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We present a measurement of the direct CP-violating charge asymmetry in B* mesons decaying to
J/WK* and J/ 7™ where J/ decays to u* u~, using the full run II data set of 10.4 tb™! of proton-
antiproton collisions collected using the DO detector at the Fermilab Tevatron Collider. A difference in the
yield of B~ and B™ mesons in these decays is found by fitting to the difference between their
reconstructed invariant mass distributions resulting in asymmetries of A’/*K =1[0.59 + 0.37]%, which
is the most precise measurement to date, and A’ /47 =[—4.2 *+ 4.5]%. Both measurements are consistent

with standard model predictions.

DOI: 10.1103/PhysRevLett.110.241801

Currently, all measurements of CP violation, either in
decay, mixing, or in the interference between the two, have
been consistent with the presence of a single phase in
the CKM matrix. The standard model predicts that for
b — scc decays, the tree and penguin contributions have
the same weak phase, and thus, no direct CP violation is
expected in the decays of B mesons to J/ K*. Estimates
of the effect of penguin loops [1] show that there could be a
small amount of direct CP violation of up to ©@(0.3%).
A measurement of a relatively large charge asymmetry
would indicate the existence of physics beyond the stan-
dard model [1-3]. In the transition b — dcc, the tree
and penguin contributions have different phases, and there
may be measurable levels of CP violation in the decay
B* — J/ 7™ [4,5].

The CP-violating charge asymmetry in the decays
B* — J/¢K* and B — J/ ™" are defined as

(B~ —J/yK ) —T(B* = J/yK*)
I(B" = J/yK )+ (BT = J/yK")

AVVK = (1)

IB~ —J/ym ) —TB" = J/y7")

AT = .
I'B~—=J/ya )+ T (B —J/ym")

2

Previous measurements of A?/¥X [6-10] have been aver-
aged by the Particle Data Group with the result A7/¥X =
[0.1 20.7]% [11]. The most precise measurement of
A’/YK wwas made by the Belle collaboration [6], with a
total uncertainty of 0.54%. The most precise measurement
of A’/¥7 was made by the LHCb collaboration [12], with a

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 14.40.Nd

total uncertainty of 2.9%. The LHCb measurement is
actually a measurement of the difference, A”/¥7 — AJ/VK
and assumes that A”/¥X is zero. The previous measurement
made by the DO Collaboration [7] has a total uncertainty of
0.68% for A’/¥¥ and 8.5% for A’/¥™ using a data sample of
2.8 fb~! of proton-antiproton collisions.

This Letter presents substantially improved measurements
of A//¥K and A’/¥7 using the full Tevatron run II data
sample with an integrated luminosity of 10.4 fb~!. We
assume there is no production asymmetry between Bt and
B~ mesons in proton-antiproton collisions. An advantage of
these decay modes into J/ X is that no assumptions on the
CP symmetry of subsequent charm decays need to be made.

These updated measurements of A”/¥X and A”/¥™ make
use of the methods for extracting asymmetries used in the
analyses of the time-integrated flavor-specific semileptonic
charge asymmetry in the decays of neutral B mesons
[13,14]. We measure the raw asymmetries

N -—N +
R T 3)
NJ/wK* +N.//¢K+

AJ/(/MT:NJ/I,/MT’ _NJ/Wr*’ 4)
Nyjpm + Nyjymr

raw

where Nj/yx- (Nj/yk+) is the number of reconstructed
B~ — J/YyK~ (B* — J/§K") decays, and N,y
(N;/yn+) is the number of reconstructed B~ — J/ ¢~
(BT — J/¢m") decays. The charge asymmetry in B*
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decays is then given by (neglecting any terms second order
or higher in the asymmetry)

AVVE = ATPK 4 A, (5)
AT = AT+ A (6)

where Ag is the dominant correction and is the reconstruc-
tion asymmetry between positively, (K ™), and negatively,
€(K™), charged kaons in the detector [15]:

_e(K") —e(K7)

A= K T ek

(7
The correction Ay is calculated using the measured kaon
reconstruction asymmetry as described below [14]. As
discussed later, data collected using regular reversals of
magnet polarities result in no significant residual track
reconstruction asymmetries, and hence, no correction for
tracking asymmetries or pion reconstruction asymmetries
need to be applied, hence A, = 0.

The DO detector has a central tracking system, consist-
ing of a silicon microstrip tracker and the central fiber
tracker, both located within a 2 T superconducting sole-
noidal magnet [15,16]. A muon system, covering |n| <2
[17], consists of a layer of tracking detectors and scintil-
lation trigger counters in front of 1.8 T toroidal magnets,
followed by two similar layers after the toroids [18].

