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Using 3.1 fb21 of data accumulated at theY(4S) by the CLEO-II detector, corresponding to 3.33106 BB̄

pairs, we have searched for the color-suppressedB hadronic decay processesB̄0→D0(D* 0)X0, where X0 is a
light neutral mesonp0, r0, h, h8 or v. TheD* 0 mesons are reconstructed inD* 0→D0p0 and theD0 mesons
in D0→K2p1, K2p1p0 andK2p1p1p2 decay modes. No obvious signal is observed. We set 90% C.L.

upper limits on these modes, varying from 1.231024 for B̄0→D0p0 to 1.931023 for B̄0→D* 0h8.
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I. INTRODUCTION

The B hadronic decaysB̄0→D0(D* 0)X0, where X0 is a
light neutral mesonp0, r0, h, h8 or v, have not yet been
observed. These decays proceed via the internal spec
diagram shown in Fig. 1.

The internal spectator decays are expected to be
pressed relative to the decays that proceed via external s
tator diagrams, since the color of the quarks from the virt
W must match the color of thec quark and the accompany
ing spectator antiquark. Therefore these decays are refe
to as color-suppressed decays, while decays via exte
spectator diagrams are referred to as color-favored dec

*Permanent address: Yonsei University, Seoul 120-749, Kore
†Permanent address: Brookhaven National Laboratory, Up

NY 11973.
‡Permanent address: University of Texas, Austin TX 78712
§Permanent address: Lawrence Livermore National Laborat

Livermore, CA 94551.
iPermanent address: BINP, RU-630090 Novosibirsk, Russia.
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Measurements of these color-suppressed decays allow
of the factorization@1# hypothesis and provide useful infor
mation on the scale of strong final-state interactions in thB
meson system.

Previous CLEO papers@2# reported upper limits on thes
color-suppressedB hadronic decays. Here we present ne
results using the full CLEO-II data set and an improv
analysis method.

II. DATA SAMPLE AND EVENT SELECTION

The data used in this analysis were produced ine1e2

annihilations at the Cornell Electron Storage Ring~CESR!
and collected with the CLEO-II detector@3#. The integrated
luminosity is 3.1 fb21 at theY(4S) resonance, which corre
sponds to (3.3260.07)3106 BB̄ pairs, and 1.6 fb21 at ener-
gies just belowBB̄ threshold~henceforth referred to as th
continuum!.

Hadronic events are selected by requiring at least th
charged tracks, a total detected energy of at least 0.15Ec.m.,
and a primary vertex within 5.0 cm along the beam (z) axis
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of the interaction point. To suppress the continuum ba
ground, we require that the ratio of second to zeroth F
Wolfram moments R2 @4# determined using charged track
and unmatched neutral showers be less than 0.3~0.5 for
clean decay modes involvingh or h8!. To further reduce the
continuum background, we then require that the cosine of
angle between the sphericity axis of theB meson candidate
and the sphericity axis of the remainder of the event sat
ucos(usphericity)u,0.8 ~0.9 for decay modes involvingh or
h8!. For a jet-like continuum event, the two axes are alm
parallel, while they are almost uncorrelated for aBB̄ event,

III. B RECONSTRUCTION

A. Selection ofD0 and D* 0 candidates

The D0 candidates are reconstructed in the decay mo
D0→K2p1, K2p1p0 andK2p1p1p2 ~charge-conjugate
modes are implied!. The p0 candidates are formed by com
bining two showers whose invariant mass is within 2.5s of
the p0 mass~where henceforths denotes rms resolution!.
Charged tracks are required to be consistent with com
from the interaction region in both ther -f and r -z planes.
The measured specific ionization~dE/dx! of charged kaon
and pion candidates is required to be consistent to withins
for kaon candidates and 3s for pion candidates. Charge
tracks are required to have a momentum greater than
MeV for D0→K2p1 and D0→K2p1p0 candidates and
200 MeV for D0→K2p1p1p2 candidates. For theD0

→K2p1p0 decay mode, we select regions of the Dalitz p
with large amplitude to further suppress the combinato
backgrounds. The invariant mass ofD0 candidates is re-
quired to be within 2.0s of the nominalD0 mass.

