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1. 

SOME FLEXURE FORMULAS AND DIAGRAMS FOR 

REINFORCED CONCRETE BEAMS • 

The writer has "been striving for some time to 

minimize the labor of designing tee and double rein-

forced concrete "beams and at the sane tine to eliminate 

the out and try methods that have "been necessary to 

arrive at correct results. This thesis is the original 

publication of his new flexure formulas for "both types 

of "beams and of new flexure diagrams for designing 

simple slabs and tee-beams. The diagrams have "been 

developed jointly with M r . Don B. Schuler, who is study-

ing architecture at the University of Illinois. 

The nomenclature used throughout this work is that 

of the Joint Concrete Committee representing the American 

Society of Civil Engineers, the American Society for 

Testinp Materials, the American Railway Engineering and 

Maintenance of Way Association, and the Association of 

the American Portland Cement Manufacturers. In addition 
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t 
and are used in the formulas for T~ and double rein-

forced beams respectively. 

1. T~8eam Formulas. 

. When the neutral axis of a t-beam is contained within 

its web, the simple beam formulas no longer hold. The 

following t-beasi flexure formulas which cover this case are 

based on the customary assumptions that the aid of the con-

crete stresses in the web is negligible and that plane 

sections remain planes after bending: 

(2a*) Ms*- f
s
pjbd' 2 

2k 

, , Y-VY
2

-12f
r
X 

(4 J A= — 

in which X=f„+-£ 
° n 

(5 J P= -
A 

2 ~ A 



3 . 

(7a.) k= — 
pn+A 

1 
(7b.) k = 

1 * - / n f
c 

(8.) 
2k - & ^ 3 

(9.) Jd = d - z 

(10.) J = /
 r 

6 - 3A 

Formulas 1, 2b, 3b, 4, 5, and 6 of this group are original, 

USE OF THE T-BEAM FORMULAS. -

In the majority of cases the t~beam is designed as part 

of a floor system in wfiich the thickness of the flange, t, 

has been oredetermined by the floor slab moments or shears as 

the case may be- As an illustrative example of this case as-

sume that a simply supported t-beam has the following factors 

predetermined* 

1 = 40 ft. w/ft. = 4000 lbs. = 1500 lbs. dead + 

2500 lbs. live load. 

f
c
= 600 lbs. f

s
= 15000 lbs, t=8 in. b=64 in. 

Find A
s
 and d. 

^4000*40*40* 12
= 9

,
6 0
0,000 in. lbs. 

8 -

Then in formula 4, which should be solved by exact methods as 
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" \ 64 x | 

tbe slide-rule does not give satisfactory results in this one 
operation. 

•
0 0 0

 1-50001 
• F -

+ 6 0 0 +

 - » o 6 R 1 9 3 3 2 

15000 
X = 600 + = 1600 

15 

_ 10332- /(10332)
2

~12*600*1600 _ 10332-9759_ 

" ~ 2 x 1600
 =

 3200 °-
1 7 9 1 

d

 = I =#1791 = 44.6" 

Prom formula 9 

P =

 0-00546 
2 

As=.pbd = 0-00545 < 64 * 44*. 6 = 15.57 sq. ins. 

If the depth of the beam is predetermined by shear, headroom, 

or any other consideration, formula 5 gives the proper per-

centage of steel for whatever working stresses it is desired 

to use. 

Formulas 6 and 1 make it possible to determine how 

much moment a given section will resist without exceeding cer-

tain working limits. The above example will now be checked 

backward by the use of these two formulas. 

From 6 2*,00545+0,1791 

f
c
»f

s
 °"

1 7 8 1 1 5

 = 0-04 f
s 

2 - 0.1791 
Therefore if f

e
 = 15000, f

c
. must equal 600. Prom formula 
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M =

/f|£(3-3x. 1791+0.1791
2

 1791-
3

) 
15 2 

9,-570,000"* 
O 

Now suppose that the bending up of 4 rods reduces the steel ratio, 

p, to 0.00358. 

From formula 6 

£c = Io
 g

 0.0266 

f
e
 2 - 0,1791 

therefore if f
e
 = 600, f„= ^

 6 0 0

 = 20980 lbs. . As this is c s

 0.0286 
in excess of the working stress in the steel it is evident that 

the stress in the steel is the limiting condition. If f
s
 =15000 

f
c
=0

:

.0286 f 15000 = 429 Ins. 'T,hen the maximum safe resisting 

moment of the section is 

/429 ,
 v

 15000 .3 /7 64*8
2 

M

^ i
< 3

-
3

* ° :
1 7 9 1 + 0

-
1 7 9 1 2 )

- —
 (

i " ° :
m l

y ~ T 

= 6,360,000 in. lbs. 

It should be noticed that f
c
 is the only factor in this formula 

that varies with successive reductions of the steel area. 

The ooint on the t~beam at which thee moment equals 

6,369,000 in. lbs. may be found by solving the general moment 

equation covering this condition, which is 

M=| wlx^i wx
2

 in which x is the distance from the 

left support, or the distance from the center to this section 

may be found by taking advantage of the fact that this moment 

curve is a parabola-



jrf __9,600,000-6,360,900 

9,600,000 

5
 _ 400 x 240,000 

9,600,000 

x = 111.62 
M O M E N T D I A G R A M 

Sow suppose that tte< section worked out in the first problem is 

subjected to a moment of 12,500,000 in. lbs. What are the cor-

responding fiber stresses in the steel and the concrete? From 

formulas 2b and 3b 

f
 3 

12,-500,000= — A - r(6-6*0.1791+2*0.1791 + — ° : H
9 1

 „ ) 
0.1791(2-0.1791) 2*0.00545*15 

12,500,000= 
15 f, 

2*0.00545*15+0.1791 

0.00545*64*8
2 

3*0.1791 

f
s
 = 19520 lbs. 

f
c
 = 781 lbs. 