The polarities of the toroidal and solenoidal magnetic
fields are reversed on average every two weeks so that the
four solenoid-toroid polarity combinations are exposed to
approximately the same integrated luminosity. This allows
for a cancellation of first-order effects related to instru-
mental asymmetries. To ensure optimal cancellation of the
uncertainties, the events are weighted according to the
number of J/¢h™ decays for each data sample corre-
sponding to a different configuration of the magnets’
polarities (polarity weighting). The weighting is based on
the number of events that pass the selection criteria and the
likelihood selection (described below) and that are in the
J/h™ invariant mass range used to fit the data.

The data are collected with a suite of single and dimuon
triggers. The selection and reconstruction of J/ s h™ events
where h™ is any stable charged hadronand J/¢ — ™ u™
requires three tracks with at least two hits in both the
silicon microstrip tracker and the central fiber tracker.
The muon selection requires a transverse momentum pz >
1.5 GeV/c with respect to the beam axis. One of the
reconstructed muons is required to have hits in at least
two layers of the muon system with segments recon-
structed both inside and outside the toroid. The second
muon is required to have hits in at least the first layer of the
muon system. The muon track segment has to be matched
to a particle found in the central tracking system. The
dimuon system must have a reconstructed invariant mass
between 2.80 and 3.35 GeV/c? consistent with the J/
mass, 3.097 GeV/c? [11].

An additional charged particle with p; > 0.7 GeV/c is
selected. Since the DO detector is unable to distinguish
between K* and 7=, and since the Ji K™ process is
dominant, this particle is assigned the charged kaon mass
and is required to be consistent with coming from the same
three-dimensional vertex as the two muons, with the y? of
the vertex fit being less than 16 for 3 degrees of freedom.
The displacement of this vertex from the primary proton-
antiproton interaction point is required to exceed 3 stan-
dard deviations for the resolution of the vertex position in
the plane perpendicular to the beam direction.

The B~ selection is further improved using a likelihood
ratio method taken directly from Refs. [19-22] that com-
bines a number of variables to discriminate between signal
and background: the smaller of the transverse momenta of
the two muons; the y? of the B decay vertex; the B~ decay
length divided by its uncertainty; the significance, Sz, of
the reconstructed B meson impact parameter; the trans-
verse momentum of the 2~ ; and the significance, S, of the
h* impact parameter.

For any particle i, the significance S; is defined as
S; =ler/o(er)? + [e,/o(e.) P, where e (€;) is the
projection of the impact parameter on the plane perpen-
dicular to (along) the beam direction, and o(er) [o(e;)] is
its uncertainty. The trajectory of each B* is formed assum-
ing that it passes through the reconstructed B* vertex and
is directed along the reconstructed B* momentum.

The final requirement on the likelihood ratio variable is

chosen to minimize the statistical uncertainty on Arjfv‘f' K

The measurement of Arja/vbb ™ makes use of a different selec-

tion on the likelihood ratio that minimizes the statistical

uncertainty of Afa/v‘v/’ 7. The asymmetry results extracted
with both of these likelihood selections are consistent.
No event has more than one possible track and J/ ¢ mass
combination that passes all of the selection criteria.

From each set of three particles fulfilling these require-
ments, a J/h* candidate is constructed. The momenta of
the muons are corrected by constraining the J/ mass to
the world average [11].

The number of signal candidates are extracted from the
J/yrh™ mass distribution using an unbinned maximum
likelihood fit over a mass range of 4.98 < M(J/¢h*) <
5.76 GeV/c? as shown in Fig. 1. The dominant peak
consists of the overlap of the B* — J/¢K= and the
B* — J/{y7* (where the = is misidentified as a K*)
components. The misidentified B* — J/ 7+ decay mode
appears as a small peak shifted to a slightly higher mass
than the B=. The B* — J/ K™ signal peak is modeled by
two Gaussian functions constrained to have the same mean
but with different widths and normalizations to model the
detector’s mass resolution, G (m). Taking account the DO
momentum scale, the mean is found to be consistent with
the Particle Data Group average of the B* meson mass. To
obtain a good fit to the data, the widths have a linear
dependence on the kaon energy. We assume that the mass
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FIG. 1 (color online). The polarity-weighted J/yh* invariant
mass distribution, where the 4™ is assigned the charged kaon
mass, after selecting on the likelihood-ratio function optimized
for A{a/\f,/’ K The bottom panel shows the fit residuals (the error
bars represent the statistical uncertainty). Fit described in the
text.

