-dependent equation for the single-
particle propagator U�t , t0� of the N-site quantum wire can be
written in matrix form,12

ı�
�

�t
U�t,t0� = HC�t�U�t,t0� −

ı

2
�

t0

t

�̄�t − t��U�t�,t0�dt�,

�7�

where U�t , t0� is an N	N matrix function and �̄�t , t�� is the
corresponding response function �the memory kernel�,

�̄�t − t�� = �̄L�t − t���1��1� + �̄R�t − t���N��N� , �8�

in which �̄L/R�t− t�� are the Fourier transforms of the spectral

densities �̄L/R��� via the relation

�̄L/R�t − t�� =
1

2��
� �̄L/R���e−ı��t−t��/�d� . �9�

In the WBL,11,12 �̄L/R��� becomes independent of the energy

�, i.e., �̄L/R���→�L/R, and as a result the response function

�̄�t− t�� can be reduced to the simple form,

�̄�t − t�� = ��L�1��1� + �R�N��N����t − t�� . �10�

The memory effect on the electron transport can be expedi-
ently studied by modeling the electrode spectral densities

�̄L/R��� as sums of M Lorentzian functions18

�̄L/R��� = �
k=1

M
qk

L/Rbk
L/R

�� − 
k
L/R�2 + �bk

L/R�2 � � , �11�

where qk
L/R, 
k

L/R, and bk
L/R are real positive fitting parameters

chosen to mimic the smooth property of the spectral density.
In the WBL �i.e., in the limit of the spectral widths bk

L/R

→��, the spectral densities become � independent,

lim
bk

L/R→�

�̄L/R��� → �L/R = �
k=1

M
qk

L/R

bk
L/R � � . �12�

Here we assume that the ratios qk
L/R /bk

l/R are of finite magni-
tude in the Lorentzian ansatz, cf. Eqs. �11� and �12�, so that

the values of the electrode spectral densities �̄L/R��� also
maintain finite in the calculations.

Using the ansatz of M Lorentzian spectral-density func-
tions, cf. Eq. �11�, and carrying out the integral in Eq. �9�, we
immediately obtain the following closed form for the re-
sponse functions associated with the left and right electrodes,

�̄L/R�t − t�� =
1

2�
�
k=1

M

qk
L/Re−ı�
k

L/R−ıbk
L/R��t−t��/�. �13�

Furthermore, by making use of Eq. �13�, we can recast Eq.
�7� into a set of N+2M coupled ordinary differential equa-
tions

�U�t,t0�
�t

=
1

ı��HC�t�U�t,t0� + �
k=1

M
ı

2
	QkYk�t,t0�
 , �14�

�Yk�t,t0�
�t

=
1

ı�
�−

ı

2
	Qk

TU�t,t0� + ��k − ıBk�Yk�t,t0�
 ,

�15�

subject to the initial conditions U�t0 , t0�=1 �the N	N iden-
tity matrix� and Yk�t0 , t0�=0 �the 2	N zero matrix�, where
Yk�t , t0�, k=1, . . . ,M are 2	N rectangular matrix functions
of the form

Yk�t,t0� = −
	Qk

T

2�
�

t0

t

e−ı��k−ıBk�t−t���U�t�,t0�dt�, �16�

with Qk, �k, and Bk being, respectively, N	2, 2	2, and 2
	2 matrices, namely,

ω

LΓ
RΓ

1
2 N

1N −

E E

Rµ

Lµ

∆
∆

FIG. 1. Schematic diagram of an electrode-N-site quantum wire-
electrode nanoscale system driven by a time-dependent external
field of frequency 
. The electrode-wire couplings are denoted by
�L and �R while the site-to-site tunneling is denoted by �. The
electrochemical potentials of the left and right electrodes are de-
noted as �L and �R, respectively.
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Qk =�
qk

L 0

0 0

] ]

