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Relativistic density-functional theory with the optimized effective potential
and self-interaction correction: Application to atomic structure calculations „Z52–106…
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~Received 30 July 1997!

We present aself-interaction-freerelativistic density-functional theory~DFT!. The theory is based on the
extension of our recent nonrelativistic DFT treatment with optimized effective potential~OEP! and self-
interaction correction~SIC! @Phys. Rev. A55, 3406 ~1997!# to the relativistic domain. Such a relativistic
OEP-SIC procedure yields anorbital-independentsingle-particlelocal potential with properlong-rangeCou-
lombic (21/r ) behavior. The method is applied to the ground-state energy calculations for atoms with
Z52 –106. A comparison with the corresponding nonrelativistic OEP-SIC calculations and other relativistic
calculations is made. It is shown that the ionization potentials~obtained from the highest occupied orbital
energies! and individual orbital binding energies determined by the present relativistic OEP-SIC method agree
well with the experimental data across the Periodic Table.@S1050-2947~98!06201-5#

PACS number~s!: 31.15.Ew, 32.10.Hq, 71.15.Rf
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I. INTRODUCTION

In recent years, the density-functional theory~DFT! has
become a widely used formalism for electron structure c
culations of atoms, molecules, and solids@1–3#. The DFT is
based on the earlier fundamental work of Hohenberg
Kohn @4# and Kohn and Sham@5#. In the Kohn-Sham DFT
formalism @5#, the electron density is decomposed into a
of orbitals, leading to a set of one-electron Schro¨dinger-like
equations to be solved self-consistently. The Kohn-Sh
equations are structurally similar to the Hartree-Fock eq
tions, but include, in principle, exactly the many-body effe
through a local exchange-correlation~xc! potential. Exten-
sion of the DFT to the relativistic regime also has been c
sidered@6,7#. However, with the exception of a recent rel
tivistic local-density-functional calculation@8#, there is no
systematic relativistic DFT studies of atomic ground-st
properties across the Periodic Table. In this paper we
form a detailed relativistic DFT calculations of ionizatio
potentials and binding energies of atomic ground states w
Z52 –106, taking into account the most recent developm
of the nonrelativistic DFT in the context of the proper lon
range behavior of the xc potential@9–13#.

An essential element of the nonrelativistic DFT studies
the input of the xc energy functional. The simplest appro
mation for the xc energy functional is through the local sp
density approximation~LSDA! @1# of homogeneous electro
gas, which has been widely used in DFT structure calcu
tions. One deficiency of the LSDA is that the xc potent
decays exponentially and does not have the correct lo
range Coulombic21/r behavior. As a result, the LSDA
electrons are too weakly bound and for negative ions e
unbound. More accurate explicit forms of xc energy fun
tionals using generalized gradient corrections@14–16# are
available. However, the xc potentials derived from these
plicit xc functionals suffer the similar problem and do n
have the proper long-range behavior. Thus, while the t
energies of the ground states of atoms predicted by thes
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density functionals are rather accurate, the ionization po
tials obtained from the highest occupied orbital energies
typically 40-50 % too low@1,11,13#. The problem of the im-
proper long-range behavior of the LSDA and the generali
gradient-corrected energy functionals may be attributed
the existence of theself-interaction energy@1#. A similar
problem exists for the relativistic xc energy functionals@6,7#.
For a quantitative treatment of photoionization or multiph
ton ionization processes, it is necessary that both the ion
tion potential and the excited-state properties be descr
more accurately.

