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We present a general nonperturbative formalism and an efficient and accurate numerical technique for
the study of the angular distributions and partial widths for multiphoton above-threshold detachment in
two-color fields. The procedure is based on an extension of our recent paper [D. A. Telnov and S.-I Chu,
Phys. Rev. A 50, 4099 (1994)] for one-color detachment, and the many-mode Floquet theory [T. S. Ho,
S.-I Chu, and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983)]. The generalization of this procedure is per-
formed for both cases of commensurable and incommensurable frequencies of the two-color fields. The
procedure consists of the following elements: (i) Determination of the resonance wave function and
complex quasienergy by means of the non-Hermitian Floquet Hamiltonian formalism. The Floquet
Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique recently
developed [J. Wang, S.-I Chu, and C. Laughlin, Phys. Rev. A 50, 3208 (1994)]. (ii) Calculation of the an-
gular distribution and partial widths based on an exact differential formula and a procedure for the rota-
tion of the resonance wave function back to the real axis. The method is applied to a nonperturbative
study of multiphoton above-threshold detachment of H™ by 10.6-um radiation and its third harmonic
(the commensurable case). The results show strong dependence on the relative phase 8 between the fun-
damental frequency field and its harmonic. For the intensities used in calculations (10'° W/cm? for the
fundamental frequency, 10® and 10° W/cm? for the harmonic), the total rate has its maximum at §=0
and minimum at §=m. However, this tendency, though valid for the first several above-threshold peaks
in the energy spectrum, is reversed for the higher-energy peaks. The energy spectrum for 8= is
broader, and the peak heights decrease more slowly compared to the case of §=0. The strong phase
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dependence is also manifested in the angular distributions of the ejected electrons.

PACS number(s): 32.80.Rm, 32.80.Fb, 42.50.Hz

I. INTRODUCTION

Recent experiments on above-threshold ionization with
two-color laser fields [1] have stimulated considerable
theoretical investigation. Several nonperturbative calcu-
lations were performed in recent years. Schafer and Ku-
lander [2] presented time-dependent calculations of
above-threshold ionization of atomic hydrogen by the
fundamental radiation field and its second harmonic.
They found that using different wavelengths of the funda-
mental field leads to a qualitative change in the ionization
dynamics. At longer wavelengths the total ionization
rate is determined by the peak instantaneous electric
field; this is a characteristic of the tunneling ionization re-
gime. At shorter wavelengths, the interference between
different multiphoton excitation pathways, and not the
electric field peak value, plays a key role. However, the
partial rates show considerable structure dependent on
the relative phase between the two fields in both cases.
Also, for atomic hydrogen, Potvliege and Smith in a
series of papers [3—-5] used the time-independent Floquet
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method for the determination of the total rates using in
calculations the frequency ratios 1:2, 1:3, and 2:3. For
the ratio 1:3 [i.e., for the fundamental field and its third
harmonic with the time dependences cos(wt) and
cos(3wt +8), respectively], they found a dramatic in-
crease of the total ionization rate by the two-color field
compared to one-color ionization by the fundamental fre-
quency field, in a wide range of the intensities of the har-
monic field [3]. The rate is increased for all relative phase
8 values, being the greatest for §=0. However, for 6=
and the harmonic field much weaker than the fundamen-
tal one (10~ * times in intensity and below) the rate in fact
becomes significantly less than that for the fundamental
field alone. Further, the relative phase dependence of the
total rates is more pronounced for the frequency ratio 1:3
than for 1:2 [4] and 2:3 [5] since all the pathways leading
to a continuum states with the same energy interfere in
the 1:3 case whereas a considerable pattern of uninterfer-
ing pathways exists for the other cases due to parity or
energy restrictions [5]. The oscillatory ionization proba-
bility dependence on the relative phase with the max-
imum at §=0 and minimum at § =7 was also reported by
Pont, Proulx, and Shakeshaft [6] for the 1:3 case in time-
dependent pulse calculations.

