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We present a time-dependent generalized pseudospectral �TDGPS� approach in hyperspherical coordinates
for fully ab initio nonperturbative treatment of multiphoton dynamics of atomic systems in intense laser fields.
The procedure is applied to the investigation of high-order-harmonic generation �HHG� of helium atoms in
ultrashort laser pulses at a KrF wavelength of 248.6 nm. The six-dimensional coupled hyperspherical-
adiabatic-channel equations are discretized and solved efficiently and accurately by means of the TDGPS
method. The effects of electron correlation and doubly excited states on HHG are explored in detail. A HHG
peak with Fano line profile is identified which can be attributed to a broad resonance of doubly excited states.
Comparison of the HHG spectra of the ab initio two-electron and the single-active-electron model calculations
is also presented.
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I. INTRODUCTION

The study of multiphoton and very-high-order nonlinear
optical processes in intense ultrashort laser pulses is a subject
of much current interest and significance in science and tech-
nology �1�. In particular, multiple high-order-harmonic gen-
eration �HHG� is one of the most rapidly developing topics
in strong-field atomic, molecular, and optical �AMO� physics
in the past decade �2�. The generation of harmonics of orders
in excess of 300 from rare-gas atoms has been recently dem-
onstrated by experiments �3–5� using laser pulses shorter
than 20 femtoseconds �fs� and peak intensity more than
1014 W/cm2. Examples of the potential applications of the
HHG include the development of coherent soft x-ray laser
light source and nonlinear optics in the extreme ultraviolet
�XUV� regime �1–5�, attosecond laser pulses �6–8�, comb
laser technology �9–11�, etc.

To study such intense-field HHG processes for N-electron
atomic systems using the ab initio wave function approach, it
is necessary to solve the time-dependent Schrödinger equa-
tion of 3N-spatial dimensions, which is well beyond the ca-
pability of the current supercomputer technology for N�2.
For the two-electron �N=2� case, several approaches have
been proposed �12�, however, fully converged six-
dimensional �6D� calculation is still difficult to achieve and
remains a major computational challenge in the study of
strong-field AMO physics today. One of the approximations
commonly used for the treatment of strong-field processes in
the past decade is the single-active-electron �SAE� model
with frozen core �13�. The SAE approach has been success-
fully applied to the investigation of HHG of rare-gas atoms
in linearly polarized laser fields, providing useful insights
regarding strong-field atomic dynamics. However, within the
SAE approach, the effects of electron correlation and doubly
excited states and the role of the individual spin orbital can-
not be explicitly treated. The recent development and appli-
cation of the self-interaction-correction �SIC� time-

dependent density functional theories �TDDFTs� have
overcome most of these difficulties. These SIC-TDDFT
methods provide powerful nonperturbative approaches for
the treatment of multiphoton ionization �MPI� and HHG pro-
cesses of multielectron �N�2� atomic �14–16� and molecu-
lar �16,17� systems in intense laser fields, where the dynami-
cal electron-correlation is treated by approximate exchange-
correlation energy functionals. However, exact treatment of
electron correlation of many-electron quantum systems in
time-dependent fields remains to be developed.

In this paper, we present a fully ab initio wave function
approach for nonperturbative treatment of two-electron
atomic systems in intense laser fields. The method is based
on the extension of the time-dependent generalized pseu-
dospectral �TDGPS� method �18� to the three-body quantum
systems in hyperspherical coordinates �HSC� �19,20�. In the
TDGPS approach, the GPS technique �21� is used for non-
uniform and optimal discretization of the spatial coordinates
and a second-order split-operator method in the energy rep-
resentation is used for efficient and accurate time propaga-
tion of the wave function. The TDGPS method has been
shown to be capable of providing highly accurate time-
dependent wave functions for both HHG and MPI calcula-
tions �14,16–18� and high-resolution spectroscopy of field-
induced Rydberg atoms �22�, with the use of only a modest
number of spatial grid points. Moreover, the use of the en-
ergy representation facilitates the elimination of undesirable
high-energy �fast oscillating� components, allowing the use
of larger time step and more efficient time propagation of the
wave function. For the two-electron atomic systems, the
study of the electron correlation effects can be facilitated by
the use of the hyperspherical coordinate formalism. In this
paper, we present a TDGPS-HSC method for accurate non-
perturbative treatment of the quantum dynamics and the role
of electron correlation on the HHG processes of He atoms in
intense ultrashort laser pulses. A related approach has been
recently presented for the study of double photoexcitation of
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He atoms by attosecond XUV pulses in the presence of weak
few-cycle infrared lasers �23�.