In a recent paper, we presented aself-interaction-free
nonrelativistic DFT for a more accurate treatment of the io
ization potentials of the ground states of atoms (Z52 –18! as
well as the photoabsorption spectrum ofautoionizing reso-
nances@13#. The method is based on an extension of t
Krieger-Li-Iafrate ~KLI ! @9,10# semianalytical treatment o
the optimized effective potential~OEP! formalism @17,18#
along with the use of an explicitself-interaction-correction
~SIC! term @19#. The KLI procedure@9,10# reduces the com-
putationally intractable OEP formalism@17,18# to the sim-
pler solution of linear equations. The accuracy of the K
method has been documented recently@9–11#. However, in
the OEP-KLI approach@9–11#, the nonlocal Hartree-Fock
energy functional is used to calculate the optimized effect
potential. Such a procedure can still be time consuming, p
ticularly for the time-dependent problems where the tim
dependent OEP is to be constructed for each small time
@20–22#. The implementation of the explicit SIC form in th
OEP-KLI formalism allows the use of any explicit xc energ
functionals for the construction of the orbital-independent
single-particlelocal potential, resulting in further consider
able simplification of the OEP-KLI calculations and at th
same time maintaining high accuracy@13#. A similar proce-
dure has been proposed recently for the treatment of
ground-state properties of atoms@12#. As shown in our re-
cent work@13#, the optimized effective potential constructe
from the OEP–KLI-SIC procedure has the proper long-ran
855 © 1998 The American Physical Society
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856 57XIAO-MIN TONG AND SHIH-I CHU
(21/r ) as well as short-range behavior and is capable
providing high accuracy of the ionization potentials a
excited-state properties including singly excited autoioniz
resonances. The results are in good agreement with both
experimental data and the configuration-interaction calc
tions @13#. So far, the OEP–KLI-SIC method has been a
plied only to the nonrelativistic studies of either steady-st
@12,13# atomic properties ortime-dependentmultiphoton
processes of rare-gas atoms in strong fields@21,22#. Encour-
aged by the success of these recent nonrelativistic studies
extend in this paper the OEP–KLI-SIC formalism to the re
tivistic domain. To our knowledge, this is the first relativist
DFT calculation with proper account of the long-range
potential.

In the following section~Sec. II! we present the relativis
tic DFT within the OEP–KLI-SIC formalism. The method
applied in Sec. III to the calculation of the ionization pote
tials and individual orbital binding energies for neutral ato
with atomic numberZ52 –106. A comparison with nonrel
ativistic OEP–KLI-SIC and other relativistic calculations
also made. It is shown that our relativistic OEP–KLI-S
results are in good agreement with the experimental data@23#
across the Periodic Table.

II. RELATIVISTIC DENSITY-FUNCTIONAL THEORY
WITH OPTIMIZED EFFECTIVE POTENTIAL

AND SELF-INTERACTION CORRECTION

A. Relativistic density-functional theory

The relativistic density-functional theory~RDFT! is the
generalization of the nonrelativistic Hohenberg-Kohn-Sh
density-functional formalism@4,5# to the relativistic regime
@6,7#. When the many-body effects are approximated loca
as being those of a homogeneous relativistic electron gas
relativistic local-density approximation~RLDA! is obtained
@6,7#.

In the RDFT, one solves the single-particle Dirac-Foc
like equation forN-electron atomic systems~in a.u.!

@ca•p1bc21ve f f,s~r !#c is5e isc is~r !, i 51,2, . . . ,Ns ,
~1!

whereve f f,s is the effective one-particlelocal potential,s is
the spin index, and$c is% are the four-component spinor
The total electron density is given by

r5(
s

(
i 51

Ns

c is
† ~r !c is~r !5(

s
(
i 51

Ns

r is~r ! ~2!

and the total energy of the ground state is expressed as

E@r#5Ts@r#1J@r#1Exc@r↑ ,r↓#1E vext~r !r~r !dr .

~3!

Here Ts is the kinetic energy of the noninteractin
N-electron systems including the rest mass energy

Ts5(
s

(
i 51

Ns

^c isuca•p1bc2uc is&, ~4!

J@r# is the classical electron-electron interaction energy
f

g
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J@r#5
1

2E E r~r !r~r 8!

ur2r 8u
dr dr 8, ~5!

Exc is the relativistic counterpart of the exchange-correlat
energy, andvext is the external potential including th
electron-nucleus interaction. Minimization of the tota
energy functional~3! subject to the constraint

(
i 51

Ns E r is~r !dr5Ns ~6!

yields Eq.~1! with the effective potential

ve f f,s~r !5vext~r !1
dJ@r#

drs~r !
1

dExc@r↑ ,r↓#

drs~r !

5vext~r !1E r~r 8!

ur2r 8u
dr 81vxc,s~r !, ~7!

wherevxc,s is the exchange-correlation potential

vxc,s~r !5
dExc@r↑ ,r↓#

drs~r !
. ~8!

In the RDFT, the exchange-correlation energy functional c
be recast as@6,7#

Exc@r↑ ,r↓#5Ex
DF@r↑ ,r↓#1Ex

tr@r↑ ,r↓#1Ec@r↑ ,r↓#,
~9!

where Ex
DF is the Dirac-Fock exchange-energy function

@7#, Ex
tr is the transverse exchange-energy functional@7#, and

Ec is the correlation-energy functional.Ex
tr and Ec are de-

fined by requiring thatEx
tr contains the part that is linear i

the fine-structure constant@7#. The treatment of the trans
verse exchange energy is usually performed via the B
interaction @24# or a generalization thereof@24#. Although
the exact energy functional form is unknown, an appro
mate RLDA for these exchange functionals has been der
by MacDonald and Vosko@7# based on the relativistic ho
mogeneous electron gas model.

