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Abstract

My dissertation consists of three chapters. Chapters 1 and 2 both address extensions

to existing monotone comparative statics results for constrained optimization prob-

lems using lattice programming techniques. Chapter 3 applies monotone comparative

statics results to the question how environmental regulation affects investment in in-

novation in imperfectly competitive markets.

Generally we can distinguish between two types of comparative statics problems. The

first type of problem considers the change of the optimal solution to a maximization

problem as the objective function changes, the other type considers the change due to

a change in the constraint set. Lattice-based comparative statics theorems have been

developed for both types of problems in the literature. The strengths of these lattice-

theoretic comparative statics results are that they don’t depend on the usual smooth-

ness, interiority and concavity assumptions as required by the classical approach based

on the Implicit Function Theorem, as well as convexity of the constraint set. More-

over, these comparative statics results also apply in the case of non-unique solutions.

Quah (2007) expanded existing results by Milgrom and Shannon (1994) by making

them applicable to some non-lattice constraint sets. In the first chapter, I extend exist-

ing comparative statics theorems to parametrized objective functions and non-lattice

constraint sets. This generalization makes it possible to analyze a variety of economic

optimization problems that fall into this class of problems which cannot be addressed

using existing lattice-based techniques. I provide examples from consumer theory,

producer theory and environmental economics that show the result’s broad scope of

applications.
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The second chapter studies monotone comparative statics with respect to price changes

in the consumer’s utility maximization problem. Most attempts to derive this property

rely on aspects of the demand curve, and it has been hard to derive this property using

assumptions on the primitive utility function. Using new results on the comparative

statics of demand in Quah (2007), I provide simple and easy conditions on utility

functions that yield the gross substitutes property. Quah (2007) provides conditions

on utility functions that yield normal demand. I add an assumption on elasticity of

marginal rate of substitution, which combined with Quah’s assumptions yields gross

substitutes. I apply this assumption to the family of constant elasticity of substitution

preferences.

My approach is grounded in the standard comparative statics decomposition of a

change in demand due to a change in price into a substitution effect and an income

effect. Quah’s assumptions are helpful to sign the income effect. Combined with the

elasticity assumption, we can sign the overall effect. As a by-product, I also present

conditions which yield the gross complements property.

Chapter 3 is an application of monotone comparative statics results to the question how

environmental regulation affects incentives for R&D investment. For decades, there

has been debate among economists whether environmental regulation hurts firms by

restricting their choices or provides them with a comparative advantage through in-

vestment in innovation in more efficient technology. This chapter studies the effect of

environmental regulation on firms’ investment in R&D in imperfectly competitive out-

put markets using a monotone comparative statics approach. I provide necessary and

sufficient conditions on the profit function that guarantee nondecreasing R&D invest-

ment as regulation is tightened and find that a form of weak complementarity between

environmental R&D investment and the policy variable plays a crucial role. Moreover,

I provide properties of such profit functions through assumptions on demand, Cournot

output and cost functions.
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Chapter 1

Extending the Scope of Monotone

Comparative Statics Results

1.1 Introduction

Comparative statics of constrained optimization problems is a question at the heart of economic

analysis. Oftentimes we are not only interested in the optimizers of the problem themselves, but

also how they will be affected by changes in exogenous parameters. Generally, we distinguish

between two types of comparative statics problems. The first type of problem considers the change

of the optimal solution to a maximization problem as the objective function changes, the other type

the change due to changes in the constraint set.

Comparative statics theorems based on lattice programming methods have been developed for

both types of problems. The strengths of these results are that they don’t depend on the usual

smoothness, interiority and concavity assumptions as required by the classical approach based

on the Implicit Function Theorem, as well as convexity of the constraint set. Moreover, these

comparative statics results also apply in the case of non-unique solutions.

Based on Topkis (1978), Vives (1990) and Milgrom and Roberts (1990) use a lattice-based

approach to establish monotone increasing best responses in games with strategic complements
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under the cardinal assumptions of supermodularity and increasing differences on the objective

function when strategy spaces are lattices. Milgrom and Roberts (1990) also focus on monotone

comparative statics results under these cardinal assumptions in supermodular games. Milgrom and

Shannon (1994) then extend these results to the ordinal case. They provide necessary and suffi-

cient conditions on the primitives for nondecreasing solutions in the parameters of the problem,

generalizing the previously used cardinal counterparts. In many cases however, constraint sets in

economic optimization problems, such as the budget set in the consumer problem, are not lattices

and therefore Milgrom and Shannon’s result cannot be applied. Quah (2007) addresses these types

of problems and develops comparative statics with respect to changes in non-lattice constraint sets.

His result provides necessary and sufficient conditions for nondecreasing solutions using a weaker

set order, that in particular, can be used to establish normality of demand under assumptions on the

utility function.

The contribution of this chapter is that it extends Quah’s result to include both non-lattice

constraint sets and parametrized objective functions. The result shows its power through many

applications.

Quah (2007) generalizes the monotonicity theorem of Milgrom and Shannon (1994) to some

types of non-lattice constraint sets, i.e. the consumer’s budget set. However, his result does not

address comparative statics with respect to parameters in the objective function. In economics, we

naturally encounter a variety of questions that involve parameter changes in the objective function,

such as changes in consumer preferences or technology shocks that affect production costs, when

the constraint sets are not lattices. My result extends Quah’s work to these types of optimization

problems by including parametrized objective functions.

Importantly, this generalization allows us to analyze a variety of economic optimization prob-

lems that fall into this class of problems which cannot be addressed using existing lattice-based

techniques. A natural example from consumer theory is the consumer’s utility maximization prob-

lem with Stone-Geary preferences. The question, how income and essential consumption basket

changes affect consumer demand, for example, cannot be addressed by existing results.
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My comparative statics theorem provides necessary and sufficient conditions for nondecreasing

demand in this case. Moreover, I can use this comparative statics result to generalize known lattice-

based versions of the LeChatelier principle, that expresses the idea that long run factor demand is

more responsive to price changes than in the short run. In producer theory, my result can be applied

to multiple-plant production problems and price discrimination with capacity constraints to answer

the question when production quantities are nondecreasing in demand or cost parameters and the

constraint set. Many other applications can be found in the area of environmental economics

such as production regulation through emissions standards and cost-efficient emissions regulation.

Here the result provides necessary and sufficient conditions for nondecreasing factor demand or

emissions reduction as demand, cost parameters and emissions standards change.

The remainder of this chapter is organized as follows: Section 2 introduces the theoretical

framework, section 3 gives the generalized monotone comparative statics results and section 4

provides a variety of applications.

1.2 Preliminaries

Monotone comparative statics results rely on order theoretical concepts from lattice theory. A

lattice X is a partially ordered set in which any two elements x and y have a supremum (x∨ y)

and an infimum (x∧ y). To obtain monotone comparative statics results with respect to changes

in the constraint set we need to be able to order these sets. Milgrom and Shannon (1994) uses

the strong set order by Veinott (1989), while Quah (2007) introduces a weaker concept to extend

the comparative statics results from Milgrom and Shannon (1994) to problems with non-lattice

constraint sets. This case is easily encountered even in simple optimization problems like the

consumer’s utility maximization problem.
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Definition 1. Set Orders

1. Strong Set Order

Let X be a lattice and consider two subsets S and S′. Then S′ dominates S in the strong set

order (S′ ≥S S) if and only if for all x ∈ S and for all y ∈ S′, x∧ y ∈ S and x∨ y ∈ S′.

2. (∆,∇)-induced Strong Set Order

Let X be a partially ordered set and consider two non-empty subsets of X , S and S′. The

operations ∆ and ∇ induce the following set order on S and S′. S′ dominates S by the (∆,∇)-

induced strong set order (S′ ≥∆,∇ S) if and only if for all x ∈ S and for all y ∈ S′, x∆y ∈ S and

x∇y ∈ S′.

3. Ci (C)-flexible Set Order

Let X ⊆ Rl be a convex set and define the operations ∇λ
i and ∆λ

i on X as follows for λ

in [0,1]:

x∇λ
i y =


y i f xi ≤ yi

λx+(1−λ )(x∨ y) i f xi > yi

x∆λ
i y =


x i f xi ≤ yi

λy+(1−λ )(x∧ y) i f xi > yi

(a) Let S′ and S be subsets of the convex sublattice X . Then S′ dominates S in the Ci-

flexible set order (S′ ≥i S) if for any x in S and y in S′, there exists (∇λ
i ,∆

λ
i ) in Ci such

that x∇λ
i y is in S′ and x∆λ

i y is in S.

(b) S′ dominates S in the C-flexible set order (S′ ≥ S) if S′ ≥i S for all i.

4



To add some intuition graphically to the operations ∇λ
i and ∆λ

i , the points x, y, x∆λ
i y and x∇λ

i y

form a backward-bending parallelogram instead of the rectangle generated by x, y and their join

and meet (see Figure 1.1). Notice that x∆λ
i y and x∇λ

i y are linear combinations of y and x∧ y or

x∧ y and x respectively. As λ increases from 0 to 1, x∆λ
i y moves from x∧ y towards y. Likewise,

increasing λ moves x∇λ
i y closer to point x.

Figure 1.1: Ci-flexible set order

Quah (2007) describes the requirements of the Ci-flexible set order as that for any pair of

unordered points x ∈ S and y ∈ S′, we can find x∆λ
i y and x∇λ

i y such that x∆λ
i y is in S and x∇λ

i y is

in S′, with the four points forming a backward-bending parallelogram.

Besides an order on the constraint sets, we also need assumptions on the objective function

for monotone comparative statics. The monotonicity theorem in Milgrom and Shannon (1994)

requires quasisupermodularity, which can be interpreted as weak complementarity between the

choice variables. Quah (2007) introduces a similar property needed when extending Milgrom and

Shannon’s result to a non-lattice context.
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Definition 2. (∆,∇)-(Quasi)Supermodularity

Let X , T be partially ordered sets and let ∆ and ∇ be two operations on X . Consider a function

f : X → R. Then define the following properties for f :

1. f is (∆,∇)-supermodular if for all x,y ∈ X , f (x∇y)− f (y)≥ f (x)− f (x∆y).

2. f is (∆,∇)-quasisupermodular if for all x,y ∈ X , f (x)≥ (>) f (x∆y) ⇒ f (x∇y)≥ (>) f (y).

Analogously to the previous case, Quah defines properties of a function f : X → R, where X ⊆ Rl

is a convex set, with respect to the operations ∇λ
i ,∆

λ
i .

Definition 3. Ci (C)-(Quasi)Supermodularity

1. A function is (∇λ
i ,∆

λ
i )-supermodular for some λ ∈ [0,1] if

f (x∇λ
i y)− f (y)≥ f (x)− f (x∆λ

i y) for all x, y in X .

2. A function f : X → R is Ci-supermodular if it is (∇λ
i ,∆

λ
i )-supermodular for all (∇λ

i ,∆
λ
i ) in

Ci = {(∇λ
i ,∆

λ
i ) : λ ∈ [0,1]}.

If f is Ci-supermodular for all i, then it is C-supermodular.

3. A function f : X → R is Ci-quasisupermodular if it is (∇λ
i ,∆

λ
i )-quasisupermodular for all

(∇λ
i ,∆

λ
i ) in Ci = {(∇λ

i ,∆
λ
i ) : λ ∈ [0,1]}, that is f (x)≥ (>) f (x∆λ

i y) ⇒ f (x∇λ
i y)≥ (>) f (y).

If f is Ci-quasisupermodular for all i, then it is C-quasisupermodular.

Intuitively, Definition 3 (1) requires the function’s value to increase more along the right side than

the left side of the parallelogram formed by these four points. Definition 3 (3) says that for all

possible parallelograms that can be formed based on x and y, if the function is nondecreasing

along the left side of the parallelogram, then it will also be nondecreasing along the right side.

Quah (2007) also shows that Ci-quasisupermodularity is implied by two properties that can

easily be verified. The first one is supermodularity, the other a form of concavity.

6



Definition 4. i-Concavity

A function f is i-concave if it is concave in direction v ∈ Rl for any v > 0 with vi = 0.

While Quah (2007) addresses comparative statics with regard to changes in the constraint set

using this framework, Milgrom and Shannon (1994) also include comparative statics with respect

to parameter changes in the objective function. Their result requires an additional assumption on

the objective function, which is that for a parametrized objective function, f : X×T →R, where X

is a lattice and T is a partially ordered set, f needs to satisfy the Single Crossing Property in (x, t).

To work in the more general, non-lattice context, I introduce new versions of the Single Crossing

Property to use throughout the remainder of the chapter.

Definition 5. Single Crossing Property

1. Standard Single Crossing Property

f satisfies the Single Crossing Property (SCP) if for every x≤ y and for every t ≤ t ′, f (y, t)≥

(>) f (x, t) ⇒ f (y, t ′)≥ (>) f (x, t ′).

2. (∆,∇)-Single Crossing Property

f satisfies the (∆,∇)-Single Crossing Property ((∆,∇)-SCP) if for every x,y with x≤(∆,∇) y

and for every t ≤ t ′, f (y, t)≥ (>) f (x, t) ⇒ f (y, t ′)≥ (>) f (x, t ′).

3. i- Single Crossing Property

f satisfies the i-Single Crossing Property (i-SCP) if for every x,y with xi ≤ yi and for every

t ≤ t ′, f (y, t)≥ (>) f (x, t) ⇒ f (y, t ′)≥ (>) f (x, t ′).

The standard Single Crossing Property is implied by increasing differences, which for twice con-

tinuously differentiable functions f is equivalent to ∂ 2 f
∂xi∂ t ≥ 0 for all i. The following proposition

shows how the i-SCP can be verified for the twice continuously differentiable case.

7



Proposition 1. Let f : Rl → R be twice continuously differentiable. Then f satisfies the i-SCP if

∂ 2 f
∂xi∂ t ≥ 0 and ∂ 2 f

∂x j∂ t = 0 for all j 6= i.

Proof. Let f :Rl→R be twice continuously differentiable. If f is “nice”, then on R1 for an interval

[a,b], the fundamental theorem of calculus gives us F(b)−F(a) =
´ b

a f (λ )dλ with f (λ ) = F ′(λ ).

Suppose x and y ∈ Rl with xi ≤ yi. Let z(λ ) = λy+(1−λ )x, λ ∈ [0,1]. Then f (x) : Rl → R and

f (z(λ )) : R1→ R.

We can then write f (y, t)− f (x, t) = f (z(1), t)− f (z(0), t) =
´ 1

0
d f
dλ

dλ .

As d f
dλ

= ∂ f
∂x1
· ∂x1

∂λ
+ ∂ f

∂x2
· ∂x2

∂λ
+ ...+ ∂ f

∂xl
· ∂xl

∂λ
,

f (y, t)− f (x, t) =
´ 1

0 (
∂ f
∂x1
· ∂x1

∂λ
+ ∂ f

∂x2
· ∂x2

∂λ
+ ...+ ∂ f

∂xl
· ∂xl

∂λ
)dλ

and suppose f (y, t)− f (x, t) ≥ 0 for every x,y with xi ≤ yi. Differentiating this difference with

respect to t yields

d ( f (y,t)− f (x,t))
dt =

´ 1
0 (

∂ 2 f
∂xi∂ t ·

∂xi
∂λ

+∑i6= j
∂ 2 f

∂x j∂ t ·
∂x j
∂λ

)dλ .

Under the assumptions that ∂ 2 f
∂xi∂ t ≥ 0 and ∂ 2 f

∂x j∂ t = 0 for all j 6= i, d ( f (y,t)− f (x,t))
dt ≥ 0, which implies

the i−SCP.

1.3 Comparative Statics

Let f : X×T →R, where X is a set, T is a partially ordered set and S⊂ X . Consider the following

general constrained optimization problem:

max f (x, t) subject to x ∈ S

For convenience, denote M(t,S) := argmax
x∈S

f (x, t).

The main theorem of this chapter generalizes the main monotone comparative statics result in

Quah (2007) for optimization problems with constraint sets that can be ordered by the Ci-flexible

set order to problems with parametrized objective functions. I provide necessary and sufficient
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conditions for nondecreasing optimal solutions for parameter changes in the objective function

and the above mentioned type of constraint sets; thus the main theorem of the chapter provides

conditions on the objective function that characterize nondecreasing optimal solutions. The proofs

follow Milgrom and Shannon (1994) with some simple modifications.

Theorem 1. Let f : X ×T → R, where X ⊂ Rl , T is a partially ordered set and S ⊂ X . f (x, t)

is Ci-quasisupermodular and has the i-Single Crossing Property in (x, t) if and only if whenever

S′ ≥i S and t ′ ≥ t, argmax
x∈S′

f (x, t ′)≥i argmax
x∈S

f (x, t).

Proof. (⇒) Suppose S′ ≥i S for t ′ ≥ t and let x ∈M(t,S), y ∈M(t ′,S′). As x ∈M(t,S) and S≤i S′,

f (x, t)≥ f (x∆λ
i y, t). By Ci-quasisupermodularity of f , this implies f (x∇λ

i y, t)≥ f (y, t) with xi > yi.

As f also has the i-Single Crossing Property in (x, t), f (x∇λ
i y, t)≥ f (y, t) ⇒ f (x∇λ

i y, t ′)≥ f (y, t ′)

for t ′ ≥ t. Since y ∈M(t ′,S′) it follows that x∇λ
i y ∈M(t ′,S′).

Now suppose x∆λ
i y /∈M(t,S) and hence f (x, t)> f (x∆λ

i y, t). Ci-quasisupermodularity of f implies

f (x∇λ
i y, t) > f (y, t) and by the i-Single Crossing Property it follows that f (x∇λ

i y, t ′) > f (y, t ′)

for any t ′ ≥ t. This contradicts the assumption that y ∈ M(t ′,S′). Therefore, x∆λ
i y ∈ M(t,S) and

M(t,S)≤i M(t ′,S′).

(⇐) Fix t. Let x and y be two elements in X and suppose that f is not Ci-quasisupermodular for

some λ ∗ ∈ [0,1]. The only case we need to look at is when xi > yi and x and y are unordered. Also,

x∆λ ∗
i y 6= x and x∇λ ∗

i y 6= y. Let S = {x,x∆λ ?

i y} and S′ = {y,x∇λ ?

i y}. Then S′ ≥i S.

Ci-quasisupermodularity of f can be violated in two ways. First, suppose f (x, t)≥ f (x∆λ ∗
i y, t), but

f (x∇λ ∗
i y, t)< f (y, t). In this case x is a maximizer of f in S and y maximizes f uniquely in S′, which

violates the i-increasing property (since xi > yi). Alternatively, suppose f (x, t) > f (x∆λ ∗
i y, t), but

f (x∇λ ∗
i y, t) = f (y, t). Now y maximizes f in S′ while x is the unique maximizer in S. This again

contradicts the i-increasing property. So f is Ci-quasisupermodular.

Now let S≡ {x, x̄} with xi ≤ x̄i. Then f (x̄, t)− f (x, t)≥ 0 implies x̄ ∈M(t,S). Since we know that

M(t,S)≤i M(t̄,S) for t̄ ≥ t it follows that f (x̄, t̄)− f (x, t̄)≥ 0 for all t̄ ≥ t .

9



Moreover, f (x̄, t)− f (x, t)> 0 implies that x̄ ∈M(t,S) and is unique. Since M(t,S)≤i M(t̄,S) for

t̄ ≥ t it follows that f (x̄, t̄)− f (x, t̄)> 0 for all t̄ ≥ t . Thus f has the i-Single Crossing Property.

Notice that the solution to the optimization may not be unique, as I have made no assumptions

to guarantee uniqueness. In the case of a solution set, argmax
x∈S′

f (x, t ′) dominates argmax
x∈S

f (x, t)

in the Ci-flexible set order. By Proposition 3 in Quah (2007), this implies that argmax
x∈S′

f (x, t ′) is

i−higher1 than argmax
x∈S

f (x, t) .

Similarly, consider the general case, where ∆ and ∇ are two operations on X . This result gives

necessary and sufficient conditions for nondecreasing optimal solutions using the (∆,∇)-Single

Crossing Property for operations ∆ and ∇ on X .

