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and self-interaction correction: Application to atomic structure calculations (Z=2-106)
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We present &elf-interaction-freerelativistic density-functional theoryDFT). The theory is based on the
extension of our recent nonrelativistic DFT treatment with optimized effective potei@&P and self-
interaction correction(SIC) [Phys. Rev. A55, 3406 (1997)] to the relativistic domain. Such a relativistic
OEP-SIC procedure yields ambital-independensingle-particlelocal potential with propetong-rangeCou-
lombic (—1/r) behavior. The method is applied to the ground-state energy calculations for atoms with
Z=2-106. A comparison with the corresponding nonrelativistic OEP-SIC calculations and other relativistic
calculations is made. It is shown that the ionization potential#ained from the highest occupied orbital
energiegand individual orbital binding energies determined by the present relativistic OEP-SIC method agree
well with the experimental data across the Periodic Tdl8&050-29478)06201-5

PACS numbg(s): 31.15.Ew, 32.10.Hq, 71.15.Rf

[. INTRODUCTION density functionals are rather accurate, the ionization poten-
tials obtained from the highest occupied orbital energies are
In recent years, the density-functional thedBFT) has typically 40-50 % too low[1,11,13. The problem of the im-
become a widely used formalism for electron structure calproper long-range behavior of the LSDA and the generalized
culations of atoms, molecules, and solids-3]. The DFT is  gradient-corrected energy functionals may be attributed to
based on the earlier fundamental work of Hohenberg anthe existence of theelf-interaction energy1]. A similar
Kohn [4] and Kohn and Sharnb]. In the Kohn-Sham DFT problem exists for the relativistic xc energy functionds7|.
formalism[5], the electron density is decomposed into a sefFor a quantitative treatment of photoionization or multipho-
of orbitals, leading to a set of one-electron Salinger-like  ton ionization processes, it is necessary that both the ioniza-
equations to be solved self-consistently. The Kohn-Shantion potential and the excited-state properties be described
equations are structurally similar to the Hartree-Fock equamore accurately.
tions, but include, in principle, exactly the many-body effects In a recent paper, we presentedsalf-interaction-free
through a local exchange-correlatigxc) potential. Exten- nonrelativistic DFT for a more accurate treatment of the ion-
sion of the DFT to the relativistic regime also has been conization potentials of the ground states of atords-2 —18 as
sidered[6,7]. However, with the exception of a recent rela- well as the photoabsorption spectrum aftoionizing reso-
tivistic local-density-functional calculatiop8], there is no nances[13]. The method is based on an extension of the
systematic relativistic DFT studies of atomic ground-stateKrieger-Li-lafrate (KLI) [9,10] semianalytical treatment of
properties across the Periodic Table. In this paper we petthe optimized effective potentidlOEP) formalism [17,1§
form a detailed relativistic DFT calculations of ionization along with the use of an explicgelf-interaction-correction
potentials and binding energies of atomic ground states witiSIC) term[19]. The KLI procedurd9,10] reduces the com-
Z=2-106, taking into account the most recent developmenputationally intractable OEP formalisfii7,18 to the sim-
of the nonrelativistic DFT in the context of the proper long- pler solution of linear equations. The accuracy of the KLI
range behavior of the xc potenti@-13|. method has been documented recef@y11]. However, in
An essential element of the nonrelativistic DFT studies isthe OEP-KLI approach9—-11], the nonlocal Hartree-Fock
the input of the xc energy functional. The simplest approxi-energy functional is used to calculate the optimized effective
mation for the xc energy functional is through the local spin-potential. Such a procedure can still be time consuming, par-
density approximatioilLSDA) [1] of homogeneous electron ticularly for the time-dependent problems where the time-
gas, which has been widely used in DFT structure calculadependent OEP is to be constructed for each small time step
tions. One deficiency of the LSDA is that the xc potential[20—22. The implementation of the explicit SIC form in the
decays exponentially and does not have the correct long@EP-KLI formalism allows the use of any explicit xc energy
range Coulombic—1/r behavior. As a result, the LSDA functionals for the construction of the orbitadependent
electrons are too weakly bound and for negative ions evesingle-particlelocal potential, resulting in further consider-
unbound. More accurate explicit forms of xc energy func-able simplification of the OEP-KLI calculations and at the
tionals using generalized gradient correctigdd—16 are  same time maintaining high accurald3]. A similar proce-
available. However, the xc potentials derived from these exdure has been proposed recently for the treatment of the
plicit xc functionals suffer the similar problem and do not ground-state properties of atorfik2]. As shown in our re-
have the proper long-range behavior. Thus, while the totatent work[13], the optimized effective potential constructed
energies of the ground states of atoms predicted by these Xmm the OEP—KLI-SIC procedure has the proper long-range
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providing high accuracy of the ionization potentials and
excited-state properties including singly excited autoionizing
resonances. The results are in good agreement with both the o )
experimental data and the configuration-interaction calculaFxc 1S the relativistic counterpart of the exchange-correlation
tions [13]. So far, the OEP—KLI-SIC method has been ap-€Nergy, andve, is the external potential including the
plied only to the nonrelativistic studies of either steady-stateélectron-nucleus interaction. Minimization of the total-
[12,13 atomic properties ortime-dependenmultiphoton  €nergy functional3) subject to the constraint