The theoretical papers cited above deal with atomic
hydrogen. Recently there is also much interest in the
study of multiphoton detachment of negative atomic ions
(mainly H™) both experimentally [7—9] and theoretically
[10-12]. Due to short-range interaction between the
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outer electron and the core, the H™ negative ions possess
only one bound state. Further, under the current experi-
mental conditions [7-9], doubly excited states far above
the ionization threshold can be safely ignored for
moderately strong laser fields. These simplifying features
render the multiphoton detachment of H™ a unique and
fundamental process to study. In our previous paper [13]
we presented a theoretical study on the angular distribu-
tion and partial widths for multiphoton above-threshold
detachment of H™. Here we extend the approach of Ref.
[13] to the case of the two-color field.

The H™ ion is described by an accurate one-electron
model recently constructed [11] to reproduce both the ex-
act experimental binding energy [14] and the low-energy
e-H(1s) elastic phase shifts [15]. The one-photon detach-
ment cross sections based on this model potential are in
excellent agreement with earlier accurate correlated two-
electron calculations [16]. A complex-scaling generalized
pseudospectral (CSGPS) technique [12,17] is introduced
to discretize and facilitate the solution of the time-
independent non-Hermitian Floquet Hamiltonian [18,19]
for the complex quasienergies and eigenfunctions. Then
the electron energy and angular distributions are calcu-
lated wusing the reverse complex-scaling method
developed in Ref. [13].

The motivations and outline of this paper are described
as follows. First, we extend our recent nonperturbative
study [13] of the angular distributions and partial widths
in above-threshold detachment of H™ to the case of a
two-color field. The general theory of electron distribu-
tions is developed for both commensurable and incom-
mensurable frequencies whereas the calculations are per-
formed for the fundamental frequency of a CO, laser
(wavelength 10.6 um) and its third harmonic. Second,
the (complex quasienergy) resonance wave functions are
obtained by the solution of the non-Hermitian Floquet
Hamiltonian and the use of the CSGPS technique. In
contrast with Ref. [13], we do not use here further ap-
proximations for the wave functions based on the adia-
batic theory [20]. The CSGPS procedure does not re-
quire the computation of potential matrix elements and is
computationally simpler and faster than the conventional
basis-set expansion-variational methods. The advantages
and usefulness of this method have been discussed in
[12,17].

We begin in Sec. II the presentation of the general
theory for electron distributions in the two-color case.
Section III presents the main numerical results for
above-threshold detachment of H™ at 10.6 um, 10'°
W /cm? laser field and its third harmonic with the intensi-
ties 10® and 10° W/cm?. This is followed by a conclusion
in Sec. IV.

II. THEORY

Let us consider the time-dependent Schrodinger equa-
tion for the electron bound in the atomic potential W (r)
and subject to the influence of the external two-color
laser field (atomic units are used):
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tat Y(r,t) 2V +Wi(r)

+[Fcosw;t +F,cos(w,t +8)]-r |W(r,¢) .

(1)

Equation (1) implies linear polarization for both the fields
with the frequencies w, and @,, however, the orientation
of the field vectors F; and F, can be arbitrary. § is the
phase difference between the two fields for ¢ =0.

We introduce the following notations:

al(t)=—ftFlcos(a)lr)dT=—wl_lFlsinwlt , (2)

a,(t)=— fthcos(wzr+6)dT= —w; 'Fysin(w,t +8) ,

(3)

b1=fta1(7')dr=a)1_2F1cosw1t , 4)
- [t —, . =2
b,= [ ‘ay(r)dT=0w; *Fycos(w,t +8) . (5)

Here a, , are the vector potentials of the laser fields (ex-
cept ¢ factor, ¢ being the light velocity), and b, , have the
sense of the classical electron oscillatory displacement
due to monochromatic external fields.

A. Incommensurable frequencies

Let us consider first the case of incommensurable fre-
quencies w; and w,. In this case the combined external
field is not periodic in time, so ordinary Floquet solutions
of Eq. (1) do not exist. However, according to the many-
mode Floquet theorem [21] one can look for the wave
function ¥(r,t) in the following form:

W(r,t)=exp(—iet)Y(r,t) , (6)

where ¢ is the two-mode quasienergy, and ¥(r,?) is not
periodic but quasiperiodic in time, i.e., it can be expanded
in a double Fourier series with two fundamental frequen-
cies:

Pr,t)= 3 dlmlmz(r)exp[—-i(m‘a)lt+m2a)2t)]. (7)

my,m,

The function ¥(r,?) satisfies the following equation:

130 _

_1lw
ot 2V +W(r)

