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Error-prevention scheme with two pairs of qubits

Chui-Ping Yang* and Shih-I Chu†

Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific Computing, Lawrence, Kansas 6

Siyuan Han‡

Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045
~Received 21 March 2002; revised manuscript received 11 June 2002; published 4 September 2002!

A scheme is presented for protecting one-qubit quantum information against decoherence due to a general
environment and local exchange interactions. The scheme operates essentially by distributing information over
two pairs of qubits and through error-prevention procedures. In the scheme, quantum information is encoded
through a decoherence-free subspace for collective phase errors and exchange errors affecting the qubits in
pairs; leakage out of the encoding space due to amplitude damping is reduced by quantum Zeno effect. In
addition, how to construct decoherence-free states forn-qubit information against phase and exchange errors is
discussed.
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Quantum computing has attracted much interest in ca
QED, trapped ion systems, NMR systems, and solid s
systems using nuclear spins, quantum dots, supercondu
quantum interference devices, Josephson junctions,
single-Cooper-pair devices. It is realized that one of the m
obstacles in realizing a quantum computer is the decoher
resulting from the coupling of the system with environme
Among methods designed to protect information, there
theoretical proposals for preventing quantum informat
against errors by using the quantum Zeno effect@1–4#. Com-
pared with conventional error-correction schemes,
decoherence-reducing strategies based on the Zeno effe
significantly simpler since they only require making tests
a system and no error-correction steps are needed. The
important point is that they can reduce the number of qu
involved in the encoding of a quantum state.

Recently, using the Zeno effect, Hwanget al. @4# consid-
ered how to protect information in an error model whe
phase errors are dominant but other errors are still n
negligible. Their schemes are based on encoding one-q
information au0&1bu1& through a codeu0L&5u01& and
u1L&5u10&. Without doubt, their schemes work perfectly
there is no qubit-qubit exchange interaction@5,6#. However,
it is obvious that exchange interaction~exchanging the qu-
bits! turns the encoded stateau01&1bu10& into au10&
1bu01&, which leads to potentially fatal consequences@i.e.,
another term for bit-flipping error appears in the resulti
state~8! of Ref. @4#, not only the phase errors as mention
there#. Therefore, their schemes cannot work in the prese
of exchange interaction.

In this paper, an alternative scheme is proposed for p
tecting one-qubit information against decoherence due
general environment and local exchange interaction, ba
on the method of pairing qubits@7–9# and the Zeno effect. In
this scheme, the original message is encoded through
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pairs of qubits~a four-qubit encoding!. The present code
forms a decoherence-free subspace~DFS! @7,10–12# for col-
lective phase and exchange errors, if the following appro
mations apply:~a! the exchange interaction between the tw
pairs can be made negligible~this is possible by setting the
two pairs apart, since the exchange effects generally decr
rapidly as the qubit-qubit distance increases@6#!, and~b! the
two qubits in each pair are close to each other so that e
pair undergoes collective decoherence.

Consider two separate pairs I and II each containing t
qubits. The four identical qubits are labeled by 1, 18, 2 and
28. Qubits 1 and 18 form the pair I while qubits 2 and 28
constitute the other pair II. The two qubits in either pair a
assumed to be close to each other so that they will unde
collective decoherence. Under the assumption that the
change interaction between the two pairs is small enoug
be negligible, the Hamiltonian for the qubit system and t
environment is therefore of the form

H5HS1HB1HSB1Hex , ~1!

where HS and HB denote the qubit system and th
environment-free Hamiltonians, respectively;HSB is the in-
teraction Hamiltonian, and the operatorHex corresponds to
local exchange interactions between the two qubits in eit
pair. If the two pairs are physically identical, i.e., the sep
ration of the qubits in each pair is the same, the operatorHex
will act simultaneously and identically on both pairs of q
bits. In this case,Hex acts as a collective exchange opera
which has the following form:

Hex5J~E1181E228! ~2!

(J is a constant;Ei j is an independent exchange operator
two identical qubits i and j, which has the property
Ei j ue ie j&5ue je i&, e iP$0,1% @6#!. The expressions forHS and
HSB are as follows:

HS5e0~s I
z1s II

z !,
©2002 The American Physical Society01-1
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HSB5l1
zs I

z
^ Vz1l1

1s I
1

^ V11l1
2s I

2
^ V21l2

zs II
z

^ Vz8

1l2
1s II

1
^ V18 1l2

2s II
2

^ V28 . ~3!

Here, s I
j5s1

j 1s18
j , s II

j 5s2
j 1s28

j ( j 5z,1,2); s i
j is

Pauli spin operators of the qubiti; Vj and Vj8 are the envi-
ronment operators coupled to these degrees of freedom.
interaction HamiltonianHSB applies to the following situa-
tion: the qubits inside each pair undergo collective decoh
ence while the two pairs undergo independent decohere
for the case of differentVj and Vj8 or imperfect collective
decoherence for the case of the sameVj andVj8 .

