Date

SOME FLEXURE FORMULAS AND DIAGRAMS FOR
REINFORCED CONGCRETE BEAMS

BY

ROBERT S: BEARD

A4 thesis submitted to the Department of Civil
Engineering and ithe Faculty of the Gradumate
School inm partial fulfillment of the
Requirements for the Master's

Degree.

Department of Civil
Engineering.



Some Flexure Formulas and Diagrams for

Reinforced Concrete Beams.

By Robert S. Beard.

INDEX.

Introduction

T-Beam Formulas

Use of T-Beam Formulas

Derivation of T-Beam Formulas

Formulas for Double Reinforced Rectangular Beams
Formulas for Dowble Reinforced T-Beams
Derivation of Domble Reinforced Beam Formulas
Use of Double Reinforced Beam Formulas

Beams and Floor Slabs Diagram

T-Beam Chart

k and J Diagram for T-Beams

Page

2=~3

3-8

7-11
18-19
19-20
12-18
21-24
2427
28-31
31-32



ndex fo Figures agnd Djiagrams

T~RBeam Section
Moment Diagram

Double Reinforced Rectangular Beam Section 18

Guide Diagram for Slab Chart
Guide Diagram for T-Beam Chart
Beams and Floor Slabs Biagram
T-Beam Chart

k and J Diagram for T-Beanms

30

Appendix. .

Appendix.
Appendix,



SOME FPLEXURE TORIMULAS AND DIAGRAI'S FOR
RETINFORCED CONCRETE BEAMS.

- o ——— v ———— - ———

The writer has heen striving for some time to
minimize the labor of designing tee and double rein-
forced concrete heams and at the came time to eliminate
the cut and try methods that have been necessary to
arrive at correct results. Thris thesis is the original
publication of rhis new flexure formulas for hoth types
of beams and of new flexure diaprams for designing
simple slabs and tee-beams. The diagrams have been
developed jointly witk Mr. Don 7'. Schuler, whro is study-
ing srchitecture at the University of Illinois.

Trhe nomenclature used throurhout this work is that
of tre Joint Concrete Cormittee representing the American
Society of Civil Fngineers, thke American Soclety for
Testine Materisls, the American Railwsy FEngineering and
Msintensnce of Way Association, and the Association of

tFe American Portland Cement Manufacturers. In addition






and Q@==.are used in the formulas for T~ and double rein-

forced beams respeciively.

1. T-Beam Formulas.

.When the neuiral zxis of 2 t-beam is contained within
its web, the simple beam formulas no longer hold. The
following t-besm flexure formulas which cover this case are
based on ithe customary assumpiions that the aid of the con-
crete stresses in the web is negligible and that plane
sections remain planes after bending:

(22.) Ms= f pjbd?

2k
Y-/ 72-12F %
(4.) A= e
in which Xzfc+_§_
jal
A
(5.) P= —



(7a.) k=
po+d
(76.) k= — *
1+ *ﬁ/ﬁfc
(8.)
2k - A 3

(8.) Jd=4 -3z

10.) J = et o
(10.) & - 3A

Formulas 1, 2b, 3b, 4, 5, and ¢ of this group are original,

Use OF THE T-BEAM FORMULAS.:

In the majority of cases the t-beam is designed as part
of a floor system in which the thickness of the flange, 1%,
has been predetermined by the floor slab moments or shears as
the case may be. As an illustrative example of this case as-
sume that a sinply supported t-beam has the following factors
predetermineds

1 =40 ft. w/tft. = 4000 1lbs., = 1500 lbs. dead +
2500 1lbs. live load.

f,= 600 lbs. fg = 25000 lbs. =8 in. b=84 in.

Find A4 and d.

M=4OOOX4gX4OX12= 9,600,000 in. lbs.

Then in formula 4, which should be solved by exact methods as




the slide-rule does not give satisfactory results in this one
operation.

.000 15000 |
.;j——___-l- =
\_64-x 5o * 600 + — = J 19332
X = 800 + 1b0?0 = 1600
15
_ 103832~ 7(10332)2~12x600x1600 _ 10332-9759 0.1791
2 x 1600 ~ 8200 @ O

v b _ 1
d = 3 =581v51 = 44.6
From formuia 9

= SeAmAR (800 =Y L1ILXLIOUY o 00545
2

As= pbd = 0.00045 % 84 x 44.6 = 15.57 sqg. ins.

If the depth of the peam is predetermined by shear, headroom,
or any other consideration, formula 5 gives the proper per-
centage of steel for whatever working stresses it is desired
to use.

Formulas & and 1 make it posgivle to determine how
much moment a given section wikl resist without exceeding cer-
tain working limits. ‘'he above sxample will now be checked

backward by the use of these two formulas.