Theorem 2. f (x, t) is (∆,∇)-quasisupermodular and has the (∆,∇)-Single Crossing Property in

(x, t) if and only if whenever S′ dominates S in the (∆,∇)-induced set order (S′ ≥(∆,∇) S ) for t ′ ≥ t,

argmax
x∈S′

f (x, t ′)≥(∆,∇) argmax
x∈S

f (x, t) (argmax
x∈S

f (x, t) is nondecreasing in (t,S)).

Proof. See Appendix A.

To demonstrate the applicability of his result, Quah (2007) also shows that his new concept of

Ci-supermodularity arises from the combination of supermodularity and a form of concavity, two

assumptions that are reasonable under many circumstances.

Proposition 2. (Quah)

The function f : X → R is Ci-supermodular if it is supermodular and i-concave.

This proposition allows us to easily verify Ci-supermodularity, which is important in applica-

tions. While Quah’s result is able to address problems with non-lattice constraint sets, the number

of applications remains limited as it does not include commonly occurring parametrized objective
1Quah (2007) defines that a set S′ is i-higher than a set S, if whenever both sets are nonempty, for any x ∈ S there

exists x′ ∈ S′ such that x′i ≥ xi and for any x′ ∈ S′ there exists x ∈ S such that x′i ≥ xi.
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functions. My monotone comparative statics theorem is able to address these types of problems

and opens the door to a variety of applications.

1.4 Applications

Applications for my monotone comparative statics result can be found in many different areas of

economics. In consumer theory, parametrized utility functions such as Stone-Geary preferences

are very natural applications. I also provide a lattice-based LeChatelier Principle that generalizes

existing versions and an example regarding an individual’s labor supply. Multi-plant production

allocation and price discrimination with capacity constraints are examples from producer theory.

Finally, many applications can also be found in environmental economics, i.e. production decisions

and technological change under emissions standards, the effect of changes in the ethanol quota and

the cost-efficient emissions allocation.

1.4.1 Parametrized Consumer Utility Maximization Problem

The standard utility maximization problem as discussed in Quah (2007) can be extended by para-

metrization of the utility function by some parameter θ . The parameter vector of this problem is

multidimensional, t = (θ ,w).

As shown in Quah (2007), the budget set for w′ ≥ w does not dominate the initial one by

the strong set order, because the join of two arbitrary elements may lie outside of the larger set.

However, B(p,w′) does dominate the smaller budget set B(p,w) in the C-flexible set order as

illustrated in Figure 1.2. We see that for any (unordered) pair of x ∈ B(p,w) and y ∈ B(p,w′),

we can find some λ ∈ [0,1] such that the points x, y, x∆λ
i y and x∇λ

i y form a backwards bending

parallelogram with x∆λ
i y in the smaller budget set and x∇λ

i y in the larger budget set.2

For my comparative statics theorem to apply, the utility function needs to satisfy Ci-quasisuper-

modularity and the i-Single Crossing Property. If these conditions are satisfied, by Theorem 1, we

2The case of ordered x and y is trivial, therefore limit attention to the unordered case.
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Figure 1.2: Budget set

have nondecreasing solutions to the consumer’s utility maximization problem.

The class of Stone-Geary utility functions is an example of such parametrized utility functions

and in the following possible interpretations of the parameter θ will be discussed.

Example 1. Stone-Geary Utility

Consider utility functions of the form u(x) = ∑
n
i=1 αi log(xi− bi) with αi > 0, xi− bi > 0 and

∑
n
i=1 αi = 1. In this class of utility functions, the parameters b1, ...,bn can be interpreted as a nec-

essary consumption basket. An interesting question in this context is how the consumer’s demand

for a good changes when his income and also his necessary consumption basket increase. Thus,

t = (b,w) ≤ t ′ = (b′,w′). Theorem 1 readily provides comparative statics results for this case.

We can easily check that u is Ci-quasisupermodular3 and satisfies the i-Single Crossing Property.4

Thus, since B(p,w′)≥i B(p,w), my result guarantees nondecreasing demand for good i as income

and necessary consumption basket go up. Notice that this comparative statics result also applies

for changes in the parameter vector b only. Then my theorem yields nondecreasing demand in

b as income remains unchanged. This type of comparative statics could not have been analyzed

using earlier lattice-based results, as Milgrom and Shannon (1994) does not apply in cases where

the constraint set is not a lattice, and Quah (2007) does not consider parameter changes in the

3u is Ci-quasisupermodular if it is supermodular and i-concave. In this case, I see that u is supermodular since
∂ 2u

∂xi∂x j
= 0, ∀i, j, i 6= j. Moreover, u is i-concave as ∂ 2u

∂x2
j
=− α j

(x j−b j)2 ≤ 0, ∀ j 6= i.

4 ∂ 2u
∂xi∂bi

= αi
(xi−bi)2 ≥ 0 , ∂ 2u

∂x j∂bi
= 0
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objective function.

An application of Stone-Geary preferences can be found in Harbaugh (1998), that analyzes the

prestige motive behind charitable donations. His paper considers two possible types of benefits

to the donor, intrinsic benefit and prestige benefit. His utility hence depends on the amount of the

public good x that he consumes, prestige p and amount donated d. The donor’s utility maximization

problem can then be written as

max u(x, p,d) = logx+blog(p+ k1)+ c log(d + k2)

subject to the budget constraint x+qd ≤ w, where q is the after-tax price of giving and k1 and k2

are non-negative constants that capture how much the individual values prestige and his intrinsic

benefit. In the framework of the above discussion of Stone-Geary utility, −k1 and −k2 are the

necessary amounts of prestige and intrinsic benefit for the donor. The amount of prestige resulting

from a donation depends on how charities report donations and how society converts these reports

into prestige. Harbaugh (1998) considers different reporting schemes by the charities, one of which

is exact reporting. In this case, prestige is equal to the amount donated (p = d). The optimization

problem can then be simplified to two variables of choice, the amount of the public good x and the

donation d. The main comparative statics question that Harbaugh’s paper wants to address is the

impact of the prestige motive on donations, but it also provides results for the effect of income.

Notice that the question how a person’s increased preference for prestige affects the amount

donated cannot be addressed using existing monotone comparative statics results. Milgrom and

Shannon’s monotonicity theorem applies to parameter changes in the objective functions when the

constraint set is a lattice, which this budget set clearly is not. Quah’s result is able to address the

isolated effect of an income change, but does not apply to parameter changes in the utility function

and hence cannot answer the question regarding the prestige motive for donations.

My comparative statics theorem however is able to address parameter changes in the objective

function when constraint sets are not lattices. As shown above, this class of utility functions sat-

isfies Ci-quasisupermodularity and has the i-SCP in −ki. Since B(q,w′) ≥i B(q,w), the optimal
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donation is nondecreasing in w and −ki by Theorem 1. Hence, if a person puts more emphasis on

prestige (i.e. −k1 increases) as his wealth increases, my comparative statics result yields nonde-

creasing donations, which is what the empirical analysis in Harbaugh (1998) concludes as well.

We see from the data in his paper, that the model with the higher parameter estimate for pres-

tige preference predicts higher donations and more donations as income increases. Overall, the

theoretical predictions of my result are supported by the empirical findings in Harbaugh (1998).

1.4.2 LeChatelier Principle

Example 2. The LeChatelier principle in economics expresses the idea that long run demand is

more responsive to price changes than demand in the short run. For example, consider the impact

of an input price reduction on a firm’s demand for that particular input. The LeChatelier principle

now says, that the demand increase in the short run, when some factors of production are fixed,

is smaller than the increase in the long run, when all factors can be adjusted freely. Milgrom and

Roberts (1996) introduces a lattice-theory based global LeChatelier principle, which is extended

to additional classes of constraints faced by the firm in the short run in Quah (2007).

Quah (2007) points out the two different types of comparative statics problems associated with

the short run and long run factor demand adjustment following a price change. In the short run,

the firm’s objective function changes while the constraint set, based on the optimal point before

the price change, stays the same. Between the short run and the long run, the objective function

remains the same, but the short run constraints no longer exist; hence the constraint set changes.

Thus consider the following two increases of the parameter vector t = (θ ,S), consisting of the

cost parameter θ and the constraint set S. In the short run, t increases to t ′ = (θ ′,S)≥ t, as the cost

parameter changes. As the constraint set changes in the long run, the parameter vector increases

again from t ′ to t ′′ = (θ ′,S′).

The firm’s objective function can be written as π(x,θ) = V (F(x))−C(x,θ), where x is the

firm’s input vector, F(x) its production function and V the revenue from output. Quah (2007)

specifies the firm’s cost function as C(x,θ) = p · x− θx1, where p denotes the input price vector

14



and θ > 0 is the considered price reduction for input 1. In the short run the firm faces constraints,

since not all inputs can be varied without costs. Thus, this constraint set S needs to include the

pre-price change optimal input vector x∗. So, S = {x ∈ Rl
+ | x∗ ∈ S}. Therefore the short run

adjustment from x∗ to x∗∗ is a comparative statics problem where the parameter θ in the objective

function changes, but the constraint set remains unchanged at S. In the long run the change of the

constraint set from S to S′ leads to the change in input demand from x∗∗ to x∗∗∗.

The proof of the following proposition is in parts similar to the proof of Proposition 8 in Quah

(2007).

Proposition 3. Let x∗ maximize π(x,θ) subject to x∈Rl
+. Suppose also, x∗∗ and x∗∗∗ are solutions

to the problems

1. maximize π(x,θ ′) subject to x ∈ S and

2. maximize π(x,θ ′) subject to x ∈ S′ = Rl
+

where θ ′ ≥ θ .

Then x∗∗∗i ≥ x∗∗i ≥ x∗i if π is Ci-quasisupermodular, satisfies the i-Single Crossing Property and

Xs = {x ∈ Rl
+ | x≥ s for some s ∈ S} ≥i S.

Proof. First consider the increase from t = (θ ,S) to t ′ = (θ ′,S). Since π is Ci-quasisupermodular,

satisfies the i-Single Crossing Property and the constraint set remains unchanged, x∗∗i ≥ x∗i by

Theorem 1.

Now t ′ increases to t ′′ = (θ ′,S′). Given that π is Ci-quasisupermodular, has the i-SCP and

argmaxx∈S′ π(x,θ ′) exists, there is x̄ ∈ argmaxx∈S′ π(x,θ ′) such that x̄≥ x∗.

Since x∗ ∈ S, x̄ ∈ argmaxx∈Xs π(x,θ ′). Moreover, we know that x∗∗ ∈ argmaxx∈S π(x,θ ′).

Since XS ≥i S, by Theorem 1 there is x∗∗∗ ∈ argmaxx∈XS π(x,θ ′) such that x∗∗∗i ≥ x∗∗i .

Lastly, x∗∗∗ ∈ argmaxx∈S′ π(x,θ ′), because x̄ ∈ XS and x̄ ∈ argmaxx∈S′ π(x,θ ′).
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We can easily check that the above objective function is Ci-quasisupermodular if V ◦F is Ci-

quasisupermodular. In the case of a perfectly competitive output market, this is the case when all

inputs are complementary to each other and the production function displays decreasing marginal

product for each input.5 Moreover, the objective function needs to satisfy the i-SCP. This is the case

whenever marginal costs of production are nonincreasing in θ and the cost function is additively

separable.6

The advantages of this version of the LeChatelier principle are that like Milgrom and Roberts

(1996), it allows for more general parameter changes than Quah (2007) (who only considers the

very specific case described above) while also permitting larger classes of constraint sets than

Milgrom and Roberts (1996) like Quah (2007). The result in Milgrom and Roberts (1996) is

limited to constraint sets S and XS that can be ranked in the strong set order. This is the case, for

example, when certain inputs are held constant in the short run. Quah (2007) however allows for

more general, economically plausible constraint sets. For example, suppose there is one good that

serves different roles in the production process and is therefore considered as several inputs. If in

the short run, the total quantity used of these inputs cannot be changed, the constraint set can be

written as S = {x ∈ Rl
+ | ∑xi = ∑

l
i=m x∗i }. In this case, XS and S cannot be ranked by the strong set

order; however, XS dominates S in the C-flexible set order.

5For supermodularity, I need ∂ 2π

∂xi∂x j
= ∂

∂x j
( ∂V

∂F ·
∂F
∂xi

)≥ 0. Assuming a perfectly competitive output market, ∂V
∂F = P,

where P is the market price of output. Then ∂ 2π

∂xi∂x j
= P · ∂ 2F

∂xi∂x j
, which is nonnegative if ∂ 2F

∂xi∂x j
≥ 0.

For i-concavity in the simple two goods case with a linear cost function, I need ∂ 2π

∂x2
j
=≤ 0, for all j 6= i. In a perfectly

competitive environment, ∂ 2π

∂x2
j
= P · ∂ 2F

∂x2
j
, which is nonpositive if ∂ 2F

∂x2
j
≤ 0. In the general case, I need to verify that the

Hessian of the production function, HF
−i, is negative semi-definite and that the Hessian of the cost function, HC

−i, is
positive semi-definite.

6The i-SCP is satisfied if ∂ 2π

∂xi∂θ
= − ∂ 2C(x,θ)

∂xi∂θ
≥ 0 and the cost function is additively separable. This is the case

whenever ∂MC(x,θ)
∂θ

≤ 0.
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1.4.3 Labor Supply with Discrete Choices

Example 3. Another application of my comparative statics result is an individual’s labor supply

decision. In the microeconomic labor supply model, an individual maximizes utility coming from

income on the one hand and leisure time on the other hand while being constrained by the maxi-

mum amount of working hours.

Let h and l denote working and leisure hours respectively and let w be the wage rate, Ī non-

labor income and T̄ the time available to the individual.7 Then the utility maximization problem

can be written as

max u(wh+ Ī, l)

subject to h+ l ≤ T̄

Originally, labor supply models assumed that the individual’s constraint set is convex, that

is they choose from the continuum of working hours (see for example Hausman (1981)). More

recent works, starting with Aaberge, Dagsvik and Strøm (1995), van Soest (1995) and Hoynes

(1996), use a discrete choice model, where the individual chooses between different income-leisure

combinations. As van Soest (1995) points out, hours worked is always an integer in the data and

therefore a choice set where work-leisure combinations that are integers is a natural choice. So in

the following, let S = {(h, l) ∈ N0×N0 | h+ l ≤ T̄}.

Comparative statics questions of interest in this model are how changes in wage, non-labor

income or time endowment affect the labor supply. To apply Theorem 1, we need to verify that

u is Ci-quasisupermodular and satisfies the i-SCP in the respective variable and parameter. The

former is satisfied whenever u is supermodular and i-concave, that is ∂ 2u
∂ l∂h ≥ 0, ∂ 2u

∂h∂ l ≥ 0, ∂ 2u
∂h2 ≤ 0

and ∂ 2u
∂ l2 ≤ 0. u has the i-SCP in (h,w) if ∂ 2u

∂h∂w ≥ 0 and ∂ 2u
∂ l∂w = 0 and similarly for the other variable

and parameters. Moreover, even though the constraint set consists of discrete points, we can still

order S(T̄ ) and S(T̄ ′) with T̄ ≤ T̄ ′ in the Ci-flexible set order.

7Assume that h, l, w, Ī, T̄ ≥ 0
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Hoynes (1996), for example, uses a Stone-Geary utility function. For

u(wh+ Ī, l) = α1 ln(wh+ Ī)+α2 ln(l) with α1,α2 ≥ 0,

we can easily check that u is supermodular and i-concave.8 u also satisfies the i−SCP in (h,−Ī).9

Thus labor supply increases as non-labor income decreases. Moreover, we can verify that u also

satisfies the i-SCP in (h,w).10 Hence these preferences suggest that labor supply increases in the

wage rate.

Notice that the existing monotone comparative statics results cannot be applied in this case.

Milgrom and Shannon (1994) addresses changes of parameters in the objective function such as

wage or non-labor income in this example, however their result requires the constraint set to be a

lattice, which this constraint set is not. Quah (2007) can address changes in this type of constraint

set, however his result does not account for parameter changes in the objective function.

1.4.4 Multiple-Plant Production

Example 4. Another example that my comparative statics result can be applied to is production

allocation in a multiple-plant firm. Basic two firm models can be found in Patinkin (1947) and

Sattler and Scott (1982). In the latter, the firm is allocating production of a given production target

q̄ between an old and a new plant, where the new plant has lower costs than the old one. The firm

faces the following cost minimization problem:

min C(qnew,qold) =Cnew(qnew)+Cold(qold)

subject to qnew +qold ≥ q̄.

Both Patinkin (1947) and Sattler and Scott (1982) mostly focus on the “broken” marginal cost

curve as the firm switches from only operating one plant to both plants as total output increases. My

8u is supermodular as ∂ 2u
∂ l∂h = ∂ 2u

∂h∂ l = 0 and i-concave since ∂ 2u
∂h2 =−α1

w2

(wh+Ī)2 ≤ 0 and ∂ 2u
∂ l2 =−α2

1
l2 ≤ 0

9 ∂ 2u
∂h∂ (−Ī) = α1

w
(wh+Ī)2 ≥ 0, ∂ 2u

∂ l∂ (−Ī) = 0
10 ∂ 2u

∂h∂w = α1
I

(wh+Ī)2 ≥ 0, ∂ 2u
∂ l∂w = 0
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comparative statics theorem on the other hand adds more general insights under what assumptions

on the cost function exogenous changes will lead to increased production in both plants (in the

case that both of them are in use).

Since we are interested in comparative statics results, I include parameters ωnew and ωold in the

cost functions that measure the level of technology (with ∂MCi
∂ωi
≤ 0) and rewrite the problem as

max C̃(qnew,qold,ωnew,ωold) =−[Cnew(qnew,ωnew)+Cold(qold,ωold)]

subject to qnew +qold ≥ q̄.

Now consider a situation where production technology in the old plant gets updated and the

firm increases its total production target. Hence, t ′ = (ω ′new,ω
′
old, q̄

′)≥ t, where t ′ is the new and t

the initial parameter vector.

Since the constraint sets are not lattices, the comparative statics result by Milgrom and Shannon

(1994) does not apply here. The result in Quah (2007), while allowing for non-lattice constraint

sets, does not address parameter changes in the objective function. My result on the other hand is

able to handle these types of problems.

We easily see that the new constraint set S(q̄′) dominates the original one S(q̄) in the Ci-flexible

set order. Assuming that the cost function at each plant is convex in quantity, the objective function

is Ci-quasisupermodular and satisfies the i-SCP for all i.11 As a result, my comparative statics

theorem yields nondecreasing optimal production quantities for either plant in this case.

11C̃ is Ci-quasisupermodular if it is supermodular and i-concave. As each cost function is independent of the quantity
produced at the other plant, ∂ 2C̃

∂qi∂q j
= 0 for i 6= j, thus C̃ is supermodular. Moreover, assuming convex cost functions,

∂ 2C̃
∂x2

i
≤ 0 for all i. Thus C̃ is Ci-quasisupermodular for all i.

Additionally, since marginal cost is nonincreasing in ωi at both plants, ∂ 2C̃
∂xi∂ω j

=− ∂MCi
∂ω j

= 0 for i 6= j and
∂ 2C̃

∂xi∂ωi
=− ∂MCi

∂ωi
≥ 0, ∂ 2C̃

∂x j∂ωi
= 0 for all i. Therefore the i-SCP holds.

19



1.4.5 Price Discrimination with Capacity Constraints

Example 5. Another simple application of my comparative statics result can be found in the area

of price discrimination with capacity constraints. In the airline and lodging industries, this problem

is known as yield management. Belobaba (1987) summarizes yield management research in the

airline industry; for examples from the lodging industry, see Hanks, Cross and Noland (1992).

Reece and Sobel (2000) discusses the example of an airline that practices price discrimination

while facing a capacity constraint12 and addresses the question how airlines should adjust the

allocation of seats between the customer groups as demand in one of the market segments increases

or if costs of operation increase. They separately consider the cases of fixed non-binding and

binding capacity, as well as the possibility of capacity adjustment. They find that in the case of

non-binding capacity constraints changes in the marginal cost of operation directly affect prices and

optimal quantities. In the case of binding capacity constraints, as long as marginal cost is below

the point of intersection of the marginal revenue curves, changes in marginal cost do not affect

the optimal capacity allocation; demand changes for one group however influence the optimal

quantity and price of the other group. If the firm also optimally chooses capacity in the long run,

prices will only rise or fall in the long run if marginal cost changes as capacity is adjusted. With my

comparative statics result, I can easily address a variety of combinations of the above mentioned

scenarios.

