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Quantum scattering via the S-matrix version of the Kohn variational principle 
John Z. H. Zhang, Shih-I. Chu,a) and William H. Miller 
Department of Chemistry, University of California, and Material Chemical Sciences Division, Lawrence 
Berkeley Laboratory, Berkeley, California 94720 

(Received 17 November 1987; accepted 26 January 1988) 

The S-matrix version of the Kohn variational principle is used to obtain a very effective 
method for quantum scattering calculations. The approach is especially useful for the nonlocal 
(i.e., exchange) interactions that arise in chemically reactive scattering (and also in electron­
atom/molecule scattering). The particular version developed in this paper has a more general 
structure than an earlier one by Miller and Jansen op de Haar [J. Chern. Phys. 86, 6213 
(1987)], and applications to an elastic scattering problem, and also to three-dimensional 
H + H2 reactive scattering, show that it is also more useful in practice. 

I. INTRODUCTION 

At the most rigorous level of description the theory of 
chemical reactions is an exercise in quantum mechanical re­
active scattering. 1,2 Reactive (or rearrangement) scattering, 
as contrasted with simpler elastic and inelastic scattering, 
however, involves nonlocal, exchange-type interactions (if 
Miller's3 formulation is followed4), and this prevents one 
from being able to integrate the coupled-channel Schro­
dinger equation by well-established propagation methods5 

(that do work well for elastic or inelastic scattering with 
local potentials). When dealing with nonlocal interactions it 
is necessary at some stage to introduce a basic set for the 
scattering coordinate (in addition to the ever-present basis 
set expansion for all the internal degrees of freedom) . 

Miller and Jansen op de Haar6 recently introduced a 
basis set method for quantum scattering that has a number of 
very desirable features: it is exceedingly simple and straight­
forward, and most importantly it requires that one compute 
matrix elements only of the Hamiltonian operator itself; i.e., 
it is not necessary to introduce the Green's function for some 
reference problem and compute matrix elements involving it 
(as is necessary in some other approaches 7,8). Initial test 
applications6 to elastic, inelastic, and recently to three-di­
mensional reactive scattering,9 showed this method to be 
quite stable and efficient. 

Miller and Jansen op de Haar derived their result using a 
variational (basis set) approximation 10 to the full scattering 
Green's function (E + iE - H) -I == G + (E), but noted that 
the equations were identical to those obtained by the S-ma­
trix version of the Kohn variational principle. ll•

12 Previous 
applications l3 of the Kohn variational principle had most 
often used it to calculate the K matrix (or K - I) first, and 
then obtained an S matrix via the relation 

S = (1 + iK)( 1 - iK) -I, (Ll) 

which is true for the exact Sand K matrices. This procedure 
does not produce the same result as applying the Kohn vari­
ational approximation directly to the S matrix, however, and 
in fact this earlier approach is well known 13 to be plagued by 
"Kohn anomalies" that have hindered its general usefulness. 
The S-matrix version of the Kohn variational principle, 

0) On leave from the Department of Chemistry, University of Kansas, Law­
rence, Kansas 66045. 

though, suffers none of these pathologies; it converges in a 
well-behaved, nonsingular fashion as the basis set is in­
creased. [To our mind, the superior behavior of the S-matrix 
version of the Kohn variational principle is related to the fact 
that the S matrix is a matrix element of the full outgoing 
wave Green's function G + (E), while the K matrix is not 14 a 
matrix element of the full standing wave Green's function 
PV(E - H)-I==Re G +(E).] As shown in Sec. II, in fact, 
the condition that the Kohn approximation to the S matrix 
be singular gives, identically, the equation for Sigert eigen­
values, which are the physically correct complex poles of the 
S matrix that characterize scattering resonances. See also the 
discussion by McCurdy, Rescigno, and Schneiderls who 
have adapted the method of Ref. 6 to electron-atom/mole­
cule scattering. [As an aside, we note that these above subt­
leties do not exist for the Schwinger variational principle, 16 
another basis set method for scattering. That is, the reader 
can readily show for himself that use of the Schwinger vari­
ational principle with standing wave boundary conditions to 
obtain K, and then S via Eq. (1.1), gives the identical result 
to using it with outgoing wave boundary conditions to obtain 
S directly. Unfortunately, though, the Schwinger variational 
principle requires that one compute matrix elements involv­
ing the Green's function for a reference problem.] 