The paper is organized as follows. In Sec. II, we present
the detailed TDGPS-HSC procedure for nonperturbative
treatment of HHG processes of two-electron atoms in intense
laser pulses. Section III presents the calculations of the dou-
bly excited states, oscillator strengths, radial probability dis-
tribution, and HHG power spectra of He atoms. Exploration
of the effects of electron correlation and doubly excited
states on HHG are discussed in detail. Conclusions and re-
marks are presented in Sec. IV. Atomic units are used
through the present work unless otherwise indicated.

II. BASIC FORMULATION

A. Hyperspherical coordinate formalism and the time-
dependent generalized pseudospectral method for spatial

discretization and time propagation

In a recent work, Tong and Lin �23� have explored the
influence of weak laser pulses �I0�1012 W/cm2� on the
double photonabsorption cross sections of helium by using
the HSC approach �combined with the R-matrix theory�. In
the present work, the hyperspherical couple-channel ap-
proach is extended to the nonperturbative treatment of the
response of the helium atoms to intense laser pulse �I0�1
�1014 W/cm2� fields. The pulse duration considered ranges
from 5 to 25 fs. One of the advantages of the HSC approach
is that the two correlated electrons can be treated on equal
footing and no single-electron orbitals are involved to con-
struct wave functions of interest. This allows us to be able to
consider those dynamical processes in which both electrons
are active.

In this work, the wave function in laser pulses is ex-
panded in terms of the field-free eigenchannels �see below�
and the time-dependent coefficients can be obtained by
propagating the wave function �initially from the He ground
state� by means of the TDGPS procedure �18,22�. In the
following, we summarize some essential points of the hyper-
spherical couple-channel formalism and present the exten-
sion of the TDGPS technique for the optimal spatial discreti-
zation and time propagation of the wave function in
hyperspherical coordinates.

In the HSC formalism, the Hamiltonian of the helium
atom in field-free case can be written as

H��R,�,�1,�2� = E��R,�,�1,�2� , �1�

where the hyperradius, R=�r1
2+r2

2, is a measure of the spatial
size, and the hyperangle, �=tan−1�r2 /r1�, depicts the radial
correlation, are introduced. Here �i �i=1 and 2� stands for
the spherical angles 	i and 
i, respectively. Note that the
so-called angular correlation is described by the angle 	12
between the two radial vectors. In Eq. �1�, we have
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where C /R includes all the Coulomb interactions within the
atomic system. To eliminate the first derivative with respect
to the hyperradius R in Eq. �2�, let

��R,�,�1,�2� =
��R,�,�1,�2�
R5/2sin � cos �

. �5�

We thus have the Schrödinger equation in the reduced space
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With the above definitions, it is convenient to introduce
the adiabatic eigenchannel representation to facilitate the so-
lution of the above-mentioned coupled channel equations.
Once we have obtained the eigenchannel functions which are
the essential ingredient in the HSC approach and the relevant
adiabatic potential curves, we can use them to construct the
whole solution to Eq. �6�. For a fixed R, we have

� 1

2R2�−
�2

� �2 +
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+

�̂2
2

sin2 �
	 +

C

R
��
�R,�,�1,�2�

= U
�R��
�R,�,�1,�2� . �7�

In the following we discuss the procedure for achieving ac-
curate solution to the above equation. A well-known method
is the Numerov numerical integration of the coupled equa-
tions �19�. Another one is the basis set expansion �20� in
term of eigenfunctions of hyperspherical harmonics. How-
ever, it is not so hard to recognize that the latter suffers from
the difficulty of slow convergence. This is especially true in
the region far from the nucleus, because one needs to use
considerably more coupled hyperspherical harmonics to de-
scribe the hydrogenlike functions. In other words, this
method provides an inadequate description at larger R and
thus it is not appropriate for our present goal to describe the
laser-driven helium atom. In this work we develop an effec-
tive GPS techinque in hyperspherical coordinates for nonuni-
form and optimal spatial discretization and solution of adia-
batic coupled equations, i.e., a strategy to discretize both
hyperradius and hyperangle variables to overpass the above-
mentioned obstacles. Let us introduce an auxiliary variable
y=4� /�−1 to map the hyperangle � into the domain
y� �−1, +1�. For a given hyperradius, the discretized two-
electron wave function within channel 
 is expressed as
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where we define �= l1+ l2−L+S. L and S indicate the total
orbital angular and spin momentum, respectively.