Suppose that qubit 1 is the original information carri
which is initially in an arbitrary unknown stateuc&5au0&
1bu1&. The encoding is

uc&enc5au0&L1bu1&L , ~4!
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u0L&5~ u01&1u10&)118~ u01&2u10&)228 ,

u1L&5~ u01&2u10&)118~ u01&1u10&)228 . ~5!

This encoding will protect the state~4! against collective
phase errors taking place at either pair or both, since
qubits 118 and 228 are paired up in the decoherence-fr
state combinationsu01& and u10&. Moreover, it is obvious
that the collective exchange operator~2! has the property
Hexu0&L5(E1181E228)u0&L50 and Hexu1&L5(E118
1E228)u1&L50, which shows that the independent exchan
errors for each pair cancel each other due to the coopera
action between the local exchange interaction in one pair
the local exchange interaction in the other pair, i.e., the c
also forms a DFS for exchange errors.

Suppose that the environment is initially in the sta
ucb(0)&. During a finite timeT0, perform a testN times. In
a short period of timeT0 /N, under the Hamiltonian~1!, the
encoded state~4! will evolve into
uc~T0 /N!&'@12 iH ~T0 /N!#uc&enc^ ucb~0!&5@a~ u01&1u10&)118~ u01&2u10&)2281b~ u01&2u10&)118~ u01&1u10&)228]

^ @12 iH B~T0 /N!#ucb~0!&2 i ~T0 /N!u11&118~ u01&2u10&)228^ l1
1aV1ucb~0!&2 i ~T0 /N!u00&118~ u01&

2u10&)228^ l1
2aV2ucb~0!&2 i ~T0 /N!~ u01&2u10&)118u11&228^ l2

1bV18 ucb~0!&2 i ~T0 /N!~ u01&

2u10&)118u00&228^ l2
2bV28 ucb~0!&. ~6!
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Equation~6! shows that after evolution for a short tim
T0 /N, if one performs a subsequent measurement to de
mine whether the four-qubit system has left the encod
space spanned by Eq.~5!, the probability for getting a resul
‘‘out of the encoding space’’ is of the order of 1/N2, and
therefore the probability of obtaining such an outcome d
ing the timeT0 is proportional to 1/N. TakingN, the number
of tests during the timeT0, large enough one can decrea
the probability of such an error below any desired level.
the other hand, after the evolution of timeT0 /N the state
inside the encoding space remains the same as the in
encoded state, and the probability of obtaining such an
come during the timeT0 is proportional to 12O(1/N).

The required projection can be performed in two ste
The first step is to prepare a test qubit~labeled byt) in the
stateu0&, make it interact with each of the two qubits in th
first pair I consecutively by a joint operationC1tC18t , and
then perform a measurement on the test qubit. The meas
ment outcomeu1& projects the whole system onto the stat

uc~T0 /N!&85a@a~ u01&1u10&)118~ u01&2u10&)2281b~ u01&

2u10&)118~ u01&1u10&)228] 1b~ u01&

2u10&)118u11&2281c~ u01&2u10&)118u00&228 ,

~7!

while u0& corresponds to the projection onto the state
r-
g
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n
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.

re-

uc~T0 /N!&95du11&118~ u01&2u10&)228

1eu00&118~ u01&2u10&)228 . ~8!

Under the condition of largeN, the effects of the state~8!,
which is outside the encoding space, can be negligible. Th
after this test step, the four qubits and the environment w
be in the state~7!.

The second step follows the same procedure as descr
above. One needs to have the test qubit~in the zero state!
interact with each of the two qubits in the second pair II by
joint operationC2tC28t and then make a measurement on t
test qubit. From Eq.~7! one can see that the measureme
outcomeu0& projects the whole system onto the state

b~ u01&2u10&)118u11&2281c~ u01&2u10&)118u00&228 , ~9!

which is the wrong state out of the encoding space, and a
the effects of this state~9! can be neglected if one frequen
enough performs, on the other hand, if the test qubit is m
sured in the stateu1&, the four qubits will remain in the
original encoded state~4!. Thus, after the timeT0, the final
state for the whole system will be given by

uc~T0!&'uc&enc^ uc̃b&, ~10!

whereuc̃b& is the state of the environment. It is clear that
errors in the encoded state~4! occur after overall time evo-
1-2
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lution. Thus, one can protect one-qubit information agai
decoherence without any other error-correction.