In this paper we utilize the S-matrix version of the Kohn 
variational principle in a more general way than before6,9 
and obtain a resulting expression for the S matrix that is 
preferable to the previous one. The present results are prefer­
able both formally-i.e., they have a more general structure, 
with no appearance at all of any distorted wave "reference" 
quantities-and also practically. The practical advantages 
are that fewer matrix elements are required, and also fewer 
large sets of simultaneous linear equations need be solved 
(i.e., fewer mUltiplications by a large matrix inverse). Sec­
tion II gives the theoretical development, and applications to 
elastic and then to reactive scattering are discussed in Sec. 
III. The elastic tests in Sec. III, e.g., show that the present 
expression for S converges more rapidly with basis set than 
others. 

II. THEORY 

The theoretical development is first carried through for 
s-wave potential scattering, since this contains all the essen-
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6234 Zhang, Chu, and Miller: Quantum scattering via S-matrix variations 

tial ideas. Extension to the general multichannel case is de­
scribed in Sec. II B. 

Also, throughout this paper we adopt the convention 
that the wave functions in a bra symbol (I in bra-ket matrix 
element notation are not complex conjugated. This has 
seemed to us the least cumbersome way to keep track of the 
boundary conditions and what is complex conjugated and 
what is not. 

A. Potential scattering 

The Hamiltonian is of the standard form 

-If d 2 

H = ~ dr + VCr), (2.1 ) 

where VCr) -0 as r- 00. The S-matrix version of the Kohn 
variational approximation to the S matrix (at energy E) can 
be written as 

S = ext[s + ~ (iblH - E lib) ], (2.2) 

where ib(r) is a trial wave function that is regular at r = 0 
and has asymptotic form (as r-... (0) 

(2.3) 

where v = fzk IJ.l is the asymptotic velocity (k = ~2J.lE Ifz2). 
"ext" in Eq. (2.2) denotes that the quantity in the square 
brackets is to be extremized by varying any parameters in 
ib ( r) . For potential (i.e., one-channel) scattering, of course, 
the S matrix is a 1 X 1 matrix, a complex number of unit 
modulus. [As an aside, we note that for a given trial function 
ib, Eq. (2.2) may also be viewed as the distorted wave Born 
approximation, where ib is the distorted wave.] 

We take the trial function ib(r) in the form 

N 

ib(r) = - uo(r) + L u/(r)c/, (2.4) 
1=1 

where uo(r) is a function that is regular at r = 0 and has 
asymptotic form 

(2.5) 

In applications we have chosen 

(2.6) 

wheref(r) is a cutoff function to regularize uo(r) as r .... O, 

fer) .... 0, r-O, 

fer) -1, r-... 00; 

e.g.,f(r) = (l_e- ar
). Thefunctionu,(r) is 

ul(r) = uo(r)*, 

(2.7) 

(2.8) 

and the basis functions {u/ (r)},l = 2, ... ,N are real, square­
integrable functions. The coefficients {c/},l = l, ... ,N in Eq. 
(2.4) are the variational parameters in ib. Note that with this 
form of trial wave function, Eq. (2.4), the quantity Sin Eqs. 
(2.2) and (2.3) is S = CI . 

Substituting ib of Eq. (2.4) into the variational expres-

sion [Eq. (2.2)] gives (after some manipulations) 

s=~ext[(uoIH-Eluo)+ f clcl·(uIIH-Elul') 
fz 1,1 = I 

-2/~lc/(uIIH-Eluo)], (2.9) 

where the facts have been used that 

(uoIH-Elu/) = (u/IH-Eluo), 

(ulIH - E luI') = (UI' IH - E lUI) (2.lOa) 

for 1,1' = 2, ... ,N, but 

(uolH - E lUI) = (ulIH - E luo) - ifz. (2. lOb) 