distribution of the B* — J/¢s7* is identical to that of
B* — J/¢ K™, if the correct hadron mass is assigned. To
model the J/ ¢ 7= mass distribution, G,.(m), the J/ ™
signal peak is transformed by assigning the pion track the
charged kaon mass. Partially reconstructed decays such as
B, — J/yh™X where h™ is any stable charged hadron
and X is additional charged or neutral particles (e.g., the
decay B* — J/#K**) can be empirically modeled
with a threshold function that extends to the B* mass
and is based on Monte Carlo simulations [20]: T(m) =
arctan[ p,(mc? — p,)] + ps, where p; are fit parameters. In
the default fit, only the normalization of T'(m) is allowed to
vary and the other parameters are fixed to the values
obtained from simulation. The combinatorial background
is described by an exponential function, E(m), with a slope
that depends on the kaon energy. The fractions of the
J/ WK, J/ i, and partially reconstructed decays depend
on the A~ momentum. Empirical studies of the data show
that this dependence can be modeled by the same poly-
nomial function with different scaling factors for the
J/ WK, J/yar, and partially reconstructed fractions. The
coefficients of the polynomial and the scaling factors are
determined from the fit.

2001~ * D010.4 b
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FIG. 2 (color online). The fit to the difference distribution for
the data optimized for Arja/“'}” K (the fit is described in the text).

The likelihood function is defined to simultaneously fit
the raw asymmetries, Arje{v‘f K(”), the asymmetry of the par-
tially reconstructed decays, A7, and the asymmetry in the

combinatorial background, Ag:
L= (1 - qAll")Gm) + (1 = g,ALd ™G, (m)
+ (1 = q,Ap)T(m) + (1 — q,Ap)E(m), 3)

where g, is the charge of the hadron.

The raw asymmetries are extracted by fitting the
resulting data sample using the unbinned maximum like-
lihood fit described above. The resulting J/h™ polarity-
weighted invariant mass distribution is shown in Fig. 1.
The B* — J/{K* signal contains 105562 = 370 (stat)
events, and the B® — J/¢m= signal contains 3110 +
174 (stat) events.

The quality of the fit is estimated by projecting the
resulting unbinned likelihood fit onto the J/ K= invariant
mass distribution (65 bins in total). A y? is then calculated
with a value of 76.2 for 47 degrees of freedom (the number
of bins less the number of fit parameters excluding the
asymmetry parameters).

The invariant mass distribution of the differences,
N(J/yh™) — N(J/yh"),is shown in Fig. 2 with a result-
ing x? of 58.5 for 61 degrees of freedom. The resulting raw
asymmetries are extracted from the data are:

ALK = [-0.46 = 0.36 (stat) %, )

AUIT = [—4.2 * 4.4 (stat)]%. (10)

The background asymmetries are also determined: Ay =
[—1.3 = 1.0(stat)]% and Ay = [—1.1 * 0.6 (stat)]%.

The systematic uncertainties in the fitting method are
evaluated by varying the fitting procedure. For each of the
following variations, the systematic uncertainty is assigned
to be half the maximum variation in the central value. The
mass range of the fit is modified so that the lower edge is

241801-5



PRL 110, 241801 (2013)

PHYSICAL REVIEW LETTERS

week ending
14 JUNE 2013

TABLE I. The statistical and systematic uncertainties for
extracting the asymmetries A’/*K and A7/¥7,

Type of uncertainty AIK (%) AT (%)
Statistical 0.36 44
Mass range 0.022 0.55
Fit function 0.011 0.69
AAacking 0.05 0.05
AAg 0.043 n/a
Total systematic uncertainty 0.07 0.9
Total uncertainty 0.37 4.5

varied from 4.95 to 5.01 GeV/c?, and the upper edge from
5.73 to 5.79 GeV/c?, in 10 MeV/c? steps. This results
in an uncertainty in Afa/vﬁ/’ K of 0.022% and in Arja/“‘,” 7 of
0.55% (labeled ““Mass range’ in Table I). The following
modifications are made to the functions used to model the
data. The mean of the Gaussian functions is allowed to
depend linearly on the energy of the kaon. The pr(K)
dependence of the width of the Gaussian function is mod-
eled with a quadratic and a cubic polynomial. The parame-
ters of the threshold function are allowed to float. The ratio
of branching fractions for the decays B* — J/¢K~ and
B* — J /{7~ which are not constrained in the default fit
are fixed to the current ratio from the Particle Data Group,
0.0482 [11], and the latest measurement by the LHCb
experiment, 0.0381 [12]. This results in an uncertainty in
ALK of 0.011% and in AZY™ of 0.69% (labeled “Fit
function” in Table I). The effect of the event weighting
is studied by varying the number of events for each magnet
configuration by the statistical uncertainty (+/N). This
results in uncertainties of less than 0.0005% in A//¥K
and 0.014% in A’/¥7 which are small compared to the
other uncertainties and is not included in the summary
table.

