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Abstract

An efficient total synthesis of the annulated indole natural product (±)-cis-trikentrin B was

accomplished by means of a regioselectively generated 6,7-indole aryne cycloaddition via

selective metal-halogen exchange from a 5,6,7-tribromoindole. The unaffected C-5 bromine was

subsequently used for a Stille cross-coupling to install the butenyl side chain and complete the

synthesis. This strategy provides rapid access into the trikentrins and the related herbindoles, and

represents another application of this methodology to natural products total synthesis. The

required 5,6,7-indole aryne precursor was prepared using the Leimgruber-Batcho indole synthesis.
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The family of trikentrins1-2 and herbindoles3 are the most prominent representatives of an

uncommon class of indole alkaloid natural products in which annulation is present around

the benzene nucleus (Figure 1). Other architecturally complex members of this type include

the teleocidins,4 the penitrims,5 and the nodulisporic acids.6

These biologically active compounds are fascinating structures and they present remarkable

synthetic challenges. The trikentrins and the structurally related herbindoles in particular

have been the subject of numerous synthetic efforts over the years. The difficulty in their
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construction is evident by the many different creative approaches that have emerged from

several laboratories.1-3

We recently were the first to generate the indole and benzofuran arynes associated with the

benzene side of their respective systems7 and reported a general method for their generation

via metal-halogen exchange (Scheme 1), and later from o-silyl triflates.7b Garg subsequently

reported a different route to the same o-silyl triflates8a which were used for other indole

aryne studies.8b-e

We applied our methodology to the total synthesis of (±)-cis-trikentrin A using a novel

indole aryne cycloaddition as the key step for installing the annulation at the 6,7-position of

the benzene ring (Scheme 2).9 In this first-generation synthesis,9a the 6,7-indole aryne was

generated from the corresponding N-tert-butyldimethylsilyl-6,7-dibromo-4-ethylindole 11
(prepared from 9 using the Bartoli indole synthesis10) via metal-halogen exchange and

elimination, followed by cycloaddition with cyclopentadiene. Oxidative cleavage of the

olefin bridge in 12, bisdithioacetylization, and Raney nickel reduction gave the desired final

target.

In a subsequent second-generation effort involving the 4,6,7-tribromoindole 16,9b we found

that selective metal-halogen exchange occurred at the C-7 bromine in 17 (Scheme 3).

This observation made it possible to effect the generation of the 6,7-indole aryne while

retaining the C-4 bromine thus making it available for later transition-metal cross-coupling

chemistry (reaction orthogonality). Indeed, the Negishi reaction with 18 was used in this

case to introduce the required ethyl group that afforded the same late-stage intermediate 12
as was obtained in the first approach. We recently used this same tactic for the preparation

of novel annulated polycyclic indole libraries using Pd(0)-catalyzed Suzuki-Miyaura and

Buchwald-Hartwig cross-coupling reactions.11

With the success of the second-generation synthesis of (±)-cis-trikentrin A, it occurred to us

that an analogous approach might be possible for the total synthesis of (±)-cis-trikentrin B,

which features a butenyl side-chain at the C-5 position and which could be installed via

Stille cross-coupling with the ArBr 19 at C-5. (Scheme 4).

The key question centered on the intriguing issue of again achieving selective metal-halogen

exchange at C-7 but in the 5,6,7-tribromo indole system 21. We are delighted to report that

this is the case, and we now present the total synthesis of (±)-cis-trikentrin B.

The first objective involved the synthesis of the 5,6,7-tribromoindole system 25. We

envisioned a strategy that paralleled the successful synthesis of 4,6,7-tribromoindole using

the Bartoli indole synthesis10 (Scheme 5). Thus, commercially available 2,6-dibromoaniline

22 was diazotized and brominated with CuBr2 to give 1,2,3-tribromobenzene 2312 in 80%

yield.

Nitration was achieved with fuming nitric acid to afford exclusively 2,3,4-

tribromonitrobenzene 2413 in 82% yield. Unfortunately, application of the Bartoli indole

synthesis (CH2=CHMgBr, 3.0 equiv., −40 °C) afforded the desired 5,6,7-tribromoindole in
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only 32% yield. Silylation (NaH, 4.0 equiv.; Et3N, 2.0 equiv.; TBSOTf, 3.0 equiv.) then

produced the desired indole aryne precursor 21.

In an effort to increase the yield of 25, we examined other potentially attractive approaches

to the indole. The Leimgruber-Batcho indole synthesis14 seemed especially suited to our

needs due to its combination of generally high yields and scalable reactions.