These stresses are directly proportional to the moment as 

is evident from an inspection of formulas 2b and 3b, page 2. 

Therefore they can be derived directly from the first problem. 

fs = 15000 * 1|>&00?000 = 19510 lbs. 
9,600,000 

600 * J f M W o - , a i l b s -
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DERIVATION OP THE T-BEAM FORMULAS, 

From the assumption that plane sections remain planes 

after bending, it follows that unit deformations of the fibers 

of the steel and the concrete vary as their distance from the 

neutral axis. Then, since under working conditions the stress 

equals the strain times the modulus of elasticity, 

( 1 . ) f s - n f ° 
l~k k 

From which
 n

f 
( 2

*
} k

 =FT;5f ' f , 
This equation is formula 7b, s c 1+ s 

For the same reasons the concrete stress at the underside of the 

tlange = f
r
 — —

r
= f

c
- — „ c

 kd ^ k -

From the statical law that 2H=0, the total tension on any section 

must equal the total compression on that section. 

Therefore 

(s.) f
s P
b d , i [ f v f c ^ r j 

f
c
 pbd 2k 2pk 

From equation 1, 

f* n-kn 
(5.) S_ 

f
c
 k 

Equating 4 znd 5. 

(6.) A . (2k-A) = n-kn 
2p 

(7.) 2kA-A'
2

 = 2pn-2kpn 

(8.) k4+kpn = pn+.lA'
2 

(9.) k = 'Ifais equation is formula 7a. 
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To determine the distance, 2, from the center of com-

oression to the top of the beam, call kd-z, y ana take 

moments abomt the neutral axis. The moment of the force 

trapezoid must equal the difference between the moments of 

the triangles whose vertices lie in the neutral axis and 

whose bases are the top and bottom of the flange respective-

ly, Then 

(10) ( f
c
+ f

c
— I — *Y=!f

c
kdxtkd~ff

c
— (kd-Ad)xi(kd-Ad) 

k~A Ad 
— I — *Y^t

c
kdxtkd~!f

c
— 

( I D 
2k 3k I

 J 

(12) 2k -A )=|(k
:3

~k
 s

+3k
2

A~3kA
 a

+A
s

)=-^-(3k
2

~3kA+A
2

) 

, x „ „ 3k
2

~3kA+A
2

 6k
2

d-6kAd+2A
2

d 
(13) Y=%d 

(14) z=kd-y= 

2k~A 6k-3A 

6k
2

d~3kAd-6k
2

d+6kAd~2A
2

d 3kAd-2A
2

d 

6k-3A 6k-3A 

. Ad 3k~2A 3k-2A t . , .
 fi (15) z = — ( — )= . — This is formula 8. 

3 2k-A 2k~A 3 

(16) Jd=d-z 

(17) J - i ^ - l - — . 

Substituting for k its value given in equation 9, 
A

2 

3 A ( ^ ! 1 ) - 2A 2 

, , pn+A 
(18) J = 1 

6 ( ^ 1 ) - 3 A 
pn+A

 a 

3pnA+lA
8

-2pnA
2

-2A
3

 „ 3A-2A
2

-5^r 
(19) J = i - — = i £E£ 

6 p n+3 A
 2

~3p nA~3A
 2

 ' 6~3A 

6~3A~3A+ 2A
 2

+ 
a 

(20) J 
2pn 

3A 
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. „ 6~6A+2A
2

+ opTT 
(21.) J= This 

6 - <3A 
equation is formula 10. 

From equation 6, 

(22.) p =„• 
A(2k-A) 

2n(l-k) 

Substituting fcr k its value given in equation 2, 

2nf
r 

_A_ A 

2n 1 _
n f

c ~ 2n 

V < 

f
s
+nf

c
-nf

c 

(24.) p = _ L
 ( 2 n f c

„ ,
f s
_

A n f c )
 . A £ (1-f) 

This equation is one form of formula 

J sol 

A'
2

 2p A 

formula 6 is found by solving equation 24 for 

P+-
(25.) -£ = 1

 s 

'2n _ A n _ 2pn+A'
2 

Ml-|) 

Formula 2a is found by taking moments about the center 

of compression. 

(26.) M
g
 = f

s
pbdxJd = f

s
pJbd

2 

Since t = Ad 

(27.) M„ = 
f

s P
J 

A'
s 

. D t' 

Substituting for J its value in equation 21, 

fc,pbt
2

 ' A
2 

( 2 8

'
) M s =

3 A
2

( 2 - A p "
6

^ " 2 ^
)

 This is equation 2b, 



10. 

Formula 1 will now be derived from equation 28 by expressing 

p in terms of fc, f
g
, ana A in accordance with equation 24. 

fgbf* 
(29.) M = — 

"
s

 3A
2

(2-A) 
6-6A+2A

2

+.-

2nx 
f 2 r

^ ( 2 n f
c 

2nf
 s
 (2nf

c
-Af

 S
-Anf

c
)| 

-Af«-Anf c) 

(30.) M = 
bt

2 

s

 3An(2~A) 
3-3A+A

2

+_J^fis. 
2nf -At' -Anf, ( 2nfc

-Af g-Anff,) 

(31.) M
s
 =-

1
|ii

1
-^-^nf

c
-3Af

s
-3Anf

c
-6Anf

c +
3A

2

f
s
+3A

2

nf
c 

+ 2A
2

nf
c
-A3f

s
-A

s

nf
c
+iA'

2

f
s
| 

> \-u _f^fc(6-9A+0A
2

-A
s

)-Af
s
(3-3iA+A

2

) ,.) M
s
-| (32, 

(33.) M
s
= 

3An(2-A) 

! £ ( 3 ~ 3 A
+
A

2

) i ( | - A ) '
 b t 2 

A n 

Dt
2 

(Formula 1.) 

