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In this paper we accomplish three goals. First, we present new nonperturbative results of complex quasi-energies
(shifts and widths) for several low-lying excited states of atomic H in strong fields, using the L2 non-Hermitian
Floquet matrix technique. Second, we present a new nonperturbative L? technique for the treatment of ac Stark
shifts of arbitrary excited states. We found that all the Rydberg states in weak fields are upshifted and closely
follow the quadratic field dependence described by the ponderomotive potential e2F?/4mw?. Large deviation from
the ponderomotive shift and intricate level-shift behaviors, however, occur in strong fields. Finally, we present a
classical nonperturbative treatment of the electronic motion in intense laser fields. We show that the spectral
analysis of classical trajectories can provide detailed insights regarding the mechanisms responsible for the multi-
ple-harmonic generation recently observed in high-intensity experiments.

1. INTRODUCTION

Recent experiments on multiphoton ionization (MPI) and
above-threshold ionization (ATI) of atoms in strong fields
show significant energy shifts and broadenings of ATI
peaks.2 Further, for laser pulse widths of less than 1 psec,
the electron energy spectrum can exhibit fine structure in
the individual ATI peaks. These observations suggest that
the structure of excited states plays a significant role in
determining the properties of ATL. This creates the neces-
sity of analyzing the excited-state atomic energy-level struc-
ture in the presence of strong fields.

There have been a number of theoretical studies of ac
Stark shifts, mostly focused on nonperturbative®-5 or high-
order perturbative treatments® of the ground state of atomic
H. Thus our understanding of the properties (including
both ac Stark shifts and MPI widths3-57) of the ground state
can now be considered rather complete. In contrast, there
are only a few perturbative studies on the excited-state
properties.®® In this paper we outline a method for nonper-
turbative treatment of the ac Stark shifts of atomic H for any
arbitrary excited states. In addition, we present some new
nonperturbative results of the ac Stark shifts and MPI total
widths (rates) for several low-lying excited states of atomic
H, using the L2 non-Hermitian Floquet matrix method.1?

To gain insights regarding the mechanisms responsible for
the high-order harmonic generation recently observed in
high-intensity MPI/ATI experiments,'!-13 we have also per-
formed a spectral analysis of the classical trajectories for the
electron motion under the influence of both the Coulomb
and oscillating electric fields. In addition, to confirm recent
quantum-mechanical model predictions,!415 we have identi-
fied a general type of classical trajectory responsible for the
observed behavior of high-order harmonics generated in in-
tense fields.

In Section 2, we review briefly the L2 non-Hermitian Flo-
quet method and present the nonperturbative results of
complex quasi-energies for several low-lying states of atomic
H. In Section 3, we outline a method for the nonperturba-
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tive treatment of the ac Stark shifts of highly excited states.
Finally, the spectral analysis method for classical trajector-
ies is presented in Section 4 along with a discussion of high-
order harmonic generation.

2. INTENSITY-DEPENDENT COMPLEX
QUASI-ENERGIES (SHIFTS AND WIDTHS) OF
LOW-LYING EXCITED STATES OF

ATOMIC HYDROGEN

The L2 non-Hermitian Floquet formulation!%16 has recently
been extended to the study of intense-field MPI/ATI from
the atomic H ground state.®4 In this section we present new
results for several low-lying excited states (2s, 2p, 3s, 3p, 3d)
of atomic H. The method permits nonperturbative and
self-consistent treatment of intense-field effects (in that all
atomic levels are simultaneously shifted and broadened by
the external fields) and straightforward inclusion of free—
free transitions and the effects of coupling among electronic
continua.