Thus, inexpensive p-toluidine 26 was subjected to in situ bromination (HBr, 3.0 equiv.;

H2O2, 2.0 equiv.) in methanol to afford quantitatively 2,6-dibromotoluidine, followed by

diazotization as described above to yield in 80% 3,4,5-tribromotoluene 28 (Scheme 6).

Nitration was again achieved in 82% yield with fuming nitric acid on a 14 g scale. Reaction

of 29 with tripiperidinylmethane at 105 °C under vacuum for 3 h gave the enamine

intermediate 31, which was used immediately and without isolation for the next step. FeCl3-

catalyzed reaction with hydrazine hydrate in methanol at 60 °C consistently afforded the

desired 5,6,7-tribromoindole 25 in 61% yield in two steps from 29. Protection as its N-TBS

ether was accomplished as described above (78%).

Gratifyingly, the reaction of 21 with n-BuLi (2.0 equiv.) at −78 °C in toluene with an excess

of cyclopentadiene and then warming the mixture to room temperature over a period of 1 h

gave the desired cycloadduct 20 in 72% yield (Scheme 7).

We have also established that quenching the mixture at −78 °C with water affords

exclusively the N-TBS-5,6-dibromoindole 32, thus confirming that the metal-halogen

exchange is occurring only at the C-7 bromo position. No other protonated compounds were

detected by this method. The basis for this selectivity is subject of continuing investigations.

With the key cycloadduct in hand, we turned our attention to the installation of the 6,7-

annulated 1,3-cis-dimethyl cyclopentane ring. The initital effort paralleled that of the (±)-

cis-trikentrin A effort (Scheme 8). However, numerous attempts to hydrogenolyze

selectively the C-S bonds in 35 in the presence of the Ar-Br under various conditions gave

the desired indole 19 in only 16-31% yield, with the remainder consisting mainly of the fully

reduced indole 36.

A recent (±)-cis-trikentrin B total synthesis by Kerr3 used the Fujimoto reduction15 which

we adapted for our work (Scheme 9). The dialdehyde 34 was reduced with sodium

borohydride, the resulting diol 37 mesylated, and then reduced under the Fujimoto protocol

(NaI, 15 equiv.; powdered Zn (60 equiv); glyme, 90 °C, sealed tube, 8 h) to afford the

intermediate 39 (TBS protected 19) in an improved and reliable 58% yield. Desilylation was

accomplished with TBAF (2.0 equiv.; THF, rt, 2 h) to give the 5-bromoindole 19 in 82%

yield.

The last step to complete the synthesis initially involved a plan to generate the Grignard

reagent from 39, followed by reaction with butyraldehyde and then acid-catalyzed

elimination. Surprisingly, all attempts with the Grignard reaction or the alternative metal-

halogen exchange at this position were unsuccessful. Finally, we turned to the Stille cross-

coupling for introducing the butenyl side chain (Scheme 10).
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Although our initial attempts using conventional Stille cross-coupling procedures with the

vinyl tin reagent 4016 were not effective, changing the ligand from triphenylphosphine to

triphenylarsine and employing microwave heating readily afforded racemic cis-trikentrin B

in 73% yield which was identical in all respects for the physical and spectroscopic data

reported for this compound.

In conclusion we have achieved the total synthesis of (±)-cis-trikentrin B using a new

strategy that involves the selective metal-halogen exchange in the 5,6,7-tribromoindole

system and which results in regioselective 6,7-indole aryne formation. This efficient and

complementary reaction orthogonality combined with robust cross-coupling chemistry is

being used for the total synthesis of other members of the annulated indole alkaloid class of

natural products. The results will be disclosed as developments warrant.

Supplementary Material
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Figure 1.
The trikentrin and herbindole natural products.
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Scheme 1.
Indole arynes via metal-halogen exchange and their cycloadditions with furan.
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Scheme 2.
First-generation (±)-cis-trikentrin A synthesis.
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Scheme 3.
Second-generation (±)-cis-trikentrin A synthesis.
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Scheme 4.
Retrosynthetic analysis of cis-trikentrin B.
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Scheme 5.
Synthesis of 5,6,7-tribromoindole via Bartoli route.
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Scheme 6.
Synthesis of 5,6,7-tribromoindole via Leimgruber-Batcho route.
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Scheme 7.
Regioselective C-7 metal-halogen exchange.
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Scheme 8.
Raney nickel reduction of 35
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Scheme 9.
Fujimoto reduction of 34
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Scheme 10.
Final step: Stille cross-coupling
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