The present scheme works via the Zeno effect; thus it
deal only with ‘‘slow’’ noise. The characteristic time of th
noise coupling has to be larger than the time interval betw
the projection measurements. These limitations are also
quired by other error-prevention schemes based on the q
tum Zeno effect@1–4#.

One might envision using Vaidmanet al.’s code@1#

u0L&5~ u00&1u11&)~ u00&1u11&),

u1L&5~ u00&2u11&)~ u00&2u11&) ~11!

to accomplish the goal. As long as the exchange interac
between the left two qubits and the right two qubits is sm
enough to be negligible, this code also forms a DFS
exchange errors. It is noted that the code~11! works for the
case of each qubit undergoing independent decoherence
the left or the right two qubits in Eq.~11! do not need to be
set close. In this sense, the scheme of Vaidmanet al. is better
than the present scheme since it has a less strict condi
However, as was argued by Vaidmanet al. @1#, after a short-
time evolution, the test qubit has to interact withall four
physical qubitsof the system consecutively to detect pha
errors, as well as interacting with every two physical qub
of the system to distinguish bit-flip errors. In contrast, sin
the present code forms a DFS for collective phase errors
phase errors occur and thus no such step for detecting p
errors is required. As shown above, the present scheme
needs to detect bit-flip errors by a test qubit interacting w
two qubits for each test step. Therefore, the present er
prevention procedures are much simpler.

Duan and Guo@2# have shown that one-qubit informatio
can be protected against decoherence due to a general
ronment with only two qubits and the assistance of an ex
nal driving field. The present scheme, however, focuses
how to protect one-qubit information without using an ext
nal driving field and how to reduce decoherence arising fr
the qubit-qubit exchange interaction.

Another point may need to be made here. If there is
exchange interaction, and if a general environment affe
qubits independently,u0L& and u1L& in Eq. ~4! could be the
logical zero and 1 of the five-qubit@13# or seven-qubit codes
@14#; or they could be the logical zero and 1 of the four-qu
code@15#.

In what follows, our purpose is to show how to constru
DF states forn-qubit quantum information against collectiv
phase and exchange errors. The general state ofn qubits is
expressed as

uc&5(
$ i l %

c$ i l %
u$ i l%&, ~12!

where u$ i l%& represents a computational basis stateu i 1&
^ u i 2& ^ •••^ u i n& with i l50 or 1. The state~12! is encoded
into the following state ofn12 pairs:

uc&enc5(
$ i l %

c$ i l %
u$ i l%&L . ~13!

Here,
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u$ i l%&L5 )
k51

n12

u j kk8&

5u j 118& ^ u j 228& ^ •••^ u j (n12)(n12)8&. ~14!

In Eq. ~14!, u j kk8& indicates the encoded zero or one of t
kth pair, which is given by

u0kk8&→
1

2
~ u01&1u10&)kk8 ,

u1kk8&→
1

2
~ u01&2u10&)kk8 , ~15!

wherekk8 represents the two qubits in thekth pair. Clearly,
such an encoding~15! on each pair ensures that the encod
state~13! is a DF state for collective phase errors if the tw
qubits in each pair are close to each other.

Assume that the separation of the two qubits in each p
is the same and that the exchange interaction between
two pairs is negligible. Thus the collective exchange opera
Hex is

Hex5J(
k51

n12

Ekk8 . ~16!

It is worth noting that not all the DF states for phase err
are DF states for exchange errors, since exchanging the
qubits in each pair will makeu0kk8&→u0kk8& while u1kk8&→2u1kk8& ~for the latter, there is a phase-flip error!. How-
ever, one can still expect that the encoded state~13! is a DF
state for exchange errors, through an appropriate enco
on each pair and making the encoded state~13! an eigenstate
of the collective exchange operator~16!.

In order to have the encoded state~13! an eigenstate of
the collective exchange operator~16!, one needs to make
each logical state in the encoded state~13! be an eigenstate
of the collective exchange operator~16! with the same eigen-
value. In general, forn12 pairs of qubits, one can constru
Cn12

m orthogonal states. Each of them takes the form~14!
and all of them are eigenstates of the collective excha
operator ~16! with the same eigenvalueJ(n22m12)
@where m51,2, . . . ,(n11)/2 for odd n and m
51,2, . . . ,n/211 for evenn]. It is easy to see that~a! Cn12

m

reaches maximum whenm5(n11)/2 for oddn or m5n/2
11 for evenn, and~b! such a maximum satisfies the relatio
n, log2 Cn12

m ,n11. The point ~a! means that in the cas
when each orthogonal state is an eigenstate of the collec
exchange operator~16! with the same eigenvalueJ for oddn
or 0 for evenn, the number of such orthogonal states
maximal; the point~b! implies that all these orthogona
states, as logical states$u$ i l%&L%, are sufficient to encoden
logical qubits. Thus,n12 pairs of qubits are sufficient to
encode an arbitrary state ofn qubits into a DF state. For larg
n, the efficiency of the encoding is approximately 1/2. On t
other hand, it is easy to show thatn11 pairs of qubits are
not sufficient to do the above.