Because the total angular and spin momenta are explicitly
involved in the wave function defined in Eq. �8�, here we see
that the above discretized channel function satisfies all the
requirement of exchange symmetries, i.e., its spatial part is
exchange symmetric for the triplet states while antisymmet-
ric for the singlet states. The first advantage in the present
GPS procedure is in that we can completely separate the
singlet states from the triplet ones. At the first glance, a sim-
plified version of the discretized representation by dropping
the second summation term in Eq. �8� may be working well.
However, it does not meet our present purpose to handle the
two-electron response to laser pulses as explained below.
Dropping the term mentioned above results in the mixture of
the singlet and triplet states and one has to filter out the
potential curves of the singlet states from the triplet ones. For
the laser intensity of 1014–1015 W/cm2 of the present inter-
est, the relativistic effect caused by intense laser pulses can
be safely neglected. That means no coupling between the
singlet and triplet states exist and therefore the total spin
angular momentum must be a conserved quantity. The sec-
ond advantage is that the boundary conditions imposed in the
channel functions, ��R ,�=0�=0 and ��R ,�=� /2�=0, are
explicitly taken into account through the cardinal function
f�y� defined by the Gauss-Lobatto quadrature. Another ad-
vantage of the present GPS technique is that it does not
require to calculate the complicated and time-consuming ma-
trix elements of the Coulomb repulsion interaction, since
only the values of the Coulomb potentials in the spatial mesh
are needed. Furthermore both the hyperradius R and hyper-
angle � are discreized in an optimal and nonuniform fashion,
namely, more grid points are placed nearby the nucleus and
sparser grid structure outward, with the use of only a modest
number of grid points. This speeds up considerably the nu-
merical calculation and at the same time provides accurate
wave function at the grid points.

As an example of the accuracy of the present GPS proce-
dure, Fig. 1 shows the first ten adiabatic potential curves of
helium in the singlet 1Se, 1Po, and 1De �L=0–2� manifolds
converging to the He+ ionization thresholds. We note that
there is a number of avoided crossings even between the
low-lying neighboring potential curves. For example, a
sharply avoided crossing point in the 1Po manifold occurs
around the hyperradius of 7.65 a .u.

Next let us discuss on how to solve the Schrödinger equa-
tion in the hyperradius space, once the information of eigen-
channels is available. Similar to the situation in a molecular
system, we can think of the hyperradius R as an adiabatic or

“smooth” variable �24�. Most of the kinetic energy of the
two-electron atom is contributed from the motion related to
the hyperangle degree of freedom, while the hyperradius mo-
tion contributes a minor portion. With this in mind and after
mapping the hyperradius R in a finite box �0,Rmax� into the
domain �−1, +1� by

R�x� = R0
1 + x

1 − x + �
, �9�

where �=2R0 /Rmax, we obtain the following transformation:

��R,�,�1,�2� = �R��x�

i=1

Nr

f i�x���xi,y,�1,�2�

= �R��x� 

i


NrN


f i�x�C
i�
�xi,y,�1,�2� .

�10�

Inserting the discretized representation of wave function into
Eq. �6�, we can rewrite the discretized Schrödinger equation
in the form

FIG. 1. �Color online� Potential curves of the helium atom for
�a� 1Se, �b� 1Po, and �c� 1De manifolds.
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where the matrix element of kinetic energy, Kii�, in the hy-
perradius direction is defined by


Kii� = −
1

2
� �2

�R2 −
15

4R2	 f i��R�

R=Ri

. �12�

Note that the electron-electron interaction has already been
incorporated in the adiabatic potential energy U
�R�. One of
the appealing features in the present scheme is that one does
not need to calculate explicitly non-adiabatic coupling be-
tween eigenchannels. In the Ref. �24�, the method to dis-
cretize the hyperradius is referred as smooth variable dis-
cretization �SVD�. Our procedure differs from the SVD in
that a nonlinear transformation �see Eq. �9�� of the hyperra-
dius R is introduced for accurate treatment of the Coulomb
singularity nearby the nucleus.

