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We report the discovery of an integrable three-dimensional Hamiltonian system with a velocity-
dependent potential. A two-dimensional restriction of that system is (for low frequencies) a good ap-
proximation of the motion (in the polarization plane) of the hydrogen atom in circularly polarized mi-
crowave fields. An additional integral of motion of the integrable two-dimensional system (being ap-
proximate invariant for the hydrogen atom in a circular field) is used in the calculation of the classical
ionization field threshold. The result is consistent with all available experimental observations.

PACS number(s): 32.80.Rm, 03.20.+1, 32.60.+1i

The physics of Rydberg atoms in a circularly polarized
microwave field has drawn much attention in recent
years. lonization of Rydberg atoms in circular fields has
been studied experimentally [1] and it has been observed
that the ionization threshold practically coincided with
the threshold in the static field. For the case of restricted
motion in the plane of polarization, the ionization prob-
lem has also been treated theoretically [2]; it has been ob-
served that classical motion is almost completely regular
below the classical ionization threshold. Also, classical
dynamics was used to analyze the ionization of the circu-
lar Rydberg orbits of the hydrogen atom in a circularly
polarized field [3].

In this paper, we report the discovery of a completely
integrable three-dimensional Hamiltonian system with
velocity-dependent potential. This system is a very good
approximation for bounded motions of the above realistic
system for any value of intensity of microwave field, pro-
vided that the frequency is not too large. Additional in-
tegrals of motion corresponding to this system are ap-
proximate integrals for a realistic system and are respon-
sible for the phenomena described above. To illustrate
this, we have calculated (using two-dimensional restric-
tion of our integrable system) the classical threshold field
for ionization in the case of restricted motion in the po-
larization plane. Our results exhibit both features ob-
served in the experiment [1]: the threshold field obeys
scaling law f,, ~constXngy* (n, is principal quantum
number of the initial state) and is practically the same as
in the static-field case.

We recall that the Hamiltonian function (in atomic
units) of the hydrogen atom in a circularly polarized field
H, =Hy+ f(x coswt +y sinwt) takes, in the rotation
frame [4], the following form:

HcirzHO_wlz+fx ’ (1)

where Hy,=p%/2—1/r, I, =xp,—¥px, and f and o are
the amplitude and frequency of the applied microwave
field. The central result of this paper is that the system
defined with the Hamiltonian function

H=H,—ol,+fx +oXx*+y2+42z%)/18 (2)
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is integrable, i.e., it possesses two additional integrals of
motion in involution I and J, so that {I,H}pg=0,
{J,H}pp=0, and {I,J }pp=0, where

I=(40/3) [Hy—ol,+oXx*+y2+42z%)/18]
+(8w?/9NI2+ f (L,p,—Lp,+x /r)+ fHy*+2%)/2
+(wf /3)(3xl, —pyr2+zlx )

—(@*f /9)x (x2+y?r+222) (3a)
J=o(l,p,~1L,p,+z/r)+teo’z(x*+y?)/9
=3f1./2—(wf /2)xz . (3b)

We immediately see that for the restricted motion in the
plane z =0 [invariant for both Hamiltonian functions (1)
and (2)], we have the two-dimensional integrable system
with Hamiltonian function

H'=H,—ol,+fx +oXx*+y?)/18 . 2"

Here the additional integral of motion is given by the re-
striction of the function I to the polarization plane
(z=p,=0), while the second integral J vanishes (for
z=p,=0). It is now natural to view the system (1) as if it
has emerged from perturbation of the Hamiltonian func-
tion (2), ie., Hy=H —0*x?+y*+422)/18. One can
expect that the perturbation is small, at least for » not
too large and for bounded motions when the electron
stays in the vicinity of the nucleus. Moreover, the Hamil-
tonian function H' in Eq. (2'), in fact, corresponds to one
realistic system: It is the hydrogen atom in the presence
of both a circularly polarized laser field and a static mag-
netic field orthogonal to the plane of the polarization, of
course with specially chosen light frequency and
magnetic-field intensity.