Consider an airline that price-discriminates between two groups of customers, i.e. business and

leisure travelers. Since the number of seats on a plane is limited, the airline faces the following

constrained profit maximization problem:

max π = pL(qL,φL) ·qL + pB(qB,φB) ·qB−CL(qL,ωL)−CB(qB,ωB)

subject to qL +qB ≤ q̄

Since we are interested in comparative statics, the demand functions and the cost function

have been parametrized. φL and φB capture exogenous demand shocks such as holiday travel
12This multiple fare class problem is also briefly discussed in Belobaba (1989).
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or vacation time with ∂ pi
∂φi
≥ 0 for i = L,B. The cost function parameters ωL and ωB account for

changes in transportation cost inputs such as fuel prices and assume marginal cost of transportation

is nonincreasing in ωL and ωB. Moreover, assume linear demand functions with ∂ pi
∂q j
≥ 0, i = L,B

and constant marginal costs of transportation.

A straightforward comparative statics question is how the firms optimal allocation between

business and leisure travelers changes during peak travel season compared to normal traffic. In

anticipation of higher demand, the airline increases its capacity by assigning larger planes to pop-

ular routes. Additionally, I can add a decrease in input costs, such as lower kerosene prices to the

scenario. Then, t ′ = (φ ′L,φ
′
B,ω

′
L,ω

′
B, q̄
′)≥ t.

Once again, since the constraint sets are not lattices, the comparative statics result by Milgrom

and Shannon (1994) does not apply here. The result in Quah (2007), while allowing for non-lattice

constraint sets, does not address parameter changes in the objective function, while Theorem 1 on

the other hand is able to handle these types of problems.

Clearly, the constraint set at higher capacity S(q̄′) dominates S(q̄) in the Ci-flexible set order.

Under the above assumptions on the objective function, π is Ci-quasisupermodular and satisfies

the i-SCP. Thus, by Theorem 1, the airline’s optimal number of seats allotted to either leisure and

business customers is nondecreasing.

When comparing these results to those in Reece and Sobel (2000), we see that when solely

focusing on changes in marginal cost my comparative statics theorem yields the same conclusions

in the cases of non-binding capacity constraints and when considering capacity adjustments.

Demand changes in the case of fixed and binding capacity are one aspect that cannot be ad-

dressed by my result, since at capacity, the marginal cost for an extra seat for either one of the

market segments is the marginal revenue of the other. So if as in the above example demand for

leisure travel increases during holidays, MRL and thus MCB increase. For my result to apply, we

need t ′ ≥ t, which is not consistent with demand in one market increasing and marginal cost of

transportation in the other market increasing.

Besides this special case of binding and fixed capacity, my framework can address comparative
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statics questions of a more general nature in this model, as it allows for other factors like demand

shocks occurring in conjunction with transportation cost and capacity changes. Moreover, unlike

the generally used comparative statics approach that requires uniqueness of solution, this result

also applies in the case of multiple optimizers, as it could occur for piecewise profit functions that

have a linear part.

1.4.6 Production Regulation by Efficiency Standards

Another area of application with a variety of examples is production regulation, particularly in

environmental economics. Production can either be regulated by direct restrictions on production

such as quotas or indirectly through efficiency standards, value restrictions, etc.

Production quotas directly impose a limit on the quantity a firm may produce to restrict supply

and maintain a certain price level. The value of this limit is set by some regulatory agency, hence

it depends on the strictness of the regulator. In the model, the rigidity of regulation is captured by

the parameter θ . Additionally, the firm’s profit function π will also be parametrized by φ and ω to

capture shifts in demand and changes to the firm’s costs.

A very general version of the firm’s constrained optimization problem can then be written as

follows:

max π =V (xR,xUR,φ)−C(xR,xUR,ωR,ωUR)

subject to xR ≤ q̄(θ),

where xR denotes the regulated commodities the firm produces and xUR is the vector of all unregu-

lated goods the firm produces.

Naturally, a question of interest is how policy changes, economic shocks or technological

progress affect the firm’s optimal output, that is what impact changes of the parameter vector

t = (φ ,ωR,ωUR,θ) have on the optimal solutions. Denote the constraint set depending on the pa-

rameter vector t by S(t) = {x ∈ Rl | xR ≤ q̄(θ)}. It can easily be seen that for t ′ ≥ t with θ ′ ≥ θ ,
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S(t ′) dominates S(t) in the strong set order. This type of problem can be addressed using the result

by Milgrom and Shannon (1994).

Instead of imposing a direct limit on the quantity that a firm may produce of a certain good, an

alternative policy to monitor output is to establish efficiency standards. For an efficiency standard,

a weighted sum of all commodities with efficiency based weights needs to lie below an upper

bound determined by the regulator. The constraint set depending on the parameter vector in this

case can be written as S(t) = {x ∈ Rl | α · x≤ θ̄}, where α represents either the vector of weights

or prices. Notice that these constraint sets are not lattices like in the previous case of a production

quota, hence the set at a higher parameter t ′ does not dominate the initial one at t in the strong

set order and Milgrom and Shannon’s result does not apply here. However, S(t ′) dominates S(t)

in the Ci-flexible set order. These types of problems have first been addressed in Quah (2007),

but his result does not consider parameter changes in the objective function. Therefore, the above

described comparative statics problem that involves parameter changes in the objective function

and a non-lattice constraint set cannot be addressed by existing results.

My comparative statics theorem however does apply in this case, given that the firm’s objective

function satisfies Ci-quasisupermodularity and the i-Single Crossing Property. For example, this is

the case for simple linear demand and cost functions where demand for goods i and j is unrelated

and marginal cost of good i is nonincreasing in the parameter ωi and marginal cost of good j is

independent of ωi.13

Example 6. Consider a car producer that produces two types of cars, one with high fuel efficiency

and one with low fuel efficiency. The produced quantities of each type are denoted xH and xL. Let

φH , φL and θ be parameters that capture changes in demand for high and low efficiency cars and

the strictness of regulation for the production of the fuel-inefficient model. Inverse demand pi(xi)

for either car models increases in φi, so ∂ pi
∂φi

> 0. Moreover, let low values of θ imply a “green”

mindset, which results in stricter regulation and lower production limits.

13See Appendix for a more detailed discussion of Ci-quasisupermodularity and the i-SCP for profit functions.
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In the case of an efficiency standard, the optimization problem of the firm can be written as

max π = pH(φH)xH + pL(φL)xL−C(xH ,xL)

subject to αHxH +αLxL ≤ η(θ),

where αH and αL are weights based on energy consumption and η(θ) is an upper bound.

A question of interest now is how an increase in all parameters from t = (φH ,φL,θ) to t ′ > t,

that represents a change to a generally less environmentally conscious attitude in society, affects

the firm’s optimal output for both types of cars. It seems straightforward that less emphasis on the

environment leads to laxer regulation standards for inefficient cars. Also, a less “green” attitude by

society increases the demand for cars. Demand for low efficiency cars is higher because people are

not willing to buy the more expensive, but also more efficient cars. On the other hand, people that

would not buy cars at all in the greener mindset and rely solely on public transportation, bicycles

and walking may now buy high efficiency cars.

First of all, notice that the new constraint set for θ ′ > θ dominates the previous one in the

Ci-flexible set order as illustrated in Figure 1.3, while these constraint sets cannot be ranked in the

strong set order.

Figure 1.3: Efficiency Standard Constraint Sets
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As previously pointed out, the profit function π is Ci-quasisupermodular if the demand and

cost function are linear and if either demand of good i and good j are unrelated or if ∂ pi
∂x j
≥ 0 and

∂ p j
∂xi
≥ 0. Clearly, this is the case if both markets are perfectly competitive and therefore prices are

determined by the market and costs are linear.

Moreover, the profit function also needs to satisfy the i-Single Crossing Property. The condi-

tions under which the profit function has the i-SCP are ∂ 2π

∂xL∂φL
= ∂ pL

∂φL
≥ 0 , ∂ 2π

∂xH∂φL
= 0, ∂ 2π

∂xH∂φH
=

∂ pH
∂φH
≥ 0 and ∂ 2π

∂xL∂φH
= 0 . These conditions are consistent with the idea of the model that demand

is increasing in the parameters φL and φH and independent of the other product’s parameter.

Hence the conditions for Theorem 1 are satisfied and we have nondecreasing optimal solutions.

Thus production of either high and low efficiency cars is nondecreasing if society cares less about

reducing emissions and the environment.

Other possible interpretations of changes in the parameters φL and φH in this example are

economic conditions such as changes in household wealth or more or less favorable interest rates

that lead to increases or decreases in the demand for cars. Moreover, we can parametrize the cost

function by ωH and ωL as well to account for changes in production technology or government

taxes and subsidies for either type.

1.4.7 Emissions Standards and Production Decisions

Example 7. Helfand (1991) examines the effect of various different forms of emissions standards

on a firm’s optimal output decision. Some of their findings can be replicated and extended using

my result. For example, Helfand (1991) finds that the direction of input adjustments after the

introduction of a standard depends on the sign of the cross-partial of the production function,

which is the change in the marginal product of one input as another one changes. As will be shown

in the following, a nonnegative cross-partial of the production function is a sufficient condition for

Ci-quasisupermodularity, which needs to be satisfied for my result to apply.

Consider a firm with a production function f (x1,x2) and output is nondecreasing with nonin-

creasing marginal returns for each input ( ∂ f
∂xi
≥ 0, ∂ 2 f

∂x2
i
≤ 0 for all i). During the production process
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the firm also produces pollution A(x1,x2). First consider the case where both inputs contribute to

pollution, so ∂A
∂xi

> 0. Furthermore, suppose the firm has a linear cost function and that the market

for this good is perfectly competitive. Without any regulatory constraints the firm maximizes its

profit

π = p · f (x1,x2)−ω1x1−ω2x2.

One type of standard discussed in Helfand (1991) is the case of a set amount of a specific input.

Here, the regulator puts a limit on how much of a polluting input can be used in the production

process or requires a minimum amount of a pollution-abating input. Suppose input 1 increases

pollution, while input 2 reduces emissions.

First, suppose the regulator restricts the use of the polluting input. So the standard takes the

form x1 ≤ Ā1. For Ā1
′ ≥ Ā1, the constraint set S(Ā′1) dominates S(Ā1) in the strong set order.

Alternatively, a minimum amount of the pollution-reducing input could be required, so x2 ≥ Ā2.

Again, for Ā′2 ≥ Ā2, S(Ā′2) dominates S(Ā2) in the strong set order.

While these types of standards can be addressed using the result of Milgrom and Shannon

(1994), there are other ones that do not fall into this framework. For example, Helfand (1991)

also considers the case where the regulator introduces an emissions standard Ā that limits the

total amount of allowed pollution by this firm in a given period of time. Moreover, assume that

pollution is proportional to the amount of input used in the production process. We can then write

this constraint as a1x1 +a2x2 ≤ Ā. As both inputs cause pollution, a1, a2 > 0.

With regard to comparative statics, the natural question to ask is how changes in the emissions

standard affect the firm’s input decision. With the comparative statics result in Theorem 1 I can go

a little bit further and examine how changes in the parameter vector t = (p,−ω1,−ω2, Ā) affect

the optimal input decision of the firm. Suppose t increases to t ′ = (p′,−ω ′1,−ω ′2, Ā
′) ≥ t, that is

the price for the finished product increases, input prices decrease and regulation is loosened. As

mentioned above, problems with non-lattice constraint sets like this don’t fall into the framework

of Milgrom and Shannon (1994). Quah (2007) can also not be applied here, as his result does not

account for parameter changes in the objective function.
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To see that my comparative statics result applies to this case, we need to verify the assumptions

of Theorem 1. Clearly, the new constraint set S(Ā′) dominates S(Ā) in the Ci-flexible set order. For

Theorem 1 to apply, the objective function needs to satisfy Ci-quasisupermodularity and the i-SCP.

For the above profit function, this will be the case given that ∂ 2 f
∂xi∂x j

≥ 0, i 6= j. 14 Then the firm’s

optimal input quantities are nondecreasing in t.

Hence, when limiting attention to changes in the emissions standard, I find the same results

as Helfand (1991). If ∂ 2 f
∂xi∂x j

≥ 0 and the Hessian is negative semi-definite, which in my approach

is a sufficient condition for Ci-quasisupermodularity, more polluting inputs and less of emissions-

abating inputs are used when standards are looser (or non-existent) than under stricter regulation.

Moreover, my comparative statics theorem can address a more general version of these constrained

optimization problems. Price and technology parameters can be included in the objective function

and my result addresses changes in optimal inputs for changes in the parameter vector consisting

of price, technology and emissions standard.

In addition to that, Helfand (1991) restricts attention to unique optimal solutions of the firm’s

constrained optimization problem by assuming that the profit function is strictly concave. My

result goes beyond that, as it does not require strict concavity and provides comparative statics

results also in the case of multiple solutions.

1.4.8 Emissions Standards and Technological Innovation

Example 8. Another example in the context of production regulation is technological innova-

tion under emissions standards. Bruneau (2004) compares incentives for innovation in emissions-

reducing technology for emissions and performance standards. In the course of the discussion, the

paper also addresses changes in output and emissions abatement due to technical innovation.

14π is Ci-quasisupermodular if it is supermodular and i-concave. The former is the case if ∂ 2π

∂xi∂x j
= p · ∂ 2 f

∂xi∂x j
≥ 0.

By assumption, ∂ 2 f
∂x2

i
≤ 0; thus ∂ 2π

∂x2
i
= p · ∂ 2 f

∂x2
i
≤ 0 for all i and π is i-concave for all i in the 2 goods case. In the general

case, the Hessian H−i (see Appendix A) needs to be negative semi-definite. Moreover, ∂ 2π

∂xi∂ p = ∂ f
∂x1
≥ 0, ∂ 2π

∂xi∂ (−ω j)
= 0

for i 6= j and ∂ 2π

∂xi∂ (−ωi)
= 1≥ 0, ∂ 2π

∂x j∂ (−ωi)
= 0 for all i. Hence the i-SCP holds.
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Consider the case of an emissions standard, that restricts emissions by a firm to ē. Suppose units

are scaled such that emissions e rise and abatement a falls one-to-one with output q, so e = q−a.

Then a firm, when choosing optimal output and abatement levels faces the constraint q−a≤ ē.

Abatement however is costly, but these costs can be lowered by technological innovation. This

is represented by the abatement cost kC(a), where k ≤ 1 is a technology parameter. Moreover,

assume that the market price P depends on industry output Q.

The firm then solves the following constraint profit maximization problem:

max
q,a

π = P ·q−C(q)− k ·C(a)

subject to q−a≤ ē.

Bruneau (2004) uses quadratic specifications for both cost functions, namely C(q) = 1
2cq2 and

kC(a) = 1
2ka2, and first considers the simplified case where production costs are equal to zero. He

finds that in both cases, technological progress from k = 1 to k < 1 leads to increases in output and

abatement.

My comparative statics result can be applied in this context to replicate the comparative statics

results in Bruneau (2004) and provides conditions on the profit function that yields nondecreasing

optimal solutions. Technical innovation means a decrease in k (or increase in −k). As in the

previous example, the result in Milgrom and Shannon (1994) cannot be applied to this problem, as

the constraint set is not a lattice. Moreover, it cannot be addressed by the main theorem in Quah

(2007), as his result does not account for parameter changes in the objective function. For my

comparative statics theorem to apply, the profit function needs to satisfy Ci-quasisupermodularity

and the i-Single Crossing Property.15 We can easily check that π is Ci-quasisupermodular, as it is

supermodular ( ∂ 2π

∂q∂a = ∂ 2π

∂a∂q = 0) and i-concave (∂ 2π

∂q2 ≤ 0 for linear demand functions, ∂ 2π

∂a2 ≤ 0). It

also has the i-SCP, since ∂ 2π

∂q∂ (−k) = 0 and ∂ 2π

∂a∂ (−k) = a ≥ 0 . Thus the profit function satisfies the

assumptions for Theorem 1 and therefore yields nondecreasing optimal solutions for abatement.

15As the constraint set remains unchanged, I do not have to check if the sets can be ranked by the Ci-flexible set
order.
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With my result, I can easily extend the results in Bruneau (2004) by considering comparative

statics with respect to parameter changes such as demand shocks or production costs with simul-

taneous changes in the constraint set due to regulatory adjustments to the emissions standard ē.

Rewrite the profit function as π =P(α) ·q− 1
2cq2− 1

2ka2 and let t = (α,−c,−k, ē). An increase

in the parameter vector to t ′ can be interpreted as a positive demand shock and technological

progress that lowers production and abatement costs, while the regulator loosens the emissions

standard. Theorem 1 yields nondecreasing optimal solutions for abatement, since we can check

that the i-SCP for the additional parameters is satisfied and the constraint set at ē′ dominates the

one at ē in the Ci-flexible set order.

1.4.9 Ethanol Quota

Example 9. In the Energy Independence and Security Act of 2007, the Renewable Fuel Standard

(RFS) requires the blenders to use increasing amounts of renewable fuel, which in practice mainly

means ethanol made from corn. The policy aims to reduce dependence on oil for gasoline produc-

tion and replace petroleum gasoline by renewable fuels such as ethanol. For conventional cars, fuel

can be blended with up to 10% to 15% of ethanol, flex-fuel vehicles can also run on 85% ethanol.

In this example adapted from Zhang, Qiu and Wetzstein (2010), consider the gasoline blending

sector. Blenders provide two types of fuel, E85 (85% ethanol and 15% petroleum gasoline) suitable

for flex-fuel vehicles and Eγ , which contains γ % ethanol and (1− γ)% petroleum gasoline, for

regular cars. Currently the maximum blend is regulated at 15%. To consider possible adjustments

of this “blend wall”, let 0.1≤ γ ≤ 0.2. Let p85(E85,φ) and pγ(Eγ ,φ) denote inverse market demand

for E85 and Eγ , with φ being a parameter that captures changes in demand. The blender uses

e85 and g85 in ethanol and petroleum gasoline in the blending process, which is proportional.

Hence, e85
e85+g85

= 0.85 or after rearranging terms, g85 =
3

17e85. Similarly for Eγ , gγ =
1−γ

γ
eγ . The

production technologies y85(e85) and yγ(eγ) of blended fuel can be expressed only in terms of

amount of ethanol used because of the proportional production process and output is assumed to

be increasing with diminishing marginal returns.
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Moreover, under the RFS, each blender has to meet his mandated ethanol quota of e0, that is his

total quantity of ethanol e = e85 + eγ must exceed e0. The blenders profit maximization problem

can then be written as follows.

max π = p85(E85,φ) · y85(e85)+ pγ(Eγ ,φ) · yγ(eγ)− cG(
3
17e85 +

1−γ

γ
eγ)− ce · (e85 + eγ)

subject to e85 + eγ ≥ e0.16

Zhang, Qiu and Wetzstein (2010) finds that under certain conditions on demand elasticities,

an increase in the “blend wall” γ likely delays the shift towards flex-fuel vehicles and leads to an

increase in Eγ supply and a decrease in E85 provided.

For the same reasons as in the previous examples, while existing comparative statics theorems

cannot be applied in this case, my result allows us to consider the impact of raising the “blend

wall” γ and increasing the ethanol quota. The constraint set S(e′0) under the new policy dominates

the original one, S(e0) in the Ci-flexible set order. As discussed in the appendix, the profit function

is Ci-quasisupermodular for linear demand and cost functions and unrelated demand. The i-Single

Crossing Property is satisfied for p85 and pγ increasing in φ and I can check that ∂ 2π

∂eγ ∂γ
≥ 0 and

∂ 2π

∂eγ ∂γ
= 0.

Thus, Theorem 1 applies and yields nondecreasing optimal solutions for eγ ; hence the policy

change favoring the use of renewable fuel leads to an increase in regular fuel. My result is the same

as in Zhang, Qiu and Wetzstein (2010) for regular fuel and also yields the conclusion that these

policies promoting renewable fuels don’t necessarily accelerate the transition to flex-fuel vehicles.