From 6 2x.00545,0.1791
=ty 9-1791 1 =0.04 £
2 - 0.1791

Therefore if fg = 15000, f, must equal 800. From formula



9,570,000 "#*

=/ 300 (4. ; 3
M=( 222(3 3x.1791+o.17912)+£\f5_${(071791-§) D

Nowsuppose that the bending up of 4 rods reduces the sieel ratio,
p, Lo 0.00358.

From formula 8

Sherefore if f, = 600, fg= O‘S‘Zg; 20980 lbs. . As this is
in excess of the working stress in the steel it is evident that
the stress in the steel is the limiting condition. If fg =15000

f=0.0286 x 15000 = 429 los., Then the maximum safe resisting
moment of the section is

429 15000 ,3 54x32
v[ (3~23%0.1791+0.17912)~—— (= ~ 0.1791‘)7 9—;8
- pA -

7.1791

<

= 6,360,000 in. los.
It should be noticed that f, is the only factor in this formula
that varies with successive reductions of the steel area.

The point on the t-beamm a2t which ths moment sguals
6,380,000 in. 1lbs. may be found by solving the deneral moment
eqguation covering this condition, which is

M=2 wlx~% wx? in which % is the distance from the
left support, or the distance from tbe cemnter to this section
may be found by taking advantage of the fact that this moment
curve is a parabcla.



x2 _9,800,000~86, 360,000 I \
9,600,000

400 x =.240,000 N
9,600,000

MoMENT DiAGRAM
x = +11.82

Now suppose that th section worked out in the first problem is
subjected to a moment of 12,500,000 in. lbs. What are the cor-

responding fiber stresses in the steel and the concrete? From
formulas 2b and 3b

. 3
s . . 2 0.1791
5/ = 6=6x0.1791+2>0.1791 "+ —M=21792 )
12,500,000 0.1791(2—0.1791)( » ‘ ? 2x0 .00545x%15
0.00545x54x82
3%0.1791
12,500,000= 15 £
? ? 2x) .00545x15+0.1791
f, = 19520 1lbs.
f. = 781 lbs.

These stresses are directly proportional to the moment as
is evident from an inspection of formulas 2b and 3b, page Z.
Therefore they can be derived directly from the first problem.

1 s b x 2 = v:) O DS.

N 12,500,300 = 7g1 1ps,
800 > S 000



From the assumpition that plane sections remain planes
after bending, it follows that unit deformations of the Fibers
of the steel and the concrete vary as their distance from the
neutral axis. Then, since under working conditions the stress
equals ths strein times the modulus of elasticity,

(1) —s_ -Mfe

1-k k
From which nf
(2.) k =fs*ﬂfc=1+fs’ This equationis formula 7b.

For the same reasons the concrete stress at the underside of the

flange = f, 3 =f

-

k.

Prom the statical law that 3H=0, the total tension on any section
must egual the total compression on that section.
Thereforse

. . kK
(3.) fypbd=3 [?c+tc n j S

[¢]

f, pbd 2k 2pk

From eguation 1,

. n-kn
(5.) _5-
fc k

Equating 4 znd 5.
(6.) 2_(2k~a) = n—kn

Zp
(7.) 2kp-AZ

(8.) kA+kpn = pn+ 32

(9.) k = wuzoe This equation is formula 7a.

Zpn—2kpn



To determine the distance, z, from the center of com~
pression to the top of the beam, call kd-z, y ana take
moments abomt the neutral axis. The moment of the force
trapezoid must equal the difference between the moments of
the triangles whose vertices lie in the neutral axis and
whose bases ars the top and bottom of the flange respeciive-—
ly. Then

(10)  (f.+£ fzglé—XY-li kdxZkd~3f ,— (kd=-Ad)x3(kd~Ad)

(11)

2k~ sk U T

— d d
(12) ~7(2k-ﬁ)=;(k3~k3+3k2A°3kAa+53)=—3(3k2‘8kA+A2)
3k2-3kA+A% ckZd-6kAd+2A%d

13) Y=2%d
(13) 5 2k=n 8k-3A
8k2d-3kAd-Bk2d+6kAd-242d 3kAA—2A2d
=kd=vy=

(14)  z=kd~y Ty 8k—34
d 3k~20 3k~28 &

(15) —é—(g 2A . Al This is formula 8.
3 2k-A  2k—A | 3

(18) Jd=d—z

(17) J=1-—=1-
G

Substituting for k its value diven in equation 9,
A%

3&(”‘“2 ) - 2%
n
(18) J=1-—"
+3
S(Dn % ) = 3A
Dn‘*‘ﬁ I 1
SpnA+ $A P~2pnAZ—2A3 A~ 25—
(19) J = 1 - SpnarEerTend =1 - 27 T2
3pn+3A2-3pnA—3A2 © 8=3A

3
6*3&‘3&+2&2+2

pn
(20) J =




_6~60+20%+ opT
(21.) J=———— """ This equation is formula 10.