That is, the transposed matrix elements in Eq. (2.10a) are 
equal because the surface term that results from integrating 
by parts twice vanishes [because u/ (r) -...0 as r- 00 for 1;;.2], 
but there is a surface term for the two unbounded basis func­
tions, as given in Eq. (2.lOb). As before/ we note that all 
integrals involving the unbounded basis functions Uo and u I 
exist because 

lim (H - E) {uo(r) = o. 
r-oo u,(r) 

(2.11 ) 

One now extremizes Eq. (2.9) with respect to the expansion 
coefficients {C/}: the equations 

O=..E...[] 
ac/ 

lead to linear equations for {cJ which are solved by matrix 
inversion, and the result substituted back into Eq. (2.9). The 
result of this standard procedure gives the S matrix as 

i N 
S=- [(uoIH-Eluo) - L (uIIH-Eluo) 

fz 1,1' = I 

X«utlH-Elul'»-'(UI,IH-Eluo)], (2.12a) 

or in matrix notation 

S= ~ (Mo,o - Mr·M-'·Mo), 

where 

Mo,o = (uolH - E luo), 

(Mo)/ = (u/IH - E luo), 

(M)/.I' = (uIIH - E lUI')' 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

for 1,1' = 1, ... ,N and where "T" denotes matrix transpose. 
Before discussing Eq. (2.12), we would like to rewrite it 

in two different ways, one more "elegant" and the other 
more practical. First, the more elegant version comes from 
recalling the Lowdin-Feshbach partitioning identity for op­
erators and matrices, 

(2.13) 

where P and Q are complementary projectors. If one chooses 
P to project onto the one basis function I = 0, and Q to pro­
ject onto the 1= 1, ... ,N functions, then one can use Eq. 
(2.13) to write Eq. (2.12b) as 

S=~ [(M- ' ) ]-1 (2.14) fz 0,0' 

where here M u ' == (u/IH - E luI') is the matrix in the total 
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space I = O, ... ,N. (Note, though, that Mo. I is (uIIH - E Iuo), 
not (uolH - E lUI)') Equation (2.14) says that one inverts 
the matrix of (H - E) in the I = O, ... ,Nbasis, takes the (0,0) 
element of this inverse matrix and then inverts it (a I X 1 
matrix) to obtain S. 

More practically, though, one would like to separate the 
real part of the inverse matrix calculation from the matrix 
elements involving both of the energy-dependent complex 
basis functions Uo and U I • To accomplish this one uses (as 
before6 ) the following version of the LOdin-Feshbach parti­
tioning identity: 

(M-I)QQ = M <xi + M Q(iMQP(Mpp 

-MPQM Q(iMQP)-IMPQM Qal (2.15) 

in Eq. (2.12b), here with Qprojecting onto the real functions 
1= 2, ... ,N and Ponto the one function 1= 1, and this gives 

(2.16a) 

where 

B=Mo.o -Mer·M-I·Mo, (2.16b) 

D=MI •I -Mi·M-I·MI, (2.16c) 

C=MI •o -Mi·M-I·Mo, (2.16d) 

where here the matrix M and vectors Mo and Ml are of di­
mension 1= 2, ... ,N; i.e., 

Mo.o = (uolH - E Iuo), 

M I.I = (uIIH-Elu l ), 

M I •o = (utiH - E luo), 

(Mo)1 = (uIIH -Eluo), 

(Ml)1 = (uIIH -Elul ), 

(M) 1.1' = (uIIH - E luI') 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

(2.17e) 

(2.17f) 

for 1,1' = 2, ... ,N. Equation (2.16) can be further simplified 
by using the fact that U I = u~, which leads to the relations 

M I.I =M~o' 

MI=~ 

and thus 

D=B*. 