0 0

0 qk
R
� , �k = 

k

L 0

0 
k
R �, Bk = 
bk

L 0

0 bk
R � ,

�17�

and Qk
T being the matrix transpose of Qk. Coupled equations

�14� and �15� may be effectively seen as an �N+2M�-level
quantum system composed of an externally driven N-site
quantum wire simultaneously coupled to M noninteracting
two levels, as depicted in Fig. 2 for the M =1 case. Each two
level is composed of a left �L� level and a right �R� level,
respectively, endowed with the energies 
k

L/R and widths bk
L/R

with k=1, . . . ,M. The coupling between the quantum wire
and the kth two levels is proportional to the square root of
the fitting parameters qk

L and qk
R, which scale linearly in terms

of the spectral widths bk
L and bk

R, respectively �by keeping the
ratios qk

L/R /bk
l/R finite�. It should be pointed out that Eqs. �14�

and �15� not only address the memory effect but also are
applicable to both periodically and nonperiodically driven
electron-transport problems. The physical quantities of inter-
est in the electron-transport calculations can be derived in
terms of the single-particle propagator U�t , t0� in Eqs. �14�
and �15�. Specifically, the single-electron retarded Green’s
function G�t , t0� can be computed from the relation11,12,19

G�t,�� = �
0

�

eı��/�U�t,t − ��d� , �18�

and for periodically driven quantum wires, HC�t+T�=HC�t�,
the Fourier components

G�k���� =
1

T
�

0

T

G�t,��eık
tdt �19�

of the periodical function G�t ,��=G�t+T ,��. Accordingly,
the time-ensemble averaged dc electron-transport current,

Ī �
1

T
�

0

T

�IL�t��dt , �20�

can in turn be evaluated via the equation,12

Ī =
e

2��
�

k=−�

+� � d��TLR
�k����fR��� − TRL

�k����fL���� , �21�

where TLR
�k����= �1 /4��̄L��+k�
��̄R����G1N

�k�����2 and TRL
�k����

= �1 /4��̄R��+k�
��̄L����GN1
�k�����2 are, respectively, the right-

to-left and left-to-right transmission coefficients. The Fermi-
energy functions are fL/R���=1 / �1+e���−�L/R�� and the initial
density matrix describing the state of the electrodes is �0
�e−��HLL+HRR−�LNL−�RNR�, where �L and �R are, respectively,
the electrochemical potentials of the left and right electrodes,
NL/R are the numbers of electrons in the electrodes, and �
=1 /kBT is the product of the Boltzmann constant kB and the
temperature T.

III. GENERALIZED FLOQUET APPROACH BEYOND THE
WIDE-BAND LIMIT

For illustration, consider a periodically driven electrode-
DQD-electrode quantum system �see Fig. 3�, for which the

electrode spectral densities �̄L/R��� may be effectively mod-
eled by single Lorentzian functions,17,18

�̄L/R��� = qL/RbL/R/��� − 
L/R�2 + �bL/R�2� . �22�

The formulations in this section can be readily extended for
the cases involving any finite number of Lorentzian func-
tions. From Eqs. �14� and �15�, it is seen that the current case
reduces to a four-level quantum system governed by the
time-dependent equation

d

dt

U�t,t0�

Y�t,t0�
� =

1

ı�
H�t�
U�t,t0�

Y�t,t0�
� , �23�

where

ω

E E

Rµ

Lµ
Lq /2

σ L

Rq /2

Rσ
1

2 N
1N −

∆
∆

FIG. 2. Schematic diagram of an effective �N+2�-level
electrode-N-site quantum wire-electrode nanoscale system driven
by a time-dependent external field of frequency 
 and with the

electrode spectral densities �̄L/R��� modeled by single Lorentzian
functions. The electrode-wire couplings are denoted by 	qL /2 and
	qR /2 while the site-to-site tunneling is denoted by �. The electro-
chemical potentials of the left and right electrodes are denoted as �L

and �R, respectively.