Corresponding to the periodically time-dependent Hamil-
tonian

H(r, t) = —(h*/2m)V? — */r + eFz cos wt, (1)

describing the interaction of atomic H with a monochromat-
ic, linearly polarized, coherent field of frequency w and peak
field strength F, an equivalent time-independent Hamilto-
nian Ar(r) may be obtained by an extension of the semiclas-
sical Floquet Hamiltonian method.16-18 The structure of Hr
has been documented elsewhere!? and is reproduced in Fig. 1
for convenience of discussion. The Floquet Hamiltonian A
shows a tridiagonal block structure, consisting of the diago-
nal A + nwl (n = 0, £2, £4,...) blocks and the off-diagonal
Bblocks. Each diagonal block is composed of angular mo-
mentum blocks S, P, D,. .., representing the projection of
the atomic electronic Hamiltonian onto states of [ = 0, 1,
2,...,and Vs are electric dipole coupling matrix elements.
Thus, in the case of atomic H, the S block consists of the 1s,
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A+4wl| B 0 0 0

BT |A+2wl| B 0 0

0 0 BT |A-20I| B
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where
S | Vsp 0 0 0
Ves | P-wI | Vpp 0 0
A = 0 | Ve D | Vor 0
0 0 | Vip [F-wl| Ve
0 0 0 | Vor G
and

Fig. 1. Structure of the time-independent Floquet Hamiltonian
for atomic MPI/ATI.

2s, 3s,...ns,...bound states and the entire ks Coulomb
continuum. The Hamiltonian of Fig. 1 has no discrete spec-
trum, and the time evolution is dominated by poles of the
resolvent (E — Hp)~1 near the real axis but on higher Rie-
mann sheets. These complex poles, which correspond to
decaying complex quasi-energy states (QES’s), may be
found directly from the analytically continued Floquet
Hamiltonian, Hr(«), obtained by the complex scaling trans-
formation'® r — refe. This transformation effects an ana-
lytical continuation of (E — Hz)~! into the lower half-plane
on an appropriate higher Riemann sheet, allowing the com-
plex QES to be determined by solution of a non-Hermitian
eigenproblem. The real parts of the complex eigenvalues of
Hr(a) provide the ac Stark shifts, whereas the imaginary
parts determine directly the total MPI widths (rates). In
practice, the atomic blocks are made discrete by use of a
finite subset of the complete Laguerre basis
ri+le=M[, 21+2()\r), where A is an adjustable parameter and n
=0,1,2,.... Thisyields a Pollaczeck quadrature represen-
tation of the bound and continuum contributions to the
spectral resolution of the hydrogenic Hamiltonian. Inprac-
tice, the convergence of MPI calculations may achieve arbi-
trary precision by systematically increasing the basis size
and the number of angular momentum blocks.

Table 1 shows the intensity-dependent complex quasi-
energies (Eg, —I'/2) of the perturbed low-lying excited states
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(2s, 2p, 3s, 3p, 3d) of atomic H at A = 530 nm. The Eg’s are
the ac Stark-shifted energies, whereas I'’s are the total MPI
widths (rates). Up to five Floquet blocks (4, 4 * 2w, A £
4w) and (25s, 25p, 25d, 25f, 25g) basis functions for each
block are used in these calculations to achieve convergence.
Strong mixings with some other states have already occurred
for each atomic state at the largest Fypslisted. Beyond these
field intensities, the quasi-energy eigenvector components
are spread among many Floquet states, and the identities of
atomic states can no longer be discerned. Figure 2 depicts
the intensity-dependent ac Stark behavior of these low-lying
excited states. We note that all the low-lying states (except
3d) are shifted upward as the field intensity increases.