The final, most compact form of the result is thus 

S=~ (B- C 2/B*), 
Ii 

where 

B = Mo•o - Mer·M -1·Mo, 

C = M I •o - ~T·M -I·Mo, 

M I.o = (u~IH - E luo)' 

(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

Equation (2.18) is the final, most useful form of the 
result (for potential scattering). Maximum use has been 
made for the symmetry between the incoming and outgoing 
functions Uo and Ul == u~ to minimize the number of indepen­
dent matrix elements which must be calculated; these are 
Mo.o, MI,o, Mo and M ofEq. (2.17). The matrix inverse in 
Eq. (2.18) involves only the matrix of (H - E) between the 

real, square integrable basis functions. There is no reference 
in Eq. (2.18) to any distorted wave reference problem as 
appeared before.6 In fact, it was our desire to eliminate this 
aspect of the previous expression that led to the present de­
velopment; it seemed unnecessary to us to require the use of a 
distorted wave representation, since the distorted wave func­
tion is not, in general, a good approximation to the true wave 
function in the interaction region. Use of a plane wave repre­
sentation is not possible, though. because of repulsive cores 
in potentials of interest. In the present trial function, Eq. 
(2.4), the square-integrable function 1~2 describe the wave 
function in the interaction region; no functions need be lo­
cated in classically forbidden (e.g., repulsive core) regions 
where the true wave function is essentially zero. 

We note, though, that it is possible to include distorted 
wave-like information in the present expression in a very 
straightforward way if this is desirable (e.g .• if there is a 
long-range, nonreactive interaction, say, that one does not 
wish to have to describe via the square-integrable basis). One 
simply chooses the function uo(r) (and thus U I ==u~) as the 
(irregular) solution of the distorting potential which has the 
boundary condition [Eq. (2.5)], multiplied by a cutofffunc­
tion/(r) to regularize it at r = O. That is, the only rigorous 
requirement on uo(r) (and ul==ut) is that it be regular at 
r = 0 and have the asymptotic form ofEq. (2.5). Choosing it 
to be the (irregular) solution to the long-range part of the 
potential would reduce the region that must be spanned by 
the real square-integrable basis. 

Finally, it is useful to emphasize again that Eqs. (2.12), 
(2.14), and (2.18) (which are all equivalent) have no 
"Kohn anomolies" that exist in the K-matrix version of the 
Kohn variational principle. 13 In fact, the condition that the 
above expression for the S-matrix be singular-which is 
most easily deduced from Eq. (2.12)-is 

0= detlMI ==det[ (udH - E lul')] (2.19) 

in the space 1,1' = 1, ... ,N, and one recognizes this as identical 
to the equation (used by one of use before 17) whose roots are 
the Siegert eigenvalues. IS These are the physically correct 
poles of the S matrix at complex energies Er - ir /2 which 
characterize the energy and lifetime of scattering reson­
ances. One can also verify explicitly, most easily from Eq. 
(2.18), that the real eigenvalues of the equation 

detlMI = det[<udH - E lul')] (2.20) 

in the space 1,1' = 2 .... ,N, are not poles of the S matrix. If, 
e.g., Eo and Vo are a real eigenvalue and eigenvector of Eq. 
(2.20), then Eq. (2.19) for the poles ofthe S matrix (i.e .• the 
Siegert eigenvalues) can be written as 

(2.21 ) 

Note that the right-hand side of Eq. (2.21) involves E 
through the k dependence of the basis function u I (r). A 
Golden Rule-like approximation to the Sigert eigenvalue can 
be obtained by choosing k = ~2p.EoIif, so that Eq. (2.21) 
then becomes an explicit (approximate) expression for the 
complex Siegert eigenvalues. 
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6236 Zhang, Chu, and Miller: Quantum scattering via S-matrix variations 

B. Multichannel (Including reactive) scattering 

The methodology of Sec. II A generalizes in a straight­
forward way the case of multichannel scattering. q denotes 
the coordinates of the internal degrees of freedom, and 
{~" (q)} the channel eigenfunctions. Trial wave functions 
;p", and ;Pn, are taken to be the multichannel generalization 
ofEq. (2.4), 

lpn, (r,q) = - UOIt, (r)~", (q) 

N 

+ I I U1n (r)~n (q)C1n,n" 
l~ I n 

(2.22a) 

Ip'" (r,q) = - UOn, (r)~n, (q) 

N 

+ I I Uln (r)~n (q)C1n,n" 
l~ I n 

(2.22b) 

where {Uln (r)}, 1= 2, ... ,N, is a square-integrable basis set, 
and UOn (r) [and Uln (r) =UOn (r)*] is the regularized incom­
ing wave for channel n, as in Eqs. (2.5)-(2.7), 