Because the two active electrons are confined in a finite
box �see Eq. �9� for Rmax�, all the eigenenergies turned out to
be discretized. This indicates that the bound and continuum
states can be taken into account in the same way. It provides
an accessible way to control the density of states in the con-
tinuum by adjusting the parameters involved in nonlinear
mapping or the number of grid points. This allows us to be
able to consider a variety of the ionization processes induced
by intense laser pulses.

B. TDGPS method for time-propagation of the laser-driven
helium-atom wave function in discretized hyperspherical

coordinates system

Application of hyperspherical coordinates technique to
the few-electron atomic systems in the field-free case is far
from new �19,20�, however, its time-dependent version is
still under development. Numerical stable and accurate algo-
rithms are required for the treatment of the interaction of the
atomic system with intense laser fields and the physical
quantities of interest can be then extracted from the time-
dependent wave functions. In the present problem, we gen-
eralize the TDGPS techniques �18,22� to the hyperspherical
coordinates for nonuniform spatial discretization of the
coupled-channel Hamiltonian and for performing the time
propagation of the wave function by means of the second-
order split-operator technique in the energy representation. If
we choose the adiabatic eigenchannel functions as our chan-
nel basis functions to evolve the time-dependent wave func-
tion, namely

��R,�,�1,�2,t� = 

L


F

L�R,t��


L�R,�,�1,�2� , �13�

then the coupled equations take the form

i 

L�
�i�

�F
�
L��Ri�,t�

�t
OL
i

L�
�i� = 

L�
�i�

F
�
L��Ri�,t��Ki�iOL
i

L�
�i�

+ Hii�
ad + Vii��t�� . �14�

Equation �14� is solved by the second-order split-operator
technique in the energy representation to propagate the two-
electron wave packet, which is initially launched from its
strongly correlated ground state. We begin by writing the
evolution equation

��R,t + �t� = e−iH0�t/2e−iV�t+�t/2��te−iH0�t/2��R,t� + O��t�2,

�15�

where H0 stands for the field-free Hamiltonian and V�t� is the
interaction of the helium atom with laser pulses in the length
gauge. Here we assume that the electric field E�t� has a sin2

envelope function f�t� and is linearly polarized along the z
axis. In the energy representation �18�, it is essential to ob-
tain the so called S matrix in hyperspherical space, which
indicates the effect of the exponential operator e−iH0�t/2 on
the ��R , t� in Eq. �15�. Here the S-matrix element reads

Sii�


�L��t� = �iR�2�xi�



�

e−i�

�
L

�t/2Ci

L
�Ci�
�

L
� , �16�

where �
�
L denotes the energy spectra of helium in the field-

free case. Therefore, the channel component F

L�Ri , t� on the

mesh can be calculated through the following three succes-
sive time steps

F

L�1��Ri,t + �t� = 


i�
�

F
�
L�0��Ri�,t�Sii�



�L��t�; �17a�

F

L�2��Ri,t + �t� = 


L�
�

F
�
L��1��Ri,t + �t�ZL


L�
���t�;

�17b�

F

L�3��Ri,t + �t� = 


i�
�

F
�
L�2��Ri�,t + �t�Sii�



�L��t� .

�17c�

Based on the equations above, we can recast the time-
evolution of the wave function into the following matrix
form

F�t + �t� = SZ�t + �t�SF�t� = M�t + �t�F�t� . �18�

The above scheme of time evolution is quite general in the
sense that it can be applied either for the cases of time-
dependent fields or for the cases of time-independent ones.
For our present case, the Z matrix caused by the external
laser fields is explicitly dependent on time, while the S ma-
trix is independent of time. This means that the S matrix
needs to be calculated only once, before the time-evolution
starts. We note that all the evolution matrices are required to
be determined only once if the external fields are time-
independent �see, for example, for atoms in static magnetic
and/or crossed electric and magnetic fields� �22�.
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Once the time-dependent wave functions are calculated,
the induced dipole length and acceleration by laser pulses
can be determined by

dL�t� =���t�


i=1

2

zi
��t�� , �19�

and

dA�t� =���t�


i=1

2 �−
zi

ri
3 + E0f�t�sin��0t��
��t�� ,

�20�

respectively. From a classical point of view, for a multielec-
tron system, the electron-electron Coulomb interaction does
not explicitly contribute to the acceleration as we can see
from Eq. �20�. In the acceleration gauge, if we take the
power spectrum to have the form

PA��� = 
 1

�2�
�

0

�

dA�t�ei�tdt
2

, �21�

then we have an equivalent form in the length gauge

PL��� = 
 1

�
�

0

�

dL�t�ei�tdt − 
 ḋL���
�2�

ei�� + i
dL���
��

ei��
2

.