We shall now discuss the methodology that we have
used to find the above integrable Hamiltonian function
(2"). It is based on the extension of the method developed
by Hall [5] for the search for exact and approximate in-
variants of a given Hamiltonian system in the form of a
polynomial in momenta, and represents an improvement
of the old Whittaker method [6]. Our starting point is
the two-dimensional variant of the Hamiltonian function
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H in Eq. (1), which after introducing semiparabolic

coordinates x =(u2—v?)/2, y =uv, and regularization,

takes the form
k=ul/2+v}/2+w=2, (4)
where u, and v, are the velocities

u,=p, Hw/2)v(u+v?),

v,=p, —(0/2)u(u?+v?), e
and w is the potential
w=—alw?/8)u?+v23+(f/2)u*—v*)
—E(u*+v?), a=1. (4b)

E is the energy of the system. We have introduced, for
future convenience, a parameter a in the potential (4b).
Our task is to examine whether the Hamiltonian function
(4) allows for the integral of motion, which is quadratic in
momenta. Following Hall [5], we write the invariant as a
polynomial quadratic in velocities

I=a(u}—v}H)+2a,u,v,+bu,+bw,+c/2,

where a,, a,, b;, b,, and ¢ are unknown functions of
coordinates u and v to be determined from the condition
{I,k}pp=0. In this way, one obtains for the unknown
functions an overdetermined system of coupled partial
differential equations (PDE), which allows no nonzero
solution for a=1 in Eq. (4). It turns out that only if
a=28/9 the system of PDE for a,, a,, by, b,, and ¢ can
be solved and the solution is unique giving a new Hamil-
tonian function «’ with an additional integral of motion.
It is clear that at least for the bounded motion, the new
integrable system (with a=8/9) is very close to the old
one (with a=1); the difference between the two Hamil-
tonians being the small term (w?/72)(u2+v?)®. The re-
sulting Hamiltonian function of the integrable system,
when rewritten in Cartesian coordinates, is just that given
above in Eq. (2'), and the corresponding integral of
motion is given by Eq. (3a) with z =p, =0.

The generalization of the above-method function to the
three-dimensional variant of the problem in Eq. (1) was
much more complicated [10]. The starting point was a
Hamiltonian function H,=H_ +o*x?+y?+iz2)/18,
where A was an adjustable parameter (like a before). We
then tried to find a value A, for which the Hamiltonian
H Ao allows two integrals of motion at most cubic in mo-

menta. The result of that search is given in Egs. (2), (3a),
and (3b).

To illustrate how good the approximation is to the
Hamiltonian function «, Eq. (4), with a=8/9, to the one
with a=1, we have compared their Poincaré surfaces of
section (SOS). Figure 1(a) shows the SOS corresponding
to the Hamiltonian function (4) with a=1, i.e., to the
motion restricted in the plane of polarization of the hy-
drogen atom in the circularly polarized microwave field.
The surface of section is defined by u =0, u, >0 [note
that for u =0, v, =p,, see Eq. (4a)]. The open line is the
boundary of the classically allowed motion. Figure 1(b)
depicts the SOS of the integrable Hamiltonian function
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(4) with a=8/9, i.e., of the Hamiltonian function (2’).
The parameters are chosen to correspond to the typical
situation of the experiment done by Fu et al. [1]. E is
equal to the energy of the hydrogenic level n =46, the
frequency is ® =8.5 GHz, and the intensity of the electric
field is £ =0.667|E|?, i.e., it is well above the static field
at the saddle point (=|E|?/4). From the first SOS [Fig.
1(a)], we see that even above the saddle-point energy, the
Hamiltonian function H., Eq. (1), supports bounded
motion (in the plane of polarization). Further, the com-
parison with the second SOS [Fig. 1(b)] shows that for the
chosen (experimental) values of parameters this bounded
motion practically coincides with that of the integrable
Hamiltonian H’, Eq. (2), except in the very small region
at the boundaries that separate bounded from unbounded
(i.e., corresponding to ionization) motions. This small
discrepancy is due to the fact that the separatrix of Fig.
1(b) consists of the stable and unstable manifolds of two
unstable periodic orbits and is, therefore, most sensible to
the perturbation. [Nevertheless, the separatrix from Fig.
1(b) may be considered as a good approximation to the
boundary between bounded and unbounded motions in
Fig. 1(a).] We emphasize that (for small enough o) the
bounded motion of the realistic system practically coin-
cides with the corresponding motion of the integrable