The D* 0 candidates are reconstructed using the de
modeD* 0→D0p0. We form D* 0 candidates byD0 candi-
dates using the above selection, then require that theD* 0

2D0 mass difference be within 2.5s of the measured value
@5#.

B. Selection of the light neutral meson X0

We reconstructp0 candidates as described previous
The r0 candidates are reconstructed in the moder0

→p1p2.
Candidateh andh8 mesons are reconstructed in theirh

→gg andh8→hp1p2 decay modes. The absolute value
the cosine of theh decay angle is required to be less th
0.85 to remove asymmetric candidates which are prima
background. The invariant mass of eachh andh8 candidate
must be within 30 MeV of their nominal mass.

The v mesons are reconstructed in the decay modev
→p1p2p0. Charged and neutral pions are required to ha

FIG. 1. Internal spectator diagram ofB hadronic decaysB̄0

→D0(D* 0)X0.
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momenta greater than 250 MeV, to reject soft pions fro
D* 0 or D* 1 decays. Thev candidates are also required
be within 30 MeV of the nominalv mass.

All charged pion candidates used in X0 reconstruction are
required to have a measured dE/dx within 3s of the expected
value for pions.

C. Selection of theB candidates

The D (* )0 candidates are combined with a light X0 to
form aB meson. At CLEO the energy of theB meson is the
same as the beam energy and the measured beam ene
more precise than the reconstructedB meson energy. Full
reconstruction ofB mesons at CLEO makes use of this fa
by defining two variables. One is the beam-constrained m
MB[AEbeam

2 2Pobserved
2 . The other one is the difference be

tween the reconstructed energy and the beam energy,DE
[Eobserved2Ebeam. TheDE variable is sensitive to missing
or extra particles in theB decay, as well as particle specie
For fully reconstructedB meson decays, the MB distribution
peaks at 5.28 GeV with a resolution around 2.7 MeV, a
DE peaks at 0.0 GeV with a resolution ranging from 18 to
MeV, depending on theB andD0 decay modes.

Since signal and background are in general much be
separated inDE than in MB , instead of cutting on theDE
variable and fitting MB as in previous analyses, we cut o
MB and fit theDE distribution for the signal yield.

IV. BACKGROUND STUDY

In our search for the color-suppressedB hadronic decay
modesB̄0→D (* )0(p0,r0,h,h8,v), there are background
to these decays from continuum andBB̄ events. The con-
tinuum backgrounds are suppressed using event-shape
ables. They are not expected to show any structure in theDE
distributions. The 1.6 fb21 continuum data set is used t
monitor the continuum background levels. We find the co
tinuum background level to be very low for all colo
suppressed modes. No accumulation aroundDE50 is ob-
served in the continuum data.

The backgrounds fromBB̄ events are dominated b
feedthrough from color-favored two-body hadronic deca
of the type

B2→D0~p2,r2,a1
2!, B2→D* 0~p2,r2,a1

2!,

B̄0→D1~p2,r2,a1
2!, B̄0→D* 1~p2,r2,a1

2!.

The branching ratios of these color-favoredB meson decay
modes were measured previously by CLEO@2#. In most
cases the background arises when a real, energeticD0 or
D* 0 from the two-body color-favored decays is combin
with a fake light meson.

The backgrounds from these color-favored processes
have structure in the MB andDE distributions, depending on
which color-suppressed mode is being analyzed. Particul
important are color-favoredB meson decays that give ex
actly the same final state particles as our color-suppres
signals do. Neither misidentification nor additional particl
are needed for those color-favored decays to fake some
nal modes. Therefore, the MB distribution from these physics
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TABLE I. Selection efficiencies and yields of all color-suppressed modes. The three efficiencie

yields of eachB̄0→D0(D* 0)X0 correspond to the threeD0→K2p1, K2p1p0 andK2p1p1p2 modes.