+[F,cosw;t +F,cos(w,t +8)]-r—e |9, (8)

which is equivalent to the infinite set of time-independent
equations for the Fourier components ¢,, ,, (r):
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[—%V2+ W(r)_Emlmz ]¢m1m2+%{(Fl'r)[¢ml—1,m2+l/}ml+1,m2]+(F2'r)[exp( _i5)¢mlm2——l+exp(i8)¢mlm2+l” =0 ’
()]
where

E

mym, —etmio+mya, . (10)

Now we introduce the function ,(r,#;,¢,) depending on two time arguments ¢, and ¢,. This function is defined by
two-time, two-frequency Fourier series with the same coefficients as in Eq. (7):

Un(0,81,6)= 3 Py (Dexp[ —ilm o, +mywyt;)] . (11)

myp,my
It can be easily verified that the function ,(r,#,,¢,) satisfies the two-time Schrodinger equation:

;8 .8

3 3t -——;Vz-i- W (r)+[F,coswt, +Fycos[w,t, +8)]-1—e |,(r1,1,1,) . (12)
1 1,

Pylr,2y,8,)=

Indeed, using the expression (11) in Eq. (12) and separating the time harmonics we obtain again the set of equations (9)
for the Fourier components ¢mlm2(r). To obtain the general expressions for the electron distributions after two-color

detachment we need to perform a chain of transformations of Eq. (12). First, Eq. (12) accounts for the external field in
the length gauge. We need to convert it into the velocity gauge with the help of the following transformation:

Yy(r, by, )=P4(r, 1,8, )expii[a; (2, )+ ayz,)]-r} . (13)
The equation for the function ¢5(r,¢,,t,) is
. 0 d 2
i— +i— |(P5(r,t,8,)= “—-—V +W(r)—i[a (t;)+a,(t,)]-V
ot az,

+(0,0,) " 'F;-Fysin(wit )sin(w,t, +8) —(20;) " *F2cos(2w ¢, )

_(20)2) FZCOS(Zantz +28 ¢2(l', tl,tz ) (14)

with the quasienergy for the velocity gauge €, defined as
g, =e—(20,) 2Fi—(20,) *F3 . (15)

Then the terms due to the external field in the right-hand side of Eq. (14) can be eliminated by the following transforma-
tion of the wave function:

PYa(r,t,,05) =9J(R, 1,1, )exp{i(2w,) " Fisin2w,t, +i(2w,) " *Fisin(2w,t, +28)

+i(20,0,) " 'F-F,[(0; + ;) " Isin(wt, +w,t, +8)— (o 1 —@,)  Isin(w 2] —w,t, —8)1} ,
(16)
where the new coordinate R is defined as
R=r—b,(z,)—by(t,) . (17)

The equation for the wave function ¢¥4(R,¢;,t,) does not contain the interaction with the external field, but the atomic
potential becomes time dependent:

[z—i+z—

PR, 1,,t,)= {——I—V2+W(|R+b1 Db —g, |[YY(R,t,1,) . (18)
dt, ot 2

Note that the time derivatives in Eq. (18) are taken for the fixed R, and the kinetic energy operator acts on the variable
R.

With the help of the quasienergy Green function analogous to that in the one-time theory (see, e.g., Ref. [20]), E
(18) is converted into the integral form suitable for further calculations:
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¢3(R’tl’t2)=

nl,nz

T/© T/
3Ip’ 1 ’ 2 ’ . ' . '
de R f_ﬂ/wldtlf_”/wzdtzexp[mlmltl+m2a)2t2]

Here

kn1n2=\/2(ev +n0,+n,m,)
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—(277')_3601602 2 exp[ —in lwltl —inzwztz]

explik, , IR—R'[]
IR—R'|
XW(IR' +b,(£7)+b,(25) YR, 27,25) . (19)

(20)

has the sense of the electron drift momentum after absorption of n,; photons of frequency »; and n, photons of frequen-
cy w,, for Rek,fl,,2 >0. For Rek,fln2 <0 one should choose Imk,fl,,2 > 0 to ensure zero boundary conditions at infinity.