�22�

Here ḋL��� stands for the first derivative of dL�t� at the end of
laser pulses. Note that the first integral in Eq. �22� alone has
been widely employed in the literature to calculate the HHG
power spectrum in the dipole length form and the last two
terms are often dropped. However, this is valid only when

both ḋL��� and dL��� vanish or are negligibly small �25�.

III. RESULTS AND DISCUSSIONS

A. The helium atom in the field-free case

Since the time-dependent wave functions of interest are
expanded in terms of the field-free adiabatic eigenchannels,
it is instructive to briefly recap some of results on the helium
atom in the field-free case, before we turn to discuss the
response to time-dependent laser fields. To illustrate the ac-
curacy of the present methods, we list the energies of singly
as well as doubly excited states in Table I, while selected
oscillator strengths between low-lying states are listed in
Table II. When we incorporated ten eigenchannels and 11
angular components in the wave function, the ground state
energy of helium is determined to be −2.903 723 a .u., in
excellent agreement with the benchmark result of
−2.903 724 a .u. �26�. In the present calculations, we have
used NR=100 and N�=150 grid points. Such an accuracy
reported here cannot be achieved by means of commonly
used equal-spacing discretization methods without the use of
many-orders-of-magnitude larger number of grid points. The
accuracy of the field-free energies listed is better than
10−5 a .u. In Table II, the field-free oscillator strengths of the
transitions 1snp 1P→1s2 1S are extracted from the Fourier

transform of the autocorrelation functions �22,28�. Mean-
while, time-dependent wave functions are obtained by propa-
gating the initial wave packet within a TDGPS scheme out-
lined in the last section. The results obtained by the time-
dependent and time-independent methods are in good
agreement with each other and also with the exact reference
values �26�, indicating sufficient accuracy has been achieved
by the present calculations.

B. Single-atom nonlinear harmonic response

For the wavelength of 248.6 nm used in this study, only
six photons are required to produce the single ionized He+

ion. The ponderomotive energy of the laser-driven free elec-
tron at a laser intensity of 5�1014 W/cm2 is 0.105 a .u.,

TABLE I. Energies of the singly and doubly excited states of the
helium atom. No effect of finite nuclear mass is included in the
present and literature values. Underlined digits indicate uncertain-
ties in Ref. �27�. All energies are given in a.u.

Singly excited states

This work Ref. �26�
1s21Se −2.903 723 −2.903 724

1s2s1Se −2.145 969 −2.145 974

1s2p1Pe −2.123 824 −2.123 843

1s3s1Se −2.061 261 −2.061 271

1s3p1Pe −2.055 127 −2.055 146

1s3d1De −2.055 600 −2.055 620

Doubly excited states

below the He+ n=2 threshold

This work Ref. �27�

2�1,0�2
+1Se −0.777 81 −0.777 87

2�−1,0�2
+1Se −0.621 95 −0.621 81

2�−1,0�3
+1Se −0.548 05 −0.548 070

2�0,1�2
+1Po −0.693 21 −0.693 069

2�1,0�3
−1Po −0.597 04 −0.597 074

2�0,1�3
+1Po −0.564 04 −0.564 074

2�−1,0�3
01Po −0.547 07 −0.547 087

TABLE II. Comparison of the oscillator strengths of the helium
atom. The methods �a� and �b� indicate the present time-
independent and time-dependent calculations, respectively �see the
text�. The initial state is chosen as the ground state of helium and no
effect of finite nuclear mass is included. All energies are in a.u.

n Energy Method �a� Method �b� Ref. �26�

2 −2.123 824 0.276 167 0.276 166 0.276 164 7

3 −2.055 127 0.073 416 0.073 415 0.073 434 9

4 −2.031 057 0.029 851 0.029 850 0.029 862 9

5 −2.019 898 0.015 034 0.015 034 0.015 039 3

6 −2.013 811 0.008 614 0.008 613 0.008 627 7
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while the quiver amplitude is smaller than 3.55 a .u. Com-
pared with the cases of atoms at longer wavelengths such as
of 780 or 1064 nm, the ponderomotive energy gained by the
ionizing electron in one optical period is considerably
smaller. As a consequence, this leads to the absence of the
“shoulder” structure in cross section of the double ionization.
This means that the whole ionization process is dominated
by the sequential events, rather than by the nonsequential
ones in the present case. This point has been demonstrated
experimentally in Ref. �29�.