Table 1. Intensity-Dependent Complex
Quasi-Energies®

States Fros Ep -T/2
2s 1.0 (—4)b —0.12499970 —0.1383 (-=7)
5.0 (—4) —0.1249926 —0.1853 (—7)
1.0 (-3) —0.124970 ~0.8769 (—7)
2.0 (-3) —0.124876 -0.1124 (-5)
3.0(-3) —0.124709 —0.5125 (—5)
4.0 (—3) —0.124455 —0.1432 (—4)
5.0 (—=3) —0.124102 —0.3041 (—4)
7.5 (=3) -0.12277 —-0.1092 (-3)
1.0 (~2) —-0.12125 —0.5898 (—3)
2p 1.0 (—4) —0.12499905 —0.7705 (—9)
5.0 (—4) —0.1249762 —0.6371 (—8)
1.0(-3) —0.124905 —0.7432 (=17)
2.0 (—8) —0.124626 —0.1159 (=5)
3.0 (=3) —0.124177 —0.5693 (—=5)
4.0 (-3) —0.123581 —0.1726 (—4)
5.0 (—3) —0.122876 —0.4047 (—4)
7.5(-3) —0.12136 —0.6558 (—3)
1.0 (-2) -0.11898 —0.4256 (—2)
3s 1.0 (—4) —0.5555488 —0.1846 (—6)
5.0 (—4) —0.0555383 —0.5219 (—5)
1.0 (-3) —0.055486 —0.2096 (—4)
2.0 (-3) —0.055279 —0.8397 (—4)
3.0 (—3) —0.054933 —0.1892 (—3)
4.0 (-3) —0.054448 —0.3370 (-3)
5.0 (—3) —0.053823 —0.5278 (—3)
6.0 (—3) —0.05306 —0.7624 (—3)
7.5(-3) -0.05165 —0.1197 (-2)
3p 1.0 (—4) —0.05555525 -0.2443 (—6)
5.0 (—4) —0.0555478 —0.6329 (—5)
1.0 (—3) —0.055525 —0.2540 (—4)
2.0 (—3) —0.055432 -0.1025 (-3)
3.0 (-3) —-0.055280 -0.2341 (-3)
4.0 (—3) —0.055062 —-0.4248 (—3)
5.0 (—3) —0.05479 —0.6807 (—3)
6.0 (—3) —0.05445 —0.1010 (—2)
3d 1.0 (—4) —0.05555580 —0.1336 (—6)
5.0 (—4) ~0.0555615 —0.3369 (—5)
1.0 (-3) —0.055579 —0.1355 (—4)
2.0 (—3) —0.055642 —-0.5541 (—4)
3.0(-3) -0.055728 —0.1288 (—3)
4.0 (-3) —0.055812 —0.2390 (—3)
5.0 (—3) —0.05587 —0.3923 (—3)

@ (Eg, —iT'/2) (in atomic units) of the perturbed low-lying excited states of
atomic Hat A =530 nm. The rms field strength of Fyg = 1.0 a,u. corresponds
to a rms intensity of 7.016 X 1016 W/cm?.

51.0(—4)=1.0X 1074,
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Fig. 2. Intensity-dependent energy-level-shift behavior for low-lying excited states (2s, 2p) and (3s, 3p, 3d) of atomic H.

Shifting and splitting of atomic states can be accounted for
by perturbation theory for Fyys < 5 X 107¢ a.u., as our weak-
field results reproduce nearly exactly the perturbative re-
sults of Ref. 9. For Fips = 1073 a.u., higher-order effects
become significant, and nonperturbative treatment, such as
the L2 non-Hermitian Floquet calculations presented here,
is required to achieve convergence.

3. ALTERNATING-CURRENT STARK SHIFTS
OF HIGHLY EXCITED STATES IN STRONG
FIELDS

The L2 non-Hermitian Floquet matrix method described in
Section 2 can, in principle, be extended to higher excited
states, and the detailed calculations are now in progress.
However, it becomes impractical to treat highly excited
states, as the Laguerre basis set size needed to achieve con-
vergence increases rapidly as n increases. If one is interest-
ed primarily in the energy-level shifts only, one does not
need to use complex scaling techniques. Thus, we are start-
ing again from the Floquet Hamiltonian Hr, shown in Fig. 1,
except that now it is a Hermitian matrix with only real
eigenvalues. If we use the conventional basis expansion
method (which usually describes the energy spectrum start-
ing from the ground state), we will have the familiar difficul-
ty—a large number of basis functions are needed to achieve
high accuracy, even for intermediate excited states. What
we need here is an appropriate L? basis set that can provide a
compact, yet accurate, description of any arbitrary excited
states without the need for a large number of basis functions.
It turns out that the well-known Sturmian basis {S,(r)},20:2
which provides an L2 technique for the treatment of both the
discrete and continuum properties, is an ideal choice for
such a purpose. The gist of using the Sturmian basis is that
one can adjust the energy parameters « and Ej in the (unper-
turbed) Coulombic Schrédinger equation (in atomic units)