The electron energy and angular distributions are extracted from Eq. (19) by calculating the electron flux densities for

each set ny,n, such as Rek;? , >0:

dr, ,, -
~TQ~—=(21r) 2k"1”z|A"1"2‘2 , 1)
where
Anlnz=(27r)_2 > explilm,—n,)8]
fitgafy
><fjﬂdrlfjﬂdrzexp{i(nl—ml)Tl+i(n2—mz)‘rz—i(2w1)—3F%sin271
—i(20,) T Fisin2r, +ik, , T(w; *F cos) +w; “Fycosty)
—i(20,0,) " 'F-Fy[ (0, + 0,) " Isin(7, +7,) — (0, —w,) " 'sin(1,—7,)]}
X fd3r’exp[—-ik,,]nz’x\'-r’+ir’~(co1'1Flsin71+w{lesinTZ)]W(r’)zpmlmz(r') (22)

is the photodetachment amplitude for the electron eject-
ed in the direction of the unit vector T after absorption of
n; photons of frequency w, and n, photons of frequency
@,. In the right-hand side of Eq. (22) we turned back to
the wave function in the length gauge ,(r,¢,,t,) per-
forming the inverse transformations and used the Fourier
expansion (11). Expression (22) clearly shows that in the
case of incommensurable frequencies the electron distri-
butions do not depend on the relative phase shift &
(which is not well defined itself since it can have arbitrary
value depending on the initial time moment). Indeed, as
one can see from Eq. (9), the dependence of ¢mlm2(r) on

8 is reduced to the factor exp(—im,8). Then the ampli-
tude 4, , depends on 8 via the phase factor exp(—in,5)

with the absolute value equal to unity, so the differential
flux dl‘,,l,,2 /dQ does not depend on the shift §. This re-

sult means that the two-mode Floquet theory has no
direct limit to the case of commensurable frequencies
(and, in particular, for w,—®,) where the phase shift § is
important. The two-mode Floquet theory treats all the
time harmonics with the energies Emlm2=s+m1w1

+m,w, as independent, and it is not the case for com-
mensurable frequencies. For example, when w, is very
close to @, one needs a very long time to resolve near de-
generate time harmonics. So, it may be said that the
two-mode Floquet theory in the case of near commensur-

able frequencies describes a long-time-scale behavior of
the system under consideration whereas the one-mode
theory describes short and moderate time scales. This is
the reason of discrepancies between two-mode and one-
mode Floquet theories in the limit of commensurable fre-
quencies.

B. Commensurable frequencies

Now we turn to the case of commensurable frequencies

and consider the case when w, is a harmonic of w;:
0=0, 0,=po ., (23)

where p is an integer number. We can use the conven-
tional Floquet theory since the Hamiltonian is now
periodic in time. The wave function ¥(r,?) is expanded
in the Fourier series with one fundamental frequency w:

PY(r,t)=9,, (rlexp(—imwt) , (24)
and the set of equations for the functions ,,(r) reads as
— VAW =y [+ S B0y ]

+(Fy-r)[exp(—id)¢,, —, +explid),, 4,1} =0, (25)

with
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TABLE 1. Partial rates for the detachment by 10.6-um radiation and its third harmonic with the in-
tensities I; =10'© W/cm? and I; = 10° W/cm?, respectively. The number of photons absorbed refers to
the fundamental frequency, for the harmonic field it should be divided by 3. The number in brackets
indicates the power of 10.

Number of One-color Two-color One-color
photons fundamental (a.u.) harmonic
absorbed (a.u.) 6=0 5=m S=m/2 S=—m/2 (a.u.)
8 0.72[—9] 0.42[—7] 0.58[—8] 0.20[—7] 0.21[—7]
9 0.20[—9] 0.10[—7] 0.23[—8] 0.71[—8] 0.73[—8] 0.30[— 10]
10 0.39[—10] 0.26[—8] 0.27[—8] 0.35[—8] 0.30[—8]
11 0.40[—11] 0.72[—9] 0.16[—8] 0.15[—8] 0.10[—8]
12 0.71[—12] 0.20[—9] 0.71[—9] 0.58[—9] 0.30[—9] 0.86[— 13]
13 0.33[—12] 0.53[—10]  0.27[—9] 0.20[—9] 0.85[— 10]
14 0.14[—12] 0.14[—10]  0.97[—10]  0.69[—10]  0.32[—10]
15 0.47[—13] 0.32[—11] 033[—10] 023[—10] 0.17[—10]  0.31[—15]
16 0.14[—13] 0.72[—12] 0.12[—10] 0.78[—11]  0.10[—10]
17 0.35[—14] 022[—12] 043[—11] 027[—11]  0.60[—11]
Total rate 0.96[—9] 0.56[—7] 0.14[—7] 0.33[—7] 0.33[—7] 0.30[— 10]
E,=¢tmo . (26) ar _
dﬂ" =2m) "%k, 4,%, 27)
Performing the same transformations as in the case of in- ~ Where
commensurate frequencies but within the one-time ap- k =1v2(¢ *no) —e—(20) 2F2—(2pw) " 2F2 (28
proach we obtain the following result for the differential =V 2Ae, o), g, =e—(20) T Fi—(2p0)F; (28)
electron flux dT", /d Q: and
|