Decay mode Selection
efficiencies

~3 D0 submodes!

Yields
~3 D0 submodes!

B̄0→D0p0 (26.162.2), (7.861.0), (12.561.3)% 20.366.4, 26.764.3, 23.367.0

B̄0→D* 0p0 (14.161.8), (3.760.7), (5.460.9)% 2.562.6, 5.063.4, 21.263.4

B̄0→D0r0 (8.460.4), (2.660.3), (3.960.3)% 1.463.0, 23.064.3, 3.165.0

B̄0→D* 0r0 (4.060.4), (1.060.2), (1.560.2)% 21.061.4, 1.461.6, 0.861.3

B̄0→D0h (24.563.0), (7.061.2), (11.461.6)% 21.462.0, 23.163.1, 26.064.0

B̄0→D* 0h (10.561.8), (3.460.8), (4.960.9)% 0, 0, 0

B̄0→D0h8 (13.461.9), (3.660.7), (5.961.0)% 0, 0.862.2, 1.863.0

B̄0→D* 0h8 (5.961.1), (1.760.4), (2.560.5)% 0, 0, 1

B̄0→D0v (12.461.3), (2.860.4), (3.260.5)% 24.164.0, 6.263.8, 3.665.6

B̄0→D* 0v (4.860.7), (1.060.2), (1.360.2)% 1.861.2, 0.861.8, 20.261.2
n
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background peaks at 5.28 GeV while itsDE distribution
peaks at 0.0 GeV, exactly as the color-suppressed sig
While D0p0 is not susceptible to this backgroundD0r0 and
D0v are, as shown below:

color-suppressed:B̄0→D0r0→D0p1p2,

B̄0→D0v→D0p1p2p0,

color-favored: B̄0→D* 1p2→D0p1p2,

B̄0→D* 1r2→D0p1p2p0.

FIG. 2. DE distributions ofB̄0→D0p0 and B̄0→D* 0p0 decay
modes. Solid histograms are theDE distributions of the 3.1 fb21 of
data collected on theY(4S) resonance, which are fit using bac
ground and signal functions. Dashed histograms are from
1.6 fb21 continuum data sample.
al.
Another background that can show structure is col

favored decay in which one of the final state particles is lo
Examples include:

color-suppressed:B̄0→D0p0, B̄0→D0r0→D0p1p2,

color-favored: B2→D0r2→D0p0~p2!,

B̄0→D* 1r2→D0p1p2~p0!.

These background events can peak in MB around 5.28 GeV
when the missingp2 or p0 from ther2 decay is very soft
and does not contribute much to the beam-constrained m

e

FIG. 3. DE distributions ofB̄0→D0r0 and B̄0→D* 0r0 decay
modes. Solid histograms are theDE distributions of the 3.1 fb21 of
data collected on theY(4S) resonance, which are fit using back
ground and signal functions. Dashed histograms are from
1.6 fb21 continuum data sample.
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calculation. However, theDE for these background even
differs from zero by more than one pion mass, due to
missing p2 or p0 from the r2 decay. For these types o
color-favored backgrounds, the color-suppressed signals
much better separated from background inDE.

For decay modes involvingh or h8, combinatoric back-
ground is the dominating source. Therefore, backgrounds
these color-suppressed processes have no accumulati
the MB andDE distributions.

For B̄0→D* 0X0, there is no corresponding color-favore
B meson decay that fakes our signal asB̄0→D* 1p2 fakes
B̄0→D0r0. Also the background level from color-favoredB

meson decays is very low forB̄0→D* 0X0 decay processes
due to the good resolution on theD* 02D0 mass difference.

Almost all the discrimination power against color-favor
physics backgrounds come from selection cuts on X0. We
make full use of mass, momentum, decay angle and o
kinematic variables of X0 to suppress backgrounds whi
keeping the signal efficiency as high as possible.

The X0 candidates inB̄0→D (* )0X0 are very energetic due
to the hard spectrum of two-bodyB meson decays. We re
quire the momentum of thep0 candidate to range from 2.
GeV to 2.5 GeV. Similar momentum requirements are i
posed on the other light neutral meson X0 candidates.