(2.23) 

where kIt = ~2f..L(E - E" )/fl2 , E being the total energy and 
En the internal energy for channel n. For 1=0 and 1, the 
channel index n includes only open channels, while for 1'~2 
the sum over n in Eq. (2.22) includes open and closed chan­
nels. For r~2 the translational basis functions {Uln (r)} need 
not depend on the channel quantum numbers n, i.e., they 
may be taken to be the same for all channels. It is possible, 
though, to use different translational functions for different 
channels, and this would, in principle, be a more efficient 
procedure; e.g., closed channels would probably not need as 
many translational functions as open channels, etc. 

The Kohn variations approximation to the S matrix 
then takes the form (see the Appendix) 

S = ext C - H-E [ 
i - -] 

""n, I""n, + fl (t/ln, I It/ln,) , (2.24) 

where ext denotes that the expression in square brackets is to 
be extremized with respect to the variational parameters in 
lpn, and ;Pn" i.e., {Cln,n) and {c1n,,,). The variational calcula­
tion proceeds essentially the same as in Sec. II A, so we sim­
ply give the result of the final, most useful form of the result, 
analogous to Eq. (2.18): 

(2.25a) 

where Band C (and 5) are "small" square matrices {B n,'" }, 

{Cn,n'}' {Sn,n'} in the internal state index n. Band Care 
given by the appropriate generalization of Eqs. (2.l8b) and 
(2.18c): 

B = Mo,o - MJ'-M-I'Mo, 

C = MI,o - M~T'M-I'Mo' 

(2.25b) 

(2.25c) 

where Mo,o and MI,o are also small square matrices in the 
internal state index: 

(Mo,o) n,n' = (uo"~,, IH - E IUo"'~n')' 

(MI,o ) ".,,' = (u~"~,, IH - E IUon'~"')' 

(2.26a) 

(2.26b) 

M is a "large" square matrix in the composite space of inter-

nal state plus translation, 

(M)ln,l'''' = (ul~nIH -Elul'~"') (2.26c) 

for 1,1' = 2, ... ,N, and Mo is a large by small rectangular ma­
trix: 

(2.26d) 

1= 1, .. ,N. Note that the channel quantum numbers n range 
only over open channels for the small square matrices Mo,o' 
MI,o' B, C, and 5, while it includes both open and closed 
channels in the large square matrix M. For the large by small 
rectangular matrix Mo it includes only open channels in the 
small direction, and open and closed channels in the large 
direction. 

Equations (2.25) and (2.26) provide a significant ad­
vantage over the previous version6

,9 of the S-matrix Kohn 
method in that fewer matrix elements are required and fewer 
sets of simultaneous linear equations must be solved (i.e., 
multiplications by the inverse matrix M -I ). Thus the pres­
ent version requires two small square matrices, Mo,o and 
MI,o of Eqs. (2.26a) and (2.26b), while the previous one 
requires three matrices of this type [cf. Eqs. (3.lla), 
( 3.11 b ), and (3.11 c) of Ref. 6]; the present version requires 
one large by small rectangular matrix, Mo of Eq. (2.26d), 
while the previous one requires two such rectangular matri­
ces [cf. Eqs. (3.13a) and (3.13b) of Ref. 6]. As noted in Sec. 
II A, these economies have resulted because the form of trial 
wave function has exploited the symmetry of the incoming 
and outgoing waves. The fact that these matrices are energy 
dependent, and thus the part of the calculation that must be 
redone at each different energy E, makes this savings afford­
ed by the present version even more important. Finally, as 
seen in Eq. (2.25), the present version requires only that one 
compute the action of M - I on the one rectangular matrix 
Mo, i.e., M -1·Mo, while the previous one requires the action 
of M- I on the two rectangular matrices that occur in that 
version [cf. Eq. (3.10) of Ref. 6]. 