<
:

FIG. 1. Poincaré surfaces of section (in atomic units), u =0,
u, >0, corresponding to the Hamiltonian function (4) with (a)
a=1, (b) a=8/9. w=8.5 GHz, E=-2.36X10"* a.u,
f=3.72X10"% a.u.
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Hamiltonian (2') for any field intensity f. If, e.g., one in-
crease f, the volume of the phase space filled by bounded
trajectories of the realistic system shrinks (analogously to
the static-field case) and the perturbation term
0*x%+y?)/18 is even smaller. (Of course, unbounded
trajectories of the realistic system are not approximated
at all with integrable Hamiltonian H' because for them
the perturbation increases even for small w.) Therefore,
we shall use (see below) the integrable system as an ap-
proximation, to calculate ionization field thresholds of
the realistic system, or the field values for which any ini-
tially bounded trajectory ionizes (breaks up). For that, it
is enough that bounded trajectories of the realistic system
are well approximated with the corresponding trajec-
tories of the integrable system, again for small enough .

We further examine the range of o for which two sys-
tems are close to each other. The empirical investigation
of SOS’ revealed that (for any f) (a) if frequencies are low
(as in the experiment by Fu et al. [1]), wE ~3/2<0.55,
bounded motion of the realistic system coincides with the
corresponding motion of the H'; (b) for higher frequen-
cies, 0.55<wE ~3/2<1, bounded motions supported by
the Hamiltonian H ; are still very well described by the
Hamiltonian H' but the regions of the phase space filled
with corresponding motions in the two cases do not coin-
cide; (c) for even higher frequencies, oE ~3/2> 1, the two
systems are not close any more, moreover parts of phase
space filled with chaotic motion are observed in the case
of H, [7].

Now we turn our attention to the problem of ioniza-
tion. In the experiments [1] on the ionization of Rydberg
(Na) atoms by a circularly polarized microwave field, it is
observed that the threshold field obeys the scaling law
fuw=1/16n*, which is the same as in the static-field case
and much above the threshold field in the case of the
linearly polarized field 1/3n 5. On the other hand, the
threshold field for the hydrogen atom in the linearly po-
larized field is 1/9n* [1,8]. Hence, it was expected [1]
that in the case of the hydrogen atom and circular field
the threshold should be above 1/9n* and close to the
value in the static-field case. After our work was comp-
leted, we found out that indeed, the most recent experi-
ment [11] on the hydrogen atom confirmed such expecta-
tions and gave for the threshold law approximately
1/6n*, which is in excellent agreement with our results
(see below).

We shall now use the Hamiltonian function H' as a
zeroth-order approximation to H , Eq. (1), and apply it
to the calculation of the classical ionization field thresh-
olds. (We emphasize that our method is an alternative to
previous theoretical considerations [2,3,7,9], and that it
has no connections to saddle-point analysis. We shall
determine the ionization field threshold according to the
experimental observation [1], i.e., the microwave field
that produces 50% ionization.