From eguation 8,
A(2k=~A)

22. = —=

(22.) =GB

Substituting fcr k its value given in equation 2,

' A

2n| 4 _nfg 2o fg+nf,-nf,

A A
(24.) p = —(2nf,-Afg~Anf,) = 4 =% (1) —
T, 2

This equation is one form of formula
#ormula 6 is founa by solving egquation 24 for

P+§Q 2p A
(25.) & = 2n A p _ ZpntA=
T E—
S A
A(l=-—
( 2)

Formula Za is found by taking moments about the center

of compression.
(28.)- Mg = fspbdXJd = fSprd2

Since t = Ad
f.pd
(27.) M. = S% | ot
Av!
Substituting for J its valme in eguation 21,
f.pbt? 8
) This is equation 2b.

Cal
2pn

(28-) MS ‘—'m
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Formula 1 will now be derived from eguation 28 by expressing

p in terms of f,, fy, ana A in accordance with equation 24.

£ bt
29.) M =———— GA% OA 2+,
(29-) Ms=gargmgy |Sosr 2% Tt (20t
2nx2nfs(2nfc~§fs—ggfcn
—Afﬁ“ﬁnfc)

(30.) M= 2B soapepes L

$T3an(2-4) T SaT_—At —AnT. | (2nfo~Af —~Anf.)
(5.0 ¥ :'5%255737{%nf0‘SﬁfS"SAnfc‘ﬁénfc+3Azfs*3ﬁzEfc

+2A2nfC—ASfS~ﬁ3nfc+;A2fs}

(32.) ¥ =gﬁfc(6“9A+DA2~A3)-Afs(3-3%A+A2)I i
° 3an(2-A) ‘
b2

t £
_C(a=-3a+02)S(3-p) (Bormula 1.)
A n

(33.) ¥g

Taking moments about the centre of tensiion.

pAd

f,A
(34.) M= (2k~A) xJd= C

(See equation 3.)

This eguation is formunla 3a.
Formula 3b is found by substituting the value of fg in

eguation 25 in ecqustiorn 28.

f.pbt2 A% An(2-p)
PN T S Sl
(35.) Mozt (678 Son) Zonehe
. f . pmbi? . . A3
(36.) Mg=Sre———=(8-60+20%+—)  (Pormula 3b.)
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Formula 1 may also be derived from equation 34.
First substitute for J from eguation 21.

37 M="W o T 0T - GPL\I
(37) Mg BRA(Z—A). foo%

Now substitute for k and p their values in eguations 2 3nd 24.

2nf,
ta-mep B A
(38) M=o S |6~80+20%+ f.bt2
8anf 2DX —— (Onf -
— 557, (2nf ~Afg~Anf,)
. _2nf ~Af —bnf, | Y oAZs AEg ov2
(29) ¥o gAnf (2~4) it 2nf,~nf ~Anf, Felt

This egumation is the same as eguation 30, therefore,

0
(43)

fo N T2
K—(B~3A+A‘)";—(§~ﬁ) =My (F-ornula 1.)

From this eguation,

NV t, f
41) —SMe3o8o3f +f p-3 S+p ZS
(41) =383t rfonmg 2eh 5

Y «. £
S +fc+{;}+3_9:0

(42) A(f Es. .
p / L ——
- "C n’ bi? on A

2(F Lo M L tSyeaes
(43) p2(fr— )~a&-(-g-fc+§a)+ S5 =0

ty i _
v f - 4 P . v
(44) A=“‘°%2*fc+zn) /6(bt2+tc+2n)z“1210(Ic+is/n)

o i’ —
2( c*s )

This ecuztion is eguivalent to formula 4.



12.

THE DOUBLE KEIRFORCED BEsM FORMULAS.

The easiest method for designing any rectangular or t~
shaped double-reinforced concrete beam is to determine first
what moment the beyvm can carry as a simple beam of the same
section when stressed to the working limits, and then to pro~
vide enough compression and additional temsion sieel to carry
the excess moment vithout changing the fiber stiresses. Other
problems which arise will be discussed later.

The fundamental fact on which this methed is based is

that for umy particujar valwes of f.and fg, k has exactly the
same values regardless of the shape or type of beam, This
single value for all beams is expressed by the formula

It is derived in 2ll cases by the same process of reaspming
as that followed in deriving eguation 2 under the t-Deam
formulas. It follows from this that if steel is added to the
section withbont changing the extreme fiber siresses, this ten~
sion and compression steel must form a balanced couple whose
stresses conform to the stresses ilready in the section.

Use the following ngmenclgture:.

P, = the steel ratio for the single reinforced beam
with the same k.
P, = the steel ratio to balance P'. (P=Pg+Pg.)

the moment of the single reinforced beam.

M',= the moment of the steel couple. (M=M',+M'g)
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From the assumption that unit deformations of the fibers
vary as their distances from the peutral axis, it follows that

(1) — =——— (See figure, page 18)

Since the balanced steel couple must meet the statical regumire-
ment 2E=D

(2) £4p'0d = fgpgbd

Substituting for f'y its value in equation 1,

—-fep
1-k
Q
-k
(5) B, = PP, = p-pr&>
c s 1~k

Taking the moment of the steel couple about the compression steel,
(8) W'y 3 £ P (1-Q)bd?