processes of rare-gas atoms in strong figkis22. Encour- N

aged by the success of these recent nonrelativistic studies, we 2" _ dr=N 6)
extend in this paper the OEP—KLI-SIC formalism to the rela- = Pio(r)dr=N, (
tivistic domain. To our knowledge, this is the first relativistic

DFT calculation with proper account of the long-range Xcyields Eq.(1) with the effective potential

potential.

_ In the following sectionSec. I) we present the relativis- 3 8[p]l SEdpi.p]

tic DFT within the OEP—KLI-SIC formalism. The method is Vettal) =vex(N) T 520 +—5 =0

applied in Sec. Il to the calculation of the ionization poten- 7 7
tials and individual orbital binding energies for neutral atoms

with atomic humbeZ=2-106. A comparison with nonrel- =vext(r)+j
ativistic OEP—KLI-SIC and other relativistic calculations is

also made. It is shown that our relativistic OEP—KLI-SIC

results are in good agreement with the experimentalj@ga ~ Wher€Vxc.o
across the Periodic Table.

(—1/r) as well as short-range behavior and is capable of 1 p(Dp(r') ,
Jpl== ——dr dr’, 5)
2 r=r’|

p(r’)

r=r’|

is the exchange-correlation potential

dr’+ch,a(r)y (7)

5Exc[pT :PL]

ch,a(r): Sp.()

Il. RELATIVISTIC DENSITY-FUNCTIONAL THEORY Po
WITH OPTIMIZED EFFECTIVE POTENTIAL
AND SELF-INTERACTION CORRECTION

®

In the RDFT, the exchange-correlation energy functional can
be recast af6,7]
A. Relativistic density-functional theory

The relativistic density-functional theofRDFT) is the Exdp P I=EX 10 1+ E{Lpy 2] TEclpy.0)],
generalization of the nonrelativistic Hohenberg-Kohn-Sham
density-functional formalisni4,5] to the relativistic regime DF - . .
[6,7]. When the many-body effects are approximated Iocall))"’he“ffx is the Dirac-Fock exchange-energy functional
as being those of a homogeneous relativistic electron gas, thél: Ex is the transverse exchange-energy functigrigland
relativistic local-density approximatiofRLDA) is obtained Ec is the correlation-energy functionaE, and E. are de-

[6,7]. fined by requiring thaE;r contains the part that is linear in
In the RDFT, one solves the single-particle Dirac-Fock-the fine-structure constafi7]. The treatment of the trans-
like equation forN-electron atomic systen{@ a.u) verse exchange energy is usually performed via the Breit

interaction[24] or a generalization thered4]. Although
o) the exact energy functional form is unknown, an approxi-
(1) mate RLDA for these exchange functionals has been derived
by MacDonald and Vosk¢7] based on the relativistic ho-
mogeneous electron gas model.

Similar to the nonrelativistic case, the relativistic DFT
described above contains the undesirable self-interaction en-
N N, ergy. Thus the RLDA exchange-correlation poteriita?,25
p=2, 2 (D=2 Z Pio(r) (2)  does not have the proper long-range behavior either. In the

o i=1 o i=1 following section we present self-interaction-freeelativis-
tic DFT based on the extension of the nonrelativistic OEP
formalism with SIC[12,13 to the relativistic domain.