[—Y%d%/dr? + (I + 1)/2r2 — a/r — Eo/2]S,(r) =0,  (2)
where a = kn = (—Eg)"?n such that Eo/2 is set equal to some

arbitrary highly excited state energy —1/2n2. The Sturmian
functions S,,;(r) thus generated will provide a compact basis

for the description of both the discrete states (now centered
around some particular (highly excited) states n and the
continuum. Table 2 shows an example of how this proce-
dure works. Here we have diagonalized the s-states (I = 0)
atomic H Hamiltonian

HO = —(1/2)d%dr? + (! + 1)/2r* = 1/r, @)

using a 40 Sturmian basis function Sy,(r), where n = 15,
16,...54 and [ = 0. We have chosen Ej in such a way that
the Rydberg levels of central interest are ~25. In fact an
energy band of at least 12 excited atomic states (n = 10ton
= 21) are described accurately to 9 decimal places. The
positive-energy pseudodiscrete states describe the continu-
um. The key feature here is that there is no need to start the
basis function expansion from n = 1 in describing the excited
states. The atomic properties can still be converged by
treating accurately the excited levels of principal interest
and by including a sufficient number of lower-lying bound
and pseudocontinuum states in the basis set. The inclusion
and accuracy of lower-lying states far from the excited states
of interest are of little concern unless there is an accidental
photon resonance. The situation here is similar to the con-
ventional L2 technique for treating the ground state, where it
is known that there is no need to include or treat every
excited state correctly provided that the basis set is suffi-
ciently complete. With the appropriately adjusted new
Sturmian basis, therefore, we can now construct a more
compact and effective Floquet matrix for excited-state prob-
lems.

The Sturmian function S,;(r) has the following explicit
form:

S,,(r) = N,e ¥ (2kr)"*1L,, , #+(2kr), (4)

where k = (—E)'2, and L,4.2*! is the Laguerre polynomial.
We use the convention? that the Sturmians are normalized
with respect to weight 2/r, namely,

r

One other advantage of using the Sturmian basis is the

S, () (2/r)S,(r)dr = §,,,8). (5)
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Table 2. Eigenvalues of Unperturbed Atomic H (s-
States) Diagonalized in an Extended Sturmian Basis®

J. Opt. Soc. Am. B/Vol. 7, No. 4/April 1990

N n E(n) Sturmian E(n) Exact
1 15 -0.008958511 —0.002222222
2 16 —0.002675953 —0.001953125
3 17 —0.001820747 —0.001730104
4 18 —0.001547228 —0.001543210
5 19 —0.001385055 —0.001385041
6 20 —0.001250000 —0.001250000
7 21 -0.001133787 —0.001133787
8 22 —0.001033058 —0.001033058
9 23 —-0.000945180 —0.000945180

10 24 —0.000868056 —0.000868056

11 25 —0.000800000 —0.000800000

12 26 —0.000739645 —0.000739645

13 27 -0.000685871 —0.000685871

14 28 —0.000637755 —0.000637755

15 29 —0.000594530 —-0.000594530

16 30 —0.000555556 —0.000555556

17 31 —0.000520291 -0.000520291

18 32 —0.000488265 —0.000488281

19 33 —0.000458659 —0.000459137

20 34 —0.000428251 —0.000432526

21 35 —0.000391716 —0.000408163

22 36 —0.000346009 —0.000385802

23 37 —0.000289506 —0.000365230

24 38 —0.000220203 —0.000346260

25 39 —0.000135248 —0.000328731

26 40 —0.000030638 —0.000312500

27 41 0.000099234

28 42 0.000262330

29 43 0.000470191

30 44 0.000740006

31 45 0.001098237

32 46 0.001587306

33 47 0.002278652

34 48 0.003300210

35 49 0.004899700

36 50 0.007608816

37 51 0.012742933

38 52 0.024318257

39 53 0.059761142

40 54 0.280510990

9 Sturmian basis functions are used with the parameter « [Eq. (2)] adjusted
insuch a way that the Rydberg levels of central interest are approximately n =
25. The positive energy states describe the continuum. Atomic units are
used.