The advantages of my approach lie in the ability to easily consider a more general problem with

additional parameters and changes in the constraint set as well as providing assumptions on the

objective function instead of demand elasticities.

16Unlike Zhang, Qiu and Wetzstein (2010), this example considers the case of a constrained optimization problem
with an ethanol quota without the option to buy and sell permits, which eliminates the constraint. The unconstrained
problem can be addressed by existing comparative statics result, this type of constrained optimization problem however
cannot.
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1.4.10 Cost-Efficient Emissions Regulation

Example 10. Another application in environmental economics is the problem of cost-efficient

emissions regulation. The goal of the regulator is to limit the amount of total emissions of a

given pollutant. As the costs to reduce emissions vary among producers, the regulator’s goal

is to achieve the desired emissions limit at the lowest total abatement cost. Theoretical models

for efficient emissions allocation can first be found in Baumol and Oates (1971) or Montgomery

(1972) and continue to serve as a baseline model as for example in Muller and Mendelsohn (2009).

Cost-effectiveness has been the main criterion for the design of permit markets and therefore the

cost-efficient allocation continues to be of interest as the baseline comparison even as regulation is

moving more and more towards market-based approaches and away from the traditional command-

and-control regulation.

The design of regulatory standards depends on the class of pollutants. First, consider the class

of uniformly mixed assimilative pollutants, such as greenhouse gases. These types of pollutants

do not accumulate in the atmosphere over time and their concentration only depends on the total

amount of emissions regardless the source and its location. In the following example, consider a

version of this model adapted from Montgomery (1972) and Tietenberg (2006).

Suppose there are J producers that omit a uniformly mixed assimilative pollutant, for example

carbon dioxide. The regulator sets the target emissions limit at Ā. The relationship between firms’

emissions and total pollution can be described as

A = a+b∑
J
j=1(ē j− r j),

where A is pollution per year, ē j denotes the uncontrolled emission rate of firm j and r j is firm j’s

emissions reduction. The parameters a and b represent “background pollution” from other sources

and the degree of proportionality between emissions and total pollution. Moreover, assume that

each firm’s cost function C j(r j,ω) is continuous and that the marginal cost of emissions reduction

is increasing. The parameter ω j captures technological change for firm j.
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The regulators problem can then be written as

max C̃ =−∑
J
j=1C j(r j,ω j)

subject to a+b∑
J
j=1(ē j− r j)≤ Ā , r j ≥ 0

An interesting comparative statics question in this context is the effect of more environmentally

conscious mindset in society. On the firm’s side, this manifests itself in new emissions reducing

technology, on the government’s side greener policy means stricter emissions standards. Now

consider such an increase in the parameter vector t = (ω,−Ā) caused by new emissions reducing

technology and a reduction of the pollution target by the regulator.

Because of the parameter change in the objective function in a problem with a non-lattice

constraint set, the existing monotone comparative statics results in Milgrom and Shannon (1994)

and Quah (2007) do not apply to this particular problem. My result however is able to address

this type of constrained optimization problem, as I can verify that all conditions in Theorem 1 are

satisfied.

The constraint set S(−Ā′) dominates S(−Ā) by the Ci-flexible set order and the objective func-

tion C̃ is supermodular ( ∂ 2C̃
∂ ri∂ r j

= 0, for all i, j) and i-concave (in the two firm case, ∂ 2C̃
∂ r2

j
=−∂MC j

∂ r j
< 0

since marginal abatement cost is increasing; in the general case, we need to verify that the Hessian

H−i is negative semi-definite). Moreover, ∂ 2C̃
∂ ri∂ωi

= −∂MCi
∂ωi
≥ 0, ∂ 2C̃

∂ ri∂ω j
= −∂MCi

∂ω j
= 0 as techno-

logical progress decreases firm i’s marginal cost of emissions reduction and hence C̃ exhibits the

i-Single Crossing Property. Therefore, all conditions of Theorem 1 are satisfied and the cost-

effective, optimal amounts of emissions reduction are nondecreasing for firm i.

My result can be used in this setting to illustrate the effect of regulation regime changes and

technological progress in emissions abatement on the cost-efficient emissions allocation. Under

natural assumptions on the primitive, my theorem provides comparative statics results for a com-

mon baseline model in emissions regulation. As this is the allocation that other regulatory systems

are designed to attain as well, it also suggests how these changes affect the outcome in today’s

market-based approaches.
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Unlike the standard comparative statics approach that requires uniqueness of solution, this

result can also be applied in cases with multiple optimizers. This could occur in the case of a

piecewise cost function that is partly linear.
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Chapter 2

Comparative Statics and the Gross

Substitutes Property

2.1 Introduction

Besides the question of normality of goods, the effect of a price change on demand is one of the

basic questions in consumer theory. The question of whether two goods are substitutes or comple-

ments is not only of interest to analyze consumers’ reactions to price changes, it also can be useful

in other economic models. For example, in the standard Arrow-Debreu model, the gross substitutes

property of demand provides insights regarding the competitive equilibrium. If excess demands

for all goods display this property, we can obtain very strong results with regard to stability and

uniqueness. Its usefulness in these matters entails the question what assumptions will guarantee

gross substitutes or complements. Most attempts to derive these properties focus on characteristics

of the demand curve. However, it has turned out to be rather difficult to guarantee gross substi-

tutability and complementarity by conditions on the primitive, the utility function, instead of the

resulting demand function.

In this chapter, I will present easy conditions on the utility function that will yield the desired

gross substitutes (complements) property. The approach taken has its foundation in the standard
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decomposition of the total effect of a price change on demand into a substitution and an income

effect. The sign of the substitution effect can easily be determined by basic economic theory in

the case of two goods, but requires additional assumptions on the marginal rate of substitution in

the general case. With regard to the income effect, there are various recent works on comparative

statics of demand that have focused on conditions that yield normal demand. I will use the assump-

tions on the utility function provided in Quah (2007) to sign the income effect and then introduce a

simple and intuitive assumption on the elasticity of marginal rate of substitution, which will allow

us to determine the direction of the overall effect of a price change.

The question of gross substitutability and complementarity has been addressed in the literature

in various different ways. Fisher (1972) finds that two goods are gross substitutes if the Allen-

Uzawa elasticity of substitution between two commodities exceeds the maximum of the respective

income elasticities of demand. As defined in Uzawa (1962), the partial elasticity of substitution be-

tween two commodities depends on the expenditure function. Since the expenditure function and

demand functions are results of optimization problems, Fisher’s condition is not on the primitives.

The intuition behind his condition is that indifference curves, that only have little curvature will

yield gross substitutes; in the limiting case of perfect substitutes the indifference curves are straight

lines. For gross complements, the opposite has to be true; indifference curves need to be suffi-

ciently curved, with the right-angled indifference curves of perfect complements as the extreme

case. Later papers that establish results in accordance with this intuition, but impose conditions

directly on the utility function, are Mirman and Ruble (2003), Maks (2006) and Quah (2004). For

the two good case, Mirman and Ruble (2003) find an assumption on the marginal rate of substitu-

tion that yields gross substitutes (complements). When extending this to the case of many goods,

they find a similar condition that in combination with the assumption that the marginal rate of

substitution between two goods is independent of all other goods that guarantees gross substitutes

(complements). Maks (2006) derives a condition on the elasticity of marginal utility with the same

intuition for utility functions based on Walras’ utility concept that are strongly separable or addi-

tive in each commodity. Quah (2004) also provides a result of gross substitutability in the special
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case of additive utility functions.

Many of the recent works on comparative statics theorems for constrained optimization prob-

lems take a lattice-theoretic approach, as first developed by Vives (1990) based on Topkis (1978).

Milgrom and Roberts (1992) also focuses on monotone comparative statics results under cardinal

assumptions (supermodular games), which is extended by Milgrom and Shannon (1994) to the

ordinal case (quasisupermodular games). These results however cannot be easily applied to opti-

mization problems where the constraint sets are not sublattices and comparable in the strong set

order, such as budget sets at two levels of income. Quah (2007) expands Milgrom and Shannon’s

work by making it applicable to these types of optimization problems by using a weaker order on

the constraint sets (Ci-flexible set order). His comparative statics theorem provides easily verifi-

able conditions on the utility function that yield normal demand, namely supermodularity and a

form of concavity. Antoniadou (2007), which is largely based on Antoniadou (2004a, 2004b), and

Mirman and Ruble (2008) also address the question of normality of demand, but their approach

introduces a direct value order to construct the relevant order-lattice structure. While Quah (2007)

and Mirman and Ruble (2008) solely focus on income changes, Antoniadou (2007) also provides

the relevant order-lattice structure for price changes in the case of two goods.

In this chapter, I will provide conditions that yield gross substitutes and complements under

assumptions on the primitives. I approach the problem by decomposing the effect of a price change

in substitution and income effect. Existing results based on lattice theory can be used to determine

the direction of the latter, while basic economic theory provides the sign of the former. Even though

the conditions for gross substitutes and complements are closely related to existing literature, my

approach is helpful in providing the economic intuition behind these rather technical results.

The next section introduces the theoretical framework for the lattice-based approach and de-

fines the gross substitutes property. Section 3 gives results for the two goods case, section 4

addresses the extension to many goods. In section 5, the results will be applied to more general

optimization problems, section 6 considers net substitutes and complements.
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2.2 Preliminaries

Quah (2007) introduces the following concepts to extend the comparative statics results from Mil-

grom and Shannon (1994) to problems where the constraint sets are not lattices. This case is easily

encountered even in simple optimization problems like the consumers maximizing utility subject to

the budget constraint. The main result in Quah (2007) is the following comparative statics theorem.

Theorem 3. (Quah)

The function f : X → R is Ci-quasisupermodular (C-quasisupermodular) if and only if

argmaxx∈S′ f (x)≥i argmaxx∈S f (x) (for all i) whenever S′ ≥i (≥)S.

This chapter focuses on comparative statics results for price changes. In this context, the fol-

lowing standard definitions will be used to characterize the effect of price changes on other goods.

Definition 6. Gross Substitutes and Gross Complements

Good j is a gross substitute (complement) of good i if (Marshallian) demand x j(p′,w)≥

(≤)x j(p,w) whenever p′ > p with p′i > pi and p′k = pk for all k 6= i.

Definition 7. Net Substitutes and Net Complements

Good j is a net substitute (complement) of good i if (Hicksian) demand h j(p′,u) ≥ (≤)h j(p,u)

whenever p′ > p with p′i > pi and p′k = pk for all k 6= i.

Providing assumptions on the primitives to establish the gross substitutes property is one of

the goals of this chapter. Generally, two goods are considered gross substitutes if a price increase

of one of the goods results in nondecreasing demand for the other good. Moreover, a demand

function is said to satisfy the gross substitutes property if an increase of the price of good i leads

to nondecreasing demand for all goods j 6= i.

Definition 8. Gross Substitutes Property of Demand

A (Marshallian) demand function x(p,w) satisfies the gross substitutes property if x j(p′,w) ≥

x j(p,w) whenever p′ > p with p′i > pi and p′j = p j for all j 6= i.
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Figure 2.1: Violation of Ci-flexible set order by budget sets before and after a price change

A stronger version of this property can be defined by replacing the weak inequality by a strict

one, hence requiring demand of good j to be strictly increasing given an increase of the price of

good i. I refer to this case as strict gross substitutes.

2.3 Price effects with two goods

Quah’s new approach, the Ci-flexible set order, works well in cases like budget sets before and

after an income change, where both sets have the same slope. However, there are fairly simple

constraint sets, like budget sets with different slopes, that cannot be ordered in this way. For

example, consider a price change of good 1. The boundary of the smaller budget set will be

steeper than the one of the larger set, which allows the conclusion that the bigger set dominates

the smaller one in the C1-flexible set order, but not in the C2-flexible set order as shown in Figure

2.1. Similarly, for price changes of good 2, the conclusion is reversed and we can only order the

sets in the C2-flexible set order. Hence this framework only gives comparative statics results for

changes of a good’s own price, but cannot provide insight into whether goods are gross substitutes

or complements.

I take the approach to consider the substitution and income effect of a price change separately to

obtain results for this class of comparative statics problems. For simplicity, to begin with consider
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the consumer’s utility maximization problem in the case when there are only two goods and assume

that the utility function u is locally nonsatiated.

Let x∗ be a maximizer for the initial budget set B(p,w) = {x ∈ X | p · x ≤ w}. By local non-

satiation, the budget constraint is binding at optimum, thus p · x∗ = w. Now suppose the price of

good i (i = 1,2) increases to p′i. As we know, this price change will affect the consumer’s demand

in two ways. On the one hand, there is a substitution effect due to the change of the relative prices

when the consumer’s income will be adjusted in such a way, that the old preferred bundle x∗ is still

affordable at new prices. On the other hand, the income effect will capture the change in demand

when the consumer’s income adjustment is reversed.

Proposition 4. If u is locally nonsatiated, the substitution effect on demand for good j will be

non-negative (non-positive) when price of good i increases (decreases).

Proof. The proof will focus on the unbracketed claim, the bracketed version can be shown in

similar fashion. Suppose price for good i increases from pi to p′i. Because the budget constraint

was binding at the old optimal bundle x∗, the consumer will no longer be able to afford this bundle

at the new prices. Now suppose the consumer is given a higher income w′ = p′ix
∗
i + p jx∗j > w to

compensate him for the price increase. Let x̂ be the optimal bundle at (p′,w′). Then, by local

nonsatiation, pix̂i + p jx̂ j ≥ pix∗i + p jx∗j . This inequality can be rewritten as

x̂i− x∗i ≥−
p j

pi
(x̂ j− x∗j) (2.1)

At the compensated level of income w′ both bundles are affordable and w′ = p′ix
∗
i + p jx∗j =

= p′ix̂i + p jx̂ j. Rearranging terms yields

x̂i− x∗i =−
p j

p′i
(x̂ j− x∗j) (2.2)

It follows from 2.1 and 2.2 that − p j
p′i
(x̂ j− x∗j)≥−

p j
pi
(x̂ j− x∗j) or equivalently

p j(p′i−pi)

pi p′i
(x̂ j− x∗j)≥ 0. Since the first term is positive, this implies x̂ j ≥ x∗j .
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The other effect of a price change is the income effect, which captures the impact on demand

when the consumer’s income adjustment for the price change is reversed. In other words, the

income effect compares the optimal consumption bundles after the price change at income levels

w and w′. Since this is a comparative statics problem concerning an income change and the budget

sets are comparable in the Ci-flexible set order, Quah’s result for normality of demand can be

applied here.

Proposition 5. If u is C j-quasisupermodular, the income effect of a price increase (decrease) of

good i is non-positive (non-negative) on the demand for good j.

Proof. This result follows immediately from Proposition 1 from Quah (2007).

Since the substitution effect and income effect are opposite in sign for normal goods, it is not

possible to tell whether the goods are gross substitutes or gross complements. For the former,

the substitution effect needs to dominate the income effect and vice versa for the latter. In order

to compare the income and substitution effect additional assumption on the utility function are

needed.

The question of interest now is under what assumptions on the primitives two goods will be

gross substitutes or gross complements. Intuitively, the needed condition has to ensure that the

indifference curves only have little curvature for gross substitutes; in the limiting case of perfect

substitutes the indifference curves are straight lines. For gross complements, the opposite has to be

true; indifference curves need to be sufficiently curved, with the right-angled indifference curves of

perfect complements as the extreme case. In other words, if the indifference curves are relatively

straight, the substitution effect of a price change will outweigh the income effect and hence the

two goods will be gross substitutes. Figure 2.2 depicts the two cases.

In the following, a property that will yield the desired shape of the indifference curves will be

introduced. It is similar to, but more general than the condition in Maks (2006) and the approach
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(a) Gross substitutes (b) Gross complements

Figure 2.2: Effect of a price change for different curvatures of indifference curves

is more intuitive than the one proposed in Mirman and Ruble (2003). The idea here is, that indif-

ference curves will only have little curvature if the elasticity of the marginal rate of substitution

between goods i and j with respect to good i is small. In order for two goods to be gross substi-

tutes (complements), the absolute value of the marginal rate of substitution elasticity has to be less

(greater) than 1. This condition extends the one in Maks (2006) to a wider class of of utility func-

tions, since there is no restriction that marginal utilities only depend on one commodity. It is easy

to show that this more general condition reduces to the one discussed in Maks (2006) when only

considering strongly separable utility functions.17 My condition is equivalent to the one proposed

in Mirman and Ruble (2003) for well-behaved preferences in the 2 goods case (see Appendix B),

but the decomposition in substitution and income effect provides more economic intuition than

their value-order approach and shows how the shape of the indifference curves determines the size

of the substitution effect.

For simplicity, we still consider the case with only two goods and assume that the utility func-

tion is differentiable. To begin with, consider only cases where the utility maximization problem

has an interior solution. To guarantee this, we need to impose regularity conditions on the utility

17 ∂MRSi j
∂xi
· xi

MRSi j
= ∂

∂xi
( MUi

MU j
) · xi

MRSi j
= ∂MUi

∂xi
· xi

MUi
− ∂MU j

∂xi
· xi

MUi

For strongly separable utility functions MU j only depends on x j, therefore ∂MU j
∂xi

= 0. As a result, marginal rate of
substitution elasticity and marginal utility elasticity are equivalent.
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function, i.e. u is differentiable, ∂u
∂xi

> 0, lim
xi→0

∂u
∂xi

= ∞, lim
xi→∞

∂u
∂xi

= 0. Given these assumptions, the

utility function does not cross the axes and therefore corner solutions are ruled out.

Theorem 4. If u is locally nonsatiated, satisfies regularity conditions and | ∂ MRSi j
∂ xi

· xi
MRSi j

|< (>)1

and both goods are normal, then good j is a gross substitute (complement) of good i.

Proof. The following proof will focus on the gross substitutes. The bracketed version for comple-

ments can be shown accordingly. Now consider the case when pi increases. From Proposition 4

and normality of the goods we know that x̂ j ≥ x∗j and x̂ j ≥ x∗∗j , where x∗ is the original optimal

bundle before the price change, x̂ is the optimal bundle at new prices and compensated income and

x∗∗ is the new maximizer after the price change.

Since the budget constraint is binding at the old and new optimal bundle, we know that

pix∗i + p jx∗j = w = p′ix
∗∗
i + p jx∗∗j ,

which can be rewritten as p j(x∗∗j −x∗j) = pix∗i − p′ix
∗∗
i . The total change of expenditures on each of

the goods can be decomposed in the change resulting from the substitution and the income effect,

resulting in p j(x̂ j− x∗j)+ p j(x∗∗j − x̂ j) = pix∗i − p′ix̂i + p′ix̂i− p′ix
∗∗
i . First consider only the change

in expenditures attributed to the income effect. Since x̂i ≥ x∗∗i and x̂ j ≥ x∗∗j , p′i(x
∗∗
i − x̂i) ≤ 0 and

p j(x∗∗j − x̂ j)≤ 0. Hence expenditures on both goods decrease as a result of the income effect.

Since x̂ j ≥ x∗j , the expenditures on good j will increase when considering the substitution effect

only. Thus we cannot draw any conclusion on the total change of expenditures on good j, because

the income and substitution effect will cause them to go in opposite directions.

The impact of the substitution effect on good i on the other hand is not as obvious. Using the

Slutsky compensation, it can be written as

p′ix̂i− pix∗i = w′−w− p j(x̂ j− x∗j) = (p′i− pi)x∗i − p j(x̂ j− x∗j) (2.3)

To use the assumption that | ∂ MRSi j
∂ xi

· xi
MRSi j

|< 1, we first approximate the derivative ∂ MRSi j
∂ xi

by
∆MRSi j

∆xi
using a linear Taylor approximation. x̂i is a continuous function of pi, so for sufficiently
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small price changes ∆MRSi j
∆xi

=
MRSi j(x̂)−MRSi j(x∗)

x̂i−x∗i
. Assuming that the solution is interior, we have

∆MRSi j
∆xi

=
MRSi j(x̂)−MRSi j(x∗)

x̂i−x∗i
=

p′i
p j
− pi

p j
x̂i−x∗i

. Since | ∂ MRSi j
∂ xi

· xi
MRSi j

|< 1, there exists some ε > 0, such that

| ∂ MRSi j
∂ xi

· xi
MRSi j

| +ε ≤ 1. Moreover, if we suppose that the price changes are sufficiently small,

|| ∆MRSi j
∆xi
· xi

MRSi j
| − | ∂ MRSi j

∂ xi
· xi

MRSi j
||< ε . Therefore, | ∆MRSi j

∆xi
· xi

MRSi j
|=

p′i
p j
− pi

p j
x∗i−x̂i

· x∗i
pi
p j

≤ 1, which implies

p′i
p j
− pi

p j
x∗i−x̂i

· x∗i
p′i
p j

≤ 1.