For B̄0→D0r0 decays, there are color-favored physi
backgrounds fromB̄0→D* 1p2 that give exactly the sam
final state particles. TheB2→D0r2 decay can also fake ou
color-suppressed signal by substituting the softp0 from r2

decay by a softp1 from the otherB meson. In these physic
backgrounds, thep2 is always much more energetic than t
p1 from D* 1→D0p1 decay. There exists a correlation b
tween theD0 and the fastp2 ~slow p1! from the faker0.

FIG. 4. DE distributions of B̄0→D0h and B̄0→D* 0h decay
modes. Solid histograms are theDE distributions of the 3.1 fb21 of
data collected on theY(4S) resonance, which are fit using bac
ground and signal functions. Dashed histograms are from
1.6 fb21 continuum data sample.
e

re

or
in

er

-

To suppress these physics backgrounds, we require theD0

candidate to be associated with a fastp1 ~slow p2! from the
r0 candidate. There is still a contribution from color-favore
physics backgrounds even after this requirement, becau

e

FIG. 5. DE distributions ofB̄0→D0h8 and B̄0→D* 0h8 decay
modes. Solid histograms are theDE distributions of the 3.1 fb21 of
data collected on theY(4S) resonance, which are fit using back
ground and signal functions. Dashed histograms are from
1.6 fb21 continuum data sample.

FIG. 6. DE distributions ofB̄0→D0v and B̄0→D* 0v decay
modes. Solid histograms are theDE distributions of the 3.1 fb21 of
data collected on theY(4S) resonance, which are fit using back
ground and signal functions. Dashed histograms are from
1.6 fb21 continuum data sample.
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D0 decay has a certain chance of being misidentified as aD̄0

decay. For theD0’s from our signal process, together wit
the dE/dx andD0 mass requirements, this misidentificatio
rate is determined to be less than 20%. After further supp
sion due to ther0 mass and momentum requirements, t
contribution from color-favored physics backgrounds is n
ligible. Since ther0 from B̄0→D0r0 decay is longitudinally
polarized, we also cut on ther0 decay angle~the angle be-
tween the direction of the pion in ther0 rest frame and the
direction of ther0 in the laboratory frame! to reduce combi-
natoric backgrounds.

Similarly for B̄0→D0v decays wherev→p1p2p0,
there are color-favored physics backgrounds fromB̄0

→D* 1r2 wherer2→p2p0 that give exactly the same fi
nal state particles. Because the momentum of the softp1

from the D* 1→D0p1 decay cannot exceed 250 MeV du
to the kinematics, we can get rid of these color-favored ph
ics backgrounds by requiring that each pion from thev
→p1p2p0 candidate have momentum greater than 2
MeV. An additional track from the otherB meson is then
needed to combine withB̄0→D* 1r2 or B2→D0r2 back-
grounds to fake theB̄0→D0v signal. With further suppres
sion due to thev mass requirement, the contribution fro
these backgrounds is negligible.

Signal selection efficiencies for all the color-suppress
decay modes are shown in Table I. The systematic error
to the detection of charged and neutral tracks, together w
the Monte Carlo statistical error, is included in the error
the efficiency for each decay mode.

V. RESULTS

The DE distributions for theY(4S) and continuum data
samples of all the color-suppressed signal processes afte
cuts are shown in Figs. 2–6. TheDE distribution of each

TABLE II. Particle Data Group branching ratios that are used
the upper limit calculation for color-suppressedB hadronic decays.