simplicity of the Hamiltonian matrix elements. Thus, for
example, for the unperturbed hydrogenic Hamiltonian, Eq.
(3), the matrix elements have the following form:

Hyyp o = [(an = 1)/2]8,,8y + (Bo/2) Ay by, (6)

where A’s are the overlap matrix elements

An’l’,nl = [ Sn;r(r)Snl(r)dr. (7)
0

The results shown in Table 2 are obtained by solving the
eigenvalue problem

[Hor i = Ebyil(r) = 0. @)
To perform Floquet matrix calculations, one also needs the

dipole coupling matrix elements (S, (r)Ir|Sn(r)), which can
also be easily evaluated analytically.
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Figures 3(a) and 3(b) show the ac Stark shifts of n = 11
and n = 10 atomic states, respectively, for [ = 0, 1, 2, 3.
Forty Sturmian basis functions are used for each angular
momentum block (I = 0, 1, 2, 8, 4), and five Floquet blocks
(4, A + 20], A + 4wl) are used in the Floquet eigenvalue
analysis. The inverse iteration technique!? is used to calcu-
late only those quasi-energy eigenvalues and eigenvectors of
interest. (The 10s weak-field results agree within 1% of the
perturbation data of Ref. 8.) Figures 3(a) and 3(b) reveal
several essential energy-shift behaviors of excited states:
(a) All the excited levels shown are shifted upward and
closely follow the shift caused by the ponderomotive poten-
tial V (shown by dotted curves)

V = ’F*/4mw? 6)]

in the weaker-field region. This effective potential V has its
origin in the A? term (where A is the vector potential) and
can be shown to be equal to the average quiver kinetic energy
picked up by an electron of mass m and charge e driven
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Fig.3. Alternating current Stark shifts of (a) n = 11 and (b) n = 10
atomic states for/ = 0,1, 2, 3. Level splitting and strong mixings of
atomic states occur in higher fields. The dotted curves shown are
the ponderomotive potential quadratic shifts e2F2/4mw?2.
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Fig. 4. Intensity-dependent energy-level-shift pattern for even-
parity (s, d, g) states for n = 12, 11, 10. Notice the large deviation
from the ponderomotive potential curves (dotted) in stronger-field
regions.

sinusoidally by the fields. Our results lend further support
to the view?? that all Rydberg states and the continuum are
upshifted by the same amount, described by V. However,
this description appears valid only in the weak-field regime
where no strong mixings exist among atomic states. (b)
Above some critical field strengths (F.), the atomic energy
levels (for a given n but different !) split, and significant
deviation from the A2 curve occurs. The critical field
strength F, depends on n and decreases rather rapidly as n
increases, as can be seen from these figures. One should
therefore use the A2 shift law with caution in the interpreta-
tion of energy-level shifts in high-intensity MPI/ATI experi-
ments. (c) For F > F,, strong mixings exist among nearby
atomic states, and the level identities usually cannot be
discerned. [The level (symbol) assignment in Figs. 3(a) and
3(b) is therefore applicable only to weaker-field regions.]
To see the intricate and global level-shift behavior in
strong fields, in Fig. 4 we show the even-parity (s, d, g) state
quasi-energies for n = 12, 11, 10. (The odd-parity (p and f)
states show up in a different quasi-energy regime and are
separated for clarity. They are, of course, mixed strongly
with the even-parity states in strong fields). For eachn, the
upper branch has the dominant d characteristic, the middle
branch has the dominant s characteristic, while the lower
branch has the dominant g characteristic. (The g states are
less converged because our basis set includes only
1=0,1, 2, 3, 4 Sturmian functions.) Above some field
strengths, mixings among nearby n = manifolds can take
place, and avoided-crossing patterns appear. All quasi-en-
ergy levels lose their identities, and no atomic level assign-
ment is possible in these strong regions. In Fig. 4, the dotted
curves again indicate how the atomic energy levels (for each
n) would behave if they follow the ponderomotive potential
shift. Large deviation from the A2 curve is clearly evident in
the stronger-field regime. (Interestingly, except in the
avoided-crossing regions, the s-characteristic dominant
states (middle branches) rather closely follow the A% curves.)
Figure 5 shows the intensity-dependent energy-level shift
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pattern for highly excited states (n = 49, 50, 51, 52). (For
clarity, only the even-parity (s, d, g) states are shown, as in
Fig. 4.) Eighty Sturmian basis functions are used for each
angular momentum block in this calculation. The level-
shift pattern is similar to that shown in Fig. 4, except that
the critical field strengths F, are now considerably lower.
Also, the less-perturbed g-states (the lowest branch for each
n) now closely follow the ponderomotive potential (A2)
curves (dotted curves). For F > F,, a large departure from
the A2 shift occurs for the upper and middle branch states
(for each n), and strong inter-n mixings take place. This
behavior is expected to prevail for all Rydberg levels.

