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We present a way to teleport multiqubit quantum information from a sender to a distant receiver via the
control of many agents in a network. We show that the original state of each qubit can be restored by the
receiver as long as all the agents collaborate. However, even if one agent does not cooperate, the receiver
cannot fully recover the original state of each qubit. The method operates essentially through entangling
quantum information during teleportation, in such a way that the required auxiliary qubit resources, local
operation, and classical communication are considerably reduced for the present purpose.
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I. INTRODUCTION AND MOTIVATION

Over the past decade, scientists have made dramatic
progress in the field of quantum teleportation. Theoretically,
since the work of Bennettet al. [1] on teleporting a qubit of
unknown information with the aid of Einstein-Podolsky-
Rosen(EPR) correlation, quantum teleportation has been ex-
tended from discrete-variable systems to continuous-variable
systems[2–5] and also from a single qubit to multiqubits
[6–9]. On the other hand, recent experiments have demon-
strated quantum teleportation with photon-polarized states
[10], optical coherent states[11], and nuclear magnetic reso-
nance[12].

In 1998, Karlsson and Bourennane[13] generalized the
idea of Bennettet al. by the use of a three-qubit entangled
Greenberger-Horne-Zeilinger(GHZ) state u000l+ u111l in-
stead of an EPR pair. In their work, they showed that an
arbitrary unknown state of a qubit could be teleported to
either one of two receivers. But only one of the two(either
one) can fully reconstruct the qubit state conditioned on the
measurement outcome of the other. Since that work, Hillery
et al. [14] first proposed the idea of quantum secret
sharing—i.e., splitting a message into several parts so that no
subset of parts is sufficient to read the message, but the entire
set is. In their work, they showed how a qubit of information
can be secretly shared by two agents via a three-qubit GHZ
state and also generalized this procedure to split a qubit of
information among more than two agents through a four-
qubit GHZ state. More recently, a number of works on quan-
tum secret sharing have also been proposed[15–20].

In this paper, we restrict ourselves to an issue—i.e., tele-
porting multiqubit information from a sender to a distant
receiver via the control of many agents in a network. We
wish that the receiver can successfully get access to the origi-
nal state of each qubit, as long as all the agents collaborate
through local operation and classical communication. How-
ever, even if one agent does not cooperate, the original state
of each qubit cannot fully be recovered by the receiver. The
topic here might be of particular interest, since controlled
teleportation is useful in networked quantum information

processing and cryptographic conferencing[21,22].
One possible approach is to use the method described in

Refs. [13,14] directly for the present task. To explore the
feasibility of this approach, let us first give a brief review of
the procedure introduced in[13,14]. To teleport an arbitrary
unknown stateuclA=au0lA+bu1lA of one qubitA from Alice
to a receiver Bob via the control ofn agents in a network, the
method in[13,14] requires asn+2d-qubit GHZ stateuGHZl
= u0lau0lbu0l^n+ u1lau1lbu1l^n shared by Alice, Bob, and then
agents. Here, GHZ qubitsa andb belong to Alice and Bob,
respectively, while the othern GHZ qubits belong to then
agents. The initial stateuclA ^ uGHZl for the whole system
can be rewritten as

uF+lAasau0lbu0l^n + bu1lbu1l^nd + uF−lAasau0lbu0l^n

− bu1lbu1l^nd + uc+lAasau1lbu1l^n + bu0lbu0l^nd

+ uc−lAasau1lbu1l^n − bu0lbu0l^nd, s1d

where uF±lAa= u00lAa± u11lAa and uc±lAa= u01lAa± u10lAa are
Bell states for the two qubitsA anda. Based on Eq.(1), the
following can be shown.

(i) For every outcome of Alice’s Bell-state measurement
on her qubitsA and a, Bob can restore the original state
au0lA+bu1lA of the message qubitA through his qubitb,
provided that each agent cooperates with him. That is, each
agent performs a Hadamard transformationu0l→ u0l+ u1l and
u1l→ u0l− u1l on his or her GHZ qubit, then makes a mea-
surement on his or her GHZ qubit in a single-qubit compu-
tational basisu0l and u1l, a measurement basis in which all
single-qubit measurements discussed throughout this paper
will be performed, and finally sends his or her measurement
result (one-bit classical message) to Bob.

(ii ) On the other hand, note that after Alice’s Bell-state
measurement, then+1 parties(the n agents plus Bob) are
left sharing a sn+1d-qubit state of the form
au0lbu0l^n±bu1lbu1l^n or au1lbu1l^n±bu0lbu0l^n (depending
on Alice’s Bell-state measurement outcome). Thus, even if
one agent does not cooperate with Bob, the resulting density
operator for the qubitb belonging to Bob would berb
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= uau2u0lbk0u+ ubu2u1lbk1u or uau2u1lbk1u+ ubu2u0lbk0u, which im-
plies that Bob has amplitude information about Alice’s mes-
sage qubitA but knows nothing about its phase. Therefore,
Bob cannot fully gain the original information of Alice’s
qubit A even if one agent does not collaborate with him.