'faking moments about the centre of tension, 

f„Abd. f.AJ 
(34.) M ~ = — — ( 2 k ~ A ) *Jd=JL_I(2k~A)bd

2>

 (See equation 3.) 
° 2k 2k 

This equation is formula 3a. 

Formula 3b is found by substituting the value of f
s
 in 

equation 25 in equation 28. 

f' pbt
2

 .
 0

 A
3

. An(2~A) 
( 3 5

:
>

 ^ s f W
6

'
6

^ V n ' i ^ F " 

f Dubt
2

 A
3 

( 3 6

' » (Formula 3b.) 
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Formula 1 may also be derived from equation 34. 

First substitute for J from equation'21. 

(37) M
 f ° 6 k & ( 2 ~ A )

 x

c
o z 

Sow substitute for k and p their values in equations 2 i:nd 24* 

2nf
 c 

(38) * 
° 6Anf 

-A r 

o o 

6~6A+2A
2

 + -
A

J 

2 n X

2iT(2nf
c
~Af

s
-Axif

c
) 

f
c
bt

2 

. .
 w

 2nf
r
~Af

q
~£nf

c
 f _ A

2

f
 q (39) M = — ^ 6 - 6 A+2A

2

 +
 £ 

2nf
c
~Af

S
-Anf

c
 , 

c

 6Anf
c
(2-A) 

This equation is the same as equation 30, therefore, 

bt* 

f
c
bt

2 

(40) 
f f 
— (3~3A+A'

2

)—- ( i~A ) 
A n 

=M
S
 (P'ormula 1.) 

From this equation, 

(41) -2M*3^-3f
c +
.f

c
A-J £ l 

bt
2

 A
 0 0

 n n 

f« - /M f<5 • So 
(42) A ( f

c
+ — + f

c
+ ~ ) + 3 - S = 0 

° n bt
2 u

 2n A 

f K/i 
( 43) A

 2

 (f
 c

+

 ~ J-S* (-tf
c
+ ̂  )

+

 S f ^ O 

(44) ^ - o ^ v f e - ^ 
/9(bt

2 + f

c
+

2n)
a

-12f
c
(f

c
+

f

s/n) 

2(f
 c
+ — ) 

° n 

fhis eouation is equivalent to formula 4, 
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THE DOUBLE REINFORCED BEAM FORMULAS, 

The easiest method for designing any rectangular or t-

sixaped double-reinforced concrete beam is to determine first 

what moment the be*an can carry as a simple beam of the same 

section when stressed to the working limits, and then to pro-

vide enough compression and additional tension steel to carry 

the excess moment without changing the fiber stresses. Other 

problems which arise will be discussed later. 

The fundamental fact on which this method is based is 

that for tmy particular values of f
c
and f

g
, k has exactly the 

same value regardless of the shape or type of beam, This 

single value for all beams is expressed by the formula 

It is derived in all cases by the same process of reasoning 

as that followed in deriving equation 2 under the t~beam 
formulas. It follows from this that if steel is added to the 

section without changing the extreme fiber stresses, this ten-

sion and compression steel must form a balanced couple whose 

stresses conform to the stresses already in the section. 

Use the following nomenclature:. 

P
c
 = the steel ratio for the single reinforced beam 

with the same k. 

P
3
 = the steel ratio to balance P

1

. (P=P
C
+P

S
.) 

the moment of the single reinforced beam. 

M'
s
= the moment of the steel couple. (M=M

f

c
+M'

s
) 
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From tbe assumption that unit deformations of the fibers 

vary as their distances from tbe neutral axis, it follows that 

U ) — (
S e e

 figare, page 18) 

Since the balanced steel couple must meet the statical require-

ment SB=0 

(2) fgP
T

bd = f
s
p

s
bd 

Substituting for f
1

s
 its value in equation 1, 

f
s
P f

s
P 

1~ -k 
•Q 

1-k 

D-£ "
p

s (5) P
c
 = F-P

s
 = P-P'f^" 

Taking the moment of the steel couple about tbe compression steel, 

(6) K'g * fgPgll-a^bd
2 

(17 ) p ^S • s

 fgbd
2 

These formulas apply equally well to uny type of beam. When 

P una P' are predetermined, first find k from the formulas, 

(8) k = -n(P+P
,

)+/n
a

(P+P
,

)
2

+2n(P+P
,

0) 

and 'jj+pig+iL 

(9) k = p-j^S. (see pages 14,15. 
P+PH- | 

for the rectangular and t-beam respectively. 

When k has been determined, calculate P
s
and P

c
 from formulas 

4 and 5, and then find the working stresses from the formula, 
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f £P 
(ID) —2- for the rectangular beam 

s
 k 

^ 2P, 

and 
2£c A 

(11) = A
 +

n 
f s 2 - A 

for the t-beam. 

With the working stresses known equation 6 gives M'
s
 for all 

types of beams. 