Similar to the nonrelativistic case, the relativistic DF
described above contains the undesirable self-interaction
ergy. Thus the RLDA exchange-correlation potential@6,7,25#
does not have the proper long-range behavior either. In
following section we present aself-interaction-freerelativis-
tic DFT based on the extension of the nonrelativistic O
formalism with SIC@12,13# to the relativistic domain.

B. Relativistic DFT with the OEP with SIC

We consider below the relativistic generalization of t
nonrelativistic DFT with the OEP with SIC@12,13#. In this
framework, the orbital wave functions$f is(r )% are obtained
by the solution of a set of single-particle equation, similar
the Dirac-Fock-like equation in Eq.~1!,

ĤOEPf is~r !5@ca•p1bc21VSIC,s
OEP ~r !#f is~r !5~e is

1c2!f is~r !, i 51,2, . . . ,Ns . ~10!
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@To facilitate the comparison with the nonrelativistic resul
we have subtracted the rest mass energyc2 from the eigen-
values of Eq.~10!.# Since the total energy is a functional o
the electron density and the electron density in turn is a fu
tional of VSIC,s

OEP , the total energy is a functional ofVSIC,s
OEP .

The optimized effective potential is obtained by the requi
ment that the spin orbitals$f is% in Eq. ~10! are those that
minimize the total-energy functional

dESIC@$f is%#

dVSIC
OEP~r !

50, ~11!

where

ESIC@r#5Ts@r#1J@r#1Exc
SIC@r↑ ,r↓#1E vext~r !r~r !dr

~12!

and

Exc
SIC@r↑ ,r↓#5Exc@r↑ ,r↓#2(

s
(
i 51

Ns

$J@r is#1Exc@r is,0#%.

~13!

Note in Eq. ~13! that we have used the SIC term due
Perdew and Zunger@19#.

To obtainVSIC,s
OEP and the orbital energiese is , Eqs.~10!

and ~11! are to be solved self-consistently. Such a dir
procedure, however, leads to an integral equation tha
computationally rather formidable. Here we extend t
OEP–KLI-SIC procedure@12,13# to the determination of
orbital-independentrelativistic optimized effective potential
Similar to the nonrelativistic case, the relativisticVSIC,s

OEP can
be expressed as

VSIC,s
OEP ~r !5vext~r !1E r~r 8!

ur2r 8u
dr 81

dExc@r↑,r↓#

drs~r !

1VSIC,s~r !, ~14!

where

VSIC,s~r !5(
i

r is~r !

rs~r !
$v is~r !1@ V̄SIC,s

i 2 v̄ is#%, ~15!

v is~r !52E r is~r 8!

ur2r 8u
dr 82

dExc@r is,0#

dr is~r !
, ~16!

and

V̄SIC,s
i 5^f isuVSIC,s~r !uf is&, ~17!

v̄ is5^f isuv is~r !uf is&. ~18!

In Eq. ~15!, the last two termsV̄SIC,s
i and v̄ is are constants

though the value ofV̄SIC,s
i is unknown. The KLI semiana

lytic method @9,10# suggests a way to calculateV̄SIC,s
i

2 v̄ is through a solution of the linear equations
,

c-

-

t
is
e

(
i 51

Ns21

~d j i ,s2M ji ,s!~ V̄SIC,s
i 2 v̄ is!5 V̄ j s

s 2 v̄ j s ,

j 51,2, . . . ,Ns21, ~19!

where

M ji ,s5E r j s~r !r is~r !

rs~r !
dr ~20!

and

V̄is
s 5K f isU(

j 51

Ns r j s~r !v j s~r !

rs~r ! Uf isL . ~21!

In actual computation, we found that the use of Eq.~19!

for the solution ofV̄SIC,s
i may be avoided. Since the set o

OEP-KLI equations~10! is to be solved self-consistentl
along with Eq.~14!, it is sufficient to use the value ofV̄SIC,s

i

from the previous iteration in Eq.~15! without the need to
calculateMi j ,s and V̄is

s . This simplified procedure leads t

the same final converged results. Finally, we chooseV̄SIC,s
i 5Ns

5 v̄ Ns for the highest occupied orbital, as suggested by
KLI procedure@9,10#.