ω

1
2

E

Lµ ∆

σ L

E

Rµ
Rσ

Lq /2 Rq /2

FIG. 3. Schematic diagram of an effective four-level electrode-
DQD-electrode nanoscale system driven by a time-dependent exter-
nal field of frequency 
 and with the electrode spectral densities

�̄L/R��� modeled by single Lorentzian functions. The electrode-wire
couplings are denoted by 	qL /2 and 	qR /2 while the site-to-site
tunneling is denoted by �. The electrochemical potentials of the left
and right electrodes are denoted as �L and �R, respectively.
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Y�t,t0� = −
	Q

2�
�

t0

t

e−ı��−ıB�t−t���U�t�,t0�dt�, �24�

and the effective 4	4 Hamiltonian of the electrode-DQD-
electrode quantum system takes on the expression,

H�t� = 
 HC�t� ı	Q/2

− ı	Q/2 � − ıB
� . �25�

Here, the Hamiltonian of the periodically driven DQD is
given as

HC�t� =�−
E0 + A cos 
t

2
− �

− � +
E0 + A cos 
t

2
� , �26�

in which the energy difference E�t�=E0+A cos 
t shifts pe-
riodically with a frequency 
 and amplitude A. Moreover,
the electrode-DQD coupling can be written as

	Q = 	qL�1��1� + 	qR�2��2� , �27�

while the positions and widths of the left and right Lorentz-
ian spectral-density functions are, respectively, given as

� = 
L�1��1� + 
R�2��2� , �28�

and

B = bL�1��1� + bR�2��2� . �29�

By invoking the Floquet theory,8,9 a solution F�t� of Eq. �23�
may be expressed as

F�t� = ��t�e−ı�t/�, �30�

where ��t� is a 4	4 matrix of periodic functions of time t,
i.e., ��t+T�=��t� and � is a 4	4 diagonal matrix of com-
plex numbers satisfying the quasienergy eigenvalue equation

�H�t� − ı�
d

dt
���t� = ��t�� . �31�

From Eqs. �30� and �31�, it can be shown that the fundamen-
tal solution U�t , t0� of Eq. �23� may be written as8,9

U�t,t0� = F�t�F−1�t0� = 
U11�t,t0� U12�t,t0�

U21�t,t0� U22�t,t0� � , �32�

where F−1�t0� is the inverse of F�t0�, and U11, U21, U12, and
U22 are 2	2 subblocks. The single-particle propagator
U�t , t0� can be readily identified as

U�t,t0� = U11�t,t0�U�t0,t0� + U12Y�t0,t0� = U11�t,t0� ,

�33�

which is in turn used to compute the current Ī, cf. Eqs.
�18�–�21�.

On the other hand, the single-particle propagator U�t , t0�
may be expediently written as the product

U�t,t0� = �C�t�X�t,t0� , �34�

where �C�t+T�=�C�t�, such that X�t , t0� and Y�t , t0� to-
gether satisfy the equation,

d

dt

X�t,t0�

Y�t,t0�
� =

1

ı�� �C
ı

2
�C

† �t�	Q

−
ı

2
	Q�C�t� � − ıB �
X�t,t0�

Y�t,t0�
� ,

�35�

in the quasienergy �Floquet� state representation. Here the
2	2 diagonal quasienergy matrix,

�C = �1,0
C �1��1� + �2,0

C �2��2� , �36�

contains the DQD quasienergies �1,0
C and �2,0

C belonging to
the quasienergy states ��1,0

C � and ��2,0
C �, respectively. The

quasienergy state function �C�t� associated with �C satisfies
the quasienergy eigenvalue equation

�HC�t� − ı�
d

dt
��C�t� = �C�t��C, �37�

governing the time evolution of the DQD driven by the pe-
riodic field. The DQD quasienergy state function �C�t� con-
tains the elements

��C�����t� = �
k=−�

�

���k���,0
C �e+ık
t, �38�

where � ,��=1,2 and the summation is performed over the
Fourier components of the field-dressed Floquet states ��1,0

C �
and ��2,0

C �. Figure 4 shows that the peaks of the averaged

current Ī are closely correlated with the underlying quasien-
ergy avoided crossing patterns at the multiphoton resonance
conditions E0=n�
, n=1,2 ,3 ,4. Here the parameters E0
=10�=1 eV, A=6�, 
L=
R=0, qL=qR=q, bL=bR=b, and