[Ca:p+BC?+verr (N ]his=€igthio (1), i=12,...N

wherev ¢ , iS the effective one-particllecal potential,o is
the spin index, and ¢;,} are the four-component spinors.
The total electron density is given by

and the total energy of the ground state is expressed as

Elpl=Tdpl+Ipl+Exdp;.p 1+ f Vext()p(r)dr. B. Relativistic DFT with the OEP with SIC

) We consider below the relativistic generalization of the
nonrelativistic DFT with the OEP with SIC12,13. In this
framework, the orbital wave functiods);,(r)} are obtained
by the solution of a set of single-particle equation, similar to
the Dirac-Fock-like equation in Eq1),

Here T, is the kinetic energy of the noninteracting
N-electron systems including the rest mass energy

NO’
TS: islCa-p+ Cz iag/s (4) ~
D At Hoepdiq(r) =[Cap+ e+ Vi ,(N)] i (1) = (i

Jlp] is the classical electron-electron interaction energy +c2) i (r), i=12,...N,. (10
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[To facilitate the comparison with the nonrelativistic results, N,—1 - L
we have subtracted .the rest mass ene)?gj{rom the ejgen— 2 8ii.o~Miji. o) (Vgic.o— via)=V]s(, Vios
values of Eq(10).] Since the total energy is a functional of -
the electron density and the electron density in turn is a func- ,
tional of V§/¢,, the total energy is a functional MSe, . J=12,... Ny~ 1, (19)
The optimized effective potential is obtained by the require- where
ment that the spin orbitalse;,} in Eq. (10) are those that
minimize the total-energy functional pio(N)pio(r)
Mji o= o dr (20)
SES{ i} Polr
Vgic (1) and
where No .
N/S p](r(r)v](r(r)
Vi = ¢ — | biy ) - 21
o <¢.a—j21 | S (21)
ES'Up]=Tdpl+Ipl+EL Do) 0,1+ f Vext(F)p(r)dr _
(12) In actual computation, we found that the use of E)
for the solution ofV§,c , may be avoided. Since the set of
and OEP-KLI equations(10) is to be solved self-consistently
along with Eq.(14), it is sufficient to use the value &fg
sic 2 %: from the previous iteration in Eq15) without the need to
Exe Lp1:p 1=Exdpi.p ]~ 2 2, {ILpis]+ Exd pisOl}- calculateM;; , and V. This simplified procedure leads to
(13)  the same final converged results. Finally, we choﬁé:?gfr

Note in Eq.(13) that we have used the SIC term due to

Perdew and Zungdr9].
To obtainVSc, and the orbital energies,,, Egs.(10)

and (11) are to be solved self-consistently. Such a direct
procedure, however, leads to an integral equation that is

zv_N(, for the highest occupied orbital, as suggested by the
KLI procedure[9,10].

C. Orbital binding energies and ionization potential
in the OEP—KLI-SIC formalism

computationally rather formidable. Here we extend the The electron binding energy of a given spin orbited),

OEP—KLI-SIC procedurd12,13 to the determination of

orbital-independentelativistic optimized effective potential.

Similar to the nonrelativistic case, the relativisti§,¢, can
be expressed as

\/OEP p(r’)y . OEdpp]
Vsico(r= Uext(r)'i”f |r—r’|dr o)
+Vsic,e(r), (14
where
pig(r)
VS|CO’(r) EI r) {Ulo(r +[VS|C0' io’]}1 (15)
_ pio’(r,) - 5Exc[pio,o]
vie(r)= [r—r'| dpiglr) ' (18
and
V_|SIC,0'=<¢i0'|VSIC,a'(r)|¢ia’>1 (17)
U_|0:<¢i0'|vi(r(r)|¢i(r>' (18)

In Eq. (15), the last two term&/y,¢, andv;,, are constants,
though the value of\/_'smﬁ is unknown. The KLI semiana-
lytic method [9,10] suggests a way to calculat@élc,(r
—u_io. through a solution of the linear equations

namely, the minimum energy needed to remove an electron
from a given spin orbital, is defined as the total-energy dif-
ference of anN-electron system and the correspondii (
—1)-electron system with orier electron removed. Remov-
ing an inner-sheli o electron will cause all other electron
spin-orbital wave functions undergoing relaxation.idf is

not the highest occupied spin orbital of thNeelectron sys-
tem, the N—1)-electron system with théo electron re-
moved will not be in the ground state and the total energy of
this (N-1)-electron system is difficult to calculate within the
density-functional theory. To estimate the binding energy of
any given spin orbital, we follow the procedure by Janak
[26]. Thus the energy required to remove an infinitesimal
fraction (df;,), 0=f;,<1, of the electron from the spin or-
bital i & can be expressed as

dE=E[{pis}]—E[{(1—dfi,)pi,}]
__ J SE[{piot]