C. Orbital binding energies and ionization potential
in the OEP–KLI-SIC formalism

The electron binding energy of a given spin orbital (is),
namely, the minimum energy needed to remove an elec
from a given spin orbital, is defined as the total-energy d
ference of anN-electron system and the correspondingN
21)-electron system with oneis electron removed. Remov
ing an inner-shellis electron will cause all other electro
spin-orbital wave functions undergoing relaxation. Ifis is
not the highest occupied spin orbital of theN-electron sys-
tem, the (N21)-electron system with theis electron re-
moved will not be in the ground state and the total energy
this (N-1)-electron system is difficult to calculate within th
density-functional theory. To estimate the binding energy
any given spin orbital, we follow the procedure by Jan
@26#. Thus the energy required to remove an infinitesim
fraction (d fis), 0< f is<1, of the electron from the spin or
bital is can be expressed as

dE5E@$r is%#2E@$~12d fis!r is%#

>2E dE@$r is%#

dr is
d fisr isdr . ~22!

The binding energy of the given spin orbitalis can be ob-
tained by

e is
b 5

dE

d fis
52E dE@$r is%#

dr is
r isdr

52 K f isU dE@$r is%#

dr is
Uf isL [2^f isuhisuf is&,

~23!
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with

his
M P5ca•p1bc21Vis~r !, ~24!

Vis~r !5vext~r !1E r~r 8!

ur2r 8u
dr 81

dExc@$f is%#

dr is~r !
. ~25!

Herehis is the single-particle relativistic Hamiltonian corre
sponding to theis orbital. From the DFT point of view, Eq
~23! is exact only for the binding energy of the outermo
electron since in this case both theN-electron and
(N21)-electron systems are in their ground states. For in
shell electrons, Eq.~23! provides an approximation for th
orbital binding energy. Within the general OEP formalis
~without the use of the KLI SIC!, Eq. ~23! can be written as

e is
b 52^f isuca•p1bc21VOEP~r !2VOEP~r !

1Vis~r !uf is&

52e is1~ V̄is
OEP2 V̄is!, ~26!

where

e is5^f isuca•p1bc21VOEP~r !uf is&,

V̄is
OEP5^f isuVOEP~r !uf is&, V̄is5^f isuVis~r !uf is&.

When the KLI-SIC procedure is implemented in the OE
formalism, we getV̄is

OEP2 V̄is5 V̄SIC,s
i 2 v̄ is . The expres-

sion for the binding energy ofis orbital within the OEP–
KLI-SIC formalism can now be simplified as

e is
b 52e is1~ V̄SIC,s

i 2 v̄ is!, ~27!

where e is is spin-orbital energy from Eq.~10! and V̄SIC,s
i

2 v̄ is can be determined from Eqs.~17! and ~18!. Since we
chooseV̄SIC,s

i 2 v̄ is50 for the highest occupied spin orbita
the negative value of this orbital energy is equal to the i
izaiton potential. For inner-shell electrons,V̄SIC,s

i 2 v̄ isÞ0
and Eq.~27! provides an estimation of the binding energy f
the is spin orbital. As will be shown in Sec. III, the inclu
sion of the extra termV̄SIC,s

i 2 v̄ is to the orbital energye is

allows the inner-shell electron binding energiese is
b signifi-

cantly closer to the experimental values.
Although the relativistic OEP–KLI-SIC procedure

similar to that of the nonrelativistic OEP–KLI-SIC, there is
subtle difference. In the nonrelativistic theory, the electr
spin is a good quantum number and the spin-density is w
defined. However, the electron spin is not a good quan
number in the relativistic theory due to the electron sp
orbit interaction and the spin density is in principle not w
defined. Therefore, the spin-density concept in the relativi
DFT is an approximation. Nevertheless, we can still use
spin density as suggested by the early work of the relativi
density-functional formalism@6,7,25#. Such an approxima
tion is quite good since even for high-Z atoms, the electron
spin-spin interaction can still compete with the spin-or
interaction for the valence orbitals, while for the inner-sh
orbitals, all the electrons are spin paired. For closed-s
t

er

-

n
ll

m
-
l
ic
e
ic

t
l
ll

atoms, the relativistic local-spin-density approximation is th
same as the relativistic local-density approximation.