We assume that the circular microwave field is adiabat-
ically switched on, i.e., that the parameter f in the Ham-
iltonian function (2’) is an adiabatically slow function
(otherwise unspecified) of the time starting from zero, i.e.,
f(t)<<1, f£(0)=0. Therefore, since for ¢t =0 the circular
field is switched off, the natural choice for the initial state
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of the system is the classical microcanonical ensemble of
initial conditions on the energy surface (of the two-
dimensional unperturbed hydrogen atom) with a given
value of Ey=—1/2n} (where n, is the total action corre-
sponding to the principal quantum number). These ini-
tial conditions lie on certain (family of) tori in the phase
space of the integrable system Eq. (2’), which is now seen
as a function of parameter f, H'(f), and f is slowly in-
creased from zero. Recall that from the adiabatic theory
it follows that if f changes slowly enough with time ac-
tions corresponding to given torus I,(f(¢)), I,(f(t)) are
adiabatically invariant. Using the additional integral of
motion, Eq. (3a), we can trace the deformation of invari-
ant tori of the Hamiltonian H'(f) as the field intensity f
is increased from zero to any given value and determine
the field values for which any given torus eventually bi-
furcates, which corresponds to breaking up (ionization) of
the corresponding torus of the realistic system Eq. (1).
One finds that of all the (bounded) trajectories in the
initial ensemble, the first one to “ionize” (to become un-
bounded, scattering trajectories) is the circular orbit (in
the nonrotating frame) of the unperturbed hydrogen
atom rotating in the same direction as the field and pos-
sessing maximum value for the angular momentum
1,=ny (for f =0, [, is an integral of motion). The last to
ionize is the circular orbit rotating in the direction oppo-
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FIG. 2. (a) The ionization threshold field f as a function of
the initial total action n, (principal quantum number) for
»=8.5 GHz. (b) Dependence of the scaled threshold field f,n§
on the scaled frequency on}.
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site to the field (I,= —ng). Therefore, half of the initial
(microcanonical) ensemble will be ionized when the field
intensity reaches the value for which the trajectories ini-
tially with /,=0 become unbounded. (As indicated be-
fore, the threshold in experiments [1] and [8] was defined
as the microwave field producing 50% ionization.) Using
the additional integral of motion, Eq. (3), we can deter-
mine the field value for which the torus (initially with
1,=0) breaks up. The result of such a calculation is
shown in Fig. 2(a) where we give the ionization threshold
fields as a function of the initial total action n, for
©=8.5 GHz and ny=24-55. As in the experiments
[1,11], the threshold practically obeys the scaling law
fuw=1/cn} characteristic for the (classical) static-field
case. The change of the parameter ¢ (5.973-6.100) in the
scales of Fig. 2(a) is not observable. The fact that the
scaling law is not quite exact is illustrated in Fig. 2(b)
where we have given the dependence of the scaled thresh-
old field fyun¢ (=1/c) on the scaled frequency wnj.
(However, note that in the same range of the scaled fre-
quency, the change of the parameter f,n¢, 0.168-0. 164,
is negligible compared with that of fn¥;, 0.06-0.005, see
Ref. [9], where —1/2n2, is the saddle-point energy for
the given field intensity f.)

For comparison, we have also calculated the field
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thresholds for the case of static field where the scaling
law is exact. In the case of the two-dimensional hydro-
gen atom (for 50% ionization), we have obtained for the
scaling constant c¢;,=5.972, which is very close to the
values obtained in the case of a circularly polarized field
(see Fig. 2). In the three-dimensional (static-field) case,
we have obtained c;;=5.783. The small difference
(=3%) between c;, and c,; clearly indicates that the
two-dimensional model should also be satisfactory in the
case of the microwave field.

In summary, using the discovered approximate dynam-
ical symmetry of the hydrogen atom in a circularly polar-
ized microwave field, we have calculated the ionization
field thresholds, which are completely consistent with the
previous experiment on an Na atom [1], i.e., they obey
the scaling law and are very close to the threshold in the
static-field case. Further, the most recent experiment
[11] on the highly excited H atom has confirmed our pre-
diction of the “exact” threshold law expression.
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