Note that the above argument is for the controlled telepor-
tation of one-qubit information. The procedure to extend the
method in [13,14] to teleport m-qubit information from a
sender to a distant receiver via the control ofn agents is as
follows. First, the sender needs to preparem copies of asn
+2d-qubit GHZ state and then send each agent one GHZ
qubit for everysn+2d-qubit GHZ state; i.e., a total ofm GHZ
qubits are needed to be distributed to each agent. Second,
each agent needs to perform a Hadamard transformation and
then measurement on each of his or herm GHZ qubits; i.e.,
a total of m single-qubit Hadamard transformations andm
single-qubit measurements are required for each agent. Last,
each agent needs to send the receiver all of his or her mea-
surement results(i.e., m-bit classical message), in order for
the receiver to restore the originalm-qubit information.
Hence, the method in[13,14] requires considerably large
auxiliary qubit resources and local operation, as well as clas-
sical communication, especially when the number of
“teleported”-message qubits is significantly large.

In the following, we describe a way to implement the
present task. The method works actually by entangling quan-
tum information during teleportation. As shown below, re-
gardless of the amount of information to be teleported, the
proposed approach only requires that(i) the sender assign
one qubitto each agent,(ii ) each agent performone single-
qubit Hadamard transformationand one single-qubit mea-
surementon his or her qubit, and(iii ) each agent sendone-bit
classical messageto the receiver. Therefore, compared with
the method in[13,14], the present scheme is much simpler
and economical, because the required auxiliary qubit re-
sources, the number of local operations, and the quantity of
classical communication are greatly reduced.

The paper is organized as follows. In Sec. II, we present a
way to teleport multiqubit information to a distant receiver
via the control of one agent. We then make a comparison
between our method and the method in[13,14]. In Sec. III,
we discuss how to decompose multiqubit GHZ states and
then generalize our method to a multiagent controlled tele-
portation. In Sec. IV, we further apply the method to teleport-
ing a multiple qubit-string message to many distant receivers
via the control of many agents in a network. A brief discus-
sion and the concluding summary are given in Sec. V.

II. TELEPORTATION OF MULTIQUBIT INFORMATION
TO A DISTANT RECEIVER VIA THE CONTROL

OF ONE AGENT

Suppose that Alice holds a string of message qubits la-
beled by 1,2, . . . ,m, which is initially in the state
pi=1

m saiu0li +biu1lid. She wishes to sendm-qubit information
to a distant receiver(Bob) via the control of one agent
(Carol), such that Bob can get the complete information car-
ried by each message qubit only if Carol collaborates. This
can be done by the following procedure

First, Alice prepares the following EPR entangled state
through local logic gates:

p
i=1

m

su00li8i9 + u11li8i9d ^ su00lac + u11lacd + p
i=1

m

su00li8i9

− u11li8i9d ^ su00lac − u11lacd, s2d

and then sends EPR qubitc to Carol andm EPR qubits
s19 ,29 , . . . ,m9d to Bob, while keeping the otherm+1 EPR
qubits s18 ,28 , . . . ,m8d and a to herself. The state of the
whole system is given by

p
i=1

m

fsaiu0li + biu1lidsu00li8i9 + u11li8i9dg ^ su00lac + u11lacd

+ p
i=1

m

fsaiu0li + biu1lidsu00li8i9 − u11li8i9dg ^ su00lac − u11lacd,

s3d

which can be written as

p
i=1

m

fufii8
+ lsaiu0li9 + biu1li9d + ufii8

− lsaiu0li9 − biu1li9d + ucii8
+ l

3saiu1li9 + biu0li9d + ucii8
− lsaiu1li9 − biu0li9dg ^ su00lac

+ u11lacd + p
i=1

m

fufii8
+ lsaiu0li9 − biu1li9d + ufii8

− lsaiu0li9

+ biu1li9d + ucii8
+ ls− aiu1li9 + biu0li9d + ucii8

− ls− aiu1li9

− biu0li9dg ^ su00lac − u11lacd. s4d

Here and below, the subscriptsii 8=118 ,228 ,338. . .; i8i9
=1819 ,2829 ,3839. . .; andi9=19 ,29 ,39. . .; for i =1,2,3. . . . In
addition, normalized factors throughout this paper are omit-
ted for simplicity. The statesufii8

+ l, ufii8
− l, ucii8

+ l, and ucii8
− l

involved in Eq.(4) are the four Bell states for the qubit pair
si , i8d, which form a set of the complete orthogonal basis in
the 4D Hilbert space of the two qubitsi and i8, and take the
following expressions:

ufii8
± l = u00lii8 ± u11lii8, ucii8

± l = u01lii8 ± u10lii8, s5d

respectively.
Second, Alice performs a series of two-qubit Bell-state

measurements, respectively, on qubit pairss1,18d, s2,28d , . . .,
sm,m8d. After that, one has

uclsu00lac + u11lacd + uc8lsu00lac − u11lacd, s6d

with

ucl = p
i=1

m

ucli9, uc8l = p
i=1

m

uc8li9, s7d

where ucl and uc8l are the states for them qubits
s19 ,29 , . . . ,m9d belonging to Bob, whileucli9 and ucli9

8 are
the states of Bob’s qubiti9. From Eq.(4), one can see that the
statesucli9 and ucli9

8 depend on the outcome of Alice’s Bell-

YANG, CHU, AND HAN PHYSICAL REVIEW A 70, 022329(2004)