The resulting systematic uncertainties are added in
quadrature to obtain:

AYE = [-0.46 + 0.36 (stat) * 0.025 (sysH)]%, (11)

AYY™ =[~4.2 = 4.4 (stat) = 0.88 (syst)]%.  (12)

As a cross-check, the following variations of the various
asymmetry models are also examined. The asymmetries
representing the threshold function and the combinatoric
background are set to the same value, Ay = Ag. The
asymmetry of the combinatoric background is set to zero,
Ap = 0. The asymmetry of the threshold function is set to
zero, Ay = 0. The asymmetries representing the threshold
function and the combinatoric background are both set to

AJ/l//K

zero, Ay = Ay = 0. When extracting Araw , the asymme-

try AT is set equal to zero. When extracting AT the
asymmetry Arja/vé” K'is set equal to zero. This results in

variations in AZYX of 0.038% and in ALY™ of 1.59%.

Given the statistical and systematic uncertainties, the
observed variations are consistent with no significant
biases.

To test the sensitivity of the fitting procedure, the
charge of the charged hadron in the data is randomized
to produce samples with no asymmetry, and 1000 trials are
performed, each with the same statistics as the measure-
ment. The central value of the asymmetry distribution,
(+0.008 = 0.011)%, is consistent with zero with a width
of 0.37%, consistent with the statistical uncertainty found
in data. These studies are repeated with introduced asym-
metries of —1.0, —0.5, and 1.0%, each of which returns the
expected asymmetries and statistical uncertainties with no
significant bias.

The residual detector tracking asymmetry has been
studied in Refs. [13,14,23] using K — 7+ 7~ and K** —
K%ar* decays. No significant residual track reconstruction
asymmetries are found and no correction for tracking
asymmetries need to be applied. The tracking asymmetry
of charged pions has been studied using MC simulations of
the detector. The asymmetry is found to be less than 0.05%,
which is assigned as a systematic uncertainty (labeled
AAtracking in Table I)

The correction Ag (Eq. (7)), is calculated using the
measured kaon reconstruction asymmetry presented in
Ref. [14]. Negative kaons can interact with matter to
produce hyperons, while there is no equivalent interaction
for positive kaons. As a result, the mean path length for
positive kaons is larger, the reconstruction efficiency is
higher, and the kaon asymmetry, Ay, is positive.

The kaon asymmetry is measured using a dedicated
sample of K**(K*0) — K™z~ (K~ 7") decays, based on
the technique described in Ref. [23]. The K"7~ and
K~ 7" signal yields are extracted by fitting the charge-
specific M(K*7*) distributions, and the asymmetry is
determined by dividing the difference by the sum. The
track selection criteria are the same as those required for
the J/h™ signal.

As expected, an overall positive kaon asymmetry of
approximately 1% is observed. A strong dependence on
kaon momentum and the absolute value of the pseudora-
pidity is found, and hence, the final kaon asymmetry
correction to be applied in Eq. (5) is determined by the
polarity-weighted average of Ag[p(K), |n(K)|] over the
p(K), and |n(K)| distributions in the signal events.
A relative systematic uncertainty of 5% is assigned to
each bin to account for possible variations in the yield
when different models are used to fit the signal and back-
grounds in the K** mass distribution. Following studies
over a range of fit variations, a relative systematic uncer-
tainty of 3% on the J/ s K= yields is applied. The resulting
kaon correction is found to be (the uncertainty is labeled
AAg in Table I):

A = [1.046 = 0.043 (syst)]%. (13)
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The value of Ay is consistent with that presented in Ref. [7]
taking into account the changes in the data selection and
the resulting changes in the p(K) and | n(K)| distributions.

The final uncertainties are summarized in Table I where
their combination assumes that they are uncorrelated. We
obtain final asymmetries of

AVUK =10.59 + 0.36 (stat) = 0.07 (sys)]%,  (14)

AIYT =[—4.2 + 4.4 (stat) + 0.9 (syst)]%. (15)

This is the most precise measurement of A”/¥X to date and
is a reduction in uncertainty by approximately a factor of 2
from the previous DO result [7].

Several consistency checks are performed by dividing
the data into smaller samples using additional selections
based on data-taking periods, magnet polarities, trans-
verse momentum, and rapidity of the charged track
representing the kaon. The resulting variations of
AT/VK and A?/¥7 are statistically consistent with the
results of Egs. (14) and (15).

In summary, we have presented the most precise mea-
surement to date of the charge asymmetry A’/VK =
[0.59 + 0.36 (stat) + 0.07 (syst)]% using 10.4 fb~! of
data. In addition, we have improved our measurement of
AMYT =[—4.2 + 4.4 (stat) + 0.9 (syst)]%. Both measure-
ments are in agreement with standard model predictions.
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