A,,=(27T)_1f_#ﬂdrexp(inr-—i(2w)_3F%sin27'—i(2pw) 3F3sin(2pT+28)
+ik,T [0 *FcosT+ (pw)  *Fycos(pt+8)]
—i(2p®) " UF,;"Fy){[(p + o] sin[(p + 1)7+8]—[(p —1)w] 'sin[(p —1)7+8]})
de r'exp{ —ik,T ' +ir'-[0 " 'Fsint+ (pw)  'Fysin(pr+8) ]} W(r' W(r',7/0) . (29)

Using the Fourier expansion (24) we can obtain another expression for the amplitude 4,,:

TABLE II. Partial rates for the detachment by 10.6-um radiation and its third harmonic with the in-
tensities I; =10'° W/cm? and I, = 10® W/cm?, respectively. The number of photons absorbed refers to
the fundamental frequency, for the harmonic field it should be divided by 3. The number in brackets
indicates the power of 10.

Number of One-color Two-color One-color
photons fundamental (a.u.) harmonic
absorbed (a.u.) 6=0 S=m S=m/2 =—1x/2 (a.u.)

8 0.72[—9] 0.53[— 8] 0.36[—9] 0.24[— 8] 0.25[— 8]

9 0.20[—9] 0.93[—9] 0.18[—9] 0.68[—9] 0.68[—9] 0.30[—13]
10 0.39[—10] 0.25[—9] 0.82[—10]  0.25[—9] 0.22[—9]
11 0.40[—11] 0.59[—10] 0.65[—10] 0.88[—10] 0.66[—10]
12 0.71[—12] 0.14[—10]  0.33[—10]  028[—10]  0.22[—10]  0.98[—17]
13 0.33[—12] 045[—11]  0.13[—10]  0.82[—11]  0.94[—11]
14 0.14[—12] 021[—11]  047[—11]  024[—11]  0.49[—11]
15 0.47[—13] 0.11[—11] 0.17[—11] 0.70[—12]  0.25[—11]
16 0.14[—13] 0.52[—12] 0.60[—12] 021[—12]  0.12[—11]
17 0.35[— 14] 0.22[—12] 022[—12] 0.64[—13]  0.50[—12]

Total rate 0.96[—9] 0.66[— 8] 0.74[—9] 0.35[— 8] 0.35[—8] 0.30[—13]
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An=2(27r)_1fﬂ drexpliln —m)r—i(2w) *Flsin27—i(2pw) >Fisin(2p7+28)

+ik,T [0 2Fcost+(pw)  *F,cos(p7+8)]
—i(2p®) T HF F{[(p + D] sin[(p +1)7+8]—[(p — o] 'sin[(p —1)7+8]})
X fd3r’exp{—ikn’r\r’+ir’-[w_1F,sin7+(pa))-lesin(p'r+8)]}W(r’)¢m(r’) . (30

In Egs. (29) and (30) T is the unit vector in the direction of the electron ejection.
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FIG. 1. Electron energy distributions after multiphoton
above-threshold detachment from H™ by 10.6-um radiation and
its third harmonic with the intensities I; =10'° and Ly =10°
W/cm?, respectively. The heights of the bars correspond to the
partial rates after absorption of »n fundamental frequency pho-
tons, starting with n_;, =8. Phase shift (A) §=0, (B) §=m, (C)
5=m/2,(D)d=—m/2.
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FIG. 2. Electron energy distribution after multiphoton
above-threshold detachment from H™ by 10.6-um radiation and
its third harmonic with the intensities I, =10'° and I,=10%
W/cm?, respectively. The heights of the bars correspond to the
partial rates after absorption of » fundamental frequency pho-
tons, starting with n;, =8. Phase shift (A) §=0, (B) 8=, (C)
5=u/2,(D)&=—m/2.
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III. RESULTS