Depending on the laser parameters, the hyperspherical
space is discretized on a mesh of NR�N�=200�80. In gen-
eral, only three eigenchannels and six eigenmanifolds �i.e.,
0�L�5� are sufficient to achieve the converged results. The
size of the problem may be effectively reduced if the zero-
field eigenmanifolds are properly chosen. For example, the
manifold of ��1,1�1�1Pe is excluded from the expansions of
wave functions due to the selection rule. In order to gain
more insight into the response of helium to laser pulses, the
two-electron joint radial probability distribution is illustrated
in Fig. 2 for the case of I0=1�1014 W/cm2 and �=6 optical
cycles �o.c.� The radial probability density is defined by in-
tegrating all the angle variables

P�r1,r2,t� = r1
2r2

2� � �*�R,�,�1,�2,t���R,�,�1,�2,t�

�d�1d�2. �23�

We note that the electronic density is distributed in the region
where only one electron is driven to travel over the region far
from nucleus while another one is still confined near the
nucleus. As expected, a clear indication of the single ioniza-
tion process can be seen.

Since we are working in hyperspherical coordinate frame-
work, it is instructive to observe the time evolution of the
spatial size of helium through the well-defined hyperradius.
But note that the so-called time-dependent hyperangle ��t�
defined by ��t�= ���t� �� ���t�� does not provide any infor-
mation on the dynamics, because we have always ��t�
�� /4. From Fig. 3, for the case of �=30 o.c., the hyperra-
dius goes through the global maximum at t=15 o.c., when
the laser pulse rises to its peak intensity. By comparing the
behavior of the time-dependent hyperradius �R�t�� and the
single-electron radius �r�t�� �=�r1�t�+r2�t�� /2�, it is realized
that for the laser parameters used here the single-electron
dynamics dominates others. This indicates that one electron
is bound in the ground state of the parent ion while another
one is ionized. Therefore, �R�t�� and �r�t�� show a similar
response to laser pulse. Also, the spatial size of the laser-
driven helium atom shows a periodical oscillation with the
period of half optical cycle of laser electric fields. On the
other hand, as revealed in Fig. 3, the spatial extension does
not grow so much during the time evolution, because of the
smaller quiver amplitude. From a semiclassical viewpoint
�30,31�, the time-dependent laser electric field changes its
direction with time, the ionizing electron is thus driven back
periodically and then to recollide with its parent He+ ion.

As an example, Fig. 4 shows the induced dipole length
and acceleration in a sin2 laser pulse. The corresponding
HHG power spectra are displayed in Fig. 5 for comparison.
As shown, the present ab initio HHG power spectra in the
dipole and acceleration forms are in very good agreement
with each other even in the region beyond the cutoff. This
indicates that the convergence of the time-dependent wave
functions has been achieved in the whole configuration
space, both in the region near the atomic core as well as in
the region far from nucleus.

Figures 6 and 7 show the comparison of the HHG power
spectrum of the fully two-electron and the SAE calculations
in two different laser intensities. First we notice that there
exists some unique broader harmonic peaks with spectral
line profile seen only in the fully ab initio results. Figure 7
shows that the ab initio HHG power spectrum contains a
broad peak with fine structure at the fifth harmonic at the
peak intensity of I0=5�1014 W/cm2. This broader structure
can be attributed to the resonance between the intermediate

FIG. 2. �Color online� Snapshots of the two-electron helium
radial density in the r1-r2 plane in a 248.6 nm laser pulse with
intensity 1�1014 W/cm2, taken at �a� t=0 and �b� t=� /2. The time
duration is �=6 o.c. The colors are shown in logarithmic scale �in
the powers of 10�.
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1s2p1Po state and the ground state in intense laser pulses.
Note that at the same wavelength �248.6 nm�, Glass and
Burke �32� found that the five-photon resonance between the
intermediate 1s2p state and the ground state occurs just at
I0=5�1014 W/cm2. In Ref. �32�, this five-photon resonance
was explored by means of the total ionization rate and the