M
(7) P, = S

S fgbd?

These formulas apply equally well to imny type of beam. ¥When

k]

P wna P' are predetermined, first find k from the formulas,

(8) k = -n(P+P")+/n2(F+P"')2+2n(P+P'Q)

1]

N -

and ‘P+P'Q+$—
(9) k

— See pades 14,15,
pepls 4 (S5O P

for the rectangular and t—beam respectively.

ihen k has been determined, calculate Pgand P, trom formulas
4 and 5, and then find the working stresses from the formula,
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(1) =E= —EQ for tne rectsngular beam
s
and
2P, A
(1n -Ei =_ 8 ™ for the t~beam.
S 2= A4

With the working stresses known equation 8 gives M'y for all
types of beanms.

For the rectangular beanm,
tok, k k..
(12) M' = -§(1~3)bd*=f P, (1~3)bd®
Then since ¥ = M'+M',

(13) W = fsbda{Ps(1"0)+Pc(1”§)} for rectandular beams.

For the t-beam

e gp2e e
(14) M'g = £ bood2( OT8A+2A%5py

then s
B=BA+2NEZ+—
(18) M = f_ bd2 {P.£1-Q)+P, for t-beams.
6~3A

If the vevm is sunjecied to 2 smidler or larger stress . thanm
M, the safe resisting moment:, the fiber sires:ises are decreased
or increased in direct proportion io the moments.

k, z, and J for the Doupnle Keinforced

Rectandular Beam.

While there is nothing new in the derivation of these
factors for the rectangular beams, this work is insertied to
completely cover this flexure theory.

(1) fgpbd=3f knd+f'gp'od (TH=0.}

(2) fop=3f k+f' p!

(Unit deformations vary as their dis-
tance from neutral axis)



(4)

(5)

(7)
(8)
(9)

(19)

(11)

(12)

(13)

(14)

(1)
(2)

f’s=nfc(§ZG) (Unit deformations vary as their dis~
tance from neutral axis.)

pnfc(l§5=%fck+p'nfcégigb (Eouations 2,3,and 4.)

po~pnk=3k%+p'nk~p'nG
k2+2kn(p+p')-2r(p+p'Q)=0
k=-n{p+p')+/n2(p+p')2+2n(p+p'Q)

z(c+c')=2%kde+d'c'  (Moments around top of beam).
9

. N
skdetd'c! gkd+d'z

T o ne

c' t'yp'od _ 2 'p!

¢ 3 kbd .k

I = 28 xpr (ElyeTm o T Bauation 4 and 11.

c  fek ol k ) k? ( )
e L1 LA W S ;
s VY kedezptnd ! (k-0)

z 14221 0(k~0)  ~  k2+20'n(k-0Q)

4 - 17 - kZ+2p 'n(k-Q)

;. k2(1-30)+20'n(k-0) (1-0)

k2+2p'n(k-Q)

k, 7, and J for the Double
Keinforced 1T-Zeanm.

AR
fspbd=fs'p'bd+fcﬁ(1~§kgod

A
fop=fg'p'+{A(1-2k)
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(8) fg=ni, (Unit deformations vary as their distance from
neutral axis.)
k=G .
(4) fl=nf — ( * " n " n distance from

neutral axis.)

i~k k=G A
(5) pnfc(iz—0=p‘nfc( —)+fea(1-2)  (Bavations 2,3, and 4.)

(8) on(I-k)=p'n(k~C)+f A(k~_)

(7) p-pk=p 'k—p'C+ff =
n 2n
N
(8) ok+p h* ‘n p'Qt—
- £n0
A2
p+p 'Qr—
(9) k= %
p+p a2
n
(10) z(c+c')=c - ) — + c'gg (Momets around top of beam)
: (See equation 15, page 8.)
c —+c'Gd  (——)=+— @
(11) 7 - ‘(Zk“"ﬂ )3 - Zzk=A 3 c
c R ct 1?
c
(1‘~_-) cl fS‘O|bd f lp|
Z —_— = s -
ch(1~—)Da c:A(1 3

(= 2 plafet—) gpia(k-0)
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p_+ 2p 'nG(k~€)

(14) 'z = _2k=8 ~ 3 A(2k=n)

+_zp'n(k~@)
A(2k~A)

a2 _
(15) z = 5 (3k=28)+2p'nG(k~Q)
A(2k=A)+2p ' n(k~Q)

2

A

5 B(2k=A)+2p'0(k-6)~5 (3k—2A)-2p'nQ(k-C)
16) J = 1--=
(1) A (2k~5)+2p "' n(k-€)

A(2k~A)=~= (3k~2A)+ 20 'n(k-Q) (1~€)

(17) d = A 2k~n)+2p ' n(k=C)

CHECKS ON IBE ¥ FORMULAS FOk THE LOUBLE REINFORCED BEAMS.