5pi(r
The binding energy of the given spin orbitat can be ob-
tained by

dfio'piadr' (22)

dE SE[{pis
Eibozdfi =_f [5{1? }] pi(rdr
5E[{p|0}]
_<¢irr 5P|g ¢|<r>__<¢|<r|h|<r|¢ur>

(23
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i (@) ]

hMP=ca-p+ Bc?+Vi(r), (24) S Bk ]

(0] [ ]

. p(r’) SEd{dis}] z ¢ ;

V'(ry=v r+f dr'+ —————. (25 = [ ]
Hereh;, is the single-particle relativistic Hamiltonian corre- é 10
sponding to theo orbital. From the DFT point of view, Eq. X :
(23) is exact only for the binding energy of the outermost & 5}
electron since in this case both thH-electron and ;

(N—1)-electron systems are in their ground states. For inne 0

0 10 20 30 40 50 60 70 80 90 100 110

shell electrons, Eq(23) provides an approximation for the Atomic Number Z

orbital binding energy. Within the general OEP formalism
(withoutthe use of the KLI SI{ Eg. (23) can be written as

—(¢i,lca-p+ Bc?+VOEFR(r) —VOEF(r) >

+Vig(r)|¢i(r> g

— 2

+(_OEP Vlrr), (26) nc_)

b5

where *g

c

[=]

Gi(r:<¢i0'|ca'p+ﬂC2+VOEP(r)|¢iU>’ -
VOEP=(i o VOER(D) | dig),  VI7=(hioVI7(1)| b1 o). 0 10 20 30 40 50 60 70 80 90 100 110

Atomic Number Z
When the KLI-SIC procedure is |mplemented in the OEP
formalism, we getVOEP—VI=V§ ., —v;,. The expres-
sion for the binding energy dfo orbital within the OEP—
KLI-SIC formalism can now be simplified as

FIG. 1. lonization potentials calculated K@) nonrelativistic
OEP—KLI-SIC and (b) relativistic OEP-KLI-SIC with x-only
(dashed lingsand xc (solid lineg energy functionals for neutral
atoms with 2<Z<106. The experimental ionization potentif®s]

are also presente@pen circley for comparison.

eiba':_eiff—’_(v_ISIC,o_U_i(r)! (27)

_ atoms, the relativistic local-spin-density approximation is the
erre €i, is spin-orbital energy from Eq10) and V.,  same as the relativistic local-density approximation.
-v;, can be determined from Eqg&l7) and(18). Since we

chooseV, . , — v;,=0 for the highest occupied spin orbital, Il CALCULATIONS OF ATOMIC ORBITAL ENERGIES
the negative value of this orbital energy is equal to the ion- AND IONIZATION POTENTIALS: THE RELATIVISTIC
izaiton potential. For inner-shell eIectrorMS,C,U Vi,#0 OEP-KLI-SIC METHOD

and Eq.(27) provides an estimation of the binding energy for  |n this section we apply the relativistic DFT with OEP-

theio spin orbital. As will be shown in Sec. lll, the inclu- KL| and SIC (R-OEP—KLI-SIQ method to the calculation

sion of the extra terrrVSlC(, v, to the orbital energy;,  of the orbital binding energies and ionization potentials-

allows the inner-shell electron binding energi€s signifi-  tained from the highest occupied orbital enerpites the

cantly closer to the experimental values. ground states of atoms with=2-106. We use the LSDA
Although the relativistic OEP-KLI-SIC procedure is €xchange-correlation energy functional of Vosko, Wilk, and

similar to that of the nonrelativistic OEP—KLI-SIC, there is a Nusair[27] and the relativistic corrections to the exchange

subtle difference. In the nonrelativistic theory, the electronproposed by MacDonald and Voske]. The relativistic cor-

spin is a good quantum number and the spin-density is wellection to the correlation energy, which is considerably

defined. However, the electron spin is not a good quantungmaller than that of the exchange energy, is not considered.

number in the relativistic theory due to the electron spin-For the study of the relativistic effects, we also perform the

orbit interaction and the spin density is in principle not well corresponding nonrelativistilNR) OEP—KLI-SIC calcula-

defined. Therefore, the spin-density concept in the relativisti¢ions.