It is interesting to note that, for some kinds of entangl
state ofn ~distant! qubits, the DF states for collective phas
and exchange errors can be obtained by pairing each
1-3
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tangled qubit with an ancilla qubit and applying local ope
tion on each pair. For example, consider the following e
tangled state:

uC& (1)5a0u0&1,2, . . . ,(n21)u1&n

1 (
i 51

n21

a i un22,1&1,2, . . . ,(n21)
( i ) u0&n , ~17!

where the number of entangled qubitsn>3, and un
22,1&1,2, . . . ,(n21)

( i ) denotes thei th computational basis stat
of the n21 entangled qubits involvingn22 zeros and 1
ones. In the case ofua0u5ua i u51/An, the states~17! are
known as the entangledW states@16#. If each entangled qubi
is paired with an ancilla qubit and then the two orthogo
statesu0& and u1& of the original kth entangled qubit are
encoded into the logical zerou0kk8& and oneu1kk8& in Eq.
~15!, respectively, one can see that the resulting enco
state for the state~17! is an eigenstate of the collective e
change operatorHex5J(k51

n Ekk8 with an eigenvalue (n
22)J, i.e., the encoded state is a DF state for excha
errors; and it is also a DF state for collective phase error
collective decoherence holds for each pair.

In addition, entangled states of the form

uC& (2)5au i 1 ,i 2 , . . . ,i n&1bu ī 1 , ī 2 , . . . ,ī n& ~18!

~which, in the caseuau5ubu51/A2, are known as entangle
Greenberger-Horne-Zailinger states@17#! are widely used in
information processing. Here, thei j are ones or zeros andī j
are their complements. By pairing each entangled qubit w
an ancilla qubit and performing the same encoding on e
pair as above, one can see that the two compon
u i 1 ,i 2 , . . . ,i n&L and u ī 1 , ī 2 , . . . ,ī n&L in the encoded state
uC&enc

(2) 5au i 1 ,i 2 , . . . ,i n&L1bu ī 1 , ī 2 , . . . ,ī n&L are eigen-
states of the collective exchange operatorHex

5(k51
n Jkk8Ekk8 with an eigenvalue(k51

n (21)i kJkk8 for

u i 1 ,i 2 , . . . ,i n&L while (k51
n (21) ī kJkk8 for

u ī 1 , ī 2 , . . . ,ī n&L . It is easy to show that after evolving fo
time t the n pairs of qubits will be in the state

au i 1 ,i 2 , . . . ,i n&L1eiwbu ī 1 , ī 2 , . . . ,ī n&L , ~19!
03430
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where w5t(k51
n @(21)i k2(21) ī k#Jkk8 . This accumulated

phase factor in the final state might not be significant for
states~18! in some applications. Furthermore, if~a! the num-
ber of the originally entangled qubits is even,~b! the number
of 1’s is the same as that of 0’s in each of the two basis st
of Eq. ~18!, ~c! Jkk85J, the phase factorw will be zero. In
this case, the encoded state is perfectly protected against
lective phase and exchange errors during the time evolut

So far, a three-qubit error-correction code@18–20# and a
two-qubit error prevention code@1,3#, which protect one-
qubit information against phase damping and exchange
rors, have been proposed. Compared with these scheme
present method has the advantage of not requiring error
rection or error detection. Moreover, compared with t
schemes@18–20#, the present method requires less qubit
source in protecting the entangled states~17! and~18!, or in
protecting n-qubit information (n>5). Thus, the presen
method is more efficient, although one has to have the
qubits in each pair close to each other and all the pairs w
separated.

Finally, according to the above description, for each p
leakage out of the encoding subspace spanned by Eq.~15!,
due to amplitude damping, can be suppressed by freq
tests on each pair. Thus, for a general environment,n-qubit
information or aboven-qubit entangled states can also
protected by encoding them into the above DF states plus
Zeno effect.

In conclusion, we have presented an error-prevent
scheme for protecting one-qubit information against decoh
ence due to a general environment and local exchange in
actions. As shown above, the present error-prevention pr
dures are relatively simple. We have discussed how
construct DF states forn-qubit information protecting agains
collective phase and exchange errors. Moreover, we h
shown that certain kinds of important entangled states on
~distant! qubits can be protected, by pairing each entang
qubit with only one ancilla qubit and applying only loca
operations on each pair.

C.P.Y. is very grateful to L. M. Duan and J. Ge
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