III. CALCULATIONS OF ATOMIC ORBITAL ENERGIES
AND IONIZATION POTENTIALS: THE RELATIVISTIC

OEP–KLI-SIC METHOD

In this section we apply the relativistic DFT with OEP-
KLI and SIC ~R-OEP–KLI-SIC! method to the calculation
of the orbital binding energies and ionization potentials~ob-
tained from the highest occupied orbital energies! for the
ground states of atoms withZ52 –106. We use the LSDA
exchange-correlation energy functional of Vosko, Wilk, an
Nusair @27# and the relativistic corrections to the exchang
proposed by MacDonald and Vosko@7#. The relativistic cor-
rection to the correlation energy, which is considerab
smaller than that of the exchange energy, is not consider
For the study of the relativistic effects, we also perform th
corresponding nonrelativistic~NR! OEP–KLI-SIC calcula-
tions.

The relativistic LSDA exchange-energy functionals in Eq
~9! have the forms@7#

Ex
DF@r↑ ,r↓#52

3

4S 6

p D 1/3E $r↑
4/3~r !FC~r↑!

1r↓
4/3~r !FC~r↓!%dr , ~28!

FIG. 1. Ionization potentials calculated by~a! nonrelativistic
OEP–KLI-SIC and ~b! relativistic OEP–KLI-SIC with x-only
~dashed lines! and xc ~solid lines! energy functionals for neutral
atoms with 2<Z<106. The experimental ionization potentials@23#
are also presented~open circles! for comparison.
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TABLE I. Electron orbital binding energies of an Ar atom calculated by the relativistic and nonrelativ
density-functional theory with the optimized effective potential and self-interaction correction~R-OEP–KLI-
SIC or NR-OEP–KLI-SIC! method with~a! exchange only~x only! and ~b! exchange and correlation~xc!.
Also shown are the experimental binding energies and the results from the Hartree-Fock~HF!, LSDA,
Dirac-Hartree-Fock~DHF!, and relativistic local-density approximation~RLDA! calculations. The binding
energy is in a.u.

Nonrelativistic calculation Relativistic calculation
NR-OEP–KLI-SIC R-OEP–KLI-SIC

Orbital HF a LSDA x only xc DHF b RLDA c x only xc Expt.d

1s 118.605 113.799 118.314 118.355 119.127 114.077 118.830 118.871 117
2s 12.322 10.795 11.580 11.617 12.412 10.861 11.665 11.702 11.9
2p1/2 9.571 8.444 9.397 9.434 9.632 8.496 9.460 9.498 9.20
2p3/2 9.547 8.415 9.371 9.409 9.132
3s 1.277 0.884 1.081 1.112 1.287 0.891 1.090 1.121 1.07
3p1/2 0.554 0.382 0.549 0.580 0.595 0.386 0.554 0.585 0.58
3p3/2 0.588 0.380 0.546 0.577 0.579

aFrom Ref.@30#.
bFrom Ref.@31#.
cFrom Ref.@8#.
dFrom Ref.@32#.
n

Ex
tr@r↑ ,r↓#52

3

4S 6

p D 1/3E $r↑
4/3~r !FT~r↑!

1r↓
4/3~r !FT~r↓!%dr , ~29!

whereFC andFT are the relativistic correction factors give
by
FC~rs!5F5

6
1

1

3b2 1
2h ln~b1h!

3b
2

2h4lnh

3b4

2
1

2S bh2 ln~b1h!

b2 D 2G , ~30!
and

tions.

70.107
.401
.686
3
13
26

20

5
6

4

0
4

TABLE II. Electron orbital binding energies of a Xe atom calculated by the R-OEP–KLI-SIC
NR-OEP–KLI-SIC methods with~a! exchange only~x only! and ~b! exchange and correlation~xc!. Also
shown are the experimental binding energies and the results from HF, LSDA, DHF, and RLDA calcula
The binding energy is in a.u.

Nonrelativistic calculation Relativistic calculation
NR-OEP–KLI-SIC R-OEP–KLI-SIC