DFT is an approximation. Nevertheless, we can still use the The relativistic LSDA exchange-energy functionals in Eq.

spin density as suggested by the early work of the relativisti¢9) have the formg7]

density-functional formalisn{6,7,25. Such an approxima- s

tion is quite good since even for highatoms, the electron EDF[ 1=-22 f { Y3 VE(pr)

spin-spin interaction can still compete with the spin-orbit x LP1:P| a\ P ctP1

interaction for the valence orbitals, while for the inner-shell a3

orbitals, all the electrons are spin paired. For closed-shell +p(r)Fc(p)idr, (28)
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TABLE I. Electron orbital binding energies of an Ar atom calculated by the relativistic and nonrelativistic
density-functional theory with the optimized effective potential and self-interaction corrd&@EP—KLI-
SIC or NR-OEP—-KLI-SIG method with(a) exchange onlyx only) and (b) exchange and correlatigmc).
Also shown are the experimental binding energies and the results from the Hartre€¢HFecK SDA,

Dirac-Hartree-FocKDHF), and relativistic local-density approximatidRLDA) calculations. The binding
energy is in a.u.

Nonrelativistic calculation Relativistic calculation
NR-OEP—KLI-SIC R-OEP-KLI-SIC

Orbital HF®  LSDA  xonly Xc DHF® RLDA ¢ xonly Xc Expt.®
1s 118.605 113.799 118.314 118.355 119.127 114.077 118.830 118.871 117.830
2s 12.322 10.795  11.580 11.617 12.412 10.861 11.665 11.702 11.991
2p1p 9.571 8.444 9.397 9.434 9.632 8.496 9.460 9.498 9.208
2pap 9.547 8.415 9.371 9409  9.132
3s 1.277 0.884 1.081 1.112 1.287 0.891 1.090 1.121 1.077
3P 0.554 0.382 0.549 0.580 0.595 0.386 0.554 0.585 0.585
3pap 0.588 0.380 0.546 0.577 0.579
3 rom Ref.[30].
From Ref.[31].
‘From Ref.[8].
dFrom Ref.[32].

3/6\ 5 1 27n(B+7) 27N

Etl’ , — _ | _ f 4/3, NFE |2 = n n _ n n
xLpi.p] 4(77) {pT()F+(py) Felpo) st 3t 35 35
4/3
+p [ (r)F(p))}dr, (29 2
T _ 1 Bn=In(B+ ) 30
whereF . andF+ are the relativistic correction factors given 2 B2 '

by

TABLE II. Electron orbital binding energies of a Xe atom calculated by the R-OEP-KLI-SIC and
NR-OEP-KLI-SIC methods witl{a) exchange onlyx only) and (b) exchange and correlatioixc). Also

shown are the experimental binding energies and the results from HF, LSDA, DHF, and RLDA calculations.
The binding energy is in a.u.

Nonrelativistic calculation Relativistic calculation
NR-OEP—KLI-SIC R-OEP-KLI-SIC

Orbital HF?  LSDA  xonly XC DHF® RLDA ¢ xonly Xc Expt.@
1s 1224.387 1208.765 1222.932 1222.977 1277.259 1254.714 1275.805 1275.850 1270.107
2s 189.340 183.388 186.245 186.288 202.465 195.478 199.215 199.257 200.401
2pys 177.782 172.604 176.305 176.348 189.680 183.897 188.401 188.444 187.686
2ps3p 177.704 172.084 176.241 176.283 175.893
3s 40.175 37.431 38.442 38.482 43.010 39.989 41.169 41.209 42.213
3P 35.222 32.880  33.945 33.985 37.660 35.133  36.325 36.366 36.826
3p3p 35.325 32.888 34.021 34.061 34.566
3d;, 26.118 24.379 25.676 25.717 26.023 24.271 25.595 25.636 25.320
3ds), 25.537 23.794 25.097 25.138 24.857
4s 7.856 6.687 7.091 7.127 8.430 7.209 7.653 7.690 7.835
4py 6.008 5.066 5.456 5.493 6.453 5.484 5.901 5.938 5.696
4psp 5.983 5.032 5.430 5.466 5.347
4ds), 2.778 2.288 2.647 2.683 2,711 2.228 2.582 2.618 2.554
4ds), 2.634 2.155 2.504 2.540 2.481
5s 0.944 0.674 0.811 0.840 1.010 0.731 0.878 0.907 0.860
5p1e 0.457 0.312 0.423 0.451 0.493 0.340 0.458 0.486 0.494
5pap 0.440 0.294 0.404 0.432 0.446

3 rom Ref.[30].
From Ref.[31].
°From Ref.[8].

dFrom Ref.[32].