Decay mode PDG
branching

ratio

Decay mode PDG
branching

ratio

D0→K2p1 (4.0160.14)% r0→p1p2 100%

D0→K2p1p0 (13.861.0)% h→gg (38.860.5)%

D0→K2p1p1p2 (8.160.5)% h8→hp1p2 (43.761.5)%

D* 0→D0p0 (63.662.8)% v→p1p2p0 (88.860.7)%
s-
e
-

s-

0

d
ue
th

all

color-suppressed mode is fit with a Gaussian and a ba
ground shape function. The mean value and width of
Gaussian distribution are fixed with values determined fr
signal Monte Carlo simulation. We use various color-favor
decay modesB2→D0p2, B2→D0r2, B2→D* 0p2, B2

→D* 0r2, B̄0→D1p2, B̄0→D1r2 to check that theDE
resolutions in the data and Monte Carlo simulation ag
well. Possible differences between the data and Monte C
simulation in theDE distributions are considered and in
cluded in the yield error as systematic errors.

VariousDE background shape functions have been u
to fit for the signal yield: a simple second-order polynom
or a background shape using Monte Carlo simulationBB̄
events plus a continuum component represented by a sec
order polynomial. For the latter shape, theBB̄ contribution is
scaled to the known luminosity while the continuum comp
nent is allowed to float. Our results are found to be insen
tive to different background shapes, and both of them
scribe theDE distributions reasonably well. Differences i
the yield due to the choice ofDE background shape ar
included in the yield error to account for the systematic u
certainties. For each signal process with severalD0 decay
submodes, the yield for eachD0 submode is obtained sepa
rately, since theDE resolutions are different for the differen
modes. The results are shown in Table I. The yields of
D0 submodes are added independently to get the total yi

The formulas used to calculate the branching fractio
are:

TABLE III. 90% C.L. upper limits in branching ratios~BR’s! of
all color-suppressed modes, together with comparison with theo
ical predictions in@6,7#.

Decay mode BR upper limit
~at 90% C.L.!

Predictions
in @6#

Predictions
in @7#

B̄0→D0p0 ,1.231024 0.731024 (4.161.8)31024

B̄0→D* 0p0 ,4.431024 1.031024 (3.361.4)31024

B̄0→D0r0 ,3.931024 0.731024 (0.6161.22)31024

B̄0→D* 0r0 ,5.631024 1.731024 (2.261.4)31024

B̄0→D0h ,1.331024 0.531024 (1.160.5)31024

B̄0→D* 0h ,2.631024 0.631024 (0.8660.42)31024

B̄0→D0h8 ,9.431024

B̄0→D* 0h8 ,1931024

B̄0→D0v ,5.131024 0.731024 (0.6161.22)31024

B̄0→D* 0v ,7.431024 1.731024 (2.261.4)31024
B~B̄0→D0X0!5
Nobs

NBB̄3@( i 51
3 efficiency~ i !3B~Di

0!#3PB~X0!
~1!

B~B̄0→D* 0X0!5
Nobs

NBB̄3B~D* 0→D0p0!3@( i 51
3 efficiency~ i !3B~Di

0!#3PB~X0!
~2!
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whereNobs is the total yield summed over the threeD0 sub-
modes,NBB̄ is the number ofBB̄ pairs, efficiency~i! is the
selection efficiency forB̄0→D0(D* 0)X0 decay in thei th D0

submode,B(Di
0) is the branching ratio of thei th D0 decay

mode, andPB(X0) is the product over all the relevan
branching fractions of the X0 decay chain. Particle Dat
Group values forD0, D* 0, h, h8 andv branching ratios@5#
are used in the upper limits calculation and are listed
Table II.

The upper limits of color-suppressed branching ratios
determined by the method described in Sec. 17 of the P
ticle Data Group@5#. 90% C.L. upper limits on branching
ratios of color-suppressedB hadronic decay processes, t
gether with theoretical predictions@6#, are shown in Table
III. Among all the decay modes, the upper limit for theB̄0

→D0p0 mode is the lowest at 1.231024, which is lower
than predictions in@7#. All the other upper limits on branch
ing ratios are still higher than theoretical predictions@6,7#.
Compared with factorization and QCD based calculatio
el

a,
n

e
r-

s,

no dramatic enhancement of color-suppressedB hadronic de-
cay branching ratios is observed, indicating that there is
sign of a large scale final-state interaction in theseB meson
decay modes.
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