022329-2



state measurement on the qubit pairsi , i8d and are given by

ucli9 =5
aiu0li9 + biu1li9 for Pii8 = ufii8

+ lkfii8
+ u,

aiu0li9 − biu1li9 for Pii8 = ufii8
− lkfii8

− u,

aiu1li9 + biu0li9 for Pii8 = ucii8
+ lkcii8

+ u,

aiu1li9 − biu0li9 for Pii8 = ucii8
− lkcii8

− u,
6 s8d

uc8li9 =5
aiu0li9 − biu1li9 for Pii8 = ufii8

+ lkfii8
+ u,

aiu0li9 + biu1li9 for Pii8 = ufii8
− lkfii8

− u,

− aiu1li9 + biu0li9 for Pii8 = ucii8
+ lkcii8

+ u,

− aiu1li9 − biu0li9 for Pii8 = ucii8
− lkcii8

− u,
6 s9d

wherePii8 is a projector onto the Bell stateufii8
+ l, ufii8

− l, ucii8
+ l,

or ucii8
− l of the two qubits in the pairsi , i8d.

The results(8) and (9) show that according to the out-
come of Alice’s Bell-state measurement on the pairsi , i8d,
Bob can always recover the original stateaiu0li +biu1li of the
message qubiti from the stateucli9 or uc8li9 of his qubiti9 by
performing a single-qubit operation on the qubiti9. For in-
stance, Bob obtainsUucli9→aiu0li9+biu1li9 and U8uc8li9→aiu0li9+biu1li9, whereU andU8 are unitary operators and
U ,U8= I, sz; sz, I; sx, sy; or sy, sx for the case of Alice
measuring the pairsi , i8d in the Bell stateufii8

+ l, ufii8
− l, ufii8

+ l,
or ucii8

− l. Here,sx, sy, andsz are Pauli operators which cor-
respond to the rotations byp rad about thex, y, andz axes,
respectively, andI is an identity operator.

Third, Alice and Carol perform a Hadamard transforma-
tion on their respective qubitsa andc. As a result, the state
u00lac− u11lac goes to u01lac+ u10lac while the stateu00lac
+ u11lac remains unchanged. Thus, the state(6) will, after
Alice’s and Carol’s Hadamard transformations, change into

uclsu00lac + u11lacd + uc8lsu01lac + u10lacd. s10d

Fourth, Alice and Carol make a measurement on their
respective qubitsa andc, and then each sends the measure-
ment result(one-bit classical message) to Bob. One can see
from Eq. (10) that if Bob knows that Alice and Carol both
measured their qubits in the stateu0l or u1l, he can predict
that hism qubitss19 ,29 , . . . ,m9d must be in the stateucl. On
the other hand, expression(10) shows that if Bob knows that
Alice measured her qubit in the stateu0l (u1l), while Carol
measured his qubit in the stateu1l (u0l), he knows that hism
qubits must be in the stateuc8l. Therefore, according to the
measurement results from Alice and Carol, Bob can predict
whether hism qubits are inucl or uc8l.

Last, note that the stateuclsuc8ld, described in Eq.(7), is
a product of individual-qubit statesucl19 , ucl29 , . . .uclm9
suc8l19 , uc8l29 , . . . ,uc8lm9d for the qubits (s19 ,29 , . . . ,m9d.
And as addressed above, Bob can recover the original state
(i.e., aiu0li +biu1li of message qubiti) from the stateucli9 or
uc8li9 of his qubit i9, based on the outcome of Alice’s Bell-
state measurement on the qubit pairsi , i8d and via a single-
qubit unitary transformationU or U8 on the qubiti9. Hence,
Bob can always reconstruct the original state ofm message

qubitss1,2, . . . ,md from the stateucl or uc8l of his m qubits
s19 ,29 , . . . ,m9d, according to the outcome of Alice’s Bell-
state measurements on the qubit pairss1,18d, s2,28d , . . .,
sm,m8d and through his local single-qubit operations.

In what follows, our purpose is to show that when Carol
does not collaborate, it is impossible for Bob to gain the full
quantum message. Examining the state(6), we see that when
only Alice performs a Hadamard transformation on her qubit
a, the state(6) will change into

fsucl + uc8ldu0lc + sucl − uc8ldu1lcgu0la + fsucl + uc8ldu0lc

− sucl − uc8ldu1lcgu1la, s11d

which implies that whether Alice measures her qubita in the
state u0l or u1l, the density operator of them qubits
s19 ,29 , . . . ,m9d belonging to Bob will, after tracing over Car-
ol’s qubit c, be given by

r = sucl + uc8ldskcu + kc8ud + sucl − uc8ldskcu − kc8ud.

s12d

The result(12) shows that them qubitss19 ,29 , . . . ,m9d are in
a mixed state, in which they are in a superposition state
ucl+ uc8l with a probability p1= uucl+ uc8lu2/2skc ucl
+kc8 uc8ld while being in the other superposition stateucl
− uc8l with a probabilityp2= uucl− uc8lu2/2skc ucl+kc8 uc8ld.