Again using the Slutsky compensation, this can be rewritten as p j(x̂ j−x∗j)≥ (p′i− pi)x∗i = w′−w.

This condition and 2.3 imply

p′ix̂i− pix∗i = w′−w− p j(x̂ j− x∗j) = (p′i− pi)x∗i − p j(x̂ j− x∗j)≤ 0.

Therefore, both the income and the substitution effect lead to a decrease of expenditures on good

i, so p′ix
∗∗
i ≤ pix∗i . Consequently, p jx∗∗j ≥ p jx∗j which is equivalent to x∗∗j ≥ x∗j .

This proof nicely shows how the curvature of the indifference curves, quantified by the elas-

ticity of the marginal rate of substitution, determines the size of the substitution effect and hence

whether in consequence expenditures on good i increase or decrease. In the case of gross substi-

tutes, the sufficiently small amount of curvature of the indifference curves leads to a large enough

decrease in demand for commodity i to result in lower expenditures on this good despite its price

increase. Conversely, this means a large enough increase in expenditures on good j due to the

substitution effect to offset a negative income effect. Hence the strength of my approach lies in

the fact that it provides the economic intuition behind the complex and technical results in Mirman

and Ruble (2003).

Corollary 1. If u is locally nonsatiated, is Ci- and C j-quasisupermodular, satisfies regularity con-

ditions and | ∂ MRSi j
∂ xi

· xi
MRSi j

|< (>)1, then good j is a gross substitute (complement) of good i.
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Proof. The only change that needs to be made to the proof of Theorem 4 is using Proposition 5 to

establish normality of goods i and j.

Example 11. CES Utility

Consider the CES utility function u(x1,x2) = (xρ

1 + xρ

2 )
1
ρ with ρ ≤ 1. Since the marginal utili-

ties for both goods are non-negative,18 u is monotone and locally non-satiated. For ρ ≤ 1, the

CES utility function is concave19 and therefore u is 1,2-concave as well. Moreover, the utility

function is supermodular for ρ ≤ 1,20 which in combination with 1- and 2- concavity implies

that u is C1- and C2-supermodular (see Proposition 2 in Quah (2007)) and therefore also C1- and

C2-quasisupermodular. The regularity conditions that guarantee an interior solution are satisfied

for ρ < 1, and for 0 ≤ ρ ≤ 1 (ρ ≤ 0) the absolute value of the elasticity of the marginal rate

of substitution with respect to x1 is less (greater) than or equal to 1.21 Thus suppose 0 < ρ < 1

(ρ < 0) and then the above comparative statics theorem applies and the goods are gross substitutes

(complements).

Moreover, notice that for the CES utility function Mirman and Ruble’s condition coincides

with the one proposed here. Using either condition, goods will be gross substitutes (complements)

if 0≤ ρ ≤ 1 (ρ ≤ 0).22

Now consider cases where the solution to the utility maximization problem is not interior, that

is one the consumer only consumes one of the two goods and nothing of the other one. First, there

is the trivial case of perfect substitutes. For these preferences, the marginal rate of substitution is

constant along the utility curve. The consumer chooses x∗ = (x∗1,0) if MRS12 >
p1
p2

and x∗ = (0,x∗2)

18 ∂u
∂x1

= (xρ

1 + xρ

2 )
1−ρ

ρ xρ−1
1 ≥ 0, ∂u

∂x2
= (xρ

1 + xρ

2 )
1−ρ

ρ xρ−1
2 ≥ 0

19 ∂ 2u
∂x2

1
= (ρ−1)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ−2
1 xρ

2 ≤ 0, ∂ 2u
∂x2

2
= (ρ−1)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ

1 xρ−2
2 ≤ 0 for ρ ≤ 1

20 ∂ 2u
∂x1∂x2

= ∂ 2u
∂x2∂x1

= (1−ρ)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ−1
1 xρ−1

2 ≥ 0 for ρ ≤ 1

21| ∂MRS12
∂x1

· x1
MRS12

|=| ρ−1 |=

{
1−ρ for ρ ≤ 1
ρ−1 for ρ > 1

Thus, | ∂MRS12
∂x1

· x1
MRS12

|= 1−ρ , which is > 1 for ρ ≤< 0 and < 1 for 0 < ρ ≤ 1.

22 ∂ (
MRS12

x2
)

∂x2
=-ρ xρ−1

1

xρ+1
2
≤(≥)0 ⇔ ρ ≥ (≤)0
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if MRS12 <
p1
p2

. So as long as the relationship between the price ratio and the MRS stays the same

after a price change of either good, the optimal consumption bundle will remain unchanged. If the

price change of good i changes the inequality between the marginal rate of substitution and the

price ratio, then the optimal quantity of good j will increase, i.e for a price increase of good 1 and
p′1
p2

> MRS12 >
p1
p2

, the consumer will move from consuming no good 2 at all to only consuming

good 2. Therefore, in the case of perfect substitutes the demand for good j is nondecreasing in the

price of good i.

The other class of preferences where corner solutions often occur is quasilinear utility. In this

case, interior and corner solutions are both possible. Assuming the optimal bundle before the price

change was a corner solution on the x1-axis with MRS12 > p1
p2

, the optimal consumption bundle

will remain the same if the price ratio decreases, e.g. p1 goes down or p2 goes up. If the price

change causes the price ratio to increase such that it exceeds the marginal rate of substitution at the

original optimal bundle, the consumer will move to an interior solution where x j will move in the

same direction as pi. Similarly, if the initial corner solution lies on the x2-axis and MRS12 <
p1
p2

,

a price change that increases the price ratio will not change the optimal choice; a change that will

decrease the relative price below the MRS at x∗will shift the consumer’s utility maximizing bundle

to an interior solution and the change in x j will have the same sign as the price change. Thus, also

in this case the demand of good j is non-decreasing in the price of good i.

Example 12. Substitutes and Complements in Input

Another application of Theorem 4 can be found in the firm’s production decision. Suppose the

firm’s production function is given by F : R2
+→ R. Standard assumptions assure the unique ex-

istence of a cost minimizing input bundle x(p,q) = argmin
{x∈R2

+|F(x)≥q}
p · x given strictly positive

input prices p and output q. Alternatively, x(p,q) can be found by maximizing output while limit-

ing expenditures to p · x(p,q), hence x(p,q) = argmax
x∈B(p,p·x(p,q))

F(x).

Quah’s comparative statics theorem allows us to make statements about how xi(p,q) changes

with respect to output or its own price. Theorem 4 takes it a step further, because it yields the
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answer to the question how optimal inputs react to price changes of other inputs. In other words,

it allows us to examine the effect of a change of pi on x j(p,q). Under the assumptions that F is

monotone, Ci- and C j-quasisupermodular (which is the case if it is supermodular and i-, j-concave)

and | ∂MRT Si j
∂xi

· xi
MRT Si j

|< (>)1, the optimal amount of input j will increase (decrease) as the price

for input i goes up.

Consider for example a CES production function, F(x1,x2) = (xρ

1 +xρ

2 )
1
ρ with ρ ≤ 1. It is easy

to check that F is monotone,23 1- and 2-concave,24 and supermodular.25 Moreover, we see that

| ∂MRT S12
∂x1

· x1
MRT S12

|< (>)1 for 0 < ρ ≤ 1 (ρ < 0), 26 therefore the 2 inputs are gross substitutes

(complements).

Other functional forms that will yield gross substitutes are production functions with a root

polynomial or logarithmic specification.

Example 13. Linear PPF in General Equilibrium Model

Consider an open economy that produces 2 goods using the inputs capital and labor. Assume that

the production functions for both goods fi : R2
+→ R+, i = 1,2 are linear. As a result, the PPF of

these two goods will also be linear. On the consumption side, suppose the representative consumer

has a locally non-satiated, 1- and 2-concave and supermodular utility function u. The markets for

both goods are perfectly competitive and in equilibrium MRS12 =
p1
p2

= MRT S12.

Now suppose there is technological progress in the production process of one of the goods,

i.e. good 2. The new PPF will be steeper than the original one, thus the relative price between

the goods and the marginal rate of substitution need to increase for the economy to return to

equilibrium. To determine the effect of this change of technology on the optimal quantity of the

23 ∂F
∂x1

= (xρ

1 + xρ

2 )
1−ρ

ρ xρ−1
1 ≥ 0, ∂F

∂x2
= (xρ

1 + xρ

2 )
1−ρ

ρ xρ−1
2 ≥ 0

24 ∂ 2F
∂x2

1
= (ρ−1)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ−2
1 xρ

2 ≤ 0, ∂ 2F
∂x2

2
= (ρ−1)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ

1 xρ−2
2 ≤ 0 for ρ ≤ 1

25 ∂ 2F
∂x1∂x2

= ∂ 2F
∂x2∂x1

= (1−ρ)(xρ

1 + xρ

2 )
1−2ρ

ρ xρ−1
1 xρ−1

2 ≥ 0 for ρ ≤ 1

26| ∂MRT S12
∂x1

· x1
MRT S12

|=| ρ−1 |=

{
1−ρ for ρ ≤ 1
ρ−1 for ρ > 1

Thus, | ∂MRT S12
∂x1

· x1
MRT S12

|= 1−ρ , which is > 1 for ρ < 0 and < 1 for 0 < ρ ≤ 1.

46



other good, Theorem 4 can be applied.

Consider for example the negative exponential utility function u(x1,x2) = 1− e−x1− e−x2 . u is

monotone,27 1- and 2-concave28 as well as supermodular.29 The elasticity of the marginal rate of

substitution with respect to good 1 is equal to x1,30 therefore the goods will be gross substitutes

if x1 < 1 and gross complements for x1 > 1. In this context, the optimal choice of good 1 will

increase if x1 > 1 and decrease if x1 < 1 if technological progress occurs in the production process

of good 2.

2.4 Price effects with n goods

2.4.1 Gross Substitutes (Complements) Property

The next question to be addressed is how this result can be generalized to the case of n goods. As

previously, at first the utility function is assumed to satisfy the regularity conditions that guarantee

an interior solution and the substitution effect will be identified using the Slutsky compensation.

The identification of the substitution effects sign is no longer as straightforward as in the previ-

ous case with two goods. It is a well-established result in microeconomic theory that the substitu-

tion effect of a price change of good i is negative for that good in the general case with n goods as

well. However, the sign of the substitution effect for the other n−1 goods is no longer clear. Ob-

viously, if the substitution effect leads to a decrease in xi, there has to be at least one good among

the remaining n−1 goods for which the substitution effect goes in the opposite direction of good

i because of the Slutsky compensation.31 Therefore, additional properties need to be imposed on

the objective function to guarantee a non-negative substitution effect for all goods other than i.

27 ∂u
∂xi

= e−xi > 0 for i = 1,2
28 ∂ 2u

∂x2
i
=−e−xi < 0 for i = 1,2

29 ∂ 2u
∂xi∂x j

= 0 for i 6= j, i = 1,2
30MRS12 =

e−x1

e−x2 , | ∂MRS12
∂x1

· x1
MRS12

|=| − e−x1

e−x2 ·
x1

e−x1
e−x2

|= x1

31 p′ix
∗
i + ∑

i6= j
p jx∗j = w′ = p′ix̂i + ∑

i 6= j
p j x̂ j
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Proposition 6. If u is locally nonsatiated and MRSlm is independent of all goods other than l and

m for all l,m, the substitution effect on demand for good j will be positive (negative) when price of

good i increases (decreases).

Proof. The proof will focus on the unbracketed claim, the bracketed version can be shown in

similar fashion. Suppose price for good i increases from pi to p′i. Because the budget constraint

was binding at the old optimal bundle x∗, the consumer will no longer be able to afford this bundle

at the new prices. Now suppose the consumer is given a higher income w′ = p′ix
∗
i + ∑

j 6=i
p jx∗j > w

to compensate him for the price increase. Let x̂ be the optimal bundle at (p′i, p−i,w′). Then,

pix̂i + ∑
j 6=i

p jx̂ j = w′ > w = pix∗i + ∑
j 6=i

p jx∗j . This inequality can be rewritten as

x̂i− x∗i > ∑
j 6=i
−

p j

pi
(x̂ j− x∗j) (2.4)

At the compensated level of income w′ both bundles are affordable and p′ix
∗
i + ∑

j 6=i
p jx∗j =

= p′ix̂i + ∑
j 6=i

p jx̂ j = w′. Rearranging terms yields

x̂i− x∗i = ∑
j 6=i
−

p j

p′i
(x̂ j− x∗j) (2.5)

It follows from 2.4 and 2.5 that ∑
j 6=i
− p j

p′i
(x̂ j− x∗j)> ∑

j 6=i
− p j

pi
(x̂ j− x∗j), or equivalently

∑
j 6=i

p j(p′i−pi)

pi p′i
(x̂ j−x∗j)> 0. Since the first term is always positive, this implies that there exists j such

that x̂ j > x∗j . Moreover, given that pi increases and that the solution is interior, MRSi j increases

since MRSi j =
pi
p j

for i 6= j. The marginal rate between any two goods other than i, MRS jk =
p j
pk

for

j 6= k, j,k 6= i, however remains unchanged. In other words,

d MRS jk =
∂MRS jk

∂x j
dx j +

∂MRS jk
∂xk

dxk = 0,

given that MRS jk is independent of all goods other than j and k for all i, j. MRS jk is of opposite

sign in good j and good k , hence it is easy to see that dx j and dxk need to have the same sign for the

above equation to hold. Consequently, x j and xk need to move in the same direction . Furthermore,

the changes in xi and x j need to be of opposite signs because of the Slutsky compensation
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(p′ix
∗
i + ∑

i6= j
p jx∗j = w′ = p′ix̂i + ∑

i 6= j
p jx̂ j). Therefore, xi decreases and all x j increase.

Hence, the substitution effect can be generalized for n goods under additional assumptions on

the marginal rate of substitution between any two goods. The result for the income effect obtained

earlier carries over to this case.

As already observed in the above discussion with two goods, the substitution and income effect

of a good other than i go in opposite directions and therefore the net effect is unclear. Once again

the idea is to find assumptions on the utility function that will yield gross substitutes (comple-

ments).

The condition on the utility function that will allow us to do this again focuses on the elasticity

of the marginal rate of substitution between the good i and another good k with respect to xi.

If the absolute value of this elasticity is less than 1, the marginal rate of substitution increases

relatively slow as xi decreases, therefore the indifference curves are characterized by relatively

small curvature. On the other hand, if the absolute value of the marginal rate of substitution

elasticity exceeds 1, the marginal rate of substitution reacts relatively strong to changes in xi and

hence the indifference curves display more curvature.

This condition applies to a wider class of utility functions than the one proposed in Maks

(2006), which only considers strongly separable utility functions. It will also be used to establish

the gross substitutes property of demand in a more intuitive manner than Mirman and Ruble (2003),

who use complex value orders.

The first step towards the gross substitutes property of demand is the existence of a gross

substitute of good i among the other n−1 goods.

Proposition 7. If u is locally nonsatiated, satisfies regularity conditions, | ∂ MRSik
∂ xi

· xi
MRSik

|< (>)1

for some k 6= i and all goods are normal, then there exists a gross substitute (complement) among

the other goods for sufficiently small price changes of good i.

Proof. The following proof will focus on the gross substitutes. The bracketed version for com-
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plements can be shown accordingly. Now consider the case when pi increases. From above we

know that x̂ j ≥ x∗j and x̂ j ≥ x∗∗j for all j 6= i, where x∗ is the original optimal bundle before the

price change, x̂ is the optimal bundle at new prices and compensated income and x∗∗is the new

maximizer after the price change.

Since the budget constraint is binding at both the old and new optimal bundle, we know that

pix∗i + ∑
j 6=i

p jx∗j = w = p′ix
∗∗
i + ∑

j 6=i
p jx∗∗j , which can be rewritten as ∑

j 6=i
p j(x∗∗j − x∗j) = pix∗i − p′ix

∗∗
i .

The total change of expenditures on each of the goods can be decomposed in the change resulting

from the substitution and the income effect, resulting in ∑
j 6=i

[p j(x̂ j− x∗j)+ p j(x∗∗j − x̂ j)] = pix∗i −

p′ix̂i + p′ix̂i− p′ix
∗∗
i . First consider only the change in expenditures attributed to the income effect.

Since x̂i≥ x∗∗i and x̂ j ≥ x∗∗j for each j, p′i(x
∗∗
i − x̂i)< 0 and ∑

j 6=i
p j(x∗∗j − x̂ j)< 0 . Hence expenditures

on both good decrease as a result of the income effect.

The impact of the substitution effect on good i on the other hand is not as obvious. Using the

Slutsky compensation, it can be written as

p′ix̂i− pix∗i = w′−w−∑
j 6=i

p j(x̂ j− x∗j) = (p′i− pi)x∗i −∑
j 6=i

p j(x̂ j− x∗j) (2.6)

.

To use the assumption that | ∂ MRSi j
∂ xi

· xi
MRSi j

|< 1, we first approximate the derivative ∂ MRSi j
∂ xi

by
∆MRSi j

∆xi
using a linear Taylor approximation. x̂i is a continuous function of pi, so for sufficiently

small price changes ∆MRSi j
∆xi

=
MRSi j(x̂)−MRSi j(x∗)

x̂i−x∗i
. Assuming that the solution is interior, ∆MRSi j

∆xi
=

MRSi j(x̂)−MRSi j(x∗)
x̂i−x∗i

=

p′i
p j
− pi

p j
x̂i−x∗i

. Since | ∂ MRSi j
∂ xi

· xi
MRSi j

|< 1, there exists some ε > 0, such that | ∂ MRSi j
∂ xi

·
xi

MRSi j
| +ε ≤ 1. For sufficiently small price changes, || ∆MRSi j

∆xi
· xi

MRSi j
| − | ∂ MRSi j

∂ xi
· xi

MRSi j
||< ε .

Therefore, | ∆MRSi j
∆xi
· xi

MRSi j
|=

p′i
p j
− pi

p j
x∗i−x̂i

· x∗i
pi
p j

≤ 1, which implies
p′i
p j
− pi

p j
x∗i−x̂i

· x∗i
p′i
p j

≤ 1. Again using the Slutsky

compensation, this can be rewritten as ∑
j 6=i

p j(x̂ j− x∗j)≥ (p′i− pi)x∗i = w′−w . This condition and

2.6 imply p′ix̂i− pix∗i ≤ 0.

Therefore both the income and the substitution effect lead to a decrease of expenditures on good i,

so ∑
j 6=i

p j(x∗∗j − x∗j)≥ 0 . Consequently, x∗∗j0 ≥ x∗j0 for some good j0.
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Proposition 7 only guarantees the existence of a gross substitute (complement) among the n−1

goods for good i. However, it fails to provide insight in the effect of a price change on each of

these n−1 goods individually. As for the positive substitution effect for all goods other than good

i, the additional assumption, that the marginal rate of substitution between any two goods only

depends on the quantities of these two goods, will allow us to draw wider-ranging conclusions in

comparative statics problems with price changes.

Theorem 5. If u is locally nonsatiated , satisfies regularity conditions, MRSlm is independent of

all goods other than l and m for all l, m, | ∂ MRSik
∂ xi

· xi
MRSik

|< (>)1 for some k 6= i and all goods are

normal, then all goods j 6= i are gross substitutes (complements) of good i.

Proof. As previously, the proof will focus on the case of gross substitutes. From Proposition 7 we

know that there exists a substitute good of good i among the other goods. At an interior solution,

MRSi j =
pi
p j

for all j and MRS jk =
p j
pk

for all j 6= k, j,k 6= i. As pi increases, so does MRSi j.