860 XIAO-MIN TONG AND SHIH-I CHU 57

TABLE lll. Electron orbital binding energies of a Hg atom calculated by the R-OEP—-KLI-SIC method
with (a) x only and(b) xc. Also shown are the experimental binding energies and the results from other
relativistic calculations for comparison. The last column shows the contribm\'lg]c. The binding energy
andAVg,c are in a.u.

R-OEP—-KLI-SIC

Orbital DHF? DHFGR®  RLDA® x only Xc Expt.® AV ¢

1s 3074.327  3062.953  3029.900  3066.847  3066.893  3053.952  29.281
2s 550.264 548.716 537.187 542.489 542.531 545.334 4.340
2p1s 526.851 524.455 515.708 522.816 522.859 522.160 7.019
2p3n 455.155 453.644 445.096 451.127 451.169 451.424 6.077
3s 133.116 132.758 127.530 129.330 129.369 130.886 1.536
3p1se 122.638 122.106 117.808 119.756 119.796 120.483 1.863
3p3. 106.545 106.208 102.150 103.935 103.975 104.629 1.737
3dg, 89.437 89.131 86.001 88.281 88.321 87.643 2.214
3ds); 86.020 85.781 82.627 84.832 84.872 84.335 2.137
4s 30.649 30.556 28.010 28.775 28.813 29.410 0.639
4py, 26.124 25.994 23.833 24.599 24.637 24.876 0.681
4pg;, 22.188 22.108 20.041 20.746 20.785 20.984 0.634
4dg, 14.787 14.732 13.194 13.914 13.952 13.902 0.639
4dg), 14.053 14.003 12.483 13.185 13.223 13.222 0.621
4f g, 4.473 4.445 3.630 4.361 4.399 4.083 0.645
454, 4312 4.290 3.476 4.195 4.234 3.940 0.634
5s 5.103 5.085 4.323 4.643 4.677 4.924 0.228
5p1s 3.538 3.516 2.937 3.234 3.268 3.318 0.216
5P 2.842 2.829 2.265 2.532 2.566 2.635 0.192
5dg/ 0.650 0.644 0.414 0.608 0.641 0.613 0.116
5ds) 0.574 0.568 0.346 0.531 0.563 0.548 0.105
6s 0.328 0.327 0.261 0.352 0.377 0.384 0.000

3 rom Ref.[31].
From Ref.[24].
°From Ref.[8].

9From Ref.[32].

1 1 29In(B+7) 27%n7y t?onal is not_ used, andi) exchange-correlatiotxc) calcula- _
Fr(pgs)= 6 387 33 + 2 tions(solid line) where both the exchange and the correlation
3B energy functionals are used in the OEP—-KLI-SIC calcula-
Bn—In(B+7) 2 tions. Figure 1b) shows the corresponding results from the
_<u) , (31)  relativistic OEP-KLI-SIC calculations. Several interesting
B features are observed. First, we note that the inclusion of the

correlation energy functional systematically improves the
agreement of the calculated results with the experimental
data in both the nonrelativistic and relativistic cases. With
the inclusion of the correlation, the valence electrons are
: iIN _ more tightly bound and the ionization potentials are higher
M =ro(Tmax/ )", =012 N=1, (32 than those in thex-only calculations. Figure (&) indicates
whereN is the total number of grid points ang andr .« f[ha_t th_e dlscrepa_ni:y beéwehen the cglculat?d dnonr_elat|V|st|c
are, respectively, the minimum and the maximum radiydonization potentials and the experimental data increases
used. Our calculated atomic orbital energies with the RLDAWIth increasing atomic numbet. This is expected since the

reproduce exactly the recent RLDA calculatidd relativistic effects are more important for highératoms.
Figure 1b) shows that the calculated relativistic ionization

potentials with xc energy functiongolid line) are in closer
agreement with the experimental data across the Periodic
Table. Note that the ionization potential for each atom here is
Figure Xa) shows the comparison of the ionization poten-obtained directly from the highest occupied orbital energy
tials obtained from the NR-OEP—KLI-SIC calculations with rather than from the energy difference between the neutral
the experimental dat®3] (open circles The results of two atom and the corresponding idime so-called relaxed orbital
different calculations are presente@) x (exchanggonly  method[29]), such as that used in the recent RLDA calcula-
calculationgdashed ling where the correlation energy func- tions [8]. The good agreement of the R-OEP—KLI-SIC re-

with B=vg/c=(37%p,)¥c and »=(1+ B2 The nu-
merical solution of Eq(10) is performed on the exponential
grid as originally used in the Liberman’s cofg]:

A. lonization potentials of atoms
with atomic number 2<Z<106
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sults with the experimental data indicates that the optimizec e p——m—r— T
effective potential in our calculations is significantly more 0 _ @

accurate than the traditional effective potential calculated di ook 3
rectly from the Kohn-Sham equation or the Dirac-Fock-like T e ]
equation(10). More discussion of the quality of the opti- 04 F / E

mized effective potential is given in the following subsec-
tion.

-0.6 3
-0.8
-1

r*Vyo(r)

B. Relativistic effects on the orbital binding energies

in Ar (low-2), Xe (medium-Z), and Hg (high-Z) atoms -1.2 E
In the preceding subsection, we show that the ionizatior A4 e
potentials from the R-OEP-KLI-SIC calculations are in 15 20 25 30
good agreement with the experimental data for almost all th r{inau.)
atoms in the Periodic Table. However, ionization is mainly 02 p———7———— 17—
determined by the binding energy of the outermost valence ok ® 3

shell electrons where the relativistic effect is the smalles
among all the occupied electron orbitals. This is revealec
also from the comparison of the nonrelativistic versus the
relativistic results in Figs. (& and Xb), where one sees no %
major discrepancies of the ionization potentials for most of
the atoms apart for those wite=70. It is desirable therefore

to explore also the relativistic effects on the binding energy
of inner-shell electrons from the relativistic DFT point of
view. A comparison of the present results with those of othe
methods and experimental data will be made to further asse:
the accuracy of the present relativistic OEP-KLI-SIC
method. While we have performed the calculations for all the

a}toms withZ=2-106, we present h'ere only the representa— FIG. 2. Exchange-correlation potentia¥§.(r) of a Hg atom
tive results from Ar(low-Z), Xe (mediumzZ), and Hg(high- calculated from relativistic OEP—KLI-SIC methdgsbolid lineg and

Z) atoms. relativistic local-density approximatioilashed lines (a) The long-

Tables | and Il list the orbital binding energies of Ar and range behavior ofV,(r) and (b) the short-range behavior of
Xe, respectively, obtained by both nonrelativistic and relativ-y, (r).

istic calculations. Also shown are the experimental data for

comparison. For the nonrelativistic data, we show the resultabove for the Ar atom are also observed for the Xe atom
from the Hartree-FockHF), LSDA, and our NR-OEP—KLI- (Table Il), except that the relativistic effects are now substan-
SIC calculations withxc) and without(x only) the correla- tially stronger. For example, the difference in thedinding
tion. For the relativistic data, we show the results from theenergies from the R-OEP—KLI-SIC and NR-OEP—KLI-SIC
Dirac-Hartree-Fock(DHF), RLDA, and our R-OEP—-KLI- calculations for Xe is 53 a.u. Such a discrepancy decreases
SIC (x-only and xg¢ calculations. For the OEP/KLI-SIC re- for outer-shell electrons with increasing principle quantum
sults, the binding energy of individual orbital is defined by number. For a given principle quantum numberthe dis-

Eq. (27). From Tables | and Il, we first note that the inclu- crepancy of the relativistic and nonrelativistic results is
sion of the correlation tends to increase the binding energy admaller for electrons with higher angular momenta. This is
individual electron orbital for both the nonrelativistic and due to the fact that electrons with lower angular momenta
relativistic cases. A close examination of the data shows thatan penetrate more easily into the inner region where the
the correlation contribution to the binding energy is about theelativistic effect is stronger. Finally, we note that among all
same order of magnitudén the range 0.02—-0.05 a)jufor  the calculations, the relativistic OEP—KLI-SIC resultgith
different orbitals. While such a correlation contribution is notxc) have the best overall agreement with the experimental
important to the inner-shell electrons, particularly for higher-data.