(1) For the rectangular beam, =~n(p+p')+/%2(p+p')2+2n(p+p'Q). This

(2) is the solution of the eguation k%+2kn{p+p')—2n(p+p'Q)=0{Ew. 7

. i-k k~G+1-k 1-Q ,
(3) p+p ’:Qc+ps+ps(———-)=pc+ps (T)=Dc"‘pg (‘_Q‘) (FormU]-a 6,Pg.
. 1=k «—Q+Q-kG. 1—0.
(4) p+p'&=p.vp togl— ————" = perkpgl—)

~G i~0Q
(5) k®+2knp.+2knp ——)—20p.-2knp.l=——) = O.

A - __anc 2 e 24
{(8) k = ——& + H4n®p, “+8np,

S

(7) k = —np,+ /n3p,*+2no,

Equation 7 is the k formula for the rectangular odeum reinforced
for tensidion only.



51

- .

|
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The k formula for the double reinforced t-beam may be trans-

formed in the same way.

AZ (‘, A2
. D+p’€{+:” pn+ps (xi_“"U zn .
(1) k= = {See equations 3 and 4 above.
n' DC e} k‘—{ Q)-h
1-0 k 1—@ Az
£ K k ——‘+'—“ = k
(2) kpotkpg - Perbsk b
AE
. c .
(3) k —f2
©n
(a) k = 277?7753 This eouvation 4 is the k formulz for the t—
c

beam reinforced for temssion only.

Both of these k formulas reduce diresctly to the k formulas
for the single reinforced bewms when p' = O,

FORMULAS FOR DOUBLE REINFORCED RECTARGULAR BEANMS.

(1) k = lf:. Formulas 1 to 7 are used to
o /%fc determine the steel ratios, p
£k and p', which a beam must have
Pe = o5 to resist a given moment, and
formulas 8 to 12 are used to
(3) M.' = fop.(1——)bd? detzrmine the safe resisting

moment that a2 given beam is
able to exert.

~
s
\7./
=
1

|
=

i
=



, M.
5) pa o
(8) Ps™ Fi-oy0a

1-k
&) p' =
( ) p Pg k=0

(7) D = Dc+ps

it

~n(p+p')+ /02 (p+p')2+2n(p+p ' Q)
k=@

(8) k&

oW L ]

(10) pe = p = pg

(11) Fe - e

. . . Kk
= f bd? fps(1~@)+bc(1*g)]
&k 2d+2p' nd ' (k~Q)
T k®+20'n(k-0)
k23(1-sk)+2p'n{k~0)(1-Q)
k2+2p 'n(k~Q)
k-G
S 1-k

~

[

A

v

=
|

(14)

(15) £4' = £

rx

'ORMULAS FOR DOUBLE REINEQRCED T-BEAMS.

1
/

nl,
u A A%

= AL (1) -~
(2) p, =240 . (% 2) =

(4) M.' =

18.



M ¥
5 = _____3____.
(5) rg F_(1-0)ba?
o' 4 =
(8) p"' = pg =0
(7) p = petpg
2
p+p'Q+é—-
8) k =
(8) —
ptp '+ —
n
k~G
9 - 1
(8) pg-p =k
(10) pg = p~pg
£ A k
11) Z¢ =8 "0 -
(11) 2 - & n(1-k)
| 6-BA+26+
(12) ¥ = f.bd? {pg(1~C)+p, 200
_ 32(3k~20)+2p'00(k-Q) 4
A(2k=A)+2p 'n(k-Q)
A2
A(2k~0)-_ (3k=24)+2p'n(k~Q) (1~0)
(14). J = 3
A{2k—A)+2p 'n(k-Q)
. Ky
(15) £4' = f5 o

Formulas 1 to 7, and 8 to 12 cover the two typical
cases described under the rectangularr beam formulas. Seven

20.

of these formulss zre the same as those for recimngular beams.



USE OF THE DOUBLE REINFORCED BEAM FRRMULAS

Find the safe resisting moment of a rectangular doubles
reinforced concrete beam constructed to meet the following
conditions:

b =12 in. d = 18 in. Q= %: p = 0.025
p' = 0.010 f£,=600 lbs. f5 = 15000 1bs.

This is the case covered by formulas 8 to 12, page 19.

(8) k = -15(0.025+0.010+ v/152(0.025+0.010)%+2x15(0-.025+0.01@1)
k = 2:.502
_ 0.502 ~ 0.100
(9, p.= 0.01— = 3..00807

1~ 0,502

(10) ©.=0.025 - 0.00807 = 0.01693
If £, = 800 lbs.

8000 502

11) = =20 0Y% _ 9950 Ibs.
(1) f5= 55 o1e95 - 5900 1os

0.502

(12) M = 8900x12x18% {0.00807(1-0.1)+0.01693(1' —

M

u

739,000 in. lbs.