Since MRS jk is independent of all goods other than j and k, increasing in good k and p j
pk

remains

unchanged at the new optimal solution, the marginal utilities of all goods other than i need to

move in the same direction. Because both the substitution effect and the income effect have led

to a decrease in the optimal quantity of good i, MUi has increased. Moreover, the existence of a

substitute yields that MU j needs to decrease and x∗∗j ≥ x∗j for all j 6= i.

Corollary 2. If u is locally nonsatiated, C j-quasisupermodular for all j = 1, ...,n, satisfies regular-

ity conditions, MRSlm is independent of all goods other than l and m for all l, m, | ∂ MRSik
∂ xi

· xi
MRSik

|<

(>)1 for some k 6= i and all goods are normal, then all goods j 6= i are gross substitutes (comple-

ments) of good i.

Proof. This corollary follows from Theorem 5 by using Quah’s result for normality.
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Example 14. CES utility (3 goods case)

Consider the CES utility function u(x1,x2,x3) = (xρ

1 +xρ

2 +xρ

3 )
1
ρ . Like in the previously mentioned

2 goods case, u is monotone and locally nonsatiated. Furthermore, it is quasiconcave and C1-, C2-

and C3-quasisupermodular if ρ ≤ 1. All marginal rates of substitution MRSi j only depend only

goods i and j and are decreasing in good j. 32Moreover, | ∂MRSi j
∂xi
· xi

MRSi j
|=| ρ−1 |< 1 for all i 6= j

and 0 < ρ ≤ 1.

Therefore, if we consider a price increase of good 1, by Proposition 7 optimal consumption of

either good 2 or good 3 has to increase. Theorem 5 goes even further and says that more of both

goods will be consumed after the price change. It can easily be seen in footnote 32 that if either x2

or x3 goes up, the other one has to increase equally for MRS23 to remain unchanged. This needs

to be the case at an interior solution where one of the first order condition requires MRS23 =
p2
p3

,

since the price ratio between these two goods has not changed.

The following example is an application of Theorem 5. Milgrom and Shannon (1994) show

how results for games with strategic complements can be applied to a general equilibrium model

with gross substitutes.

Example 15. General Equilibrium Model with Gross Substitutes

Let there be L+ 1 goods in an economy with good 0 as the numéraire. For each other good n,

a market maker announces a price pn and his objective is to minimize excess market demand

dn(pn, p−n) = ∑i∈I xin(pn, p−n)−en for that good, where xin denotes the demand of consumer i for

good n and en is the total endowment of it.

So his payoff can be written as πn(pn, p−n) =− | dn(pn, p−n) |.

In Milgrom and Shannon, a game with strategic complementarities is defined as follows.

N players each have a strategy set Sn, partially ordered by ≥n, and a payoff function πn(xn,x−n).

32MRS12 =
xρ−1

1

xρ−1
2

, MRS13 =
xρ−1

1

xρ−1
3

, MRS23 =
xρ−1

2

xρ−1
3
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Moreover, the following conditions need to be satisfied for all n :

1. Sn is a compact lattice;

2. πn is upper semi-continuous in xn for x−n fixed and continuous in x−n for fixed xn;

3. πn is quasisupermodular in xn and satisfies the single crossing property in (xn;x−n).

The previously described fictional game with a market maker for each good n satisfies the condi-

tions for a game with strategic complementarities (GSC) if the economy exhibits gross substitutes.

This is the case if dn is continuous and decreasing in pn and continuous and monotone nonde-

creasing in p−n for all n. The above results can be used to guarantee these properties making

assumptions directly on the utility functions instead of the excess demand function. If the individ-

uals’ uncompensated demand functions xin(pn, p−n,wi) has the gross substitutes property, then the

individual excess demand functions xin(pn, p−n, p ·ei)−ein also have the gross substitutes property.

In case of a price increase of p−n, uncompensated demand for good n increases and the wealth ef-

fect goes in the same direction, assuming that the good is normal. The gross substitutes property of

aggregate excess demand follows immediately from the individuals’ excess demands. Thus dn has

the gross substitutes property if all individual Marshallian demand functions have this property.

Hence this game is a GSC if the consumers’ utility functions are monotone, locally nonsatiated,

quasiconcave, C j-quasisupermodular for all j = 1, ... , L+1, satisfies regularity conditions, MRSi j

is independent of all goods l 6= i, j and | ∂ MRSik
∂ xi

· xi
MRSik

|< 1 for some k 6= i.

Examples of utility functions that satisfy these conditions include as previously mentioned CES

utility for ρ ≤ 1 and monotone logarithmic or trans-log utility functions.

2.4.2 Gross Substitutability between 2 Goods

If we do not want to limit our attention to utility functions where the marginal rate of substitution

between two goods is independent of all other goods, we can still provide conditions under which

two goods are gross substitutes. Without the marginal rate of substitution’s independence of other
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goods, the sign of the substitution effect of a change of pi is undetermined for all goods other than

good i and as shown in Proposition 7 we can only guarantee the existence of a gross substitute under

the provided restriction on the marginal rate of substitution elasticity. Therefore, an additional

assumption will be needed to establish gross substitutability between goods i and k.

The following result is based on the previous observation that given that | ∂ MRSik
∂ xi

· xi
MRSik

|< 1

for some k 6= i, expenditures on good i decrease as pi goes up (see proof of Proposition 7). The

change in expenditures on good l is the difference between the decrease in expenditures on good i

and the change of all commodities other than i and l combined, thus

pl(x∗∗l − x∗l ) = pix∗i − p′ix
∗∗
i − ∑

j 6=i,l
p j(x∗∗j − x∗j) (2.7)

From this, we see that the demand for good l is increasing in pi if the expenditures on all other

goods decrease. From above we already know under what condition expenditures on good i will

decrease. Hence, gross substitutability between good i and l can be established if we can provide

a condition on u that yields decreasing aggregate expenditures of all goods other than i and l.

Theorem 6. If u is locally nonsatiated, C j -quasisupermodular for all j=1,...,n , satisfies regularity

conditions, | ∂ MRSik
∂ xi

· xi
MRSik

|< 1 for some k 6= i and

1. ∑
j 6=i,l

1
∂MRSi j

∂x j

< 0 or

2. 0 < ∂MRSil
∂xl
· xi < 1,

then good l is a gross substitute of good i.

Proof. First, suppose (1) holds. From the proof of Proposition 7, we have pix∗i − p′ix
∗∗
i ≥ 0. Ap-

proximate the derivative ∂ MRSi j
∂ x j

≈ ∆MRSi j
∆x j

using a linear Taylor approximation. x̂ j is a continuous

function of pi, so for sufficiently small price changes ∆MRSi j
∆x j

=
MRSi j(x̂)−MRSi j(x∗)

x̂ j−x∗j
. Assuming that

the solution is interior, ∆MRSi j
∆x j

=
MRSi j(x̂)−MRSi j(x∗)

x̂ j−x∗j
=

p′i
p j
− pi

p j
x̂ j−x∗j

. Since ∑
j 6=i,l

1
∂MRSi j

∂x j

< 0, there exists some
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ε > 0, such that ∑
j 6=i,l

1
∂MRSi j

∂x j

+ε ≤ 0. For sufficiently small price changes, ∑
j 6=i,l

1
∆MRSi j

∆x j

− ∑
j 6=i,l

1
∂MRSi j

∂x j

< ε .

Therefore, ∑
j 6=i,l

1
∆MRSi j

∆x j

= ∑
j 6=i,l

p j
p′i−pi

(x̂ j− x∗j) =
1

p′i−pi
∑

j 6=i,l
p j(x̂ j− x∗j)≤ 0, which implies

∑
j 6=i,l

p j(x̂ j− x∗j)≤ 0 (2.8)

.

If we now decompose the total change in expenditures for goods j 6= i, l in the part that stems from

the substitution and the part resulting from the income effect, we easily see from equation 2.8 and

Proposition 5 that ∑
j 6=i,l

p j(x∗∗j − x∗j) = ∑
j 6=i,l

p j(x̂ j− x∗j)+ ∑
j 6=i,l

p j(x∗∗j − x̂ j) ≤ 0 . This together with

equation 2.7 implies x∗∗l ≥ x∗l .

Now suppose (2) holds. Following the same approximation procedure as above, 0 < ∂MRSil
∂xl
·xi < 1

yields 0≤ (p′i−pi)x∗i
pl(x̂l−x∗l )

≤ 1. We can rewrite this as pl(x̂l−x∗l )≥ (p′i− pi)x∗i = w′−w≥ 0. Because all

goods are normal, the expenditure decrease due to the income effect on each good j is at most the

amount of compensated income w′−w (x̂ j− x∗∗j ≤ w′−w for all j). Using these two inequalities,

we obtain that pl(x∗∗l − x∗l ) = pl(x̂l− x∗l )− pl(x̂l− x∗∗l )≥ 0. Hence x∗∗l ≥ x∗l .

To give some intuition behind this result, first notice that in the first additional condition re-

quires that the aggregate of all goods other than i and l is a net complement of good i. In combi-

nation with the negative sign of the income effect, the aggregate of all other goods is also a gross

complement of good i. As the condition on the absolute elasticity of MRS with respect to good k

yields existence of a gross substitute, it has to be good l.

The second possible additional condition first of all requires good l to have a positive substitu-

tion effect, which necessarily needs to be the case for a gross substitute in order to outweigh the

negative income effect for normal goods. Second, this condition results in a very strong substitu-

tion effect and even if the entire compensating amount that is being taken away in the income effect

were to come from that particular good, overall expenditures on good l would still have increased

and therefore also demand.
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Example 16. CES Utility

Consider the CES utility function u(x1, ...,xn) = (
n
∑

i=1
xρ

i )
1
ρ and suppose pi increases to p′i. Like

in the previously mentioned examples, u is monotone and locally nonsatiated. Furthermore, it

is quasiconcave and Ci-quasisupermodular for all i if ρ ≤ 1. The marginal rate of substitution

between good i and l is equal to MRSil =
xρ−1

i

xρ−1
l

. Thus, ∂MRSil
∂xl
· xi = (1−ρ)

xρ

i
xρ

l
≥ 0 for ρ ≤ 1.

It is not straightforward to see when ∂MRSil
∂xl
· xi < 1, as this will depend on the ratio between xi

and xl . At optimal bundles, this ratio is x∗i
x∗l
= ( pl

pi
)

1
1−ρ . Then, ∂MRSil

∂xl
·xi = (1−ρ)( pl

pi
)

1
1−ρ . Hence the

value of ρ for which this expression will be less than 1 depends on the price ratio. When solving

this equation for ρ , we get the transcendental equation (1−ρ)1−ρ < pi
pl

.

2.5 Hicksian Effects

When considering income and substitution effect of a price change, there are two different ap-

proaches regarding the consumer’s compensation. The previously used Slutsky compensation pro-

vides the consumer with enough additional income to afford the initial optimal bundle at new

prices. Under Hicksian compensation, the consumer’s income gets adjusted so that his utility level

does not change. The substitution effect then captures how Hicksian demand changes with prices

and the sign of the substitution effect classifies goods as net substitutes or complements.

By Shephard’s Lemma, we know that h j(p,u) = ∂e(p,u)
∂ p j

, where h j(p,u) denotes the Hicksian

demand for good j at price p and utility level u, e(p,u) is the respective expenditure function. We

note that net substitutability (complementarity) are equivalent to super- (sub-) modularity of the

expenditure function, since ∂h j(p,u)
∂ pi

= ∂ 2e(p,u)
∂ p j∂ pi

.

Again, a question of interest is what conditions on the primitives, namely the utility function,

will yield Hicksian substitutes or complements. Allen (1934) provides a characterization of com-

plementary and substitute goods based on how the marginal rate of substitution responds to changes

in both commodities. The following proposition uses a similar notion for Hicksian demand.

56



Proposition 8. Given any utility level u, if MRSi j is increasing (decreasing) in x j, then goods i and

j are net substitutes (complements).

Proof. Consider a price increase of good i for the substitutes case. Given that the solution to the

consumer’s utility maximization problem is interior, at optimum MRSi j =
pi
p j

. Let x∗ = h(p,u)

be the optimal bundle at old prices and x̂ = h(p′,u) the optimizer after the price change when

the consumer is compensated to maintain the initial level of utility. Then MRSi j(x̂) =
p′i
p j

> pi
p j

=

MRSi j(x∗). Hence x̂ j > x∗j .

The following corollary states the result for the differentiable case.

Corollary 3. If ∂MRSi j
∂x j

> (<)0, goods i and j are net substitutes (complements).

Proof. The proof focuses on the net substitutes case. The bracketed version can be shown in the

same fashion. As above, approximate ∂ MRSi j
∂ x j

≈ ∆MRSi j
∆x j

. For sufficiently small price changes of pi,
∆MRSi j

∆x j
=

MRSi j(x̂)−MRSi j(x∗)
x̂ j−x∗j

. Assuming that the solution is interior, ∆MRSi j
∆x j

=
MRSi j(x̂)−MRSi j(x∗)

x̂ j−x∗j
=

p′i
p j
− pi

p j
x̂ j−x∗j

=

p′i
p j
− pi

p j
x j(p′,e(p′,u))−x j(p,e(p,u)) =

p′i
p j
− pi

p j
h j(p′,u)−h j(p,u) . Since ∂MRSi j

∂x j
> 0, there exists some ε > 0, such

that ∂MRSi j
∂x j

− ε ≥ 0. For sufficiently small price changes, | ∆MRSi j
∆x j

− ∂ MRSi j
∂ x j

|< ε . Therefore,

∆MRSi j
∆xi

=

p′i
p j
− pi

p j
h j(p′,u)−h j(p,u) ≥ 0, which implies h j(p′,u)−h j(p,u)≥ 0.

Necessary conditions are provided in the following proposition and corollary.

Proposition 9. If goods i and j are net substitutes (complements), then MRSi j is nondecreasing

(nonincreasing) in x j.

Proof. Suppose good i and good j are net substitutes, that is h j(p′,u) ≥ h j(p,u) for a price in-

crease of good i from pi to p′i. Then
p′i−pi

p j
h j(p′,u)−h j(p,u) ≥ 0. Assuming that the solution is interior,

p′i
p j
− pi

p j
h j(p′,u)−h j(p,u) =

p′i
p j
− pi

p j
x j(p′,e(p′,u))−x j(p,e(p,u)) =

p′i
p j
− pi

p j
x̂ j−x∗j

=
MRSi j(x̂)−MRSi j(x∗)

x̂ j−x∗j
=

∆MRSi j
∆x j

≥ 0. Since the de-

nominator is nonnegative, this implies MRSi j(x̂)≥MRSi j(x∗).
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Corollary 4. If goods i and j are strict net substitutes (complements), then ∂MRSi j
∂x j

≥ (≤)0.

Proof. Suppose good i and good j are strict net substitutes, that is h j(p′,u) > h j(p,u) for a price

increase of good i from pi to p′i. Then
p′i−pi

p j
h j(p′,u)−h j(p,u) > 0. Assuming that the solution is interior,

p′i
p j
− pi

p j
h j(p′,u)−h j(p,u) =

p′i
p j
− pi

p j
x j(p′,e(p′,u))−x j(p,e(p,u)) =

p′i
p j
− pi

p j
x̂ j−x∗j

=
MRSi j(x̂)−MRSi j(x∗)

x̂ j−x∗j
=

∆MRSi j
∆x j

> 0. For sufficiently

small price changes, ∃ε > 0 such that ∆MRSi j
∆x j

+ ε ≥ 0 and | ∆MRSi j
∆x j
− ∂MRSi j

∂x j
|< ε .

Hence ∂MRSi j
∂x j

≥ 0.

Example 17. Cobb-Douglas Utility

Consider a standard Cobb-Douglas utility function u(x1, ...,xn) = ∏
n
i=1 xαi

i , where αi > 0 for all i.

Instead of computing the Hicksian, we can apply the above results and it can easily be seen that

MRSi j =
αi
α j
· x j

xi
is increasing in x j. Therefore goods i and j are net substitutes.

Ultimately however we are interested in providing conditions under which goods are gross

substitutes or complements, taking into account demand changes due to the income effect as well.

From the above proposition and Quah’s normality result, we can immediately establish gross

complementarity between two goods if the utility function satisfies the following properties.

Corollary 5. If u is C j-quasisupermodular and ∂MRSi j
∂x j

< 0, then good j is a gross complement of

good i.

Proof. From Proposition 7 it follows that the substitution effect of a price increase of good i is

negative, as is the income effect by Proposition 5. Hence the overall effect is negative and the

goods are gross complements.
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Since the above result requires normality and net complementarity, these assumptions are rather

strict and don’t include the case when two goods are net substitutes, but gross complements be-

cause of the income effect. In the previous sections, when using Slutsky instead of Hicksian

compensation, the proofs of Theorem 4 and 7 made use of the direction of the change in expendi-

tures of good i as its price changed. These results can be shown in similar fashion using Hicksian

compensation.33

33Consider the gross substitutes case. In the proof of Theorem 4, we see that the elasticity condition eventually leads
to the implication that expenditures on good i decrease. If we only consider the condition before using the Slutsky
compensation, it implies p′i−pi

x∗i −x̂i
· x∗i

pi
≤ 1, which can be rewritten as x∗i −x̂i

p′i−pi
≥ x∗i

pi
.

Alternatively, consider the expenditure function for good i, ei(p,u) = pihi(p,u). An expenditure decrease on good i as
a result of the substitution effect, p′ihi(p′,u)− pihi(p,u)≤ 0 can be expressed as− hi(p′,u)−hi(p,u)

p′i−pi
=

x∗i −x̂i
p′i−pi

≥ hi(p,u)
pi

=
x∗i
pi

.
This is equivalent to what we obtained from the elasticity condition. The results from Theorems 4 and 7 follow from
here.
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Chapter 3

Environmental Regulation and R&D:

A Monotone Comparative Statics Approach

3.1 Introduction

Traditionally, economists held the view that restricting firms’ choices by requiring them to reduce

pollution in the production process would have a negative effect on their profits. Porter (1991)

challenges this belief and suggests that stricter environmental regulation encourages innovation in

more efficient technology and can give the firm a competitive advantage, which has since become

known as the “Porter hypothesis”. While Porter was not the first to point out a positive relationship

between pollution regulation and incentives for innovation, his work has been the foundation for

much of the subsequent research on this topic.

Besides cost-efficiency, the question how different policy instruments such as pollution stan-

dards, taxes or market-based permit systems “spur new technology toward the efficient conserva-

tion of the environment” is an important criterion when evaluating their performance, as Kneese

and Schulze (1975) point out.

This chapter distinguishes itself from the existing literature on the question how environmen-

tal regulation affects innovation through the use of a monotone comparative statics approach that
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relies on lattice-theoretic concepts. These methods have mainly been developed in Topkis (1978),

Vives (1990), Milgrom and Roberts (1990) and Milgrom and Shannon (1994). Of particular inter-

est throughout this chapter is the monotonicity theorem in Milgrom and Shannon (1994), which

provides necessary and sufficient conditions on the primitives for nondecreasing solutions in the

parameters of the constrained optimization problem.

Imposing this minimal monotonicity structure on the model in the form of complementarity as-

sumptions on the primitives allows me to derive comparative statics results with respect to changes

in environmental policy variables. Besides less restrictive assumptions, an advantage of this ap-

proach is that it uncovers some economic intuition behind the relationship between regulation and

innovation.

A large part of the literature on environmental regulation and R&D34 focuses on comparing

investment incentives under different regulation approaches (e.g., see Wenders (1975), Downing

and White (1986), Milliman and Prince (1989), Jung et al. (1996) or Bruneau (2004)).

Montero (2002a, 2002b) look beyond perfectly competitive environments and compare invest-

ment R&D incentives of different policy instruments in oligopolistic markets. Not only are real-

world markets rarely perfectly competitive and this extension to imperfect competition can provide

policy implications regarding environmental regulation, but also the industrial organization liter-

ature has shown that strategic interaction in markets can significantly affect investment decisions

such as cost-reducing R&D (see Brander and Spencer (1983), Spence (1984), Fudenberg and Ti-

role (1984) or Bulow et al. (1985)).35 Simpson and Bradford (1996) also considers the case of

imperfect competition and shows that governments can provide a strategic advantage to domestic

industry through stricter environmental regulation (effluent taxes). They also study the effect of

taxes on innovation expenditures, but find that its direction and magnitude are difficult to analyze

and providing general solutions seems impossible.