Based on Eqs.(7)–(9), one can express the statesucl
+ uc8l and ucl− uc8l involved in Eq.(12) as follows:

ucl ± uc8l = uc̃lsatu0lt9 + btu1lt9d ± uc̃8lsatu0lt9

− btu1lt9d for Ptt8 = uftt8
+ lkftt8

+ u,

ucl ± uc8l = uc̃lsatu0lt9 − btu1lt9d ± uc̃8lsatu0lt9

+ btu1lt9d for Ptt8 = uftt8
− lkftt8

− u,

ucl ± uc8l = uc̃lsatu1lt9 + btu0lt9d ± uc̃8ls− atu1lt9

+ btu0lt9d for Ptt8 = uctt8
+ lkctt8

+ u,

ucl ± uc8l = uc̃lsatu1lt9 − btu0lt9d ± uc̃8ls− atu1lt9

− btu0lt9d for Ptt8 = uctt8
− lkctt8

− u, s13d

where the subscriptt9 represents any one of them qubits
s19 ,29 , . . . ,m9d belonging to Bob, and the subscriptst andt8
denote Alice’s message qubit and her EPR qubit(corre-
sponding to Bob’s qubitt9), respectively. In Eq.(13), we

further note thatuc̃l=pkuclk9 and uc̃8l=pkuc8lk9 skÞ td are
the states of the remainingm−1 qubits belonging to Bob
(after excluding the qubitt9). Here, uclk9 and uc8lk9 are the
states of qubitk9 sk9Þ t9d, which depend on the outcome of
Alice’s Bell-state measurement on the pairsk,k8d and take
the form of Eqs.(8) and(9), respectively. From Eqs.(12) and
(13), it is easily shown that for each outcome(uftt8

+ l, uftt8
− l,

uctt8
+ l, or uctt8

− l) of Alice’s Bell-state measurement on the pair
st ,t8d, the density operator for the remainingm−1 qubits
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belonging to Bob is, after tracing over the qubitt9, given by

r̃ = tr t9srd = suc̃l + uc̃8ldskc̃u + kc̃8uduatu2 + suc̃l + uc̃8ldskc̃u

+ kc̃8udubtu2 + suc̃l − uc̃8ldskc̃u − kc̃8uduatu2 + suc̃l − uc̃8ld

3skc̃u − kc̃8udubtu2 = suc̃l + uc̃8ldskc̃u + kc̃8ud + suc̃l − uc̃8ld

3skc̃u − kc̃8ud, s14d

where we have useduatu2+ ubtu2=1. Equation(14) implies
that the density operator, for the remainingm−1 “nontraced”
qubits belonging to Bob, has the same form as Eq.(12).
Therefore, repeating the above single-qubit tracing proce-
dure, one finds that the density operator for any qubiti9
belonging to Bob(i9=19 ,29 , . . ., or m9) can, after tracing
over Bob’s otherm−1 qubits, be written as

ri9 = uaiu2u0lk0u + ubiu2u1lk1u s15d

in the case when Alice measures the qubit pairsi , i8d in either
Bell stateufii8

+ l or ufii8
− l. On the other hand,

ri9 = uaiu2u1lk1u + ubiu2u0lk0u s16d

in the case when the pairsi , i8d is measured in the Bell state
ucii8

+ l or ucii8
− l. The above process demonstrates that the den-

sity operator(15) and (16) depends only on the outcome of
Alice’s Bell-state measurement on the pairsi , i8d, but inde-
pendent of the outcome of Alice’s Bell-state measurement on
all other pairs.

Equations(15) and(16) demonstrate the following results.
First, any qubiti9 belonging to Bob is in a mixed state, in
which it is in the stateu0l with a probability uaiu2 or ubiu2
(depending on Alice’s Bell-state measurement outcome),
while being in the stateu1l with a probability ubiu2 or uaiu2.
Second, Bob has amplitude information about Alice’s each
message qubit, but knows nothing about its phase. Therefore,
in general(i.e., ai Þ0 or bi Þ0 for i =1,2, . . . ,m), Bob can-
not fully restore the original state of each message qubit
belonging to Alice, even if one agent does not cooperate with
him.

It is necessary for us to compare the present method with
the method in[13,14]. From the description above, we con-
clude that to teleportm-qubit information to a distant re-
ceiver via the control of one agent, the present method re-
quires only the following:

(i) 2sm+1d auxiliary qubits for the preparation of the
state(2),

(ii ) one qubit being assigned to the controller,
(iii ) one single-qubit Hadamard transformation and one

single-qubit measurement being performed by the controller,
(iv) one-bit classical message being sent to the receiver.

However, as mentioned in the Introduction, to implement the
present task, the method in[13,14] will require the follow-
ing:

(i) 3m auxiliary qubits for preparingm copies of a three-
qubit GHZ state,

(ii ) m qubits being assigned to the controller,

(iii ) m single-qubit Hadamard transformations andm
single-qubit measurements being performed by the control-
ler,

(iv) m-bit classical messages being sent to the receiver by
the controller.