Essentially all of the discussion in Sec. II A following 
Eq. (2.18) also applies to Eqs. (2.25) and (2.26). For exam­
pIe, the function UOn (r) need not be taken as the (cutoff) free 
incoming wave as in Eq. (2.23), but can be a distorted in­
coming wave; it need only be regular at r = 0 and have the 
asymptotic form 

I - ik r 1/2 
mUOn (r) = e " Vn- • 

r_ 00 

(2.27) 

For scattering in three-dimensional space, of course, the cen­
trifugal potential is included in the definition of the incom­
ing/outgoing waves, so that the proper asymptotic form is 

U (r) - ( - ik r)h (2)(k r)v- 1/2 
On n I" n n (2.28) 

where I" is the orbital angular momentum for channel nand 
h (2) is the spherical Hankel function l9 with the indicated 
asymptotic form. The simplest choice for Uo" (r) [and 
U\n (r) =UOn (r)*] would thus be the Hankel function in Eq. 
(2.28) multiplied by a regularizing cutoff function. 

Equations (2.25) and (2.26) also apply to reactive (re­
arrangement) processes by expanding the internal state in-
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dex n to incorporate the arrangment index y, 

n-ny. (2.29a) 

The coordinates (q,r) need also to be labeled by the arrange­
ment index3 

(q,r)-(qy,ry ); (2.29b) 

(qy,ry ) are the Jacobi coordinates for arrangement y. The 
matrix elements in Eq. (2.26) between states of different 
arrangements are the exchange interactions (cf. exchange 
integrals in electronic structure theory) which are so diffi­
cult to treat in the coupled-channel differential equations,3 

but which are incorporated in this basis set approach in a 
rather simple and straightforward manner. The entire calcu­
lation thus comes down to choosing basis sets, computing 
matrix elements of the Hamiltonian, and doing linear alge­
bra. 

III. TEST CALCULATIONS 

A. Potential scattering 

The first test problem is the one used by Stazewska and 
Truhlaro to test an approach they have proposed. The Ham­
iltonian is that ofEq. (2.1) with (in atomic units) 

(3.1) 

and Il the mass of an electron. The real basis is as before, 

u/(r) = N/r-1e- ar, 

1= 2, ... ,N, and 

uo(r) = (l_e-ar)e-ikrv-1I2, 

U1 (r) = uo(r)*. 

(3.2) 

(3.3) 

Tables I and II show the fractional error in the tangent 
of the phase shift for various methods: the Schwinger vari­
ational principle (SVP) and the reactance operator vari­
ational principal (ROVP), as given in Ref. 20, the previous 
results of Miller and Jansen op de Haar (MJH),6 and the 
present results ofEq. (2.18). One sees that the present values 

TABLE I. Fractional error in tan Ii as a function of the number of basis 
functions; k = 0.15.' 

(N _l)b Sypc ROYpd MJH" Presentf 

a=2.5 

2 - 1.6463 0.0423 0.4272 0.0277 
3 2.2367 0.0003 0.0270 0.0023 
4 0.2585 0.0002 0.0024 0.0001 
6 0.0164 0.0000 0.0000 0.0000 

a= 1.5 

2 0.5974 0.0006 0.0006 0.0003 
3 0.0565 0.0000 0.0003 0.0000 
4 0.0068 0.0000 0.0000 0.0000 
6 0.0016 0.0000 0.0000 0.0000 

• For the potential of Eq. (3.1), the model problem considered in Ref. 20. 
b N - 1 is the number of real basis functions in the expansion of the trial 

wave function. 
c Results of the Schwinger variational principle, from Ref. 20. 
d Results of the reactance operator variational principle, from Ref. 20. 
o Miller and Jansen op de Haar, Ref. 6. 
fPresent results ofEq. (2.18). 

TABLE II. Fractional error in tan Ii as a function of the number of basis 
functions; k = 0.55.' 

(N_I)b SYPC ROYpd MJHo Presentf 

a=2.5 
2 - 0.3937 0.0123 - 0.0639 -0.0001 
3 - 0.1236 - 0.0384 -0.0104 - 0.0019 
4 - 0.0736 -0.0043 - 0.0019 - 0.0011 
6 - 0.0631 - 0.0001 -0.0003 - 0.0001 

a = 1.5 

2 -0.0985 - 0.0205 -0.0081 -0.0031 
3 - 0.0888 0.0000 -0.0043 0.0000 
4 -0.0649 0.0000 0.0000 0.0000 
6 - 0.0065 0.0000 0.0000 0.0000 

.-fSame as for Table I. 

are not only an improvement over the earlier results of Ref. 
6, but they are significantly better than the SVP and the 
ROVP methods, both of which require matrix elements in­
volving a reference Green's function. 