4. CLASSICAL TREATMENT OF MULTIPLE-
HARMONIC GENERATION ACCOMPANYING
MULTIPHOTON IONIZATION

Recently high-order (up to order 33) harmonic generation
has been observed when Xe, Kr, or Ar atoms are irradiated
by intense (1013-101* W/cm?) pulsed laser fields.!-13 Sever-
al unexpected features have been revealed. For example,
the experiments by Li et al.13 show a strong third harmonic
followed by a succession of odd harmonics (up to 33rd order
in Ar). While the decrement from third to fifth harmonic is
steep (about 2 orders of magnitude), the relative intensities
of higher harmonics (7th-27th harmonics) are roughly equal
in strength and fall off rather slowly. After the 27th har-
monic, the intensities drop significantly and show a cutoff at
the 33rd harmonic. A continuous background of scattered
light runs through all the harmonics.

In a previous paper* we showed that classical trajectory
treatment of the electronic motion in intense laser fields can
offer detailed insights regarding the MPI/ATI mechanisms
as well as the continuum threshold shift phenomenon. In
this section we extend this research and show that a spectral
analysis of the classical trajectories can reveal the mecha-
nism responsible for the high-order harmonic generationin a
straightforward manner. In addition, our results offer a
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Fig. 5. Intensity-dependent energy-level-shift pattern for even-
parity (s, d, g) states for highly excited states n = 49, 50, 51, 52.
Ponderomotive curves are shown (dotted).
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spectrum I(w) of z(¢). The physical parameters used are A = 530 nm
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possible explanation of the continuous background observed
in the experiments.

The classical Hamiltonian function is derived from the
quantum-mechanical Hamiltonian given in Eq. (1). The
effect of the manner in which fields are turning on and off is
not considered here but will be treated in a subsequent
publication. Hamilton’s equations of motion for the elec-
tron are solved numerically, using the variable-order, vari-
able-step Adams method.22 The initial conditions for the
motion of the electron at ¢t = 0 are chosen by standard Monte
Carlo methods from the microcanonical distribution with
energy E = —0.5 a.u. to simulate the statistical distribution
characteristic of the initial physical conditions of the classi-
cal H-atom ground state.?