Expression (30) is general and contains three-dimensional space and one-dimensional time integration. In what fol-
lows we consider the special case when the two fields are polarized in the same direction. In this case, for the spherical-
ly symmetrical potential W (r), the projection of the electron angular momentum onto the field axis is an integral of
motion. Since the H™ ground state is under consideration, this projection is equal to zero. Thus the wave-function
Fourier component ¢,,(r) can be expanded in the series over the Legendre polynomials P;(cosi), ¢ being the angle be-
tween r and the field direction:

Y, (r)= i V2l +1¢,,(r)P;(cosd?) . (31)
=0

It is that form of the wave function which was used in the previous calculations of the wave functions by the CSGPS
method [see [13]; the series (31) is truncated to an appropriate value /_,, of the angular momentum]. Then the integra-
tions over the angles 4 and ¢ (in the spherical coordinate system with the polar axis along the field direction) can be
performed analytically, giving the following expression for the photodetachment amplitude A4, instead of (30):

4,=3 f:r”d'rexp(i(n —m)r—i(20) 3F}sin2r—i(2pw) 3F3sin(2pT+28)

—ik)[w 'F,cost+(pw) 2F,cos(pr+8)]
—i(2p?®) " IF \Fy{[(p + o] sin[(p + 1)7+8]—[(p —1)o] 'sin[(p —1)7+8]})

o °° _ k!l —o 1F sint—(pw) 'Fysin(pr+8
X2 [ “drr? 3, (= 1OV F 1, (W (KB | = ! z’ ) Fasinlpr+8) | (32)
1=0 n
[
Here j;(x) is the spherical Bessel function, k! is the pro- with k! being the projection of the electron drift momen-
jection of the electron drift momentum on the field direc- tum on the plane perpendicular to the field direction.
tion, and K, is defined as The expression (32) is suitable for practical calculations
since it contains just two integrations, and the integration
K,={(k})*+[k] —w ™ 'Fsint over 7 can be performed effectively using fast Fourier
transform routines for all the numbers of absorbed pho-
—(pw)” 'Fysin(pr+8)]4} 172, (33) tons n at the same time.
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The calculations of electron angular and energy spectra
were performed for the fundamental frequency
®=4.2984X 1073 a.u. corresponding to the wavelength
10.6 um used in Los Alamos experiments [7-9], and its
third harmonic. The fundamental frequency field intensi-
ty used is I; =10'© W/cm? for all the calculations. The
harmonic field intensities were chosen to be I; =10° and
102 W/cm? and the relative phase shifts are
6=0,m,tm/2. The complex quasienergy resonance
eigenfunction and eigenvalue corresponding to the H™
ground state are determined by the solution of the non-
Hermitian Floquet Hamiltonian using the complex-
scaling generalized pseudospectral technique [12]. The
number of Legendre grid points used is 40, and a
sufficient number of partial waves and Fourier com-
ponents (up to 17) is used to ensure the convergency of
the complex eigenvalues. A computer code using the im-
plicitly restarted Arnoldi algorithm [22] is developed for
efficient and accurate solution of the large-scale complex
eigenvalue problem. A more detailed presentation of this
method will be discussed elsewhere. The partial rates and
angular distributions are obtained by the rotation of the
complex-scaling wave functions back to the real axis as
described in Ref. [13].

The partial and total rates for two-color detachment
are presented in Table I for the harmonic field intensity
I;=10° W/cm? and in Table II for I;=10% W/cm?
Also presented there are the results for one-color detach-
ment by the fundamental frequency field and its third
harmonic, respectively. One can see that for the rather
strong harmonic field (I = 10° W/cm?, Table I) the de-
tachment is dramatically enhanced, compared with the
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one-color case, for all the phase § values used in the cal-
culations. However, for the weaker harmonic intensity
Iyg= 10® W/cm?, Table II) and 8=, the total rate is less
than that for the one-color detachment by the fundamen-
tal field. Thus the small admixture of the harmonic field
can lead to the relative stabilization of the H™ ion against
the multiphoton detachment. The dependence of the to-
tal rate on the relative phase shift § is the same for both
strong and weak harmonic fields. The greatest rate is ob-
served for §=0, and the smallest for §=. These results
are in qualitative agreement with the previous calcula-
tions for atomic hydrogen [3]. The phase shifts §==17/2
give the intermediate total rate values which seem to be
the same within the computation error. The latter fact is
quite surprising since the Schrodinger equation (1) has no
symmetry with respect to time reversal. However, for
the field intensities used in the calculations we did not ob-
serve any significant difference between 6=w/2 and
8= —m/2 for the total rate while the partial rates and an-
gular distributions show well-pronounced difference.