Orbital HF a LSDA x only xc DHF b RLDA c x only xc Expt.d

1s 1224.387 1208.765 1222.932 1222.977 1277.259 1254.714 1275.805 1275.850 12
2s 189.340 183.388 186.245 186.288 202.465 195.478 199.215 199.257 200
2p1/2 177.782 172.604 176.305 176.348 189.680 183.897 188.401 188.444 187
2p3/2 177.704 172.084 176.241 176.283 175.89
3s 40.175 37.431 38.442 38.482 43.010 39.989 41.169 41.209 42.2
3p1/2 35.222 32.880 33.945 33.985 37.660 35.133 36.325 36.366 36.8
3p3/2 35.325 32.888 34.021 34.061 34.566
3d3/2 26.118 24.379 25.676 25.717 26.023 24.271 25.595 25.636 25.3
3d5/2 25.537 23.794 25.097 25.138 24.857
4s 7.856 6.687 7.091 7.127 8.430 7.209 7.653 7.690 7.83
4p1/2 6.008 5.066 5.456 5.493 6.453 5.484 5.901 5.938 5.69
4p3/2 5.983 5.032 5.430 5.466 5.347
4d3/2 2.778 2.288 2.647 2.683 2.711 2.228 2.582 2.618 2.55
4d5/2 2.634 2.155 2.504 2.540 2.481
5s 0.944 0.674 0.811 0.840 1.010 0.731 0.878 0.907 0.86
5p1/2 0.457 0.312 0.423 0.451 0.493 0.340 0.458 0.486 0.49
5p3/2 0.440 0.294 0.404 0.432 0.446

aFrom Ref.@30#.
bFrom Ref.@31#.
cFrom Ref.@8#.
dFrom Ref.@32#.
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860 57XIAO-MIN TONG AND SHIH-I CHU
TABLE III. Electron orbital binding energies of a Hg atom calculated by the R-OEP–KLI-SIC me
with ~a! x only and ~b! xc. Also shown are the experimental binding energies and the results from
relativistic calculations for comparison. The last column shows the contributionDVSIC

i . The binding energy
andDVSIC

i are in a.u.

R-OEP–KLI-SIC
Orbital DHF a DHFGR b RLDA c x only xc Expt.d DVSIC

i

1s 3074.327 3062.953 3029.900 3066.847 3066.893 3053.952 29.2
2s 550.264 548.716 537.187 542.489 542.531 545.334 4.34
2p1/2 526.851 524.455 515.708 522.816 522.859 522.160 7.01
2p3/2 455.155 453.644 445.096 451.127 451.169 451.424 6.07
3s 133.116 132.758 127.530 129.330 129.369 130.886 1.53
3p1/2 122.638 122.106 117.808 119.756 119.796 120.483 1.86
3p3/2 106.545 106.208 102.150 103.935 103.975 104.629 1.73
3d3/2 89.437 89.131 86.001 88.281 88.321 87.643 2.21
3d5/2 86.020 85.781 82.627 84.832 84.872 84.335 2.13
4s 30.649 30.556 28.010 28.775 28.813 29.410 0.63
4p1/2 26.124 25.994 23.833 24.599 24.637 24.876 0.68
4p3/2 22.188 22.108 20.041 20.746 20.785 20.984 0.63
4d3/2 14.787 14.732 13.194 13.914 13.952 13.902 0.63
4d5/2 14.053 14.003 12.483 13.185 13.223 13.222 0.62
4 f 5/2 4.473 4.445 3.630 4.361 4.399 4.083 0.645
4 f 7/2 4.312 4.290 3.476 4.195 4.234 3.940 0.634
5s 5.103 5.085 4.323 4.643 4.677 4.924 0.228
5p1/2 3.538 3.516 2.937 3.234 3.268 3.318 0.216
5p3/2 2.842 2.829 2.265 2.532 2.566 2.635 0.192
5d3/2 0.650 0.644 0.414 0.608 0.641 0.613 0.116
5d5/2 0.574 0.568 0.346 0.531 0.563 0.548 0.105
6s 0.328 0.327 0.261 0.352 0.377 0.384 0.000

aFrom Ref.@31#.
bFrom Ref.@24#.
cFrom Ref.@8#.
dFrom Ref.@32#.
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3b2 2
2h ln~b1h!

3b
1

2h4lnh

3b4

2S bh2 ln~b1h!

b2 D 2G , ~31!

with b5vF /c5(3p2rs)1/3/c and h5(11b2)1/2. The nu-
merical solution of Eq.~10! is performed on the exponentia
grid as originally used in the Liberman’s code@28#:

r j5r 0~r max/r 0! j /N, j 50,1,2, . . . ,N21, ~32!

whereN is the total number of grid points andr 0 and r max
are, respectively, the minimum and the maximum rad
used. Our calculated atomic orbital energies with the RLD
reproduce exactly the recent RLDA calculations@8#.