34For an overview of the theoretical literature, see Requate (2005). A survey on the empirical literature can be found
in Jaffe et al. (2002).

35A survey on strategic interaction in oligopoly markets can be found in Shapiro (1989) and Tirole (1988).
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Other papers focus on the effect of increasing tightness of regulation on R&D incentives. Oates

et al. (1993) shows that increasing pollution tax rates increases the firm’s incentive to invest in

pollution abatement technology in perfectly competitive industries. Biglaiser and Horowitz (1994)

on the other hand find that stricter technology adoption standards decreases the number of firms

undertaking research.

It is important to point out that investment incentives here can mean either adoption of already

existing new technology or R&D in new technology. In the survey by Requate (2005), innovation

(rather than adoption) occurs when there is uncertainty about the R&D success, patents are granted

for innovations, if technology spillovers occur or when imitation is possible. Papers that fall in the

adoption category are for example Downing and White (1986), Milliman and Prince (1989), Jung

et al. (1996), Montero (2002a) and Bruneau (2004). Biglaiser and Horowitz (1994) and Montero

(2002b) are examples for models of innovation and diffusion. This distinction between adoption

and innovation is not always sharp. Phaneuf and Requate (2002), Petrakis and Xepapadeas (2003),

or Gersbach and Requate (2004), for example, assume cost functions that depend on the amount

of investment into abatement equipment or R&D effort.

In this chapter, I provide monotone comparative statics results for the effect of more stringent

environmental regulation on innovation spending. I consider three different regulatory instruments

(emissions standard, effluent tax and effluent tax in combination with a technology adoption stan-

dard) in an imperfectly competitive output market, where two firms compete in Cournot fashion.

I find that a form of weak complementarity between environmental R&D investment and the policy

variable plays a crucial role in the case when tighter regulation has a positive effect on innovation.

Moreover, I provide assumptions on demand, Cournot output and cost functions that yield

such profit functions. I find that profit functions for which the Porter hypothesis holds consist of

concave demand and convex abatement and production costs. Furthermore, the marginal effect of

investment in innovation on the other firm’s Cournot output needs to be decreasing in the policy

variable and the size of spillover effects from investment in innovation by one firm on the other

firm needs to be limited, that is the effects of investment and policy variable on the price through

62



the investing firm’s quantity is greater than the spillover through the other firm.

These results provide some economic intuition under what circumstances we should expect

the Porter hypothesis to hold. The monotone comparative statics results apply in a more general

framework than the existing literature as they require less restrictive assumptions on the objective

function and R&D production function.

The remainder of the chapter is organized as follows: Section 2 introduces the lattice-theoretic

background, sections 3 through 5 provide monotone comparative statics results for emissions stan-

dards, effluent taxes and technology adoption standards and section 6 concludes.

3.2 Preliminaries

To obtain monotone comparative statics results with respect to changes in the constraint set we

need to be able to order these sets. Milgrom and Shannon (1994) use the strong set order (see

Definition 1).

Besides an order on the constraint sets, we also need assumptions on the objective function

for monotone comparative statics. The monotonicity theorem in Milgrom and Shannon (1994)

requires quasisupermodularity, which can be interpreted as weak complementarity between the

choice variables.

Definition 9. Quasisupermodularity

Let X be a lattice. A function f : X → R is quasisupermodular if

1. f (x)≥ f (x∧ y) =⇒ f (x∨ y)≥ f (y)

2. f (x)> f (x∧ y) =⇒ f (x∨ y)> f (y)

Milgrom and Shannon (1994) also include comparative statics with respect to parameter changes

in the objective function. Therefore, their result also requires the objective function to satisfy the

(standard) Single Crossing Property (see Definition 5).
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With these definitions in place we can state the monotone comparative statics theorem that will

be used throughout the chapter.

Theorem 7. Monotonicity Theorem, Milgrom and Shannon (1994)

Let f : X×T→R, where X is a lattice, T is a partially ordered set and S⊂X. Then argmaxx∈S f (x, t)

is monotone nondecreasing in (t,S) if and only if f is quasisupermodular in x and satisfies the Sin-

gle Crossing Property in (x; t).

Proof. See Milgrom and Shannon (1994).

3.3 Emissions Standards in Imperfectly Competitive Markets

While a large part of the literature on environmental regulation and R&D incentives assumes per-

fectly competitive output markets, Montero (2002a) is one paper that addresses the case of im-

perfect competition, focusing on oligopoly settings in particular. Real world markets are rarely

perfectly competitive and hence the question how environmental regulation affects firms’ invest-

ment in innovation has important policy implications. The main objective of Montero’s paper is to

compare R&D incentives under different types of regulation, namely emissions and performance

standards as well as tradeable permits and auctioned permits, and finds a variety of situations where

investment incentives are greater under standards than permits.

As the goal of this chapter is to approach the Porter hypothesis using monotone comparative

statics results, a question of interest is how stricter environmental regulation affects a firm’s invest-

ment in R&D in oligopoly markets. As Montero (2002a) points out, most markets in the real world

are not perfectly competitive which makes the oligopoly case an interesting and policy-relevant

one. The monotone comparative statics approach to this problem provides assumptions for the

Porter hypothesis to hold directly on the firm’s objective function.
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3.3.1 Model

Following the model in Montero (2002a), consider 2 firms in a market that is subject to environ-

mental regulation. Firm i produces output qi at a cost of C̃i(qi), which differs from the assumption

in Montero (2002a) that firms produce at no cost. Inverse demand is given as P(Q), where Q de-

notes industry output Q = q1+q2. If unregulated the firm produces qi units of emission; abatement

costs are Ci(qi−ei) with C′≥ 036, where ei is the amount of emission after abatement. Investments

of Ki in environmental R&D lower the firm’s abatement costs from Ci(qi−ei) to kiCi(qi−ei) where

ki = fi(Ki), with fi decreasing in Ki. Note that these assumptions on the R&D production function

are weaker than in Montero (2002a), who assumes f (0) = 1, f (∞)> 0, f ′ < 0, f ′′ > 0 and f ′′′ < 0.

The regulator’s goal is to limit total emissions by both firms to Ē = e1 + e2. One of the policy

instruments considered in Montero (2002a) is an emissions standard that is instituted before R&D

spending by the firms, but the regulator will not adjust the standard based on firms’ investments.37

The model involves two stages. In the first stage, the firms decide on their investment in

environmental R&D Ki or indirectly through the resulting ki on their abatement cost reduction. In

the second stage, when Ki and K j are known to all firms, they choose output qi and q j as well as

emissions levels ei and e j. As in Brander and Spencer (1983), for example, I assume that firms

have complete information and in the first stage correctly anticipate the Cournot-Nash output for

any given level of investments.

Firm i’s profit maximization problem in stage 2 can be written as

max πi = P(Q) ·qi−C̃i(qi)− ki ·Ci(qi− ei)

subject to ei ≤ ēi,

where ēi is the emissions standard for firm i.

36Montero (2002a) assumes strictly increasing and convex abatement costs. For my results, I can weaken those
assumptions to nondecreasing and convex abatement costs.

37As pointed out in Montero (2002a), alternatively one could assume the regulator cannot observe R&D expendi-
tures or observes them after the fact.
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Hence, in the first stage, the firm chooses ki to maximize

πi(q∗i ,q
∗
j ,ki) = P(q∗i ,q

∗
j) ·q∗i −C̃i(q∗i )− ki ·Ci(q∗i − e∗i ),

where q∗i = q∗i (ki,k j,e∗i ,e
∗
j) and q∗j = q∗j(ki,k j,e∗i ,e

∗
j).

3.3.2 Monotone Comparative Statics

The main question that this chapter is trying to address is how tighter environmental regulation

affects R&D investment. To analyze this monotone comparative statics problem we need to look

at the firm’s profit function in the first stage of the game, when the firm makes the investment

decision based on the expected Cournot outcome in the last period. Firm i’s objective function

thus becomes

πi(q∗i ,q
∗
j ,ki) = P(q∗i ,q

∗
j) ·q∗i −C̃i(q∗i )− ki ·Ci(q∗i − e∗i ),

where q∗i = q∗i (ki,k j,e∗i ,e
∗
j) and q∗j = q∗j(ki,k j,e∗i ,e

∗
j).

As profits are strictly increasing in ei, the firm will choose a level of emissions e∗i equal to their

allowance ēi in the second stage. Hence we can rewrite the first stage objective function as

πi(q∗i ,q
∗
j ,ki) = P(q∗i ,q

∗
j) ·q∗i −C̃i(q∗i )− ki ·Ci(q∗i − ēi)

with q∗i = q∗i (ki,k j, ēi, ē j) and q∗j = q∗j(ki,k j, ēi, ē j).

So we can view the firm’s first stage objective function as parametrized by ēi and apply existing

monotone comparative statics results to address the question how changes in this parameter, such

as stricter environmental regulation, affect investment in R&D.
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Proposition 10. Let firm i’s profit function during the investment stage be πi(q∗i (ēi),q∗j(ēi),ki) :

R×R×R→ R. Then

1. stricter environmental regulation leads to nondecreasing investment in R&D if and only if πi

satisfies the Single Crossing Property in (ki; ēi).

2. πi satisfies the Single Crossing Property in (ki; ēi) if

(a) ∂ 2P
∂q2

i
≤ 0 , ∂ 2P

∂q2
j
≤ 0 (i 6= j)

(b)
∂ 2q∗j

∂ki∂ ēi
≤ 0

(c) ∂P
∂qi
· ∂q∗i

∂ki
≥− ∂P

∂q j
· ∂q∗j

∂ki

(d) ∂P
∂qi
· ∂q∗i

∂ ēi
≥− ∂P

∂q j
· ∂q∗j

∂ ēi

(e) C′i(qi− ei)≥ 0

(f) ∂Ci
∂qi
≥ 0, ∂ 2Ci

∂q2
i
≥ 0

(g) ∂C̃i
∂qi
≥ 0, ∂ 2C̃i

∂q2
i
≥ 0

Proof. (1) also follows almost immediately from the Monotonicity Theorem (Theorem 4) in Mil-

grom and Shannon (1994). As there is only one variable of choice, ki, the profit function satisfies

supermodularity and thus also quasisupermodularity. Consequently, πi satisfies the SCP in (ki; ēi)

if and only if k∗i is nondecreasing in ēi, that is k∗i ≤ k∗
′

i for ēi ≤ ē′i. Recall that ki is the result of

investment spending Ki by ki = f (Ki) with f ′ < 0. Thus K∗
′

i ≤ K∗i , which means that investment in

R&D is higher when the environmental standard is stricter.

(2) The Single Crossing Property is implied by increasing differences, which for twice differen-

tiable profit functions in this case is equivalent to ∂ 2πi
∂ki∂ ēi

≥ 0. Calculation of this cross-partial yields
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∂ 2πi

∂ki∂ ēi
= (

∂ 2P
∂q2

i
· ∂q∗i

∂ ēi
· ∂q∗i

∂ki
+

∂ 2P
∂q2

j
·

∂q∗j
∂ ēi
·

∂q∗j
∂ki

+
∂P
∂q j
·

∂ 2q∗j
∂ki∂ ēi

) ·q∗i

+ (
∂P
∂qi
·q∗i +P− ∂C̃i

∂qi
− ki ·

∂Ci

∂qi
) · ∂ 2q∗i

∂ki∂ ēi
+(

∂P
∂qi
· ∂q∗i

∂ ēi
+

∂P
∂q j
·

∂q∗j
∂ ēi

) · ∂q∗i
∂ki

+ (
∂P
∂qi
· ∂q∗i

∂ki
+

∂P
∂q j
·

∂q∗j
∂ki

) · ∂q∗i
∂ ēi
− ∂ 2C̃i

∂q2
i
· ∂q∗i

∂ ēi
· ∂q∗i

∂ki

− ∂C̃i

∂qi
· ∂ 2q∗i

∂ki∂ ēi
−C′i(q

∗
i − ēi) · (

∂q∗i
∂ ēi
−1)− ki ·

∂ 2Ci

∂q2
i
· ∂q∗i

∂ ēi
· ∂q∗i

∂ki

Innovation expenditures and a higher (less strict) emissions standard are assumed to decrease the

firm’s marginal cost. From the standard Cournot model we know that the optimal output is de-

creasing in the firm’s own marginal cost, hence ∂q∗i
∂ki

< 038 and ∂q∗i
∂ ēi

> 0. As the other firm’s cost

reduction from the spillover is smaller than that for the firm investing in R&D, the effect of firm

i’s lower marginal cost on firm j’s output dominates and
∂q∗j
∂ki

> 0. As usual, assume inverse de-

mand is downward sloping. Note that ∂P
∂qi
· q∗i +P is equal to marginal revenue, hence the term

( ∂P
∂qi
· q+P− ∂C̃i

∂qi
− ki · ∂Ci

∂qi
) is equal to zero at output level q∗i . Lastly, we need to take a closer

look at the last term, (∂q∗i
∂ ēi
− 1). The model assumes that without abatement each unit of output

creates one unit of emissions. Thus q∗i can increase at most by one unit for each unit of additional

permissible emissions and ∂q∗i
∂ ēi
≤ 1 which makes the bracketed term less than or equal to 0. Now

using assumptions (a)-(g), we can conclude that ∂ 2πi
∂ki∂ ēi

≥ 0, which implies the SCP.

While the above condition looks rather intricate, the signs of most of the terms are rather

straightforward and economically intuitive. In the first assumption, ∂ 2P
∂q2

j
and ∂ 2P

∂q2
j
, describe the

curvature of the inverse demand curve. For the commonly used linear inverse demand, these terms

are equal to zero. The literature on Cournot competition39 states that some form of concavity of

inverse demand is a sufficient condition for the existence and uniqueness of a Nash equilibrium,

38Recall that higher innovation expenditures decrease ki and thus marginal cost. Therefore increases in ki are
increases in marginal cost, which result in decreasing Cournot output.

39see Rosen (1965) and Szidarovszky and Yakowitz (1977)
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hence it may be reasonable to assume that ∂ 2P
∂q2

i
≤ 0 ∂ 2P

∂q2
j
≤ 0.

The next assumption is on the term
∂ 2q∗j

∂ki∂ ēi
, the change in the marginal effect of ki on q∗j as

environmental standards change. It seems reasonable to expect that the effect of changes in the

standard on the decrease of q∗j with respect to ki is smaller when regulation is strict, because in that

case firm i’s advantage of lower costs is partially offset by stricter regulation. Thus,
∂ 2q∗j

∂ki∂ ēi
≤ 0.

The third assumption requires the effect of ki on the price through qi to be larger than its impact

through q j. In Cournot competition, where qi and q j are perfect substitutes this is reasonable to

assume, since the magnitude of the direct effect of R&D expenditures on qi is expected to exceed

the absolute value of the spillover effect on q j. Similarly, (d) assumes that the absolute value of the

effect of the environmental standard on the price through qi is larger than through q j, which also

seems reasonable to assume as we can expect the direct effect of the change in the standard on the

firm it is imposed on to be greater than the spillover to the other firm.

By earlier assumption, C′ ≥ 0 as abatement costs are generally nondecreasing. The last two

assumptions are increasing and convex abatement and production costs.

To summarize, the condition in (2) is nonnegative under not very restrictive assumptions that lie

within the modeling framework or are economically intuitive on the profit function. In comparison

with Montero (2002a), this result replicates the finding that there are investment incentives when

emissions regulation is tightened. The result is obtained in a more general framework that includes

costs of production and constant marginal abatement costs, while making economically reasonable

assumptions regarding demand, costs and firm j’s Cournot output.

Overall, it provides assumptions on the demand and cost functions as well as the optimal second

period Cournot output that if satisfied support the Porter hypothesis.
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3.4 Effluent Taxes in Imperfectly Competitive Markets

The Porter hypothesis in the case of effluent taxes in an imperfectly competitive has been addressed

in Simpson and Bradford (1996). They use a strategic trade model similar to Brander and Spencer

(1985), where the government imposes an effluent tax on the domestic firm as an incentive to invest

in cost-reducing technology and hence having a competitive advantage over its foreign rival. They

find that the effect of higher effluent taxes on innovation expenditures is difficult to analyze and

provide some specific examples when the Porter hypothesis holds.

3.4.1 Model

A domestic and a foreign firm are the only producers of a good and produce quantities qD and qF

respectively. The goods are perfect substitutes, thus inverse demand P(Q) is a function of the sum

of qD and qF . The production process leads to environmental pollution and the pollutant is taxed

at rate t by the country’s government. The firms can invest xi (i = D,F) in cost-reducing R&D

and thus their cost function, CD or CF , depends on their own output, their investment in innovation

and their rival’s R&D spending. The latter allows for innovation spillovers, but we assume that

the cost-reducing effect is smaller than for the innovating firm. The emissions tax t only directly

influences the domestic firm’s costs.

In the first stage of the game, the government chooses the tax rate t, then the firms decide on

how much to invest in R&D and in the final stage they choose qD and qF . As in the previous

section, I will focus on the firms’ choices in the last two stages.

In the last stage, the firms compete in Cournot fashion and maximize P(Q) ·qi−Ci (i = D,F).

In the innovation decision stage, the firms choose xi to maximize

P(q∗i ,q
∗
j) ·q∗i −Ci− xi, i, j = D,F , i 6= j,

where q∗i = q∗i (xi,x j, t) and q∗j = q∗j(xi,x j, t) denote the Cournot quantities from the final stage.
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3.4.2 Monotone Comparative Statics

Simpson and Bradford (1994) points out that a general answer to the question how investment in

R&D is influenced by the emissions tax is impossible and that the analysis becomes very complex.

Therefore, they consider specific examples where stricter environmental regulation leads to an

increase in innovation expenditures. The goal of this chapter is to provide assumptions for the

general case that are consistent with the Porter hypothesis.

First we consider the general case where technology spillovers may occur.

Proposition 11. Let πi(q∗i (t),q
∗
j(t)) be firm i’s profit function in the investment stage. Then

1. stricter environmental regulation leads to nondecreasing investment in R&D if and only if πi

satisfies the Single Crossing Property in (xi; t).

2. πi satisfies the Single Crossing Property in (xi; t) if

(a) ∂ 2P
∂q2

i
≤ 0 , ∂ 2P

∂q2
j
≤ 0 (i, j = D,F, i 6= j)

(b)
∂ 2q∗j
∂xi∂ t ≤ 0

(c) − ∂P
∂qi
· ∂q∗i

∂xi
≥ ∂P

∂q j
· ∂q∗j

∂xi

(d) ∂P
∂qi
· ∂q∗i

∂ t ≥−
∂P
∂q j
· ∂q∗j

∂ t

(e) ∂ 2Ci
∂xi∂ t ≤ 0

(f) ∂Ci
∂qi
≥ 0, ∂ 2Ci

∂q2
i
≥ 0

Proof. (1) follows almost immediately from the Monotonicity Theorem (Theorem 4) in Milgrom

and Shannon (1994). As there is only one variable of choice, xi, the profit function satisfies super-

modularity and thus also quasisupermodularity. Hence, πi satisfies the SCP in (xi; t) if and only if

x∗i is nondecreasing in t.