A potentially more difficult case to treat is that of a 
repulsive potential, e.g., 

(3.4 ) 

The plane wave version of Ref. 6, e.g., does not work as well 
in this case21 as it does for the attractive potential of Eq. 
(3.1) (i.e., the MJH results in Tables I and II); this is because 
the plane wave is nonzero in the classically forbidden region, 
so that the real basis functions must cancel out the plane 
wave in that region. Table III shows the results of the present 
approach, i.e., Eq. (2.18), for the repulsive potential ofEq. 
(3.4), and one sees that the rate of convergence to the cor­
rect result is only slightly slower than for the potential ofEq. 
(3.1 ). 

In concluding this section we also note that since Eq. 
(2.18) is a stationary, variational approximation to the S 
matrix, any parameters in the trial wave function--e.g., the 
nonlinear parameter a in the basis set of Eq. (3.2 )~an be 

TABLE III. Fractional error in tan Ii (repulsive potential" ). 

2 
3 
4 
6 
8 

a=2.5 

0.0477 
0.0146 
0.0040 
0.0002 
0.0000 

a= 2.5 

2 0.0241 
3 0.0054 
4 0.0006 
6 0.0000 

• For the potential in Eq. (3.4). 
bSee Table I. 

k = 0.15 

k = 0.55 

a= 1.5 

0.0030 
0.0002 
0.0000 
0.0000 
0.0000 

a= I.5 

0.0000 
0.0001 
0.0000 
0.0000 
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varied to extremize the resulting S matrix. In practice, 
though, we imagine that it will not prove profitable to vary 
nonlinear parameters, but rather to take the real basis {u/} 
sufficiently large that the desired results are insensitive to the 
precise values of these parameters. Such insensitivity is in­
deed a (nonrigorous) test to see if the basis is sufficiently 
large. 

B. Reactive scattering 

A sample of the three-dimensional reactive scattering 
calculations of Zhang and Miller9 for the H + H2 system 
were repeated using the present version of the S-matrix 
Kohn method, as described in Sec. III B. The resulting S­
matrix elements were essentially the same as before,9 as was 
the rate of convergence with increasing size of the transla­
tional basis and the stability of the results to variations in the 
cutoff function. In all these respects the two versions of the 
S-matrix Kohn method behaved essentially equivalently for 
this example. 

The present version of the approach is nevertheless 
much preferred on several scores. As discussed in the para­
graph following Eqs. (2.25) and (2.26), fewer energy-de­
pendent matrix elements must be computed, and fewer sets 
of simultaneous linear equations must be solved (i.e., actions 
of the large by large inverse matrix M -I), which must also be 
carried out anew at each energy. Finally, the fact that the 
function uony(ry)is given analytically as a function of r y' 
e.g., Eq. (2.28), rather than having a distorted wave elastic 
scattering function/ony (r r) available6

•
9 as numerical values 

on a grid of r r values, means that the exchange integrals 
involving these functions can be carried out (by numerical 
quadrature) using mixed coordinate systems that are more 
efficient than using the translational coordinates r rand r r 
themselves. The version of the S-matrix Kohn method pre­
sented in this paper is thus clearly preferred for future appli­
cations to chemical reactive scattering. 