For the rectangular beam, 

(12) M' = !^(i4)bd«
a S
f

8
P

c
(l-|)bd«-

Then since M = M ' g + M ^ 

(13) M = f
s
bd* Jp

s
(l-0)+P

c
(l^)j

 f o r

 rectangular beams. 

For the t-beam 

2 A
S 

(14) M'
c
 = f

s
P

c
od

2

( Q-6A+2A + y 

then ^ -v 
r a3 I 

6~6A+2A*+— 
(15) M p f

 c
bd

2

 « P*4 l-Q) +P
f 

6~3 £ 
for t-beams. 

If the oexnD is suojeeted to a smaller or larger stress .tham 

M, the safe resisting moment:, the fiber stresses are decreased 

or increased in direct proportion to the moments. 

k, z, and J for the Double Reinforced 

Rectangular Beam, 

While there is nothing new in the derivation of these 

factors for the rectangular beams, this work is inserted to 

completely cover this flexure theory. 

(1 >- f
 s
pbd= if

 c
kbd+f

1

 s
p

1

 Dd (2H=0.fc 

(2) f
 g
p=.Jf

c
k+f

1

 s
p * 

(Unit deformations vary as their dis-
tance from neutral axis) 
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(4) f'
s
=ni'

c
(i£l®-) (Unit deformations vary as their dis-

tance from neutral axis.) 

(5) pnf
c
(i=iMf

c
k+p'nf

c
(ir£) (Equations 2

?
3,and 4.) 

& it 

(6) pn-pnk=|k
2

-5-p'nk-p
,

nQ 

(7) k
2

+2kn(p+p
,

)-2n(p+p»G)=0 

(8) k=~n(p+p')+/n
2

(p+p')
2

+2n(p+p'G) 

(9) z(c+c')=• Jkdc+d'c* (Moments around top of beam). 

c' 
skdc+d'c' Ikd+dV 

(10) 2= = ,
 v 

f 1 c + c
 ±

 c 

( i d i'=
 t , f

a
p '

o d

 - 2 f
g
v 

c ff
c
kbd f

c
k 

(i
2
)
 ( B t i o n 4 a n d U m ) c f

c
n k k^ 

_
 j

 sk
a

d+ 2p'nd'(k-6) 
(13) z -

 1 +
2 p ^ n

( k
-

0
) ' k

2

+2p'n(k~0) 

(14) 4 - 1
 d
 k*+2p'n(k~£) 

, _ k
2

(l~§k)+2p'n(k~Q) (1-Q) 
J

 k
2

+2p'n(k-G) 

k, z, and J ffir the Double 

Hein forced 1'-6 earn. 

(1): f
 s
pbd=f

 s

 1

 p ' bd+f
c
A(l-|jj)bd 

(2) f
s
p=f

s

,

p^f
c
A(l-|i) 
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1—k 
(3) f

g
= n f

c
— — (Unit deformations vary as their distance from 

neutral axis.) 

k-Q 
(4) fI=nf* ( "

 M

 " » " distance from 

neutral axis*) 

(5) p n f
r
( ^ ) = p

,

n f
c
( - ^ ) ^ f

c
A ( l ^ ) (Equations 2,3, and 4.) c

 k
 w

 k
 u

 2k 

(6) pn(l~k)=p
1

 n(k~G) + f
0
M k ~ 0 

, _ Ak A'
2 

(7) p -pk= p
1

 k -p' Q + — - — 
n 2n 

Ak A'* 
(8) pk+p'k+— =p+p'G+— 

n 2n 

A'
2 

D+D'Q+— 
(9) k= £ 1 

D+P ' + -JL 
n 

(10) z(c+c
1

 )
=

c ) ~~~ +• c ' Qd (Momets around top of beam) 
2 k

~
A 3

 (See equation IS, page 8.) 

c( ) —+c'Gd (<— )- + — -Q 
(11) z -

 3

 -
 s c 

- — ' 1 + c 
c + c

4 1 +

c 

, . c* f 'p'bd f ' p ' 
( 1 2 ) - = s = S 

f
c
A ( l 4 ) b d v u ^ 

c
, p ' n f

c
( — ) 2p 'n(k-G) 

{1 q \ - , = — 
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3k~2A _A
 +
 2p

f

nQ(k-Q) 

(14) ' z = 2k-& 3 * A.(2k~A) 

1 +
 2

P '
n

<
k

~
6

) 
A(2k~A) 

A
2

 . 
(15) z = "3 C3k-2A) + 2p'nQ(k-0) 

A(2k~A) + 2o'Q(k-Q) 

A
2 

z
 A(2k-A)+2p'n(k-0)-

3
 (3k-2A)~2p

1

nG(k-Q) 

(16) J = 1--= A(2k-A) + 2p'n(k-Q) 

A ( 2k-A) (3k-2A)+ 2p'n(k~Q)(1-C) 
ClV') J = : V ;

 A(2k~A)+2p'n(k-G) 

CHECKS OS THE X FORMULAS FOR THE DOUBLE REINFORCED BEAMS. 

(1) For the rectangular beam, k=-n(p+p')+/n
2

(p+p
,

)
2 +

2n(p+p
I

Q). This 

(2) is the solution of the equation k
2

+2kn(p+p
1

 )-2n(p+p
!

Q)=0{Ei.? 

I~k l£
i

*Q+ 1-k i-Q 
(3) P + P ^ P c + P s + D s C — ) = p

c
+ p

s
l
 k

_,
fc
 )=Pc"Ps^-—Q-) (Formula 6,Pg. 