If the detachment process corresponds to the tunneling
regime, these results can be explained by a simple argu-
ment that the electric field peak value is maximal for
6=0 and minimal for §=m, and the tunneling detach-
ment rate depends strongly (exponentially) on the electric
field peak value. On the other hand, in the multiphoton
detachment regime the phase dependence of the total and
partial rates can be described as a result of interference
among various pathways leading to the same final state in
the continuum. From this point of view it is clear that
neither the absorption of the fundamental frequency pho-
tons only nor that of the harmonic frequency is effective
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FIG. 5. The same as Fig. 4
for the nine-photon above-
threshold peak in the energy

D spectrum.
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for the detachment since the corresponding rates for the
one-color detachment are much less than that for the
two-color detachment. However, for the parameters used
in the calculations the detachment regime is neither pure
tunneling nor multiphoton but intermediate, so both pic-
tures can be applied to some extent.
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Angle (deq)

The energy spectra are presented in Figs. 1 and 2 for
various harmonic field intensities and relative phases.
Compared to the case of one-color detachment by the
fundamental frequency field with the same intensity [Fig.
3(A)], one can see more above-threshold peaks of
significant intensity in the two-color case. This
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D spectrum.
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B

FIG. 7. Electron angular dis-
tributions (1/sind)dI"/dd for

15 30 45 6[0 7I5 90 the eight-photon peak in the en-
Angle (deq) ergy spectrum. Graphs A-D
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harmonic with the intensities

D I;=10"° and I,=10° W/cm?

and phase shifts (A) 6=0, (B)

5=, (© 6=m/2, (D)
5=—mw/2.

A

S 6.0 S 15

5 S

@ 4.8 @ 1.2~
(@} (@)

= 3.6 = 0.9
] (0]

5 24 5 06

5 1.2 S 0.3

5 0.0 — N/ 5 0.0

e 0 15 30 45 60 75 90 e 0

Angle (deq)
C

S 3.0 S 30

5 5

o 2.4 4 o 2.4 4
(@} (@}

= 1.8 < 1.8
[} (]

5 1.2 5 1.29
© 0.6 S 0.6
5 0.0 —— S 0.0

e 0 15 30 45 60 75 90 e 0

Angle (deg)

phenomenon was observed earlier by Yao and Chu [23]
for the one-dimensional §-function model of a negative
ion.

The results for the case of fundamental field intensity
I, =10 W/cm? and harmonic field intensity I, =10’
W/cm? are presented in Fig. 1, for the phase shifts

15 30 45 60 75 90
Angle (deg)

6=0,7,t7/2. The maximum in the energy spectrum
still corresponds to the first (eight-photon) peak, as for
the one-color detachment [Fig. 3(A)]. For 6=0 [Fig.
1(A)] the spectrum envelope is quite narrow and similar
to that of the one-color detachment (only the first three
to four peaks contribute significantly to the total rate).
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Angle (deg) FIG. 8. The same as Fig. 7
for the nine-photon above-
threshold peak in the energy
spectrum.
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FIG. 9. The same as Fig. 7
for the ten-photon above-
threshold peak in the energy

D spectrum.
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For 8=+ /2 [Figs. 1(C) and 1(D)] the envelope becomes
broader (five to six peaks are important), and for 8=w
[Fig. 1(B)] one can see even the second maximum in the
energy spectrum corresponding to absorption of n =10
photons. In the latter case (§=1) the spectrum is the
broadest while the total rate is the smallest.