Z atoms, it is essential to the valence electrons and therefore We now consider the representative highatom, mer-

the corresponding ionization potentials. For Ar, the relativis-cury (Hg), with Z=80. Since the relativistic effects are now
tic effect is not significant and the largest difference of therather strong, we present only the results from the relativistic
R-OEP—KLI-SIC and NR-OEP—KLI-SIC results is around calculations in Table Ill. Included in this table are the results
0.5 a.u. for the & orbital. The discrepancy decreases as thdrom DHF, RLDA, R-OEP—KLI-SIC(x-only and x¢ calcu-
principle quantum number of the orbital increases. Our Riations and the experimental data. Also included here are the
OEP-KLI-SIC with xc results are uniformly in closer agree- results denoted by DHFGR obtained from the DHF calcula-
ment with the experimental data than those of the DHF andions but including the Gaunt and retardation transverse in-
RLDA calculations. In the RLDA, since the xc potential doesteraction energie§24]. In general, the DHFGR results are
not possess the correct long-range 1fr) behavior, the uniformly in better agreement with the experimental data
binding energies of all the orbitals are significantly lowerthan those of the DHF as expected. Note that our R-OEP—
than those of other calculations. Similar behaviors discusseHlLI-SIC results also include the transverse interaction con-

r{ina.u.)
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tributions through the relativistic exchange energy function-number increases, the percentage of its contribution to the
als in Egs.(28) and (29). Among all the calculations, the binding energy is by no means smaller. In fact, for the
RLDA binding energies have the largest deviations from the5d-shell electrons, the percentage contributionAdfg, to
experimental data. Overall, the R-OEP-KLI-S{®ith xc)  the binding energies is as large as 18%. Close examination of
binding energies have the best agreement with the experfable IIl reveals that the inclusion of the tetV/, ¢ has the
mental data. effect of making the “correction” to the OEP orbital ener-
To understand the considerably different behavior of theyjese;  in the right direction and bringing the orbital binding

RLDA and R-OEP-KLI-SIC results, we show in Figda2  energies significantly closer to the exact values. It is known
and 2b) the corresponding exchange-correlation potentialgpreviously[9—13 that the OEP—KLI procedure can provide
for Hg: RLDA (dashed ling and R-OEP—KLI-SIC(solid  accurate binding energy for the valence electron, namely, the
line). From Fig. 2a), we see that the R-OEP—KLI-SIC Xc jonization potential. From the present study, it is gratifying
potential has the correct long-range 1/r) behavior, while  to see that the OEP—KLI-SIC procedure can also provide

that of RLDA does not. Figure(B) shows comparison of the rather accurate binding energies for the inner-shell electrons.
two xc potentials in the inner region. It is seen that both

potentials exhibit the shell structure, but the RLDA potential IV. CONCLUSION

is shallower than that of the R-OEP—-KLI-SIC calculation.

Thus the binding energies of the RLDA are always smaller In conclusion, we have presented in this papesed-

than those of other calculations with the correct long-rangénteraction-free relativistic density-functional theory. The

behavior. procedure is applied to a systematic study of the binding
That the results of R-OEP—KLI-SIC calculations are uni-energies and ionization potentials for atoms with atomic

formly better than those of the DHFG@part from the in- numberZ=2-106. The results are in good agreement with

nermost 5 and X electrong is at first somewhat surprising. the experimental data throughout the Periodic Table. Similar

Equation(27) shows that the OEP—KLI-SIC binding energy to the time-dependent nonrelativistic OEP—KLI-SIC formal-

contains the orbital energy;, and an additional term ism [21,22, the present steady-state R-OEP—KLI-SIC pro-
AVisuczv_'su: — .., the latter of which is also listed in cedure can be also extended to the time domain for nonper-

Table Ill. For the highest occupied spin orbitals, such a ternfurbative study of relativistic multiphoton dynamics in
is set to be zero according to the KLI procedure. For othepuperstrong laser fields. Work in this direction is in progress.

inner-shell orbitalsAVE,. makes a significant contribution
to the binding energies. For Hgg)l, such a contribution is
29.281 a.u. Similar to the pattern of the binding energy,
AV, also exhibits a shell structure, namelyVs, is the This work was partially supported by the National Sci-
largest for the $ orbital and (%,2p) the second largest with ence Foundation. X.M.T. acknowledges the support from the
similar order of magnitude, and so on. While the absoluteKansas Center for Advanced Scientific Computing spon-
value of AVg,c becomes smaller as the principle quantumsored by the K*STAR program.
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