, i~k n-O+Q-kG. , 1-G. 
(4) p

+

p ' G = p
c
- p

s
+ p

s
U — = p

c
+ k p

s
( — ) 

r~G\ i-Q. 
(5) k

2

+2knp„ + 2knp—-)-2np^-2knD
c
(,-—-) = 0. 

. , isnp~ , /—: ;—: 
(6) k = -

 c

 + 2/4n'
:

D
c
^+bE)p

c 

2 

(7) k = ~np
c
+ •/n

 2

d
c
 2no

c 

Equation 7 is the k formula for tne rectangular bei:m reinforced 

for tension only. 
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The k formula for the double reinforced t-beam may be trans-

formed in the same way. 

J r
 A

2

 , .1-0, A
2 

p+p'Q+
7
 p

c
+p

s
k ( - — ) + -

(1) k= — = ^ (See equations 3 and 4 above. 

n
 p

c ' ^ s V q
;

 n 

,., , , 1-0 kA , H 4
2 

0 0 k p
c
^ k p

a
—

+ r
 = P c ^ s * ^ 

(3) k 

A
2 

c

 an 
7T-

c

 n 
A

2 

Pc
n +

 4 
(4) k = — 1L This eouation 4 is the k formula for the t~ 

p
c
n + A 

beam reinforced for tension only. 

Both of these k formulas reduce directly to the k formulas 

for the single reinforced beums when p
1

 ~ 0
:

„ 

FORMULAS FOB DOUBLE REINFORCED RECTANGULAR•BEAMS. 

1 
(1) k = f* Formulas 1 to 7 are used to 

1 + y f 
/ n I

c determine the steel ratios, p 

£
 k
 and p

1

, which a beam must have 

P
c
 = gj- to resist a given moment, and 

formulas 8 to 12 are used to k (3) M
c

 1

 = f
s
p

c
(l~~)bd

2

 determine the safe resisting 

(4)- M ' = M-M.
 4 

moment that a given beam is 

able to exert. 
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M
 1 

( 5 ) P

s
=

 i" (l-O)bd
2 

(©) d' = p
s 

1-k 

k-O. 

(7) o = D
c +
p

s 

(8) k = ~n(p+p')+ /n
2

(p+p
1

)
2

+2n(p+p
,

Q) 

, , , k-Q 

(10) p
c
 = p - p 

( 1 1 ) f ' c " 2 P c 

s 

' s 

(12)' M = f
s
bd

2

 |~p
s
(l~G)+p

c
(l-|)] 

_ |k
s

d+2p'nd'(k-G) 
Z

 k
s

+2p
 1

 n(k-&) 

k
 2

 (1- sk)+2p' n( k-G) (1-Q) 

U

 . k^ap'nCk-ft) 

(15) V = f s ^ 

FORMULAS FOH DOUBEE REISEQRCID T-BEAMS„ 

(1) k = — f 

/ni
c 

f A A
2 

(2) p
c
 « A -2- (1--) — c i

 s
 2 2n 

ft' f I d t
2 

— (3-3A+A
2

)
-

— (J - A)> — 
A n I o (4) M ' = M - M ' 
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(5) Do = V s

 f«(l~Q,)bd
2 

(6) p' = p
g 
s

 k-Q 

(7) p = p
c +
p

s 

A
2 

p+ p
1

G + — 
(8)

:

 k =* 
, A p+p'+ — 

n 

( 9 ) P s - P
1 k-Q. 

1-k 

(10) p
c
 = p-p

s 

f k (11) l£
 =
 I T n

 =
 _j£ 

2 - A n(l-k) 

6-6A+2A
2

 + 
p

s
(l-C)

+
p

c
. 2pc ( (12) M = f„bd

2

 r x x
_ „,. , 

=
 &

2

(3k~3A)*2p'nQ(k-Q)
 d 

A(2k-A)-+2p
1

 n(k~Q)" 

A
2 

A (2k-A )-• ( 3k~2 A)+2p'n(k-Q)(1~0) 
(14) J = 3 

A(2k~A)+2p'n(k-Q) 

(15) f
8
« = f

s
 £ £ 

Formulas 1 to 7, and 8 to 12 cover the two typical 

cases described under the rectangular beam formulas. Seven 

of these formulas are the same as those for rectangular beams. 
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USE OF THE DOUBLE REINFORCED BEAM FORMULAS 

Find the safe resisting moment of a rectangular double-r 

reinforced concrete beam constructed to meet the following 

conditions:. 

b •= 12 in. d = 18 in. Q = Jo-, p = 0.025 

p' = 0.010 f
c
=600 lbs. f

s
 = 15DOO lbs. 

This is the case covered by formulas 8 to 12, page 19. 

(8) k = -15 (0.0-25+0.010+ /l5
2

(0.025+0.010)
2

+2*15(0.025+0.01x<i3.) 

k = 0
:

.502 

0.502 - 0.100 

1 - 0 ,602 
(9>; dr= o.o-i ' = o.ooso7 

(10) p„=0.0'25 - 0.00807 = 0.01693 

If f
c
 = 600 lbs. 

, . 600x0.502 
(11) f== -r -—-r- = 8900 lbs. s

 2x0.01693 

(12) M = 8900xl2xl8
2

 j^O.00807(1-0.l)+0.01693(1-

M = 739,000- in. lbs. 