0

0.5

1

I
[1
0
-1
e
�
/� h
]

WBL
b=50�
b=20�
b=10�

-10

0

10

2 4 6 8 10 12 14 16

Q
u
a
s
ie
n
e
rg
y
[�
]

�
h� [�]

FIG. 4. �Color online� Current Ī and quasienergies �1/2,0
C as func-

tions of �
 �in ��. E0=10�=1 eV, A=6�, 
L=
R=0, qL=qR=q,
bL=bR=b, and �L=�R=q /b=0.5�. Upper panel: the peaks of the

current Ī from the right to left, respectively, correspond to one-,
two-, three-, and four-photon resonances. Lower panel: solid �—�
curves �1,0

C and dashed �- - -� curves �2,0
C .
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�L=�R=q /b=0.5� have been used in the calculations.
Moreover, it is found that the dc current resonance peaks are
blueshifted and their magnitudes slightly reduced at the de-
creasing spectral width b of the electrodes, in accordance to
the fact that a weaker electrode-wire coupling corresponds to
a smaller b��q� value.

IV. MEMORY EFFECT ON MULTIPHOTON CDT FOR
ELECTRODE-DQD-ELECTRODE SYSTEM

To understand the memory effect on the MP-CDT phe-
nomena, we consider the cases in the high-frequency limit
and at the n-photon resonance condition E0= �n��
. Under
these situations, the corresponding generalized rotating wave
approximation �GRWA� solution can be derived with the
help of the transformation22

R�t� = e+ı�E0t/2�+��t���1��1� + e−ı�E0/2�+��t���2��2� , �39�

where ��t�= �A /2�
�sin 
t. In the rotated frame, the corre-
sponding Hamiltonian of the central DQD,

HC� �t� = R†�t�HC�t�R�t� − ı�R†�t�dR�t�/dt , �40�

can be explicitly written as

HC� �t� = − ��e−ı�E0t/�+��t���1��2� + e+ı�E0t/�+��t���2��1�� ,

�41�

which in turn results in the n-photon GRWA Floquet Hamil-
tonian

HC
�n� = − � 	 �Jn�A/�
����1��2� + �2��1�� , �42�

where Jn�x� is the nth order Bessel function of the first kind.
The n-photon GRWA quasienergy state function

�C
�n��t� =

1
	2

R�t�
 1 1

− 1 1
� �43�

associated with the n-photon quasienergy matrix �C
�n� can be

further expressed as

1
	2� �

k=−�

�

Jk
 A

2�

�eık
t �

k=−�

�

Jk
 A

2�

�eık
t

− �
k=−�

�

Jk+n
 A

2�

�e−ık
t �

k=−�

�

Jk+n
 A

2�

�e−ık
t� ,

�44�

which has been derived using the well-known expansion22

eıx sin 
t = �
k=−�

�

Jk�x�eık
t. �45�

It can be readily shown from Eq. �42� that the n-photon
GRWA quasienergies are

�1,0
C = − E0/2 + ��Jn�A/�
�� , �46�

and

�2,0
C = − E0/2 − ��Jn�A/�
�� , �47�

which are separated by the Rabi oscillation frequency,

�n = 2��Jn�A/�
�� , �48�

of the n-photon driven resonant DQD.22 Numerical results in

Fig. 5, based on Eq. �23�, reveals that the averaged current Ī
is suppressed at the roots of Jn�A /�
�=0, n�1 �due to the
vanishing �n�, a clear manifestation of the MP-CDT similar
to the well-known zero-biased CDT at the roots of

J0�A /�
�=0.10–13,18,22 It is found that the averaged current Ī
in general decreases as the field amplitude increases. The
memory effect �due to a decreasing spectral-density width b,
therefore, corresponding to a deceasing electrode-wire cou-

pling q value� is to reduce the average current Ī but without
qualitatively altering the feature of the MP-CDT. Calcula-

tions of the average current Ī �not shown� based on Eqs. �35�
and �44� showed good agreements with the numerically ex-

act results �Fig. 5�, albeit of smaller Ī values �especially at
the large A limit�. In the following, we provide a qualitative
picture of the MP-CDT phenomena.