energies of Rydberg states. However, at a weaker intensity of
1�1014 W/cm2 �see Fig. 6�, a broader resonance with a
Fano line shape occurs at a higher energy regime where the
energy of the emitted photon is 13�0. This energy scale is far
above the first ionization threshold. To gain a deeper insight
into the coupling between the doubly excited states and
ground state caused by the laser pulses, Fig. 8 displays the
emitted spectra by including only the first eigenchannel con-
verging to the He+ n=1 threshold �dashed line�. In this way,
the coupling between the doubly excited states and ground
state are removed and only the effect of the single excited
Rydberg states are taken into account. As a consequence, we
note that the broader resonance structure completely disap-
peared in the energy regime near the 13th harmonic, the
latter now shows a similar resonance width to the neighbor-
ing harmonics. From Table I, we further notice that the
broader resonance at the frequency of 13�0 can be attributed
to the multiphoton resonance between a group of the doubly
excited 2�1,0�3

−1Po, 2�0,1�3
+1Po, and 2�−1,0�3

01P0 states and
the ground state. For the laser parameters in Fig. 8, we have
the energy difference �E�Ede� �1P0�−Eg��

1Se�=2.36 a .u .
�13�0.

It is instructive to explore whether a SAE model can be
used to describe the process in which the sequential event

FIG. 6. �Color online� Comparison of HHG power spectra ob-
tained by the SAE model and the full-dimensional helium theory.
The laser pulse has a wavelength of 248.6 nm, a peak intensity of
I0=1�1014 W/cm2 and a time duration �=30 optical cycles.

FIG. 3. �Color online� Time evolution of �a� the �r1+r2� /2 and
�b� the hyperradius �R�t�� of the helium atom in the sin2 laser
pulses. The laser parameters are peak intensity I0=1
�1014 W/cm2, wavelength �=248.6 nm and time duration 30 op-
tical cycles.

FIG. 4. Time-dependent dipole length and acceleration of the
helium atom in the sin2 laser pulses with peak intensity of 1
�1014 W/cm2. The laser pulse has a wavelength of 248.6 nm and a
time duration of 30 optical cycles.

FIG. 5. �Color online� Harmonic generation of the helium atom
in the sin2 laser pulses with peak intensity of I0=1�1014 W/cm2.
The laser pulse has a wavelength of 248.6 nm and a time duration
of 15 optical cycles.
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dominates others. In Figs. 6 and 7 we compare the power
spectra obtained by the ab initio two-electron hyperspherical
approach and the SAE model. From Fig. 6, we see the SAE
plateau is extended only to the about the fifth order in the
emitted spectra. This is in accordance with the prediction of
the semiclassical recollision model �30,31�, which neglects

the electron correlation effect. Although the harmonic
strengths are smaller, higher harmonics well beyond the fifth
harmonic are noticeable from the full-dimensional two-
electron calculations. Note that in the conventional SAE
model �13�, the electron correlation effect has been com-
pletely neglected and no coupling exists between the re-
sponse of the two electrons. The lack of higher harmonics in
the SAE power spectra indicates that the appearance of har-
monics with the orders larger than 5 should be attributed to
the effect of electron correlation. Similarly, for the higher
laser intensity case �Fig. 7�, high harmonics beyond the 11th
harmonic are also absent in the SAE spectra. The difference
between the HHG power spectra of the ab initio two-electron
and SAE calculations has been also noticed by the recent
SIC-TDDFT calculation �14�, including the electron correla-
tion. Thus the significant effect of the electron correlation on
the HHG dynamics and spectra can be clearly established.

IV. CONCLUSION AND OUTLOOK

In summary, we have presented a nonperturbative ab ini-
tio time-dependent hyperspherical coordinates approach for
the exploration of the correlated quantum dynamics and the
emitted HHG power spectra of the two-electron atomic sys-
tems in intense laser pulses. Our TDGPS approach devel-
oped in hyperspherical coordinates is shown to be capable of
providing accurate time-dependent wave function and HHG
power spectra with the use of only a modest number of grid
points. The effects of the low-lying states and the doubly
excited states on the HHG power spectra have been identi-
fied. The substantial difference between the results from the
ab initio two-electron and SAE calculations establishes the
significance of the effect of the electron correlation. Exten-
sion of the present work beyond the adiabatic hyperspherical
coordinates approach for the treatment of the double ioniza-
tion process is in progress.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy, Chemical Sciences, Geosciences and Biosciences Divi-
sion of the Office of Basic Energy Sciences, and National
Science Foundation. We acknowledge the support of the Ori-
gin 2000 supercomputer time provided by the Kansas Center
for Advanced Scientific Computing.