If this beam were subjected to a bending moment of 1,000,000
inl 1bs., the new f, amd fg can ve determined by direct propor=

tion from the above fiber stresses,
1,000,000 _

— IS - 812 O -
fo = 890 755,550 fos:
1,000,000
= 89 2 - 12040
8900% = 500

A beam having the same b, d, Q, 3nd limiting fiber stresses,
and t. as in the first problem will now be designed by the
first method ocutlined on page 18 to carry the same bending moment

of 739,000 in. 1lbs.
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Ty = - = ¢
(1) k s 0.375

1o VY

15%600

800D 275
2 = —_— = R
(2) pe Zx1o000 0007

. 3 s . .
(3) M.' = 15000+0.0075(1~———)x12x182=383000 in. lbd.
(4) Mg' = 739000 — 383000 = 356000 in. 1bs.
358000

5 = — 0.00578
(5) Ps = T5300(1-0. 1) <121 8° °

Now compars these two sections both of which muwve the same

concrete area.

ist section

Znd section

wauld appear from
both sides of the

page © , when the
ibs.
and £4=19520 lbs. We
carry this moment with stresses of £,=800 and f =15000.

in.

£,=600 ,=8900 £,=600 £=15000
p+p*=0.025+D.01 Petpgtp '=0.0075
=0:0350 - 0.00678
0.0154
2:.0297

Since the second section uses 0.3 °/¢ less steel, it
these examples that it always pays to stress
peam up to the workingd limits.

In the third problem under single reinforced T-beams on

section in problem one was siressed to 12,500,000
the extireme fiber stresses were found to be f,=781 lbs.
7ill now double reinforce this section to
From

problem one on pages I3 and 4 , t=8 in., b=84 in., d=44.6 in.,

pe=0.00545 add Mo '=9,600,000 in. lbs.

Make 6=0.0673(3"imbedment)
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From formula 4 on page 19
(4) Ms' = 12,500,000 .~ 9,800,000 = 2,900,000 in. 1bs.

43) k = —————— = 0,37
(4:3) ) 15300 0.375
15%80¢,
= 2,099,009 = 0.001623
Ps = 15000(2-0.0673)x64x44 .82
(6) p' = 0.001628 x 7 = 5.00331

6.375-~0.0673
(7) p = 0.00545 + 0.001828 = 0.00708

k can wlso be determined by the use of formula 8.

0.17912
0.00708 + 0.00331 x 0..0673 +-;-£ii§
(8) k= ST 2 - 0.375
0.00708 + 0.00331 +

Now design the beam wiib the same concrete dimensions to
carry this moment of 12,500,000 in. lbs. with limiting work—
ing stresses of f,=600 and t{=10000

) = = 474
(1) & 10,000 0.47

15 x 800

600 0.1791 0.1791%
=0.179 - - = 0.00871
(2) pg=0.1791x =— (1 R E
'= [ B0C 10000
(@ o'~ [ 80 (5 500.179140 1791922 (3-0.1780)]
|0-.1721 " . B J

M.' = 10,210,000 in, lbs.



(4): Mg ' = 12,500,000 - 10,210,000 = 2,290,000
(5) pe = 2.290.900 = 0.001929
S 10000(1~0.0873)x64x44.82 -

1-~0_.474
(8) p' = 0:.001929 = 0.00249

0.474-0.0873
(7) p=0.001829 + 3.00871 = 0.01064

The use of the higher steel siress in the first design saves
0.27 percent of steel over this second design.

CONSTRUCTION QF THE REINFORCED CONCREITE SLAB FLEXURE
DIAGRAM.

Ihe moment caused by a uniformly distributed load =zt any
point on any beam which is fixed, partially resirained, or
simply supported at the ends may be sxpressed in in. lbs. by

the formula, M = 12-§-12, in which w is the uniform load in
P

lbs. per ft., 1 iz the span in feet, and ﬁ is the moment de~
nominator. ¢ is 8 for the moment at the center of 2 simply
supported bean.

‘tThe formulza for the resisting moment of 2 simple rectangu—
lar reinforced concrete beam is M = Ebd? in which R = 3fckd
for the compression couple and fgpJ for the tension couple.
¥hen the beam is supporting a2 uniformly distributed load the
general formula may be expunded into the two forms,

12 = f_pJbd?

ana 12 7 1% = »f kJod®
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In the upper left hand gquadrant of the diagram, which'is
called the moment chart, the logarithmic abscissas and ordinates
represent the spans in fest and moments in inch pounds respective~
ly. Gbkach sloping line on the diagram represents a particular
value of 7 ° With.%} 2 constant the formula takes thke form

and when expressed in logarithms, the form log ¥=log X 4
2 log ¥. The moment chart is a graphical representation of this
family of curves, which are parallel straight lines.
The upper right hand guadrant or the depth chart is the
logarithmic plat of the equation M=Rbd®. In this case also

L _ordinates represent the momenis, but the logarithmic
tie logariibmic,abscissas represent values of R. Each sloping

line represents g particular value of bd®?. b is taken as 12
inches in 21l cases and the line is designated by the correspond-—
ing value of d. <This plat then represents the general equation
log M=log K' + log K. It is a series of parallel 45° lines.