For the fundamental field intensity I; =10 W/cm?
and the harmonic field intensity I =10® W/cm? (Fig. 2),
the behavior of the energy spectra is similar to that for
the intensity I, =10° W/cm? the narrowest envelope
appears for §=0 [Fig. 2(A)], the broadest one for 6=
[Fig. 2(B)]. However, in contrast to the case of the
stronger harmonic field, the energy spectrum for §=m
[Fig. 2(B)] is decreasing monotonously, it has just one
maximum corresponding to the first (eight-photon) peak.

The analysis of the electron angular distributions for
the harmonic intensity I = 10° W/cm? (Figs. 4, 5,and 6
corresponding to the absorption of eight, nine, and ten
photons, respectively) can explain the behavior of the en-
ergy spectra. For a high order nonlinear process the
most effective detachment occurs when the electrons are
ejected along the polarization direction of the external
field. That is why the angular distributions are generally
peaked in some angular range around the field direction if
they correspond to absorption of a large number of pho-
tons. The interference between the fundamental and har-
monic fields can redistribute the electron ejection in vari-
ous directions. For the first peaks in the energy spectrum
this interference is constructive for §=0 and destructive
for 5= in the angular range around the field direction
(see Fig. 5). This circumstance determines the larger to-
tal rate for =0 since the first peaks make the most

15 30 45 60 75 90
Angle (deg)

significant contribution to the total rate. However, with
the increasing number of absorbed photons the interfer-
ence in the field direction becomes destructive for 6=0
and constructive for 8= (see Figs. 5 and 6). It is
reflected also in a broader energy spectrum envelope for
8=1r and larger partial rates compared to the case d=0,
for the large number of absorbed photons (see Table I).

The analogous angular distributions for the harmonic
field intensity Iy =108 W/cm? are shown in Figs. 7-9.
Again, the interference of different paths leading to the
final states with the same energy in the continuum appre-
ciably redistributes the ejected electrons in various direc-
tions. However, the destructive interference for 6=1 is
manifested here for more peaks in the energy spectrum,
and not only for the ejection angles close to the field
direction. That is why the total rate for § = is not only
less than that for § =0, but also less than the total rate for
the one-color detachment.

IV. CONCLUSION

In this paper we have presented a nonperturbative
study of the angular distributions and partial widths for
multiphoton above-threshold detachment of the H™ ion
by 10.6-um radiation and its third harmonic. The gen-
eral theory of electron distributions after two-color de-
tachment based on the integral equation (19) (or its coun-
terpart for commensurable frequencies) enables us to ob-
tain the distributions via a quite simple and yet stable and
efficient numerical procedure. The wave functions used
by this procedure are computed by means of the non-
Hermitian Floquet theory and the generalized complex-
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scaling pseudospectral discretization technique.

The results for the total and partial rates and angular
distributions show the following general trend. First, the
total and partial rates for the two-color detachment,
when the intensity of the harmonic field is 10 and 100
times less than that of the fundamental frequency field,
are generally much larger than the rates for the one-color
detachment by the fundamental frequency or the har-
monic alone. However, the opposite situation is also pos-
sible if the harmonic field is weak enough and the relative
phase shift is close to 7. Second, the total and partial
rates manifest a strong dependence on the relative phase
between the two fields. The total rate is the largest for
the phase 8=0 and the smallest for §=1. For the weak
harmonic field and 8= it can be even less than the total
rate for the fundamental field alone. Hence the small ad-
mixture of the harmonic field can lead to relative stabili-
zation of H™ ions against decay in the laser field. Such a
dependence on the relative phase shift is also valid for the
first few partial rates (i.e., for the heights of the first few
peaks in the energy spectrum). However, for the subse-
quent above-threshold peaks the picture is completely
different: the largest partial rates correspond to.8 =1 and
the smallest ones correspond to 6=0. In other words,
the decrease of the partial rates with their number is
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slower for § =1 than for §=0. Third, the angular distri-
butions also exhibit strong phase dependence. For the
first (eight-photon) peaks in the energy spectra they show
relative suppression of detachment at the small angles if
8=m whereas for a larger number of absorbed photons
such a suppression occurs for §=0.

It seems that the features of two-color detachment
mentioned above have a general kinematic nature related
to the motion of the electron in the two-color laser field
since they are generated mostly by the Green function for
the motion in the laser field and do not depend qualita-
tively on the atomic potential. This conclusion is
confirmed also by the similar results for the atomic hy-
drogen (total rates) [3,4].
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