The above analysis demonstrates that for the case ofm
=1, the present protocol is trivial, since it requires four aux-
iliary qubits while the method in[13,14] only needs three
auxiliary qubits. However, the advantage for the present pro-
posal appears whenm=2, because it requires the same num-
ber of auxiliary qubits but less local operation and classical
communication, compared with the method in[13,14].
Moreover, whenm=3, the number of auxiliary qubits re-
quired in the present method becomes smaller than that using
the method in[13,14]. One can clearly see that the advantage
of the present method becomes apparent with increments of
m. Especially, whenm is a large number, the required auxil-
iary qubit resources, local operations by the controller, and
classical communication between the controller and the re-
ceiver are greatly reduced in the present approach.

On a final note, we point out that the number of Alice’s
Bell-state measurements needed in the present protocol is the
same as that required by the method in[13,14]. This is ob-
vious, since using the method in[13,14], Alice also needs to
perform a series of Bell-state measurements, each acting on
one message qubit and one GHZ qubit.

III. TELEPORTATION OF MULTIQUBIT INFORMATION
TO A DISTANT RECEIVER VIA THE CONTROL OF

MANY AGENTS

In this section, we discuss how to decompose multiqubit
GHZ states and how to generalize the above method to the
teleportation of multiqubit information via the control of
many agents.

A. Decomposition of multiqubit GHZ states

In the past few years, GHZ states have been extensively
studied by many researchers. They play an important role in
quantum information processing and communication. Many
theoretical proposals have appeared for the generation of
multiqubit GHZ states. Moreover, it has been reported that
up to four-qubit GHZ states were experimentally prepared
with polarized-state photons[23] and trapped ions[24]. As
especially relevant to this work, we consider the following
two types ofsn+1d-qubit GHZ states:

uGHZl+ = u00¯ 0l + u11¯ 1l, s17d

uGHZl− = u00¯ 0l − u11¯ 1l. s18d

We find that if a Hadamard transformation is performed on
each qubit, the states(17) and (18) will be decomposed, re-
spectively, into

uGHZl+ → o
hxlj

uhxljlu0l + o
hylj

uhyljlu1l, s19d
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uGHZl− → o
hxlj

uhxljlu1l + o
hylj

uhyljlu0l, s20d

whereuhxljl= ux1x2¯xnl and uhyljl= uy1y2¯ynl are computa-
tional basis states of the firstn qubits sxl ,yl P h0,1j , l
=1,2, . . . ,nd, andohxlj

uhxljl sohylj
uhyljld is a sum over all pos-

sible basis statesuhxljl suhyljld each containing aneven (odd)
number of “1”’s. For instance, whenn=4, ohxlj

uhxljl
= u0000l+ u1100l+ u1010l+¯ + u1111l. Note that the number
of the basis statesuhxljl is the same as that of the basis states
uhyljl; thus, the states(19) and (20) on the right side both
have the same normalized factors.

B. Teleportation of m-qubit information via the control
of n agents

Now, suppose that Alice has a string of message qubits
labeled by 1,2, . . . ,m, which is initially in the state
pi=1

m saiu0li +biu1lid. She wishes to sendm-qubit information
to Bob via the control ofn agentssA1,A2, . . . ,And in a net-
work, such that Bob can get the complete information of
each message qubit only if all the agents collaborate. This
can be done by the following procedure:

First, Alice prepares the following EPR-GHZ entangled
state through local logic gates:

p
i=1

m

su00li8i9 + u11li8i9d ^ uGHZl+ + p
i=1

m

su00li8i9 − u11li8i9d

^ uGHZl−, s21d

[where uGHZl±= u00¯0l± u11¯1l are sn+1d-qubit GHZ
states], and then she sends the firstn GHZ qubits to then
agents and them EPR qubitss19 ,29 , . . . ,m9d to Bob, while
keeping the last GHZ qubit and the otherm EPR qubits
s18 ,28 , . . . ,m8d to herself. The state of the whole system is
given by

p
i=1

m

fsaiu0li + biu1lidsu00li8i9 + u11li8i9dg ^ uGHZl+

+ p
i=1

m

fsaiu0li + biu1lidsu00li8i9 − u11li8i9dg ^ uGHZl−.

s22d

Second, Alice performs a series of two-qubit Bell-state
measurements, respectively, onm qubit pairs
s1,18d , s2,28d , . . . , sm,m8d. After that, we have

ucluGHZl+ + uc8luGHZl−, s23d

where ucl and uc8l are the states for them qubits
s19 ,29 , . . . ,m9d belonging to Bob. Note that the left part of
the first(second) product term in Eq.(22) is the same as that
of the first (second) product term in Eq.(3). Thus, the two
statesucl and uc8l here take the same form asucl and uc8l
described by Eq.(7), respectively.

Third, each agent and Alice perform a Hadamard transfor-
mation on their respective GHZ qubits. After that, based on
Eqs.(19) and (20), one gets, from Eq.(23),