A. Ionization potentials of atoms
with atomic number 2<Z<106

Figure 1~a! shows the comparison of the ionization pote
tials obtained from the NR-OEP–KLI-SIC calculations wi
the experimental data@23# ~open circles!. The results of two
different calculations are presented:~i! x ~exchange!-only
calculations~dashed line!, where the correlation energy func
s

-

tional is not used, and~ii ! exchange-correlation~xc! calcula-
tions~solid line! where both the exchange and the correlat
energy functionals are used in the OEP–KLI-SIC calcu
tions. Figure 1~b! shows the corresponding results from t
relativistic OEP–KLI-SIC calculations. Several interestin
features are observed. First, we note that the inclusion of
correlation energy functional systematically improves t
agreement of the calculated results with the experime
data in both the nonrelativistic and relativistic cases. W
the inclusion of the correlation, the valence electrons
more tightly bound and the ionization potentials are high
than those in thex-only calculations. Figure 1~a! indicates
that the discrepancy between the calculated nonrelativ
ionization potentials and the experimental data increa
with increasing atomic numberZ. This is expected since th
relativistic effects are more important for higher-Z atoms.
Figure 1~b! shows that the calculated relativistic ionizatio
potentials with xc energy functional~solid line! are in closer
agreement with the experimental data across the Peri
Table. Note that the ionization potential for each atom her
obtained directly from the highest occupied orbital ener
rather than from the energy difference between the neu
atom and the corresponding ion~the so-called relaxed orbita
method@29#!, such as that used in the recent RLDA calcu
tions @8#. The good agreement of the R-OEP–KLI-SIC r
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sults with the experimental data indicates that the optimi
effective potential in our calculations is significantly mo
accurate than the traditional effective potential calculated
rectly from the Kohn-Sham equation or the Dirac-Fock-li
equation~10!. More discussion of the quality of the opt
mized effective potential is given in the following subse
tion.

B. Relativistic effects on the orbital binding energies
in Ar „low-Z…, Xe „medium-Z…, and Hg „high-Z… atoms

In the preceding subsection, we show that the ionizat
potentials from the R-OEP–KLI-SIC calculations are
good agreement with the experimental data for almost all
atoms in the Periodic Table. However, ionization is main
determined by the binding energy of the outermost valen
shell electrons where the relativistic effect is the small
among all the occupied electron orbitals. This is revea
also from the comparison of the nonrelativistic versus
relativistic results in Figs. 1~a! and 1~b!, where one sees n
major discrepancies of the ionization potentials for most
the atoms apart for those withZ>70. It is desirable therefore
to explore also the relativistic effects on the binding ene
of inner-shell electrons from the relativistic DFT point
view. A comparison of the present results with those of ot
methods and experimental data will be made to further as
the accuracy of the present relativistic OEP–KLI-S
method. While we have performed the calculations for all
atoms withZ52 –106, we present here only the represen
tive results from Ar~low-Z), Xe ~medium-Z), and Hg~high-
Z) atoms.

Tables I and II list the orbital binding energies of Ar an
Xe, respectively, obtained by both nonrelativistic and rela
istic calculations. Also shown are the experimental data
comparison. For the nonrelativistic data, we show the res
from the Hartree-Fock~HF!, LSDA, and our NR-OEP–KLI-
SIC calculations with~xc! and without~x only! the correla-
tion. For the relativistic data, we show the results from
Dirac-Hartree-Fock~DHF!, RLDA, and our R-OEP–KLI-
SIC ~x-only and xc! calculations. For the OEP/KLI-SIC re
sults, the binding energy of individual orbital is defined
Eq. ~27!. From Tables I and II, we first note that the incl
sion of the correlation tends to increase the binding energ
individual electron orbital for both the nonrelativistic an
relativistic cases. A close examination of the data shows
the correlation contribution to the binding energy is about
same order of magnitude~in the range 0.02–0.05 a.u.! for
different orbitals. While such a correlation contribution is n
important to the inner-shell electrons, particularly for high
Z atoms, it is essential to the valence electrons and there
the corresponding ionization potentials. For Ar, the relativ
tic effect is not significant and the largest difference of t
R-OEP–KLI-SIC and NR-OEP–KLI-SIC results is aroun
0.5 a.u. for the 1s orbital. The discrepancy decreases as
principle quantum number of the orbital increases. Our
OEP–KLI-SIC with xc results are uniformly in closer agre
ment with the experimental data than those of the DHF
RLDA calculations. In the RLDA, since the xc potential do
not possess the correct long-range (21/r ) behavior, the
binding energies of all the orbitals are significantly low
than those of other calculations. Similar behaviors discus
d
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above for the Ar atom are also observed for the Xe at
~Table II!, except that the relativistic effects are now substa
tially stronger. For example, the difference in the 1s binding
energies from the R-OEP–KLI-SIC and NR-OEP–KLI-SI
calculations for Xe is 53 a.u. Such a discrepancy decrea
for outer-shell electrons with increasing principle quantu
number. For a given principle quantum numbern, the dis-
crepancy of the relativistic and nonrelativistic results
smaller for electrons with higher angular momenta. This
due to the fact that electrons with lower angular mome
can penetrate more easily into the inner region where
relativistic effect is stronger. Finally, we note that among
the calculations, the relativistic OEP–KLI-SIC results~with
xc! have the best overall agreement with the experime
data.