�1� T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 �2000�.
�2� P. Salieres et al., Adv. At., Mol., Opt. Phys. 41, 83 �1999�.
�3� Z. Chang H. Wang, M. M. Murnane, and H. C. Kapteyn, Phys.

Rev. Lett. 79, 2967 �1997�.
�4� Ch. Spielmann et al., Science 278, 661 �1997�.
�5� M. Schnürer et al., Phys. Rev. Lett. 80, 3236 �1998�.
�6� I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Phys. Rev.

Lett. 78, 1251 �1997�.
�7� M. Hentschel et al., Nature �London� 414, 509 �2001�.
�8� R. Kienberger et al., Science 297, 1144 9 �2002�.
�9� Th. Udem et al., Nature �London� 416, 233 �2002�.

�10� S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 �2003�.

�11� C. Gohle et al., Nature �London� 436, 234 �2005�.
�12� See, for example, J. S. Parker, et al., J. Phys. B 33, 1057

�2000�.
�13� See, for example, J. L. Krause, K. J. Schafer, and K. C. Ku-

lander, Phys. Rev. A 45, 4998 �1992�.
�14� X. M. Tong and S. I. Chu, Phys. Rev. A 57, 452 �1998�; Int. J.

Quantum Chem. 69, 293 �1998�; Phys. Rev. A 64, 013417
�2001�.

�15� C. A. Ullrich and E. K. U. Gross, Comments At. Mol. Phys.
33, 211 �1997�.

�16� S. I. Chu, J. Chem. Phys. 123, 062207 �2005�.
�17� X. Chu and S. I. Chu, Phys. Rev. A 63, 023411 �2001�; 64,

FIG. 7. �Color online� Same as Fig. 6, but for the laser param-
eters of peak intensity I0=5�1014 W/cm2 and time duration �
=30 optical cycles.

FIG. 8. �Color online� Comparison of the helium HHG by using
different number of adiabatic eigenchannels. The laser pulse has a
wavelength of 248.6 nm, peak intensity of I0=1�1014 W/cm2 and
a time duration of �=30 optical cycles.

GUAN, TONG, AND CHU PHYSICAL REVIEW A 73, 023403 �2006�

023403-8



063404 �2001�; 70, 061402�R� �2004�.
�18� X. M. Tong and S. I. Chu, Chem. Phys. 217, 119 �1997�.
�19� J. Macek, J. Phys. B 1, 831 �1968�.
�20� See, for example, C. D. Lin, Phys. Rep. 257, 1 �1995�.
�21� G. Yao and S. I. Chu, Chem. Phys. Lett. 204, 381 �1993�; J.

Wang, S. I. Chu, and C. Laughlin, Phys. Rev. A 50, 3208
�1994�.

�22� S. I. Chu and X. M. Tong, Chem. Phys. Lett. 294, 31 �1998�;
X. M. Tong and S. I. Chu, Phys. Rev. A 61, 031401�R� �2000�.

�23� X. M. Tong and C. D. Lin, Phys. Rev. A 71, 033406 �2005�.
�24� O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B

29, L389 �1996�.
�25� K. Burnett, V. C. Reed, J. Cooper, and P. L. Knight, Phys. Rev.

A 45, 3347 �1992�.
�26� Atomic, Molecular, and Optical Physics Handbook, edited by

G. W. F. Drake �AIP, New York, 1996�.
�27� M. K. Chen, Phys. Rev. A 56, 4537 �1997�.
�28� E. J. Heller, J. Chem. Phys. 68, 3891 �1978�.
�29� K. Kondo, A. Sagisaka, T. Tamida, Y. Nabekawa, and S. Wa-

tanabe, Phys. Rev. A 48, R2531 �1993�.
�30� P. B. Corkum, Phys. Rev. Lett. 71, 1994 �1993�.
�31� K. C. Kulander et al., in Super-Intense Laser-Atom Physics,

NATO ASI Ser. B Vol. 316, p. 8–9, edited by B. Piraux et al.
�Plenum, New York, 1993�.

�32� D. H. Glass and P. G. Burke, J. Phys. B 32, 407 �1999�.

EFFECT OF ELECTRON CORRELATION ON HIGH-… PHYSICAL REVIEW A 73, 023403 �2006�

023403-9