uclFo
hxlj

uhxljlu0l + o
hxlj

uhyljlu1lG + uc8lFo
hxlj

uhxljlu1l

+ o
hylj

uhyljlu0lG . s24d

Last, each agent and Alice make a measurement on their
respective GHZ qubits and then send their measurement re-
sults to Bob. Recall the notation ofuhxljl and uhyljl described
above; i.e., each basis stateuhxljl suhyljld contains aneven
(odd) number of “1”’s. Therefore, one sees from Eq.(24)
that Bob can predict that them qubits s19 ,29 , . . . ,m9d be-
longing to him must be in the stateucl suc8ld, if he knows
that the outcome of then agents’measurement on theirn
GHZ qubits contains anevennumber of “1”’s and that Alice
measured her GHZ qubit in the stateu0l (u1l). On the other
hand, the result(24) shows that Bob knows that hism qubits
s19 ,29 , . . . ,m9d must be in the stateucl suc8ld, if he knows
that the outcome of then agents’ measurement includes an
oddnumber of “1”’s and that Alice measured her GHZ qubit
in the stateu1l (u0l). Hence, according to the measurement
outcomes from then agents and Alice, Bob can predict
whether hism qubits are inucl or uc8l. As addressed in the
previous section, Bob can restore the original state ofm mes-
sage qubitss1,2, . . . ,md from the stateucl or uc8l of the m
qubits s19 ,29 , . . . ,m9d, according to the Bell-state measure-
ment outcome from Alice and through his local single-qubit
logic operations.

We have shown, based on(23), that the quantum message
originally carried by them message qubitss1,2, . . . ,md can
be recovered by Bob, as long as each agent performs a Had-
amard transformation and then a measurement on his/her qu-
bit. Now let us focus on the problem that Bob can not gain
the full quantum message even if one agent does not collabo-
rate. To see this, let us go back to the state(23). This state
can be rewritten as

uclfsuf+l + uf−ldu0lAi
+ suf+l − uf−ldu1lAi

g + uc8lfsuf+l + uf−ld

3u0lAi
− suf+l − uf−ldu1lAi

g, s25d

where u0lAi
and u1lAi

are the two logic states of the GHZ
qubit belonging to agentAi (i =1,2, . . . , orn), while uf+l and
uf−l, taking the form of Eqs.(17) and(18), respectively, are
the GHZ states of the remainingn GHZ qubits belonging to
othern−1 agents and Alice.

Assume the agentAi does not collaborate with Bob. When
the othern−1 agents and Alice perform a Hadamard trans-
formation on their respective GHZ qubits, it follows from
Eqs.(19) and(20) that the statesuf+l and uf−l will be trans-
formed into

uf+l → o
hxl8j

uhxl8jlu0la + o
hyl8j

uhyl8jlu1la,

uf−l → o
hxl8j

uhxl8jlu1la + o
hyl8j

uhyl8jlu0la, s26d

where the subscripta represents the GHZ qubit belonging to
Alice; uhxl8jl= ux18x28 . . .xn−18 l anduhyl8jl= uy18y28 . . .yn−18 l are com-
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putational basis states of then−1 GHZ qubits belonging to
the othern−1 agentssxl8 ,yl8P h0,1j ; l =1,2, . . .n−1d. Fur-
ther, ohxl8juhxl8jl sohyl8juhyl8jld represents a sum over all pos-
sible basis statesuhxl8jl suhyl8jld each containing aneven (odd)
number of “1”’s. The state(25) will, after replacinguf±l by
Eq. (26), change into

fsucl + uc8ldu0lAi
+ sucl − uc8ldu1lAi

go
hxl8j

uhxl8jlu0la + fsucl

+ uc8ldu0lAi
− sucl − uc8ldu1lAi

go
hxl8j

uhxl8jlu1la + fsucl + uc8ld

3u0lAi
− sucl − uc8ldu1lAi

go
hyl8j

uhyl8jlu0la + fsucl + uc8ldu0lAi

+ sucl − uc8ldu1lAi
go

hyl8j

uhyl8jlu1la, s27d

which implies that if the othern−1 agents and Alice perform
a measurement on their respective GHZ qubits, them qubits
s19 ,29 , . . . ,m9d belonging to Bob will be entangled with
agentAi’s GHZ qubit.

From Eq. (27), it is easily seen that for every outcome
uhxl8jl u0la, uhxl8jl u1la, uhyl8jl u0la, or uhyl8jl u1la of the other
n−1 agents’ and Alice’s measurements on their GHZ qubits,
the density operator of them qubits s19 ,29 , . . . ,m9d belong-
ing to Bob is, after tracing over agentAi’s GHZ qubit, given
by

r = sucl + uc8ldskcu + kc8ud + sucl − uc8ldskcu − kc8ud.

s28d

Since Eq.(28) takes the same form as Eq.(12), one can
obtain the same results(13)–(16) as described above. There-
fore, Bob can fully restore the original state ofm message
qubits s1,2, . . . ,md, only if all the agents collaborate with
him.

In summary, to teleportm-qubit information to a distant
receiver via the control ofn agents, the present method re-
quires only the following:

(i) 2m+n+1 auxiliary qubits for preparing the state(21);
(ii ) one qubit being distributed to each agent;
(iii ) one single-qubit Hadamard transformation and one

single-qubit measurement being performed by each agent;
(iv) one-bit classical message being sent to the receiver

by each agent.
In contrast, to implement the same task, the method in

[13,14] requires the following:
(i) msn+2d auxiliary qubits for preparingm copies of a

sn+2d-qubit GHZ state;
(ii ) m qubits being distributed to each agent;
(iii ) m single-qubit Hadamard transformations andm

single-qubit measurements being performed by each agent;
(iv) m-bit classical message being sent to the receiver by

each agent.
For the case ofm=1, the present method is not interesting

since it requires one more auxiliary qubit than the method in
[13,14]. However, the advantage of the present proposal ap-
pears whenm=2 and becomes apparent asm increases.