We consider the power spectrum or spectral density of the
dipole moment function z(t),

2
>, (10)

where ( ) indicates an average over an ensemble appropriate
to the problem. In practice, a single trajectory is sufficient
to illustrate the underlying mechanisms. In the absence of
the Coulomb field, the electron (in an oscillating field eF,
cos wt) moves uniformly on average, but superimposed on
this uniform motion is a sinusoidal oscillation with charac-
teristic velocity given by

2T
I(w) = (1/2m) 7l‘im (1/2T) <U 2(t) exp(—iwt)dt
e o

v = vy + (eF/mw)2 sin w;t. (11)

In the presence of both the Coulomb and the oscillating
electric fields, the electron can gain or lose energy and angu-
lar momentum and undergoes MPI/ATI, as we have shown
in a previous paper.*

There are two types of classical trajectory leading to ion-
ization of electrons: (a) direct excitation of the atom from
the ground state to the individual continuum by nonreso-
nant multiphoton absorption and (b) sequential excitation,
in which an electron is first multiphoton-excited to a Ryd-
berg orbit and then further excited to the continuum by
absorption of additional photon(s).

Figures 6(a), 6(b), and 6(c) show, respectively, a typical
direct ionization trajectory r(t), the dipole moment function
ez(t) (e = 1), and its corresponding power spectrum I(w).
The physical parameters used are F = 0.15 a.u. and A = 530
nm, After oscillating around the nucleus for about 48 opti-
cal cycles, the electron is ejected directly to the continuum.
The power spectrum shows that a series of equally spaced
peaks sit at approximately Nw;, positions, where N’s are
integer numbers and wy, is the frequency of the laser. The
dominant peaks occur at N = 9, N = 11, and N = 15, but
most of the peaks are roughly the same order of intensity.2*
After the N = 17 peak, the intensity drops significantly.
This phenomenon is similar to the high-order harmonic gen-
eration observed in strong field MPI/ATI experiments.!1-13
There is a giant peak in the lower-frequency region, and a
continuous background runs through all the harmonic
peaks. We found that these features are attributed to the
ionizing portion of the trajectory. The magnitude of the
giant peak is sensitive to the cutoff time of the trajectory, as
expected. The high-order harmonic generation peaks are
entirely due to the fast-oscillating portion of the trajectory,
i.e., the portion before ionization.
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Fig.7. (a)r(t), (b) 2(t), and (c) I(w) for a sequential-excitation-type
trajectory. Parameters as in Fig. 6.
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Figure 7(a) shows a typical sequential excitation trajec-
tory in which the electron is first pumped by the external
fields to a Rydberg state. This corresponds to an electron’s
moving in a large Kepler orbit with wobbles caused by the
oscillating field. After moving around the orbit for about
100 optical cycles, the electron reaches the perihelion point
close to the nucleus, absorbs additional photon(s), and is
suddenly ionized. The dipole moment function z(¢) and its
power spectrum I(w) are shown, respectively, in Figures 7(b)
and 7(c). Interestingly, while the motion of the electron
appears more spectacular in this case, its power spectrum
consists of only a single peak precisely located at the laser
frequency wz, = (0.08596 a.u. or 5630 nm). (The lower-fre-
quency larger peak is again due to the ionizing portion of the
trajectory.) This single-frequency peak at wy, is clearly due
to the wobble of 2(¢) induced by the oscillating field. We see
no higher-order harmonic components in this type of trajec-
tory.

It is perhaps not surprising to find that only the direct
excitation type (Fig. 6) of trajectory is responsible for the
observed high-order harmonic generation. Only when the
electron is close to the nucleus can the electron exchange
energy and angular momentum efficiently with the electro-
magnetic fields. Quantum mechanically, this implies that
the initially bound-state electronic wave function builds up
overlapping components with the individual continuum in a
direct fashion while the electron is still in the vicinity of the
nucleus. This is the basic mechanism responsible for high-
intensity MPI/ATI and high-order harmonic generation.
Our results also suggest that the continuous background
runs through the high-order harmonic peaks observed in the
experiments!-13 and in quantum model calculations!4!5
may be attributed to the ionizing portion of the trajectory
(wave function).

In conclusion, the spectral analysis of classical trajectories
offers a powerful complementary tool to quantum-mechani-
cal methods for the exploration of physical mechanisms in
MPI/ATI processes and multiple harmonic generation in
strong fields. This classical spectral technique may be made
more quantitative by means of appropriate semiclassical
quantization of the classical trajectories. Research in this
direction is in progress.
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