We now consider the representative high-Z atom, mer-
cury ~Hg!, with Z580. Since the relativistic effects are no
rather strong, we present only the results from the relativi
calculations in Table III. Included in this table are the resu
from DHF, RLDA, R-OEP–KLI-SIC~x-only and xc! calcu-
lations and the experimental data. Also included here are
results denoted by DHFGR obtained from the DHF calcu
tions but including the Gaunt and retardation transverse
teraction energies@24#. In general, the DHFGR results ar
uniformly in better agreement with the experimental da
than those of the DHF as expected. Note that our R-OE
KLI-SIC results also include the transverse interaction c

FIG. 2. Exchange-correlation potentialsVxc(r ) of a Hg atom
calculated from relativistic OEP–KLI-SIC method~solid lines! and
relativistic local-density approximation~dashed lines!. ~a! The long-
range behavior ofVxc(r ) and ~b! the short-range behavior o
Vxc(r ).
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tributions through the relativistic exchange energy functio
als in Eqs.~28! and ~29!. Among all the calculations, the
RLDA binding energies have the largest deviations from
experimental data. Overall, the R-OEP–KLI-SIC~with xc!
binding energies have the best agreement with the exp
mental data.

To understand the considerably different behavior of
RLDA and R-OEP–KLI-SIC results, we show in Figs. 2~a!
and 2~b! the corresponding exchange-correlation potent
for Hg: RLDA ~dashed line! and R-OEP–KLI-SIC~solid
line!. From Fig. 2~a!, we see that the R-OEP–KLI-SIC x
potential has the correct long-range (21/r) behavior, while
that of RLDA does not. Figure 2~b! shows comparison of the
two xc potentials in the inner region. It is seen that bo
potentials exhibit the shell structure, but the RLDA potent
is shallower than that of the R-OEP–KLI-SIC calculatio
Thus the binding energies of the RLDA are always sma
than those of other calculations with the correct long-ran
behavior.

That the results of R-OEP–KLI-SIC calculations are u
formly better than those of the DHFGR~apart from the in-
nermost 1s and 2s electrons! is at first somewhat surprising
Equation~27! shows that the OEP–KLI-SIC binding energ
contains the orbital energye is and an additional term
DVSIC

i 5 V̄SIC,s
i 2 v̄ is , the latter of which is also listed in

Table III. For the highest occupied spin orbitals, such a te
is set to be zero according to the KLI procedure. For ot
inner-shell orbitals,DVSIC

i makes a significant contributio
to the binding energies. For Hg(1s), such a contribution is
29.281 a.u. Similar to the pattern of the binding ener
DVSIC

i also exhibits a shell structure, namely,DVSIC
i is the

largest for the 1s orbital and (2s,2p) the second largest with
similar order of magnitude, and so on. While the absol
value of DVSIC

i becomes smaller as the principle quantu
s

y
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number increases, the percentage of its contribution to
binding energy is by no means smaller. In fact, for t
5d-shell electrons, the percentage contribution ofDVSIC

i to
the binding energies is as large as 18%. Close examinatio
Table III reveals that the inclusion of the termDVSIC

i has the
effect of making the ‘‘correction’’ to the OEP orbital ene
giese is in the right direction and bringing the orbital bindin
energies significantly closer to the exact values. It is kno
previously@9–13# that the OEP–KLI procedure can provid
accurate binding energy for the valence electron, namely,
ionization potential. From the present study, it is gratifyi
to see that the OEP–KLI-SIC procedure can also prov
rather accurate binding energies for the inner-shell electro

IV. CONCLUSION

In conclusion, we have presented in this paper aself-
interaction-free relativistic density-functional theory. The
procedure is applied to a systematic study of the bind
energies and ionization potentials for atoms with atom
numberZ52 –106. The results are in good agreement w
the experimental data throughout the Periodic Table. Sim
to the time-dependent nonrelativistic OEP–KLI-SIC forma
ism @21,22#, the present steady-state R-OEP–KLI-SIC pr
cedure can be also extended to the time domain for non
turbative study of relativistic multiphoton dynamics
superstrong laser fields. Work in this direction is in progre
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