IV. CONTROLLED TELEPORTATION OF MULTIPLE
QUBIT-STRING INFORMATION TO MANY

DISTANT RECEIVERS

It is interesting to note that the method described above
can be further extended to teleport multiple qubit-string in-
formation to many distant receivers via the control of many
agents in a network. Suppose that Alice holdsk qubit strings
labeled by1,2, . . . ,k. The qubit stringl containsml message
qubits, which is initially in the statePi=1

ml sai,lu0li,l +bi,lu1li,ld
sl =1,2, . . . ,kd. The state of thek qubit strings is given by
Pl=1

k Pi=1
ml sai,lu0li,l +bi,lu1li,ld. Now, Alice wishes to teleport

thek qubit-string information tok distant receivers(the mes-
sage carried by the qubit stringl is for the receiverl) via the
control ofn agents in a network, such that each receiver can
fully recover the original quantum message of the corre-
sponding qubit string only if all the agents cooperate. The
present task can be implemented with the following EPR-
GHZ entangled state:

p
l=1

k

p
i=1

ml

su00li8i9,l + u11li8i9,ld ^ uGHZl+ + p
l=1

k

p
i=1

ml

su00li8i9,l

− u11li8i9,ld ^ uGHZl−, s29d

where uGHZl± are the GHZ states(17) and (18) of the sn
+1d GHZ qubits shared by then agents and Alice; theml

EPR qubitss19 ,29 , . . . ,ml9d for the setl belong to the re-
ceiver l, while the otherml EPR qubitss18 ,28 , . . . ,ml8d for
the set l are kept by Alice. Here, the setl represents the
“qubit string l and theml EPR pairs shared by Alice and the
receiverl” sl =1,2, . . . ,kd. The state of the whole system is
thus given by

p
l=1

k

p
i=1

ml

fsai,lu0li,l + bi,lu1li,ldsu00li8i9,l + u11li8i9,ldg ^ uGHZl+

+ p
l=1

k

p
i=1

ml

fsai,lu0li,l + bi,lu1li,ldsu00li8i9,l − u11li8i9,ldg ^ uGHZl−.

s30d

Now, Alice performs a series of two-qubit Bell-state mea-
surements, which are, respectively, on qubit pairs
s1,18d , s2,28d , . . . , sml ,ml8d for the setl. After that, we ob-
tain

p
l=1

k

ucll ^ uGHZl+ + p
l=1

k

uc8ll ^ uGHZl−, s31d

whereucll =Pi=1
ml ucli9,l anduc8ll =Pi=1

m uc8li9,l are the states for
the ml qubits s19 ,29 , . . . ,ml9d belonging to the receiverl.
Here ucli9,l and uc8li9,l are the states of qubiti9 for the re-
ceiver l, which depend on the outcome of Alice’s Bell-state
measurement on the associated qubit pairsi , i8d for the setl,
and take the form of Eqs.(8) and (9), respectively.

Note that the statesucll and uc8ll have the same form as
ucl and uc8l described in Eqs.(7), respectively. Therefore,
based on Eq.(31) and using the above procedure, it is
straightforward to show that quantum information originally
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carried by each qubit string can be recovered by the corre-
sponding receiver, with the aid of all the agents.

In order for each receiver to restore the original state of
the corresponding qubit string, the following procedure can
be followed: (i) Each agent and Alice need to perform a
Hadamard transformation and then a measurement on their
respective GHZ qubits.(ii ) Each agent and Alice need to
send each receiver their measurement results on their GHZ
qubits. And(iii ) Alice needs to send the receiverl the out-
come of her Bell-state measurements on the qubit pairs
s1,18d , s2,28d , . . . , sml ,ml8d for the set l, so that the re-
ceiver l can recover the original state of the qubit stringl.

On the other hand, it can be shown from Eq.(31) that
even if one agent does not collaborate, the density operator
for each qubit belonging to each receiver takes the form of
Eq. (15) or (16); i.e., no receiver can fully restore the original
state of the corresponding “message qubit string” without the
cooperation of all the agents.

To realize the present task, the present method requires
only the following:

(i) 2Sl=1
k ml +n+1 auxiliary qubits for preparing the state

(29);
(ii ) one qubit being assigned to each agent;
(iii ) one single-qubit Hadamard transformation and one

single-qubit measurement being performed by each agent;
(iv) one-bit classical message being sent to each receiver

by each agent.
In contrast, to implement the same task, the method in

[13,14] requires the following:
(i) Sl=1

k mlsn+2d auxiliary qubits for preparingSl=1
k ml

copies of asn+2d-qubit GHZ state;
(ii ) Sl=1

k ml qubits being assigned to each agent;
(iii ) Sl=1

k ml single-qubit Hadamard transformations and
Sl=1

k ml single-qubit measurements being performed by each
agent;

(iv) ml-bit classical message being sent to the receiverl
by each agent.