At the MP-CDT condition �n=0, cf. Eq. �48�, the DQD
ceases to oscillate and the corresponding quasienergy state
function �C

�n��t�, Eq. �44�, may be further approximated by its
time-averaged counterpart

�̄C
�n� =

1

T
�

0

T

�C
�n��t�dt =

1
	2� J0
 A

2�

� J0
 A

2�

�

− Jn
 A

2�

� Jn
 A

2�

� � .

�49�

It is then seen that at the weak-field amplitude, J0�A /2�
�
�1 and Jn�A /2�
��0, n�1 since Jn�x��xn /2nn! for x
�1, where x=A /2�
. Therefore, the off-diagonal electrode-
DQD coupling in Eq. �35� can be approximated as

0

2

4
(a)

b=10� b=20� b=50� WBL

0

2

4

I
[1
0
-2
e
�
/� h
]

(b)

0

2

4

0 20 40 60 80 100

A [�]

(c)

FIG. 5. �Color online� The MP-CDT at the �a� one-, �b� two-,
and �c� three-photon resonances at different spectral widths b and at
the WBL. The abscissa is the field amplitude A �in ��. The minima
correspond to the roots of J1�A /�
�=0 �for one photon�,
J2�A /�
�=0 �for two photon�, and J3�A /�
�=0 �for three photon�,
coinciding with the respective degenerate quasienergies �1,0

C =�2,0
C

= �E0 /2, E0=10�=1 eV, where �
=E0 ,E0 /2,E0 /3, respectively,
for one-, two-, and three-photon CDTs. See Fig. 4 for all other
parameters.
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	Q 	 �̄C
�n� �

1
	2

	qL 	qL

0 0
� , �50�

implying that the left-hand side electrode L and the degener-
ate DQD Floquet states ��1,0

C � and ��2,0
C � form a closed current

loop, which is separated from the right-hand side electrode
R, or vice versa. In this case, corresponding to A�2E0
=20� in Fig. 5, little current is allowed to flow through the
electrode-DQD-electrode quantum system, as indicated in
the first minima of all panels in Fig. 5. On the other hand, at

the strong-field amplitude, �̄C
�n�=0, implying that the degen-

erate DQD Floquet states are decoupled from both elec-

trodes, thus Ī=0, as shown in the minima toward the far right
end in Fig. 5 in the limit A�2E0=20�, since Jn�x�
�	2 /�x cos�x− �2n+1�� /4� for x�n. However, the gener-
ally time-dependent GRWA quasienergy state matrix �C

�n��t�
may not be well approximated by its time-averaged counter-

part �̄C
�n� away from the weak-field/strong-field amplitude re-

gimes. Consequently, the CDT phenomenon involving more
than one photon �i.e., n�1� may be less pronounced at the
intermediate field amplitude, as clearly shown �here 20�
�A�60�� in the two- and three-photon CDT �the middle
�b� and lower �c� panels in Fig. 5�.

V. SUMMARY

In summary, we have presented a generalized Floquet ap-
proach beyond the wide-band limit for studying memory ef-

fect on multiphoton coherent destruction of tunneling phe-
nomena of a periodically driven electron transport of
nanoscale quantum systems. The general formulation of the
memory effect is equally applicable to periodically and non-
periodically driven electron-transport problems. In particular,
the generalized Floquet approach can be extended to involve
any number of quantum dots, including a single-quantum
dot, and can be readily adopted to study a host of time-
dependent electron-transport processes that may be of inter-
est in nanoscale devices. In the high-frequency limit, simple
physical pictures have been given for the occurrence of the
MP-CDT phenomena in the electrode-DQD-electrode quan-
tum system. Numerical simulations at different spectral
widths, as well as in the wide-band limit, showed that the
memory effect reduces the electron-transport dc current
without altering the feature of the MP-CDT phenomena, con-
sistent with the Lorentzian spectral-density ansatz.
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