0.502^ 

If this beam were subjected to a bending moment of 1,000,000 

inl lbs., the new f
c
 i:nd f

s
 can oe determined by direct propor-

tion from the above fiber stresses, 

1,000 ,000
 0

„ , " 
f

c - « ® ^ o a o
 = 8 1 2 1 D S

: 

1,000,000 
1 8 9 0 0 x

 -^Tsfooo -
 1 2 0 4 0 

A beam having the same b, d, Ql, i:nd limiting fiber stresses, 

and f
Q
 as in the first problem will now be designed by the 

first method outlined on page IS to carry the same bending moment 
of 739,000 in. lbs. 
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C 1 ) : k =

 T T I e l
 =

 °'
3 7 6 

15x600 

600x0.375 ^ 
(2) Pr = = 0.007b c

 2x15000 

3'
 c

75 
(3) M

C

1

 = 15000+0 .0075(1—-77—)xl2xl8
2

 = 383000 in. lbd. 

(4) M
s
' = 739000 - 383000 = 356000 in. lbs. 

356000 
( s >

 °
s

 * isoe3(i-o-:)*i2*i8
g

 * °-
3 0 6 7 8 

Now compare these two sections both of which hisve the same 

concrete area. 
1st section 2nd section 

f
c
=60G f

s
=S900 f

c
=600 f

s
= 15000 

p+p* =0.025+0.01 p
c
 + p

s
+p'=0.0075 

=0:0350 0.00678 
0.0154 

3v0297 

Since the second section uses 0.&3 °/o less steel, it 

would appear from these examples that it always pays to stress 

both sides of the oeam up to the working limits. 

In the tnird problem under single reinforced T-beams on 
page €> , when the section in problem one was stressed to 12,500,000 

in. lbs. the extreme fiber stresses were found to be f
c
=781 lbs. 

and f
s
=19520 lbs. S@ will now double reinforce this section to 

carry this moment with stresses of f
c
=600 and f

s
= 15000. From 

problem one on pages 3 and 4 , t=8 in., b=64 in., d=44.6 in., 

p
c
O.00545 add M

c

 1

 =9,600,000 in. lbs. Make Q=0.0873(3
,,

imbedment) 
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From formula 4 on page 19 

(4) M
s
' = 12,500,000 9,6-00,000 = 2,900,000 in. lbs. 

( t

'»
 k =

 - 15300 " °-
S ? 5 

1 + 
15x600 

2,900,000 
P s =

 15000 ( 1~0,067S)
X

64
X

44>6
2 =

 °"
0 0 1 6 2 8 

(6) p
1

 = 0,001628 x - ' = 0.00331 

0.375-0.0673 

(7) p = 0.00545 + 0-001628 = 0.00708 

k can wlso be determined by the ase of formula 8, 
0

:

.1791
2 

-= 0.375 

0.00708 + 0.00331 * 0^.0673 +
 0 

(8) k = - x 1 5 

$.1791 
0.00708 + 0.00331 + 

15 

Now design the beam with the same concrete dimensions to 

carry this moment of 12,500,000 in. lbs. ssith limiting work-

ing stresses of f
c
=600 and f

g
=10000 

(1) k = — — = 0 . 4 7 4 10,000 
15 x 600 

600 ,„ 0.1791, 0.1791
2

' _ 
(2, p

c
= 0 . 1 7 9 1 * —

0
U - — ) ~ Y 7 1 s °'

0 0 8 7 1 

(3)
 ( s

_
s x 0

.
1 7 9 1 + 0

.
i r a i a i

^ (1-0.1791)] 

10:1791
 l b

 ~ J 

M
c
' = 10,210,000 in. lbs. 
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(4 ; ) : Mg1 = 1 2 , 5 0 0 , 0 0 0 - 1 0 , 2 1 0 , 0 0 0 = 2 , 2 9 0 , 0 0 0 

2 2 9 0 0 0 0 
( 5 ) P s = 10000 ( 1 - 0 ^ 0 6 7 3 ) x 6 4 x 4 4 . 6 2 = ° : Q 0 1 9 2 9 

1-0 A 74 
(6) p

1

 = 001929 — — — = 0.00249 
0.474-0.0-673 

(7) p >= 0.001929 + 0.00871 = 0.01064 

Tbe use of the higher steel stress in the first design saves 

0.27 percent of steel over this second design. 

CONSTRUCTION QF TBE REINFORCED CONCRETE SLAB F'LEXDRE 

DIAGRAM, 

The moment caused by a uniformly distributed load at any 

point on any beam which is fixed, partially restrained, or 

simply supported at the ends may be expressed in in. lbs. by 

the formula, M = 12 J L ^
 i n w h i c h w i s t h e u n

if
0
rm load in 

P 
lbs. per ft,, 1 is the span in feet, and $ is the moment de-

nominator. ^ is 8 for the moment at the center of a simply 

supported beam. 

The formula for the resisting moment of a simple rectangu-

lar reinforced concrete beam is M = Rbd
2

 in which R = Jf
c
kJ 

for the compression couple and f
s
pJ for the tension couple. 

When the beam is supporting a uniformly distributed load the 

general formula may be expanded into the two forms, 

I
2

 = f pjbd
2 

P 

and 12 * V = 2i
0
kJbd

2 
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In the upper left hand quadrant of the diagram, w&ich'is 

called the moment chart, the logarithmic abscissas and ordinates 

represent the spans in feet and moments in inch pounds respective-

ly. Bach sloping line on the diagram represents a particular 

value of — + With JL a constant the formula takes the form 
jt p 

and when expressed in logarithms, the form log M=log K 4-

2 log 1 . The moment chart is a graphical representation of this 

family of curves, which are parallel straight lines. 

The upper right hand quadrant or the depth chart is the 

logarithmic plat of the equation M=Rbd
2

. In this case also 
Orciina-Ves represent +be mornerHs , bu+ the loaari4hry>ic 

tne logarithmic^abscissas represent values of R. Each sloping 
line represents a particular value of bd

2

. b is taken as 12 

inches in all cases and the line is designated by the correspond-

ing value of d* This plat then represents the general equation 

log M=log R'
!