One can see that even forml =1 and k=2, the present
method is effective, since(a) the number of qubits distrib-
uted to each agent, the number of Hadamard transformation
by each agent, or the number of measurement by each agent
is 1, which is, however, 2 for the method in[13,14], and(b)
the number of auxiliary qubits required isn+5, which is
smaller than 2n+4 needed in the method in[13,14], when
n.1. More interestingly, with the increment ofml, k, or n,
the advantage of the present method becomes very apparent.

V. DISCUSSION AND CONCLUSION

It should be pointed out that as far as the control effi-
ciency of each agent on teleportation, the present scheme is
identical to those in[13,14]. This is because the results(15)
and(16) applied in the present proposal are the same as those
employed in[13,14]. However, as shown above, the present
scheme is extremely simple and economical in the realiza-
tion of multiqubit quantum information teleportation via the
control of many agents in a network.

The scheme presented here works essentially through
having originally nonentangled quantum information, carried

by any two message qubits, to be entangled each other after
Alice performs a series of Bell-state measurements. This can
be seen from Eq.(23). For example, let us consider am=2
case—i.e., teleporting the statesa1u0l1+b1u1l1d ^ sa2u0l2

+b2u1l2d of the two message qubits(1,2) to Bob. Based on
Eqs. (7)–(9), one sees that if Alice measures the two qubits
s1,18d and another two qubitss2,28d in the Bell states—e.g.,
uf118

+ l and uf228
+ l—the state(23) for the remaining qubit sys-

tem will be

sa1u0l19 + b1u1l19dsa2u0l29 + b2u1l29d ^ uGHZl+ + sa1u0l19

− bu1l19dsa2u0l29 − b2u1l29d ^ uGHZl−. s32d

The result(32) implies that if Bob measures the qubit 19 in
the statea1u0l+b1u1l, he can predict that his qubit 29 must
be in the statea2u0l+b2u1l. On the other hand, if Bob detects
the qubit 19 in the statea1u0l−b1u1l, he knows that his qubit
29 must be in the statea2u0l−b2u1l. Therefore, after Alice
performs Bell-state measurements, the quantum information
originally carried by the two message qubits(1,2) is not only
transferred onto Bob’s qubitss19 ,29d but also becomes en-
tangled with each other.

In Refs. [13,14], single-qubit measurements are carried
out in a basisu+l= u0l+ u1l and u−l= u0l− u1l. In contrast, as
shown above, the present single-qubit measurement is per-
formed in the basisu0l and u1l. For certain kinds of qubits
(e.g., superconducting charge or flux qubits), it is rather hard
to make a measurement in the basisu1l andu2l, but straight-
forward in the basisu0l andu1l. As a matter of fact, based on
u0l= u+l+ u−l and u1l= u+l− u−l, it is noted that Hadamard
transformations are not necessary in the present proposal,
because the same results can be obtained when each agent
performs a measurement on his or her qubit in the basisu1l
andu2l, instead of a Hadamard transformation followed by a
measurement in the basisu0l and u1l, and then sends his or
her measurement resultu1l or u2l (one-bit classical mes-
sage) to the receiver(s).

Another point may need to be made here. As shown
above, Alice’s Bell-state measurement, Alice’s single-qubit
operation (Hadamard transformation/measurement), and
each agent’s operation are independently performed on dif-
ferent qubits. Therefore, like the method in[13,14], the
present proposal actually does not require the operating order
among Alice’s Bell-state measurement, Alice’s single-qubit
operation, and each agent’s operation.

Although we shall not attempt here a comprehensive
study of the security of the scheme against all possible forms
of eavesdropping and/or cheating, we believe that it is prob-
ably quite secure, for several reasons. First, the eavesdrop-
ping by entangling ancillary qubits with Bob’s qubits can be
revealed by comparing a subset of the states Bob received to
the ones Alice sent. Second, the qubits Alice sends to Bob
are basically useless without the classical information pos-
sessed by Alice. Hence, even if Eve were to intercept the
qubits intended for Bob and replace them by fakes and some-
how eavesdropped on the(classical) communication chan-
nels through which all the agents disclose to Bob their mea-
surement results, she would still not be able to recover the
message qubits’ original states without access to Alice’s clas-
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sical information (her measurement outcomes), given that
Alice sends her classical information to Bob using standard
quantum cryptography[14]. It is conceivable that an eaves-
dropper might obtain partial information by entangling
enough ancillary qubits with the qubits belonging to all the
agents and Bob, but presumably such entanglement could be
detected by tests conducted on “sample” EPR-GHZ en-
tangled states initially shared by Alice and the other parties.

In summary, we have presented a new method for tele-
porting multiqubit quantum information from a sender to a
distant receiver via the control of many agents in a network.
A special feature of ourentangling quantum information
concept is that to implement a control of multiqubit quantum
information teleportation, the present scheme needs to assign
only one qubit to each agent, followed by every agent per-
forming only one Hadamard transformation and one mea-
surement, and then sending only one-bit classical message to
the receiver. As a result, the required auxiliary qubit re-
sources, the number of local operations, and the quantity of

classical communication are greatly reduced in the present
proposal. The method presented here can also be extended to
implement a multiparty controlled teleportation of multiple
qubit-string quantum information to many distant receivers.
We believe that our scheme is of considerable interest, espe-
cially because of its relatively straightforward nature in real-
izing simultaneous control of multiqubit quantum informa-
tion teleportation in an efficient and simple manner.
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