The lower right hand guadrant or the stress chart is a
logarithmic plat of the two families of curves

R=fgpJ-fep {1~%(/2pn+pn"~pn)}
and R=3f kd=3f, (/2pn+pn2-pn> {l-s (/29n+pn2~pn)}

n = 15 in this chart, then for particular values of fy and f;
these two equations take the form E=K" ¥ (p) or in logarithmic
terms, the form, log R = log X"+ log

In the stress chart the lodarithmic abscissas and ordinates
represent values of K und p respectively, and the sloping
lines represent particular values of f, and fg.

As, the total steel area:, = pbd. In the lower left hand
guadrent or the steel chart, the lines sloping upward to the

right represent constaht values of d and the abscissas and
the ordinates, as numbered at the right hand side of the dia—
gram, represent values of Ag and P respectively,

When the cross—sectional area of a round rod is pxand the
rod spacing is v , Ag = 1 Each line sloping upward to the
left in the steel chart is marked with the diameter of the rod
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whose area it represents. The abscissas represent the steel
area and the ordinates, as marked at the left side of the
diagram, represent the round rod spacing. The spacing for
sguare rods is — times the spacing of round rods of the
same thickness, The k and J curves are also plotted in this
steel chart.

THE uSE OF THE BEA¥ AND FLOOR SLAB CHART.

Suose that it is required to design a slab to carry a
total live and dead load of 400 1lbs. per sg. ft. over a simple

span of 20 ft. with limiting stresses of f.=850 and f4=18000
1bs.

Before entering the diagram the load per saquare foot,
400 1bs., must bes divided by the moment denominator which is

W 400
8 in this case, ; = —= 50,

In the stress~chartftthe intersection of the values
f.=850 and f =16000, as indicated at £ in the first guide
diagram, the value R = 107 satisfies both stress conditionms.
Any designer who uses a: particular set of stresses constant-
1y remembers the corresponding value of K, and omits this
coperation.

Now in the moment chart
find the intersection of the e

sloping line ¥ = 50 with the

line representing a span of
2C feet. The ordinate of this

intersection correspords to a
moment of 240,000 inch pounds.

Follow this ordinate into the
depth chart to its intersection
with R=107. At this intersection

Guipe DiAcrAM No.l.
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d = 13.6 inches. It is decided to use a depth of 14 inches
which corresponds to R = 102 for this moment. Follow the line
R=102 into the stress chart. At the point where £.=690, fg=17500
at the point where f -18000, f,=630. This second set are there—
fore the limiting working stresses. At this point p = 0.0073.
Follow this abscissa into the sieel chart to d=14". At this
intersection A =1.23 sg. ins. Follow this Ag line to the 1"
line, The reyuwired spacing for 1" round rods is 7.7 inches.

Use a spacing of 7% inches. If it is required to use 1 inch
square rods, the necessary spacing is £ x 7.7 = 9.8 inches. Use
9% inch spacing.

If it is desired to find the resisting moment when every
other rod is turned up, this process is reversed.

In the steel chart follow the rod spacing of 15 inches to
the 1 inch line. A =0.626. Follow this A line to d=14";
p=0.00372. Follow this p line to f4=18000, f,=439, R=54.
Follow the R=54 line to d=14 in the depth chart, M¥=128000 in.
lbs. The location of the point on the besm where M=128000 in.
1bs. can be found from the equation or form of the moment
curvéfon page 6..

If the moment curve is a continuous parabola , gipple
method for finding this point is derived as follows: Call
the moment at the center M'=R'0d2? and the moment at the point
distent X from the center, My=R.bd?*. Find the value of R'
and R, from the stress chart.

From the law of the parabola (See figure on page G.)

R'bd%-R.bd2 _ _ R,
N R'ba? R'

U



THE CONSIRUCTIQON OF THE REINFORCED CONCRETE

T-BEAM CHART
The moment caused by a uniformly distributed load at any
point on any beam may be expressed in inch pounds by the fornula,
W
¥=12— 1% as explained on pagde 24.

The resisting moment of the stesl reinforcement in a t-
peam is, from eguation 27, page 9

>

M = 37 pt2=xpt?2 o
g 'KE‘Dt x0t? when R e

Then when the t~beam is supporting z uniformly distributed load

w
M=12— 12=Rbt2
P
In order to make the diagram of more general application the
moment is divided by b, the breadth of the beam in inches. The
moment formula then takes the form
M 12 w W

b_¢D 1£=¢__B_13=Rt2

B is used to express the width of the beam in feet, g then ex-
presses the uniformly distributed load in terms of live load per
square foot of flange.