 + log R. It is a series of parallel 45*'' lines. 

The lower right hand quadrant or the stress chart is a 

logarithmic plat of the two families of .curves 

R=f
g
pJ-f

s
p £l~i(i/£pn+pn~~pn)J 

and R=^f
c
kJ= if

c
^/2pn+pn

2

~pn^|l-s(l^pn+pn
2

-pn)j
, 

n = 15 in this chart, then for particular values of f
s
 and f

c 

these two equations take the form R=K
,!

 ¥ (p) or in logarithmic 

terms, the form, log R = log K
M

+ log 

In the stress chart the logarithmic abscissas and ordinates 

represent values of R xind p respectively, and the sloping 

lines represent particular values of f
c
 and f

s
. 

As, the total steel areac, = pbd- In the lower left hand 
quadrant or the steel chart, the lines sloping upward to the 

right represent constant values of d and the abscissas and 

the ordinates, as numbered at the right hand side of the dia-

gram, represent values of A
s
 and P respectively, 

When the cross-sectional area of a round rod is ocand the 
rod spacing is , A

s
 = Ijpte, Each line sloping upward to the 

left in the steel chart is marked with the diameter of the rod 



26. 

whose area it represents. The abscissas represent the steel 

area and the ordinates, as marked at the left side of the 

diagram, represent the roiind rod spacing. The spacing for 

square rods is ~ times the spacing of round rods of the 

same thickness. The k and J curves are also plotted in this 

steel chart. 

TBS USE OF THE BEAM M D FLOOR SLAB CHART. 

Supose that it is required to design a slab to carry a 
total live and dead load of 400 lbs. per sq. ft. over a simple 

span of 20 ft. with limiting stresses of f
c
=65Q and f

s
=18000 

lbs. 

Before entering the diagram the load per square foot, 
400 lbs., must be divided by the moment denominator which is 

o - 4» » w 400 
8 m this case. — = - — = h0, 

- $ 8 

af 
In the stress-chart,

A
the intersection of the values 

f
c
=650 and f

s
=18000, as indicated at A in the first guide 

diagram, the value R = 107 satisfies both stress conditions. 

Any designer who uses a: particular set of stresses constant-

ly remembers the corresponding value of R, and omits this 

operation. 

Now in the moment chart 
find the intersection of the 

sloping line ^ = 50- with the 

line representing a span of 

2C feet. The ordinate of this 

intersection corresponds to a 

moment of 240,000 inch pounds. 

Follow this ordinate into the 

depth chart to its intersection 

with R=107„ At this intersection 

G U I D E D I A G R A M N o . L 
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d = 13.6 inches. It is decided to use a depth of 14 inches 

which corresponds to R = 102 for this moment. Follow the line 

H=102 into the stress chart. At the point where f
c
=650> fs=17600 

at the point where f§-16000, f
c
=6SQ. This second set are there— 

fore the limiting working stresses. At this point p = 0.0073. 

Follow this abscissa into the steel chart to d=14
M

. At this 

intersection A
s
=l*23 sq« ins. Follow this A

g
 line to the 1" 

line. The required spacing for 1
M

 round rods is 7.7 inches. 

Use a spacing of 71 inches. If it is required to use 1 inch 

square rods, the necessary spacing
 x

 7.7 = 9.8 inches. Use 

91 inch spacing. 

If it is desired to find the resisting moment when every 
other rod Is turned up, this process is reversed. 

In the steel chart follow the rod spacing of 15 inches to 

the 1 inch line. A
s
=0„626„ Follow this A

s
 line to d=14", 

p=0.00372- Follow this p line to f
s
=16000> f

c
=439, R=54.' 

Follow the R=54 line to d=l4 in tbe depth chart, M=128000 in. 
lbs. The location of the point on the beam where M= 128000 in. 

lbs. can be found from the equation or form of the moment 
as 

curve
A
on page 6.. 

If the moment curve is a continuous parabola
 a
 simple 

method for finding this point is derived as follows:, Call 

the moment at the center M^R'bd
2

 and the moment at the point 

distant X from the center, M
x
=R

x
bd

2

. Find the value of R
1 

and R
x
 from the stress chart. 

From the law of the parabola (See figure on page <£.) 

R
f

bd
2

~R
x
bd

2

 _ R* 

R
!

bd
2

 ~ ~R* 
( i t 
2 
/ 
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THE CONSIRUGtiQR QP THE REINFORCED CONCRETE 

T-BEAM CHART 

The ffioment caused by a uniformly distributed load at any 

point on any beam may be expressed in inch pounds by the formula, 

w 
t¥i=12-r 1 as explained on page 24-. f 

The resisting moment of the steel reinforcement in a t~ 

oeam is, from equation 27, page 3 , 

M 0t
2

=cit)t
2

 when 3=-—-s

 S
2

 A
2

. 

Then when the t-beam is supporting a uniformly distributed load 

w 
M = 1 2 — l*=Rbt

2 

P 

In order to make the diagram of more general application the 

moment is divided by b, the breadth of the beam in inches. The 

moment formula then takes the form 

'
 M

 ^
 1 2

 *- 1* = ± 1* = Rt
2 

b p tfB 

B is used to express the width of the beam in feet, g then ex-
presses the uniformly distributed load in terms of live load per 
square foot of flange. 