(2) The Single Crossing Property is implied by increasing differences, that is ∂ 2πi
∂xi∂ t ≥ 0 for twice

continuously profit functions. Differentiating the profit function with respect to xi and t yields
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∂ 2πi

∂xi∂ t
= (

∂ 2P
∂q2

i
· ∂q∗i

∂ t
· ∂q∗i

∂xi
+

∂ 2P
∂q2

j
·

∂q∗j
∂ t
·

∂q∗j
∂xi

+
∂P
∂q j
·

∂ 2q∗j
∂xi∂ t

) ·q∗i

+ (
∂P
∂qi
·q∗i +P− ∂Ci

∂qi
) · ∂ 2q∗i

∂xi∂ t
+(

∂P
∂qi
· ∂q∗i

∂ t
+

∂P
∂q j
·

∂q∗j
∂ t

) · ∂q∗i
∂xi

+ (
∂P
∂qi
· ∂q∗i

∂xi
+

∂P
∂q j
·

∂q∗j
∂xi

) · ∂q∗i
∂ t
− ∂ 2Ci

∂q2
i
· ∂q∗i

∂ t
· ∂q∗i

∂xi
− ∂ 2Ci

∂xi∂ t

As innovation expenditures are assumed to decrease the firm’s marginal cost while the emissions

tax on the other hand has the opposite effect. From the standard Cournot model we know that the

optimal output is decreasing in the firm’s own marginal cost, hence ∂q∗i
∂xi

> 0 and ∂q∗i
∂ t < 0. As the

other firm’s cost reduction from the spillover is smaller than that for the firm investing in R&D, the

effect of firm i’s lower marginal cost on firm j’s output dominates and
∂q∗j
∂xi

< 0. As usual, we also

assume inverse demand is downward sloping. Note that ∂P
∂qi
·q∗i +P is equal to marginal revenue,

hence this term is equal to zero at output level q∗i . Now using assumptions (a)-(f), we can conclude

that ∂ 2πi
∂xi∂ t ≥ 0, which implies the SCP.

While this general solution requires a couple of assumptions on demand, the cost function and

the optimal Cournot output, these conditions are economically quite intuitive. Assumption (a)

is concavity of inverse demand in both qi and q j. As concavity is a sufficient condition for the

existence and uniqueness of the Cournot equilibrium, this seems to be a reasonable assumption.

Condition (b) requires the marginal effect of innovation expenditures xi on q∗j to decrease in t.

This means that firm i’s cost advantage through investment, which leads to a negative effect on

q j, gets partially offset by higher tax rates. Therefore, the decrease in q j when firm i increases

investment is larger when taxes are low. The third assumption requires the effect of xi on the price

through qi to be larger than its impact through q j. In Cournot competition, where qi and q j are

perfect substitutes this is reasonable to assume, since the magnitude of the direct effect of R&D

expenditures on qi is expected to exceed the absolute value of the spillover effect on q j. Similarly,
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assumption (d) assumes that the effect of the tax on the price through qi is larger than through

q j, which also seems reasonable to assume as we can expect the direct effect of the tax on the

domestic firm to be greater than the spillover to the foreign firm. Assumption (e) says that the

marginal effect of R&D spending on abatement cost decreases with the effluent tax rate. Lastly, I

assume that marginal abatement cost is increasing and convex in output.

Thus the application of a monotone comparative statics result yields economically plausible

assumptions that support the Porter hypothesis in a much more general framework than considered

in Simpson and Bradford (1994).

3.5 Technology Adoption Standards

Besides effluent taxes and emissions standards, another type of environmental regulation uses tech-

nology adoption standards. Regulators often require firms to use the “best available technology”

(BAT), “best practicable control technology currently available” (BPT) or “best conventional pollu-

tant control technology” (BCT). In contrast to other policy instruments, few papers in the literature

on the effects of environmental regulation on innovation incentives address technology adoption

standards. An example is Biglaiser and Horowitz (1994), who study technology adoption stan-

dards as one component of optimal regulation and point out that these standards should be used in

addition to effluent taxes or tradeable emissions permits, but not instead of these traditional regu-

lations. They consider a model with a competitive polluting industry where an exogenously given

number of firms compete in research in pollution-control innovations. The size of the innovation

and R&D success are stochastic and drawn from an identical distribution for all firms. Successful

firms are granted patents and the new technology can then be licensed to other firms. One finding

of their paper is that stricter technology adoption standards have a negative effect on the number

of researching firms.
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3.5.1 Model

Now we add a technology adoption standard to the model used in Simpson and Bradford (1996).

The firms are required to use technology better than or equal to θ̄ , the BAT, BPT or BCT. The

level of technology a firm possesses depends on the level of innovation spending xi, either on

adoption of already existing technology or R&D.40 In the production process, each firm emits a

pollutant ei. The level of emissions increases and is convex in output qi and decreases in advances

of technology θi. The government taxes emissions at rate t, hence the cost of emissions can be

written as t e(qi,θi(xi)).41 Besides emissions costs, the firm also incurs the standard increasing

costs of production denoted by C(qi).

Like in the model of Simpson and Bradford (1994), a domestic and a foreign firm are the

only producers of a good and produce quantities qD and qF respectively. The goods are perfect

substitutes, thus inverse demand P(Q) is a function of the sum of qD and qF .

In the first stage, the government chooses the tax rate t and technology standard θ̄ , then the

firms decide on how much to invest in R&D (and hence their level of technology) and in the final

stage they choose qD and qF . As in the previous sections, we will focus on the firms’ choices in

the last two stages.

Finally, in the last stage of the game, the firms compete in Cournot fashion and maximize

P(Q) ·qi−Ci(qi)− t ·e(qi,θi(xi)) (i = D,F). In the innovation decision stage, the firm i chooses xi

to maximize

πi(q∗i ,q
∗
j) = P(q∗i ,q

∗
j) ·q∗i −Ci(q∗i )− t · e(q∗i ,θ(xi))− xi

subject to θi(xi)≥ θ̄ ,

where q∗i = q∗i (xi,x j, t) and q∗j = q∗j(xi,x j, t) denote the Cournot quantities from the final stage.

40Assume that innovation is firm specific (and hence a private good). In this case, the firm’s abatement cost can
be modeled as a function of emissions and investment level, with costs increasing in emissions and decreasing in
investment. In contrast to Biglaiser and Horowitz (1994), R&D success is treated as deterministic and the level of
technology is determined by investment in innovation.

41This specification of emissions costs is adapted from Biglaiser and Horowitz (1994).
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3.5.2 Monotone Comparative Statics

As previously, we want to analyze the effect of stricter environmental regulation on innovation.

Here, the tighter regulation takes the form of higher taxes and higher technology adoption stan-

dards. In this case, we have parameter changes in both the objective function and the constraint set

of the firm’s innovation decision problem.

Proposition 12. Let x∗i = argmaxxi∈S πi(q∗i (t),q
∗
j(t)) with S = {xi ∈ R | θi(xi)≥ θ̄}. Then

1. stricter environmental regulation (t ′, θ̄ ′)≥ (t, θ̄) leads to nondecreasing investment in R&D

x∗i if and only if πi satisfies the Single Crossing Property in (xi; t).

2. πi satisfies the Single Crossing Property in (xi; t) if

(a) ∂ 2P
∂q2

i
≤ 0 , ∂ 2P

∂q2
j
≤ 0 (i, j = D,F, i 6= j)

(b)
∂ 2q∗j
∂xi∂ t ≤ 0

(c) − ∂P
∂qi
· ∂q∗i

∂xi
≥ ∂P

∂q j
· ∂q∗j

∂xi

(d) ∂P
∂qi
· ∂q∗i

∂ t ≥−
∂P
∂q j
· ∂q∗j

∂ t

(e) ∂e
∂qi
· ∂q∗i

∂xi
≤− ∂e

∂θi
· ∂θi

∂xi

(f) ∂Ci
∂qi
≥ 0, ∂ 2Ci

∂q2
i
≥ 0

Proof. (1) follows almost immediately from the Monotonicity Theorem (Theorem 4) in Milgrom

and Shannon (1994). As there is only one variable of choice, xi, the profit function satisfies super-

modularity and thus also quasisupermodularity.

Moreover, the constraint set S′ = {xi ∈R | θi(xi)≥ θ̄ ′}, θ̄ ′ ≥ θ̄ , dominates S in the strong set order.

Hence, πi satisfies the SCP in (xi; t) if and only if x∗i is nondecreasing in (t, θ̄).

(2) The Single Crossing Property is implied by increasing differences, that is ∂ 2πi
∂xi∂ t ≥ 0 for twice

continuously profit functions. Differentiating the profit function with respect to xi and t yields
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∂ 2πi

∂xi∂ t
= (

∂ 2P
∂q2

i
· ∂q∗i

∂ t
· ∂q∗i

∂xi
+

∂ 2P
∂q2

j
·

∂q∗j
∂ t
·

∂q∗j
∂xi

+
∂P
∂q j
·

∂ 2q∗j
∂xi∂ t

) ·q∗i

+ (
∂P
∂qi
·q∗i +P− ∂Ci

∂qi
− t · ∂e

∂qi
) · ∂ 2q∗i

∂xi∂ t
+(

∂P
∂qi
· ∂q∗i

∂ t
+

∂P
∂q j
·

∂q∗j
∂ t

) · ∂q∗i
∂xi

+ (
∂P
∂qi
· ∂q∗i

∂xi
+

∂P
∂q j
·

∂q∗j
∂xi

) · ∂q∗i
∂ t
− ∂ 2Ci

∂q2
i
· ∂q∗i

∂ t
· ∂q∗i

∂xi

− (
∂e
∂qi
· ∂q∗i

∂xi
+

∂e
∂θi
· ∂θi

∂xi
)− t · ∂

2e
∂q2

i
· ∂q∗i

∂ t
· ∂q∗i

∂xi

As innovation expenditures are assumed to decrease the firm’s marginal cost while the emissions

tax on the other hand has the opposite effect. From the standard Cournot model we know that the

optimal output is decreasing in the firm’s own marginal cost, hence ∂q∗i
∂xi

> 0 and ∂q∗i
∂ t < 0. As the

other firm’s cost reduction from the spillover is smaller than that for the firm investing in R&D, the

effect of firm i’s lower marginal cost on firm j’s output dominates and
∂q∗j
∂xi

< 0. As usual, assume

inverse demand is downward sloping. Note that ∂P
∂qi
· q∗i +P is equal to marginal revenue, hence

this term is equal to zero at output level q∗i . Now using assumptions (a)-(f), we can conclude that

∂ 2πi
∂xi∂ t ≥ 0, which implies the SCP.

When taking a closer look at this characterization of the SCP, notice that the revenue in the

profit function remained the same as in the previous section in the Simpson and Bradford model.

Therefore assumptions (a) through (d) are the same as above. Assumption (e) guarantees that the

overall effect of increased investment leads to a reduction in emissions; that is, the increasing effect

of xi on emissions through qi is dominated by the emissions reduction of xi through technology θi.

Lastly, (f) assumes that costs of production are increasing and convex.
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3.6 Conclusion

After the analysis of the effect of different environmental policy instruments on innovation in im-

perfectly competitive markets, my monotone comparative statics approach to this problem shows

that the question whether or not the firm’s profit function satisfies the Single Crossing Property

in the investment and policy variables plays a crucial role. The Single Crossing Property can be

interpreted as weak complementarity between investment and the regulatory variable. I provide

properties of profit functions that satisfy the Single Crossing Property for each of the considered

policy instruments. The results vary only slightly across the three different types of regulations.

In all three models, demand is assumed to be concave in both firms’ quantities. We also see

that the marginal effect of investment in innovation on the other firm’s Cournot output needs to be

decreasing in the policy variable. Moreover, it is required that the size of spillover effects from

investment in innovation by one firm on the other firm needs to be limited, that is the effects of

investment and policy variable on the price through firm i’s quantity is greater than the spillover

through firm j. Lastly, convexity of production and abatement costs is another property of profit

functions that satisfy the SCP. This suggests that we should not expect the Porter hypothesis to

hold in markets where firms experience economies of scale.
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Appendix A

Appendix Chapter 1

A.1 Proof of Theorem 2

(⇒) Suppose S′ ≥(∆,∇) S for t ′ ≥ t and let x ∈M(t,S), y ∈M(t ′,S′).

Since x ∈ M(t,S) and S ≤(∆,∇) S′, f (x, t) ≥ f (x∆y, t). By (∆,∇)-quasisupermodularity of f , this

implies f (x∇y, t)≥ f (y, t). Since f also has the (∆,∇)-Single Crossing Property in (x, t),

f (x∇y, t)≥ f (y, t) ⇒ f (x∇y, t ′)≥ f (y, t ′) for t ′ ≥ t. As y ∈M(t ′,S′), x∇y ∈M(t ′,S′).

Now suppose x∆y /∈ M(t,S) and hence f (x, t) > f (x∆y, t). (∆,∇)-quasisupermodularity of f

implies f (x∇y, t) > f (y, t) and by the (∆,∇)-Single Crossing Property, f (x∇y, t ′) > f (y, t ′) for

any t ′ ≥ t. This contradicts the assumption that y ∈ M(t ′,S′). Therefore, x∆y ∈ M(t,S) and

M(t,S)≤(∆,∇) M(t ′,S′).

(⇐) Fix t. Let x and y be two elements in X and suppose that f is not (∆,∇)-quasisupermodular.

The only case I need to look at is when x and y are unordered. Also, x∆y 6= x and x∇y 6= y. Let

S = {x,x∆y} and S′ = {y,x∇y}. Then S′ ≥(∆,∇) S.

(∆,∇)-quasisupermodularity of f can be violated in the following two ways.

First, suppose f (x, t)≥ f (x∆y, t), but f (x∇y, t)< f (y, t). In this case x is a maximizer of f in S and

y maximizes f uniquely in S′, which violates M(t,S′)≥(∆,∇) M(t,S) (since x and y are unordered).

Alternatively, suppose f (x, t)> f (x∆y, t) , but f (x∇y, t) = f (y, t). Now y maximizes f in S′ while
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x is the unique maximizer in S. This again contradicts M(t,S′) ≥(∆,∇) M(t,s). So f is (∆,∇)-

quasisupermodular.

Now let S ≡ {x, x̄} with x≤(∆,∇) x̄. Then f (x̄, t)− f (x, t)≥ 0 implies x̄ ∈M(t,S). Moreover since

we have M(t,S)≤(∆,∇) M(t̄,S) for t̄ ≥ t it follows that f (x̄, t̄)− f (x, t̄)≥ 0 for all t̄ ≥ t.

Moreover, f (x̄, t)− f (x, t)> 0 implies that x̄ ∈M(t,S) and is unique. Since M(t,S)≤(∆,∇) M(t̄,S)

for t̄ ≥ t it follows that f (x̄, t̄)− f (x, t̄) > 0 for all t̄ ≥ t . Thus f has the (∆,∇)-Single Crossing

Property.

A.2 Ci-Quasisupermodularity and the i-SCP of Profit Functions

The objective function is Ci-quasisupermodular if it is supermodular and i-concave (Proposition

2, Quah (2007)). π is supermodular if ∂ 2π

∂xi∂x j
≥ 0 for all i, j and i 6= j. This is equivalent to

∂ 2V
∂xi∂x j

− ∂ 2C
∂xi∂x j

≥ 0. Thus the profit function is supermodular if marginal revenue of good i is

nondecreasing in x j and marginal cost of good i is nonincreasing in x j. We can decompose the total

revenue in two parts, the revenue from regulated goods (R) and revenue (UR) from unregulated

goods.

So, V (xR,xUR,φ) = pR(xR,xUR,φR) · xR + pUR(xR,xUR,φUR) · xUR.

Hence,

∂ 2V
∂xi∂x j

= ∂ 2 pi
∂xi∂x j

· xi +
∂ pi
∂x j

+
∂ 2 p j

∂xi∂x j
· x j +

∂ p j
∂xi

.

For linear demand, ∂ 2 pi
∂xi∂x j

=
∂ 2 p j

∂xi∂x j
= 0. Therefore, marginal revenue of good i is nondecreasing in

x j for linear demand if either demand of good i and good j are unrelated or if ∂ pi
∂x j
≥ 0 and ∂ p j

∂xi
≥ 0.

By Definition 4, the objective function is i-concave if it is concave in all variables other than i.

So for the firm’s profit function, the Hessian,
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H−i =



π11 · · · π1,i−1 π1,i+1 · · · π1,n

... . . . ...
... . . . ...

πi−1,1 · · · πi−1,i−1 πi−1,i+1 · · · πi−1,n

πi+1,1 · · · πi+1,i−1 πi+1,i+1 · · · πi+1,n

... . . . ...
... . . . ...

πn,1 · · · πi−1,n πi+1,n · · · πn,n


needs to be negative semi-definite.

In the simple case of only 2 commodities and linear cost and demand functions, we only need to

check that ∂ 2π

∂x2
j
≤ 0 for all j 6= i.

For linear cost and demand functions, this expression becomes

∂ 2π

∂x2
j
= ∂ 2V

∂x2
j
− ∂ 2C

∂x2
j
= ∂ 2V

∂x2
j
=

∂ 2 p j

∂x2
j
· x j +2∂ p j

∂x j
+ ∂ 2 pi

∂x2
j
· xi = 2∂ p j

∂x j
≤ 0.

Hence in this simple case, π is Ci-quasisupermodular if the demand and cost function are linear

and if either demand of good i and good j are unrelated or if ∂ pi
∂x j
≥ 0 and ∂ p j

∂xi
≥ 0.

The i-Single Crossing Property is satisfied if ∂ 2π

∂xi∂φi
≥ 0, ∂ 2π

∂xi∂ω
≥ 0 and ∂ 2π

∂xi∂θ
≥ 0. Again assuming

a linear demand function,

∂ 2π

∂xi∂φi
= ∂ 2V

∂xi∂φi
= ∂ 2 pi

∂xi∂φi
· xi +

∂ pi
∂φi

= ∂ pi
∂φi

,

∂ 2π

∂xi∂ω
=− ∂ 2C

∂xi∂ω
=−∂MCi

∂ω
and

∂ 2π

∂xi∂θ
= 0.

Thus, we need ∂ pi
∂φi
≥ 0 and marginal cost of good i to be nonincreasing in ω for the i-Single

Crossing Property to hold.
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Appendix B

Appendix Chapter 2

B.1 Relation to Mirman and Ruble (2003) in the 2 goods case

Consider a price increase of good 2 in the 2 goods case.

Mirman and Ruble’s condition for good 1 to be a substitute of good 2,

∂

∂x2
(MRS12

x2
)< 0,

can be rewritten as

x2
∂MRS12

∂x2
−MRS12

x2
2

< 0 or ∂MRS12
∂x2

< MRS12
x2

.

This is equivalent to

εMRS12,x2 =
∂MRS12

∂x2
· x2

MRS12
< 1.

Our condition for good 1 to be a substitute of good 2 in the case of a price increase of good 2 is

| εMRS21,x2 |< 1.
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Notice that

εMRS12,x2 =
∂MRS12

∂x2
· x2

MRS12
= ∂

∂x2
(MU1

MU2
) · x2

MU1
MU2

=
MU2

∂MU1
∂x2
−MU1

∂MU2
∂x2

MU2
2

· x2
MU1
MU2

=
(MU2

∂MU1
∂x2
−MU1

∂MU2
∂x2

)·x2

MU2MU1
and

εMRS21,x2 =
∂

∂x2
(MU2

MU1
) · x2

MU2
MU1

=
(MU1

∂MU2
∂x2
−MU2

∂MU1
∂x2

)·x2

MU2MU1
=−εMRS12,x2 .

Hence for well-behaved preferences, when ∂MU1
∂x2

> 0 and ∂MU2
∂x2

< 0 , the two conditions are equiv-

alent.

B.2 Relation to Mirman and Ruble (2003) in the n goods case

Now consider a price increase of good n in the n goods case.

Mirman and Ruble’s condition provides conditions when good 1 is a gross substitute of good n,

whereas my condition yields the gross substitutes property of demand, where all goods j 6= n are

substitutes of good n.

For example, let n = 3. According to Mirman and Ruble, good 1 is a gross substitute of good 3

if MRS12 is independent of x3, MRS23 is independent of x1 and MRS23
x3

is independent of x1 and

decreasing in x2 and x3.

Using my condition, all goods are gross substitutes of good 3 if MRS21 is independent of x3, MRS31

is independent of x2, MRS32 is independent of x1 and | ∂MRS3k
∂x3

· x3
MRS3k

|< 1 for some k 6= 3.

Thus the independence assumptions are the same in both papers, the assumptions on the elasticity

of the marginal rate of substitution differ slightly. Mirman and Ruble specifically impose this

condition on one specific elasticity, whereas my version only requires it to hold for one out of all

the elasticities involving good 3.
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Because of the assumption that requires the marginal rates of substitution to be independent of

other goods, the utility function needs to be symmetric with regard to the marginal utilities. As

a consequence, the elasticities involving good 3 are going to be equal. Hence my condition and

Mirman and Ruble’s apply to the same classes of utility functions.
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