In the upper left-hand quadrant of the diagram the logarithmic
abscissas and ordinates represent the spens in feet and moments

in in. 1bs. divided by the breadth of beam in inches respectively.
fach sloping line represents a particular value of a% . With

dE

chart is a logarithmic graphical representation of this family

. pisl . ;
a constant, the formula takes the form é = K1¥. The moment

of curves.
The upper right hand quadrant or the slab chart is the
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logarithmic plat of the ecuation'g = Rt2. The abscissas re—
present values of R, and the ordinates, &alue of-%; The slop—~
ing lines correspond to particular values of t.

The lower right nand quadrant or sieel chart is a log~
arithmic plat of the equation R=f;Z£. In this steel chart the
abscissas and ordinates represent values of R and-%g orY re-

spectively. The sloping lines represent particular values of

IR the lower left hand quadrant or proportional chart, the
lines sloping upward to tha right ars the logdarithmic plat of
. pJd , . .
ths family of curves 1=—. HWhen J is expressed in terms of A,

p, and n, this equation takes the form

For particular values of A, ithis equation takes the fornm
Y=K"p+K'". The apscissas and ordinates of the proportional
chart represent values of P and Y respectively, and the slop—
ing straight lines represent particular values of A. In this
chart © is used to represent the ratio —<. From equation 24

on page O ,
A. AZ

2 %n

p =

The curved linss on the proportional chart have been
polotted from this formula by solving for the values of P cor-
responding to particular values of © and A and then drawing
the 8 curves througih the intersections of these values of P
with the corresponding A lines in the proportional chart. The

curve A=k is the line of division betwsen the t-beam and the
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simple beam. From equation 22, page ©, its formula is p= ——————
2n(1-4)

THE US& OF ''HE T-BEAM CHART:
The t—peam which was designed analytically on pages 3 &4
will be checked by means of this chart to illustrate its use.

Before entsring the diagram the total live and dead load,
4000 lbs. per linezl foot must be divided by both the moment
denominator, 8, and the breadth of the beam in feet, 5%.
w 4000 800

— =03.75. 6 =——= 0.04.
3x53 15000

Now perform the operations

on the t-beam churt indicateg in

guide diagram,No.2. At the inter— Y 150000 ﬂ/
section of-ﬁé=93-75 with the line ’ V4

K |
1=40 ft., the oriinate is ;§=1soooo, YR
At the intersection of this ordinate AR .

with t=8 ". K=2350. At the inter-
section of the abscissa, H-2350 with

:
s —1 -y r \ < ! |
with £,=15000, Y¥=0.157. Now follow 5 /8 / : ///
the ordinate Y=0.157 to its Inter- ,
section withe the line ©=0.04. At
this point A=0.179 and p=0.005483.

Yeors7 ' /A0

A 0.179 " Guie Diasram No.2.

A =pbd=0.00548x54x44.7=15.67 sq. ims.

The t—beam chart is worked in the reverse direction
when it is desired to know what resisting moment 2 given
section can exeri. The problem on page 5 will be used
to illustrate this operation. The same section is used as
before but the bending up of 4 rods has reduced the steel
ratio to 0.00358.
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In the proportional chart follow the abscissa, p=0.00358
to its intersection with the sloping line A=0,1791. At this
point ©=0.00285 and Y=0.103.

800
If £, = 800, © = — = 0.00285, fg = 21100 1bs.

C

i

If £f4 = 15000, © = - fe =0.00285, £, = 428 lbs.
10000
fhis second group are the working stresses. Now follow the
ordinate Y=0.103 todits intersection with the value £,=15000.
At this point R=1540. Trace this abscissa, R=1540, to its
intersection with the line t=8". At this point 4 = 98000.
Then ¥=88000x84=5,270,000 inch pounds. The point on the
beam at which this moment occurs may be found as on page 6
or by the formula on page 27 .

The handling of problems on both of these diagrams is
facilitated by the use of two pointers. The last value found
is held by one pointer while the other is used to pick out
the value determined by the next step in the problem. Any
diagram can also be much more readily handled when it is
mounted on an extra heavy paste-board mat with rounded cor~
ners which has been backed with cloth or passe—pmrtout.

THE K AND J DIAGRAM FOR T-BHEAMS.

The k and J diagram for t—beams represents graphically
the two Tamilies of curves:

LT
pn+A
53
B=BA+2A%+ —
and J = 2pn
8~3A

The ordinates represent percentages of steel for both sets
of curves and the abscissas as marked at the bottom of the
diagram represent values of k, and, as marked at the top of
the diagram values of J. The curves sloping upward to the



right represent particular values of A in the k formula, and
the curves sloping upward to the left represent particalar
values of A in the J formula.

In the first problem worked omt on the t—~beam diagram
p=0.00548 and A=0.178. On the k and J diagram these values
correspond to k=0.378 and J=0.920. This value of k is check~
ed in two ways on page 23 by equations 43% and 8.

When ps0.00871 and A=0.1791, k=0.475 and J=0.217. This
value of k is checked by equation 1 on page 23,