At the request of the referee we give some preliminary 
information about computation time, though we do not wish 
to emphasize this because, for one reason, we believe there 
are several ways that the calculations can be made more effi­
cient. The following computer times refer to the 3D H + H2 
reaction (J = 0) on the LSTH potential, carried out on the 
Berkeley Cray X-MP/14, with 36 rotational-vibrational 
states of H2 (in each arrangement) and 25 translational 
functions. Exploiting the symmetry of the three identical 
particles,3 this leads to large by large matrices of size 
900 X 900. The energy-independent part of the calculation 
(primarily numerical integrations to compute the 900 X 900 
matrix of H) requires ~ 3 min, and a little more than 1 min is 
then required for the calculation at each energy. Of this ~ 16 
s is for solution of the simultaneous linear equations to give 
M - I • Mo' with the remainder for the numerical integrations 
necessary to compute the energy-dependent matrices Moo, 
M 10' and Mo. In order to deal with progressively larger sys­
tems it is probably most important to concentrate effort on 
finding ways to "contract" the basis set, for the M - I • Mo 
calculation is an N 3 process (N = large dimension) that will 
ultimately dominate the calculations. Basis set contract is a 
highly developed art in the quantum chemistry of electronic 

structure, and one imagines that many useful ideas from that 
field can be carried over to the present one. 

IV. CONCLUDING REMARKS 

By using the S-matrix version of the Kohn variational 
principle with a more generic type of trial wave functions, 
Eq. (2.4) (potential scattering) or Eq. (2.22) (multichan­
nel scattering), we have obtained a new more useful basis set 
approximation for the S matrix. The essential utility of this, 
and other basis set approaches, is that they apply equally 
well to the case of nonlocal, exchange interactions as to local 
potentials. 

Equations (2.17) and (2.18) (potential scattering), or 
Eqs. (2.25) and (2.26) (multichannel scattering), give the 
basic results. There is no reference to any distorted wave, 
zeroth problem, though distorted wave-like information can 
be incorporated into the approach if desired. If the present 
approach is applied to electron-atom/molecule scattering, 
for which it should also be quite usefuV5 then one would 
certainly wish to take the long-range polarization interac­
tion into account this way, i.e., by including this distortion in 
the definition of uo(r) [and U1 (r) =uo(r)*]. 

The essential practical advantage of the present version 
of the S-matrix Kohn methods over the previous oneM is 
that fewer energy-dependent matrix elements are required 
and fewer large sets oflinear equations must be solved. This 
substantially reduces the amount of computation that must 
be done at different energies, a very important consideration 
in these large calculations. 
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APPENDIX: KOHN VARIATIONAL PRINCIPLE FOR THE 
SMATRIX 

Here we give an explicit calculation to show that Eq. 
(2.24) is indeed a variational (i.e., stationary) expression 
for the S matrix. The first variation of Sn,.n, about its exact 
value is 

+ (tPn,IH - E 18tPn,», (AI) 

where tP n, and tP n, are the exact solutions of the SchrOdinger 
equation with the boundary conditions contained in Eq. 
(2.22). Thus, 

(H - E)tPn, = 0, (A2) 

so that the first term in parentheses in Eq. (AI) is zero. 
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Integrating with respect to r by parts twice gives 

<"'n,IH - E 18"'n,) 

= (8"'n, IH - E I"'n,) 

+ (-~) J dq (tPn, a8tPn, _ atPn, 8tPn,) I r= "". 
21t ar ar r=O 

(A3) 

Since (H - E)tPn, = o also, only the surface term survives in 

I 

Eq. (A3). There is no contribution to it at r= 0; as r- 00 

one has 

(A4) 
n 

tPn, (r,q) - - UOn, (r)¢Jn, (q) 

(A5) 
n 

and inserting Eqs. (A4) and (A5) into Eq. (A3) gives 

(tPn,IH - E 18tPn,) = (- 2fz2) lim [ - 8c1n"n, UOn, (r)uin, (r) + L U 1n (r)uin (r)8c 1n,n,c1n,n, + UOn, (r)u 1n, (r)8c 1n"n, 
p ~"" n 

= (-~) 8c1n n lim [ - UOn (r)uin (r) + UOn (r)u 1n (r)]. 
2 2' I 2 2 :2 2 P r_"" 

(A6) 

One easily finds that the factor in square brackets in Eq. 
(A6) is ( - 2ikn,lvn,> , so that using Eq. (A6) in Eq. (AI) 
gives 

8Sn"n, = 8c1n"n, 

+ (.!.-) ( -~) ( - 2ik Iv )&1 fz 21t n, n, n,.n, 

= 8c1n"n, + ( - I )8c1n"n, = 0, (A7) 

which proves the variational character of Eq. (2.24). 
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