In the upper left-hand quadrant of the diagram the logarithmic 
abscis.sas and ordinates represent the spans in feet and moments 

in in. lbs. divided by the breadth of beam in inches respectively. 

Each sloping line represents a particular value of J^ . With 

" M "" 
a constant, the formula takes the form - = Kl*. The moment <f& ' D • 

chart is a logarithmic graphical representation of this family 

of curves. 
The upper right hand quadrant or the slab chart is the 
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M 
logarithmic plat of the eauation — = Rt

2

. The abscissas re~ 
b M 

present values of R, and the ordinates, value of — . The slop-
fa 

ing lines correspond to particular values of t. 

The lower right hand quadrant or steel chart is a log-
I 

arithmic plat of the equation R=f«— - In this steel chart the 
a

 pJ 
abscissas and ordinates represent values of R and — o^Y re-

A 
spectively. The sloping lines represent particular values of 

IB the lower left hand quadrant or proportional chart, the 

lines sloping upv/ard to the right are the logarithmic plat of 
PJ 

the family of curves . When J is expressed in terms of A, 

p, and n, this equation takes the form 

[A* 

6-6A+2A2+ — 27 ^ 

For particular values of t9 this equation takes the form 

Y=J5
M

p+K
lv

„ The abscissas and ordinates of the proportional 

chart represent values of P and Y respectively, and the slop-

ing straight lines represent particular values of A. In this 

chart 9 is used to represent the ratio From equation 24 

on page 3 , 
A A

2 

P = 

2 ^n 

The curved lines on the proportional chart have been 

plotted from this formula by solving for the values of P cor-

responding to particular values of 9 and A and then drawing 

the 9 curves through the intersections of these values of P 

with the corresponding A lines in the proportional chart. The 

curve A=k is the line of division between the t-beam and the 
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simple beam. From equation 22, page 9, its formula is p= 
2n(l~A) 

THE USE OF THE T-BEAM CHART: 

The t-beam which was designed analytically on pages 3 8^4 

will be checked by means of this chart to illustrate its use. 

Before ente-ring the diagram the total live and dead load, 

4000 lbs. per lineal foot must bs divided by both the moment 

denominator, 8, and the breadth of the beam in feet, 51. 

w 4000 

8x5 i 
=93.75. 

* 600 
b = = 0.04. 

15000 

Now perform the operations 
on the t-beam churt indicated in 

guide diagram,So.2. At the inter-

section of-^=93*75 with the line 

1=40 ft,, the orldnate is ^=150000, 
o 

At the intersection of this ordinate 

with t=8 R=2350. At the inter-

section of the abscissa, R-2350' with 

with f
s
=15000, Y=0.157. Now follow 

the ordinate Y=0.157 to its inter-

section withe the line 8=0.04. At 

this point A=0.179 and p=0.00548. 

^ __ _________ 
" A ~ 0.179 

^=/sopoo 
i 
" P f J y t 

// $ 
/ 

w 

1 1 
<3? \/ 

\ 4 / 
I / i / 1 / 

y*0./S7 "AO 

I / i / 1 / 
y*0./S7 "AO 

- 44.7
H

 5 U I D E D I A G R A M N O . Z . 

A
s
=pbd=0.00548*64*44.7^15.67 sq. ins. 

The t-beam chart is worked in the reverse direction 

when it is desired to know what resisting moment a given 

section can exert. The problem on page 5 will be used 

to illustrate this operation. The same section is used as 

before but the bending up of 4 rods has reduced the steel 

ratio to 0.00358. 
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In the proportional chart follow the abscissa, p=0.00358 

to its intersection with the sloping line 4=0,1791. At this 

point 6=0.0028-5 and Y=0.103. 

800 
If f

c
 = 600, 6 = — = 0.0028-5, f

s
 = 21100 lbs. 

c 

If f
s
 = 1S000, e = —ifi- =0.00285, f

c
 = 428 lbs. 

X oO OU 

This second group are the working stresses. Nop? follow the 
ordinate Y=0.103 toits intersection with the value f

c
=15000. 

At this point R=1540. Trace this abscissa, R=1540, to its 

intersection with the line t=8
H

. At this point -|f = 98000. 

Then 14=98000x64=6,270,000 inch pounds, The point on the 

beam-at which this moment occurs may be found as on page & 

or by the formula on page 27 . 

The handling of problems on both of these diagrams is 

facilitated by the use of two pointers. The last value found 

is held by one pointer while the other is used to pick out 

the value determined by the next step in the problem. Any 

diagram can also be much more readily handled when it is 

mounted on an extra heavy paste-board mat with rounded cor-

ners which has been backed with cloth or passe-psrtout„ 

'THE K M Q J DIAGRAM FOR T-BEAMS. 

The k and J diagram for t-beams represents graphically 

the two families of curves: 
pn+iA* k =

 7 — pn+A 

o A'
3 

,
 T
 6-6A+2A

2

+ — 
and J = 2pn 

6-3A 

The ordinates represent percentages of steel for both sets 

of curves and the abscissas as marked at the bottom of the 

diagram represent values of k, and, as marked at the top of 

the diagram values of J. The curves sloping upward to the 



right represent particular values of A in the k formula, and 

the curves sloping upward to the left represent particular 

values of A in the J formula. 

In the first problem worked omt on the t~beam diagram 

p=0.00548 and A=0.179 - On the k and J diagram these values 

correspond to k=0*376 and J0.920. This value of k is check-

ed in two ways on page 2.3 by equations 4i and 8. 

When p«0.00871 and A=0.1791, k=0.475 and J=0.917. This 

value of k is checked by equation 1 on page Z3 . 




